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ABSTRACT 

   Autonomous Underwater Vehicles (AUVs) are self-powered robotic devices that operate underwater 

with a propulsion system. In recent years, the maturing of autonomous technology and 

commercialization of AUVs has led to the rapid expansion of AUV types and capabilities. As a result, 

they are now being used in many scientific, commercial and military applications, such as underwater 

mine-clearing operations, feature tracking, cable or pipeline inspection, deep ocean exploration and air 

crash investigations. In a relatively new development, there has been a growing interest in the use of 

AUVs for under-ice marine science research in the Antarctic. For many years, researchers have limited 

access to investigate these ice-covered waters, but the use of AUV aims to change that. Concealed 

under the Antarctic’s sea ice lies a vast amount of intrinsic scientific information across a wide range of 

scientific disciplines, offering insights from Earth’s climate system to human biology. In particular, 

understanding the impact of climate change on Antarctic’s sea ice is critically important because of its 

contribution to global sea level rise and its role in regulating the world’s climate system. 

   However, the deployment of AUVs in the Antarctic for under-ice marine science research is not an 

easy undertaking. It is a complex operation involving thorough and careful planning, collaboration with 

multiple stakeholders, working in adverse environmental conditions, and often fraught with logistical, 

financial and technical challenges. During the mission itself, additional considerations are needed to 

account for ice cover, accessibility and emergency abort procedures. Therefore, it comes as no surprise 

that there is an increased risk of losing an AUV during operations in the Antarctic when compared to 

open water missions in other relatively benign environments. The loss of an AUV is not only financially 

costly due to the resulting higher insurance premium for all (if it is insured, or loss/rebuild costs if it is 

not), it can also delay research projects, damage the reputation of the AUV community, cause the loss 

of valuable research data and a possibility of harming the delicate Antarctic environment. It is therefore 

imperative that the risk of loss be analysed and managed effectively for deployment of AUVs in the 

Antarctic. 

   Significant developments had been made over the years in risk analyses methodologies to better 

analyse and manage the risk of AUV loss during deployment. Early efforts focused on the prevention 

of technical failures to improve reliability and increase life span of AUVs. Later, proactive and systematic 

risk analysis approaches emerges, to predict the likelihood of loss by analysing historical performance 

data of the AUV. Gradually, the scope of risk analysis broadens from analysing historical performance 

of an AUV to other operating uncertainties and phases of deployment. In recent development, more 

attention has been devoted to the role of organisational and human factors in the overall risk of AUV 

loss during deployment. Despite improvement in risk analysis approaches to AUV deployments, 

predicting the risk of loss remains a highly uncertain exercise heavily dependent on historical 

performance data. Two main areas for improvement were identified to develop a more comprehensive 

and effective risk analysis methodological framework for Antarctic AUV deployment. First, the time-

dependent nature of risks and the complex interrelationships between risk variables of an AUV program 
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needs to be examined collectively as a whole. Second, to reduce dependency on historical performance 

data by accounting for vagueness and ambiguity in elicitation of expert’s opinion.  

   To address the first shortcoming, a dynamic systems-based risk analysis framework facilitated by 

system-dynamics methodology is proposed. The use of system dynamics enables modelling of the 

complex, interrelated and dynamic systems behind an AUV program which may influence the risk of 

AUV loss during an Antarctic deployment. For the second shortcoming, a fuzzy-based risk analysis 

framework based on expert’s judgement is suggested. The use of a fuzzy logic overcomes limitations 

due to the lack of empirical data and accounts for the uncertainties about causal relationships between 

risk variables. Lastly, a hybrid Fuzzy System-Dynamics Risk Analysis (FuSDRA) framework is proposed. 

Leveraging strengths while overcoming limitations of both fuzzy logic and system dynamics, the novel 

approach provides a structured, robust and effective solution for risk analysis of Antarctic AUV 

deployment. 

   The usefulness of the FuSDRA framework was demonstrated in a case study based on the University 

of Tasmania’s (UTAS) nupiri muka AUV program. Supported by the Australian government through the 

Antarctic Gateway Partnership initiative, the objective of the program is to develop a polar capable AUV 

for the acquisition of high-quality underwater data. The explorer-class AUV was delivered in May 2017 

with its first Antarctic deployment in December 2018. Using information sought primarily from interviews 

of domain experts in UTAS and supported by other knowledge sources, FuSDRA models were 

developed and tested. Scenario analysis was performed on the models to understand the behaviour of 

the risk of loss under different circumstances. This included: 1) Knowledge loss due to departure of 

critical employee, 2) reducing government support and increasing alternatives to the AUV, and 3) 

increasingly dysfunctional interpersonal dynamics. Simulation results from model testing and scenario 

analysis were then used to derive a set of policy recommendations to better manage the risk of loss. 

The importance of implementing an effective budget management system, obtaining diversity in funding, 

reducing risk of obsolescence, optimizing recruitment strategy and improving interpersonal dynamics 

and stress awareness were highlighted.  

   This dissertation lays the foundation for structured risk analysis frameworks with the eventual goal of 

reducing risk of AUV loss during Antarctic deployment. The main contribution, the FuSDRA approach 

may also be applicable to other types of AUV operations or complex technological systems. To enhance 

the usability and ability to solve real-world problems, further work is proposed on the FuSDRA 

framework. 
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DEFINITIONS 

The study of risk is a complex discipline with many unstandardized terminologies. Therefore, different 

terms and concepts used throughout this dissertation must be clarified to facilitate references to 

extratextual materials. This section presents basic definitions for common terms with more detailed 

descriptions for key concepts and terms provided in their respective sections. 

Accident 

Events or occurrences that result in unwanted and undesirable outcome (8). In the context of this 

dissertation, it refers to the loss of AUV during mission in the Antarctic. 

Ambiguity 

The condition of admitting more than one meaning or interpretation (9). 

Autonomous Underwater Vehicle 

A self-powered robotic device that travels underwater with a propulsion system, controlled and piloted 

by onboard computer systems. 

Deployment 

An AUV exists in two main states: in storage or deployed. A deployment to the Antarctic encompasses 

all activities from transportation of the AUV out of the facility to its return. Usually, a set of missions are 

executed during any deployment. 

Failure 

The inability of the item to perform its function within previously specified limits (10). 

Hazard 

A hazard is a state or set of conditions of a system (or an object) that, together with other conditions in 

the environment of the system (or object), will lead inevitably to an accident (loss event) (11). 

Incident 

Unwanted and undesirable outcome occurring or could have occurred. Encompasses accidents and 

near-misses (12).  
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Probability 

A measure for representing or expressing uncertainty, variation or beliefs, following the rules of 

probability calculus. (9) 

Reliability 

The probability that an item will perform its intended function for a specified interval under stated 

conditions (10). Not to be confused with Safety. 

Risk 

The effect of uncertainty on objectives (13). 

Risk Analysis 

A systematic process to comprehend the nature of risk and to express the risk, with the available 

knowledge (9) 

Risk Appetite 

Amount and type of risk an organisation is willing to take on risky activities in pursuit of values or 

interests (9). 

Risk Factor 

Adapted from epidemiology, a risk factor is a variable (action, sub-activity, component, system, event, 

etc.) which alone or in combination with other risk factors is associated with an increased potential to 

give rise to some specified consequences (typically undesirable consequences). Used interchangeably 

with the term “Risk Variable” in this dissertation. 

Risk Management 

Activities to handle risk such as prevention, mitigation, adaptation or sharing It often includes trade-offs 

between costs and benefits of risk reduction and choice of a level of tolerable risk (9). 

Risk of AUV Loss 

The likelihood that, during a mission, an AUV will be rendered unusable for future missions, a definition 

adopted from NASA (14). 
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Safe 

Without unacceptable risk (9). 

 

Systemic Risk 

Risk emerging from the intervening risk factors and feed-back loops which are not predictable based 

on behaviour of each risk factor.  

 

Survivability 

The ability of a system to minimize the impact of a finite disturbance on value delivery (15). Sometimes 

used as an antonym to ‘Risk of loss’. 

 

System 

A purposeful collection of inter-related components working together to achieve some common 

objective (16).  

 

The Antarctic 

Defined either by the Antarctic Circle or the Antarctic Polar Frontal Zone. The Antarctic Circle is defined 

by places where the sun is above the horizon for 24 continuous hours and below the horizon for 

continuous 24 hours at least once a year. The Antarctic polar frontal zone or Antarctic Convergence, is 

a circular belt of water where cold, northward-flowing Antarctic waters meet the relatively warmer waters 

of the subantarctic.  

 

Uncertainty 

An imperfect state of knowledge or a physical variability resulting from a variety of factors including, but 

not limited to, lack of knowledge, applicability of information, physical variation, randomness or 

stochastic behaviour, indeterminacy, judgment, and approximation (17) 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Subantarctic
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INTRODUCTION: ON THE RISK OF AUV DEPLOYMENT IN THE ANTARCTIC 

   The advancement of science and technology has resulted in an emerging trend in the use of 

autonomous equipment for research activities in the Antarctic. From the collection of weather data (18) 

to ozone monitoring (19) and to meteorite identification (20), it is now possible to perform a diverse range 

of research activities in the Antarctic without human interference. In particular, autonomous technology 

has proven to be an invaluable asset for Antarctic’s under-ice research. Collection of under-ice data 

once depended mainly on drilling from above the ice and the use of ice-breaking vessels (21). However, 

the emergence of AUVs now offered new possibilities. With advantages of versatility with customizable 

payloads, ability to access remote locations, efficiency, higher data quality and lower costs of operations 

(2), it comes as no surprise, that there is a growing presence of AUVs in the Antarctic. 

   Despite its advantages, the deployment of AUVs in the Antarctic presents its own unique set of 

challenges, be they logistical, financial or technical. The harsh Antarctic environment not only pushes 

the technological limits of an AUV, but also challenges the on-site support team both physiologically 

and psychologically (22). In any event of incident during mission, recovery of the AUV may be virtually 

impossible or very costly. Although publicly available reports of AUV incidents are limited, there are 

several anecdotal accounts of AUVs being severely damaged or completely lost during deployment in 

the Antarctic. More than just tangible financial impact such as increase in insurance premium, any 

mishap to an AUV during a mission can also cause indefinite delay to research projects, loss of valuable 

research data, damage to the reputation of the AUV community and a possibility of contaminating the 

pristine Antarctic environment (2). Therefore, preventing the loss of an AUV during deployment is one of 

the top priorities for AUV owners embarking on an Antarctic research program. 

   Early efforts to reduce the risk of loss focused mainly on technical aspects of AUVs. Often, a modular 

approach is adopted to improve robustness and reliabilities in specific areas such as; the mission 

management software, navigation system, collision avoidance system, emergency abort system, power 

system, homing system and communication system (23–31). As AUV technologies continue to be refined, 

there is now compelling anecdotal evidence that technical risks arising from design, manufacturing and 

technological processes have decreased over the years. Consequently, a need arises to shift the focus 

of attention from technical aspects to broader issues for more effective analysis of risk. This includes 

the people associated with the AUV program, operational processes, operating environment, 

organisational policies and external constraints such as regulations and political climate. The synergistic 

combination of these factors associated with the AUV program consists of dynamic complex 

interrelationships between risk factors with multiple feedback loops. These interactions lead to a 

collective emergent behaviour which can be difficult to understand or predict purely based on the 

behaviour of individual risk factors. For example, it is intuitive that an AUV team with higher operating 

experience translates to a lower risk of loss, when considering only a single risk factor. However, with 

the inclusion of additional risk factors, such as reducing organisational commitment to the AUV program, 

poor interpersonal dynamics, high mental workload, etc, the analysis becomes more challenging. 

Complicated by the interrelationships and uncertainties about the degree of causality between these 
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risk factors, this larger context of risk received considerably less attention as compared to the technical 

aspects of an AUV. 

   Throughout the literature, there are limited accounts of AUV lost in the Antarctic. One of the high-

profile loss was that of Autosub2, an AUV developed and owned by the National Oceanography Centre, 

Southampton, United Kingdom. The AUV was lost in 2005 under the Fimbulisen ice-shelf most likely 

due to a fault introduced during the manufacturing/assembly phase (32). Although the direct cause of 

loss was determined to be due to technical failure, organisational issues were also highlighted in the 

loss report. For example, there is little documented information on any prior risk assessment made for 

Autosub2 and the setting of risk acceptance criteria as well as approach to management of risks in 

projects was found to be inadequate (32). Risk arising from organisational factors does not apply only to 

the AUV domain but also to many other domains. Valuable insights can therefore be gained by 

examining the loss of other comparable autonomous equipment. The loss of NASA’s Mars Polar Lander 

is one such example. On December 1999, The USD $110 Million unmanned spacecraft failed to 

establish communications after entering Mars atmosphere and has remained lost till this day. A 

subsequent investigation by a special review board concluded that the most likely cause of loss was 

the premature shutdown of lander engines due to spurious signals generated from the lander leg during 

descent onto Mars (33). While the loss can be directly attributed to software error, a more thorough 

review of the context in which the incident occurs revealed inadequate management oversight and 

excessively optimistic project implementation (33). Throughout the project, considerable funding and 

schedule pressure resulted in inadequate staffing, requirements creep and poor requirements 

management (33). These organisational factors and more importantly, their interrelationships eventually 

resulted in insufficient time and workforce available to provide checks and balances necessary to detect 

the software error (33). In almost an irony, NASA was one of the early organisations to recognize the 

importance of adopting a systems perspective in the analysis of risk. In 1968, the director of NASA 

Manned Flight Safety Program for Apollo, Jerome Lederer  (34) wrote: 

“System safety covers the total spectrum of risk management. It goes beyond the 

hardware and associated procedures of system safety engineering. It involves: 

attitudes and motivation of designers and production people, 

employee/management rapport, the relation of industrial associations among 

themselves and with government, human factors in supervision and quality control, 

documentation on the interfaces of industrial and public safety with design and 

operations, the interest and attitudes of top management, the effects of the legal 

system on accident investigations and exchange of information, the certification of 

critical workers, political considerations, resources, public sentiment, and many other 

nontechnical but vital influences on the attainment of an acceptable level of risk 

control. These nontechnical aspects of system safety cannot be ignored.” 
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   The commonality between the causes of the two losses lies in systemic issues, particularly 

organisational factors. In recent years, there has been a growing recognition on the importance of 

adopting a systems perspective for risk analysis to address systemic issues. This is evident, especially 

in safety-critical industries such as aviation (35), petrochemical and nuclear energy (36). The AUV domain, 

associated with relatively new technologies and an emerging industry, needs to keep pace with such 

developments to overcome shortfalls in existing approaches. Therefore, it is proposed that a new form 

of interdisciplinary risk analysis, which goes beyond the typical cause and effect analysis is required. 

Focusing on the complex interrelationships between various risk factors associated with an Antarctic 

AUV program, such an approach will enable broader issues to surface. This would facilitate 

determining of leverage points for risk controls and allow monitoring of both the level of risk and 

effectiveness of remedial actions. As AUVs evolve to take on more critical and diverse roles in Antarctic 

research, effective management of the risk of loss becomes an imperative goal for the AUV community. 

It is only by reducing the risk of AUV loss can the full potential of AUV technology be realised and 

benefits reaped. 

   The eventual goal of this dissertation is to lay the foundation for a structured, robust and effective 

solution for risk analysis of Antarctic AUV deployment. These approaches, presented as frameworks, 

will account for the complex interrelationships between identified risk factors, uncertainties about their 

causal relationships, as well as their dynamic behaviour. More importantly, they will support the AUV 

community with the identification, modelling and evaluation of risk factors associated with an Antarctic 

AUV program. 
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CHAPTER 1: BACKGROUND AND LITERATURE REVIEW 

   The main contribution of this dissertation is the presentation of a novel fuzzy system dynamics risk 

analysis (FuSDRA) framework. The framework facilitates the modelling and analysis of risks involved 

in AUV deployments, with a focus on the risk of loss in the Antarctic. This chapter provides a review of 

existing risk research on AUV deployments and highlights gaps to be addressed. A brief background 

on the Antarctic as well as broader concepts of AUV, risk and risk analysis are also presented. The aim 

of this chapter is to orient the reader to the foundation on which the rest of this research is based.  

 

1.1   AUTONOMOUS UNDERWATER VEHICLE (AUV) 

   AUVs are best described as self-powered robotic devices that operate underwater with a propulsion 

system (Figure 1.1). They typically comprise a pressure hull, power supply, communication and 

navigation systems, propulsion system, sensors, control unit and actuators. AUVs can range in weight 

from tens of kilograms to thousands of kilograms and depth ratings of 100m to more than 5000m (37). 

Sometimes referred to as unmanned underwater vehicles (UUVs) or by manufacturer’s model names, 

they are untethered and are pre-programmed to perform a series of underwater data acquisition 

missions. Apart from the ability to operate autonomously, their versatility with customizable payloads 

allows AUVs to perform a wide range of tasks with many scientific, commercial and military applications. 

   The commercialization of AUVs in recent years has fostered a rapid expansion in AUV types and 

capabilities. Consequently, AUVs have been deployed for all manner of tasks in many scientific, 

commercial and military applications, such as underwater mine-clearing operations, feature tracking, 

cable or pipeline inspection, deep ocean exploration and air crash investigations. The following sections 

present a necessarily brief overview of AUVs, to provide relevant background information required for 

subsequent analysis of risk.  

 

Figure 1.1: An Explorer-class AUV. 

 

1.1.1 AUV Developmental History 

   The theoretical concept of AUV has been around for some time before the first AUV (Figure 1.2) was 

developed in 1957. The “Special Purpose Underwater Research Vehicle”, or SPURV was built by Stan 

Murphy, Bob Francois, and later Terry Ewart of the University of Washington for specific purposes of 

studying submarine wakes, diffusion and acoustic transmission (38). 
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Figure 1.2: The first AUV, the Self-Propelled Underwater Research Vehicle (SPURV) developed by 

the University of Washington in the late 1950s.  

Image downloaded from http://www.navaldrones.com/SPURV.html on June 2017. 

 

   In the 1970s, several academic institutions and military organisations started research and 

development in AUV technology. It was also during this period that the oil and gas industry started to 

show interest in deploying AUVs for development of offshore oil fields (39). Moving forward to the early 

1980s, a global recession during this period slowed down AUV developmental efforts. When the 

economy gradually recovered, technological advances outside of the AUV domain such as 

miniaturization of computers and advances in software systems reinforced the developmental efforts of 

AUV technologies. By 1987, there were six operational AUVs and many others under construction (40), 

with AUVs moving closer to commercialisation. During the 1990s, many universities started to develop 

AUVs for academic research. By the turn of the millennium, technological maturity and market demands 

led to the emergence of AUV commercialisation, with the first AUV, a Hugin 3000 available for charter 

in the year 2000 (41). Since then, AUVs continued to evolve and are now capable of performing varied 

and diverse tasks, travelling longer duration and reaching deeper depths.  

   Today, there are more than 10 major companies that sell AUVs internationally, including Kongsberg 

Maritime, OceanServer Technology, Teledyne Gavia, Bluefin Robotics, Atlas Elektronik, ISE Ltd, 

JAMSTEC, ECA SA, SAAB Group, Falmouth Scientific, Tianjin Sublue and Tianjin Ostar. As AUV 

technologies continue to improve and capabilities expand, the AUV market is poised for almost certain 

future growth. The 2018 BCC Research market report highlighted the global market for AUVs reached 

USD $671.5 million in 2017 and forecast a compound annual growth rate of 4.5% to 2022 (42). This 

growth naturally translates to increase usage of AUVs and naturally, calls for more to be done in terms 

of risk control to promote safer AUV deployments. 

 



28 

 

1.1.2 AUV Types 

   AUVs constitute part of unmanned underwater vehicles (UUVs), a classification which also consists 

of remotely operated vehicles (ROVs) (Figure 1.3). While a ROV is controlled and powered through a 

series of cables from the surface, an AUV operates autonomously without human intervention, requiring 

minimal or no monitoring from a human operator.  

   Between the classifications of AUVs and ROVs lies Hybrid Remotely Operated Vehicles (HROVs), 

which are vehicles capable of operating in both untethered AUV and tether ROV mode. An example of 

HROV was Nereus, developed by Woods Hole Oceanographic Institution (WHOI) to explore depths of 

up to 11,000 metres (43). Examination of the AUV classification further reveals three sub-classes. The 

most common subclass, underwater gliders, are commonly used for oceanographic studies that require 

autonomous and long-term operations. Unlike the ‘typical’ AUV, underwater gliders have no thrusters 

or propellers, but rely entirely on buoyancy variation, internal mass distribution and ocean currents for 

motion. Its low speed translates to energy savings and ability to travel far distances over long periods, 

allowing oceanographic sampling in remote locations with reduced capital and labour costs. There is 

also other lesser known AUV sub-classes such as bottom crawlers, which are vehicles that crawl on 

the ocean floor for benthic sampling. The benthic rover, developed by Monterey Bay Aquarium 

Research Institute (MBARI) is an example of a bottom crawler which takes photographs and makes 

measurements on the community of organisms living in the seafloor sediment (44). In more recent 

development, there are biomimetic AUVs which mimics natural designs of underwater animals, such as 

the BOSS Manta Ray by EvoLogics (45) and AquaJelly by Festo (46). With the AUV market poised for 

almost certain future growth, more AUV types with specific capabilities are expected to be developed. 

Consequently, analysing risk of deployment becomes increasingly challenging, with the need of tailoring 

the analysis to both organisational requirements and specific AUV capabilities.  

 

Figure 1.3: Some existing AUV types. 

 

1.1.3 Applications 

   According to the latest 2018 market forecast by Westwood global energy group (47), the military sector 

is the greatest user of AUVs, accounting for 70% of the market. Research is the second largest sector, 
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representing 25% while commercial sector accounts for 4%. AUVs perform myriad tasks in these 

sectors that to list them all would be nearly impossible and unnecessary. For a general overview of 

AUV’s capabilities and to facilitate scoping of risk analysis, some of the common applications are listed 

in the following sections. 

 

1.1.3.1 Military Applications 

   The military is one of the earliest adopters of AUV technology, leveraging on AUVs’ ability to gather 

information or engage targets in areas inaccessible to traditional navy forces. Initially used for mine 

reconnaissance, they are now commonly used for intelligence, surveillance and reconnaissance (ISR), 

mine countermeasure missions, anti-submarine, clandestine payload delivery, inspection of ship hulls 

and ship husbandry (48).  

 

1.1.3.2 Commercial Applications 

   The commercial usage of AUVs is currently predominated by the oil and gas industry, where they are 

widely used for surveying of drilling sites and pipe routes, as well as the inspection of pipelines and 

subsea infrastructure (49). Increasingly, they are also applied in other areas such as the deployment and 

inspection of undersea cables, fisheries research, search and recovery, wreck and navigational hazard 

mapping, and water profile sampling (50). 

 

1.1.3.3 Research Applications 

   The continuous drive for knowledge in the Earth’s water bodies had resulted in a constant spur of new 

technologies and innovation for underwater data acquisition. AUVs especially, has become an attractive 

ocean research tool for bottom mapping, under-ice surveying, water column observations and more 

recently, physical sampling of water column, seabed (51) and even beneath ice-shelves (52). Their 

versatility in payload allows a wide range of mapping sensors to be installed, such as side-scan sonar, 

mechanically scanned sonar, multibeam bathymetric sonar, laser-line scan imaging systems, still and 

video imaging, and sub-bottom profilers (37). Water column measurements include dissolved oxygen, 

temperature, pH, turbidity, salinity, chlorophyll fluorescence, optical backscatter and water velocity (37) 

(53). AUVs can also be used as mobile acoustic arrays or mobile sources for acoustic tomography (37). 

Additionally, specialized instruments such as magnetometers, gravimeters, specific chemical sensors 

can be deployed on an AUV (54–56). The data collected supports the furtherance of knowledge across a 

wide range of scientific disciplines, such as oceanography, limnology, hydrography, archaeology and 

marine ecology. Herein, the focus of this dissertation lies in the use of AUVs for research activities in 

the Antarctic. 
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1.1.4 A Typical AUV Program  

   An understanding of the AUV program is essential to account for time-dependent risk factors 

associated with an Antarctic AUV program. These factors that can cause or culminate in the loss of an 

AUV during deployment in the Antarctic reside in different phases of an AUV program. For example, 

poor scope definition, over-design, poor budgeting and scope creep during pre-operational phases can 

have a downstream impact on the risk of AUV loss during later Antarctic deployment. Subsequent 

sections present a brief overview of a general AUV program (Figure 1.4), although, it must be 

recognised that the actual program will vary according to context and circumstances. 

Figure 1.4: Overview of a general AUV program, adapted from (2)(3). 

 

1.1.4.1 Conceptual Design 

   During this initial phase, objectives, scope and feasibility of the program are determined. The overall 

program costs are usually estimated based on the planned operational requirements, evaluation of 

available technology and the availability of commercial solutions. Preliminary risk analysis will be usually 

carried out based on the knowledge and experiences of the AUV team, with an acceptable level of risk 

established by the AUV owner. Decisions made at this phase may have a significant impact on the risk 

of AUV loss later in the program. For example, poor scope definition, inaccurate estimates of program 

budget and poor analysis of risks can lead to excessively optimistic implementation resulting in a higher 

risk of loss. 
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1.1.4.2 Preliminary System Design 

  This phase focuses on creating the general framework of the AUV program, with the establishment of 

the AUV’s specifications without excessive technical details. Some examples of specifications are; the 

required transit distance, submerged duration, dive depths, scientific payloads and optional payloads, 

timeline and post-purchase support requirements. After the confirmation of operations concept and 

technical specifications, a review and update of costs and resource requirements are carried out. A 

comprehensive risk analysis with an outline of risk control measures and procedures are further 

conducted to ensure that an acceptable level of risk can be achieved in the AUV program. Possible risk 

factors in this phase associated with loss of AUV include over-design, scope creep and poor 

constructability. 

 

1.1.4.3 Detailed Design  

  This phase specifies and finalises the detailed requirements for implementation of the AUV program, 

and construction of the AUV. Additionally, design drawings are created to guide the construction of the 

AUV and the facilities required to support the AUV. This phase also includes the testing of components, 

development of prototype models, tender evaluation and refinement of tender specifications. Relevant 

regulatory and expediting requirements are also considered in preparation for the commissioning of the 

vehicle. One of the main risk factor in this phase which can have a significant impact on the risk of AUV 

loss lies in poor procurement practices, such as an ineffective evaluation process in the selection of 

AUV manufacturer. 

 

1.1.4.4 Construction and Commissioning 

    AUV components are brought together during this phase for construction of the AUV, may it be in-

house or external. Periodic inspection of the AUV during this phase is vital to ensure relevant standards 

and requirements are met and that the components are fit for purpose. The utilisation and allocation of 

resources are to be reviewed and updated at this stage to control construction time, cost and quality of 

the AUV. Prior to commissioning, various tests such as field tests, acceptance tests, operational system 

tests and system assessment are carried out. The construction and commissioning phase can be 

plagued with risks of delays and quality issues, influencing the risk of loss both indirectly and directly. 

   Shortly after commissioning, the AUV team continues to monitor the vehicle and systems under field 

conditions. Potential risk factors which are overlooked or undetected in the earlier phases are identified 

and analysed.  

 

1.1.4.5 Operation and Maintenance 

   During this phase, the AUV is deployed into the field for its intended data acquisition. In a typical 

mission, an AUV is transported to the intended site after the initial pre-planning and preparation for 
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deployment. This includes determining and specifying mission planning, risk controls, recovery 

strategies, resource requirements and mission logistics. Prior to conduct of the mission, pre-launch 

checks are performed, and mission parameters uploaded. The AUV is then launched from an 

appropriate support platform; vessel, shore or submarine before it follows a pre-programmed path to a 

designated location. Upon arrival at its target location, the intended underwater data acquisition is 

performed over a predetermined period before the AUV returns to a rendezvous position to be retrieved. 

After retrieval, a set of post-launch checks and activities will be performed, such as cleaning and data 

download. As a good practice, information on the AUV’s performance and incidents are documented 

and used as feedback for continuous improvement of future deployments. Additionally, corrective, 

preventive and predictive maintenance are usually carried out with due diligence to ensure that the AUV 

maintains a certain level of availability and prolong service life. 

    Some risk control strategies commonly implemented in this phase involves the establishment of 

planned maintenance routines, operating instructions, safe work procedures, management of change 

and roles and responsibilities. Regular review on resource (human, material and equipment) 

requirements, availability of the AUV, and outputs from the program are pivotal for the long-term 

sustainability of the AUV program. A learning from incident process ensures continuous improvement 

with management made aware of significant incidents and risks. Periodic audits are carried out to 

determine whether the AUV program conforms to the pre-established requirements and identify gaps 

in the system for rectification.  

 

1.1.4.6 Decommissioning 

   While not directly influencing the risk of AUV loss for the existing AUV, appropriate decommissioning 

is valuable for reducing risks of future AUV programs and maximise the return of investment. An AUV 

which cannot be utilised any more due to their obsolescence or being beyond economical repair will be 

decommissioned. A detailed decommissioning plan describes the schedule of decommissioning 

activities, regulatory considerations and the required resources to carry out the process. Useful parts 

of the AUV are salvaged and the others scrapped.  

  Observations and review during the decommissioning process are documented and used as feedback 

for improvement of future AUV programs. This may include areas of unexpected deterioration, over-

design, integrity of upgrades and repairs, reliability of a specific component, hull material selection and 

effectiveness of corrosion monitoring.  

 

1.2   DEPLOYMENT OF AUVS IN THE ANTARCTIC 

   The harsh Antarctic environment is irrefutably one of the main contributory factor in the higher risk of 

AUV loss as compared to other benign environment such as inland lakes and lagoons. To facilitate 

subsequent analysis of risks, it is useful to have an appreciation on the background and challenges 

involved in an Antarctic AUV deployment, as presented in the following sections. 
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1.2.1 The Antarctic – A Brief Background 

      The term “Antarctic” meant “Opposite of the Arctic” is defined by different boundaries but most 

commonly by the Antarctic Circle or the Antarctic Polar Frontal Zone (Figure 1.5). The Antarctic Circle, 

which separates the Antarctic and the Southern Temperate Zone currently runs at a latitude of 66.3o. It 

is defined by places where the sun is above the horizon for 24 continuous hours and below the horizon 

for a continuous 24 hours at least once a year. The Antarctic Circle accounts for approximately 4% of 

Earth’s surface with most of the area within covered by the continent of Antarctica. 

   The Antarctic polar frontal zone or Antarctic Convergence is a circular belt of water where cold, 

northward-flowing Antarctic waters meet the relatively warmer waters of the subantarctic. The Antarctic 

waters predominantly sink beneath subantarctic waters, while associated zones of mixing 

and upwelling create a zone high in marine productivity, especially for Antarctic krill. This zone encircles 

Antarctica, varies slightly seasonally and creates a natural boundary which defines the Antarctic region.  

 

Figure 1.5: The Antarctic Circle and the Antarctic Polar Frontal Zone. 

 

   The first Antarctic island, South Georgia, was discovered in the year 1675 (57) with the continent of 

Antarctica eluding explorers and remained purely speculative for many more years. It was not until 1820, 

that Russian explorers Fabian Gottlieb von Bellingshausen and Mikhail Lazarev officially sighted and 

discovered Antarctica (58). The early 1900s saw the mounting of several Antarctic expeditions which 

resulted in territorial claims in Antarctica, with the largest area claimed by Australia. With increasing 

interest in the Antarctic, the first permanent research station in Antarctica, Mawson station was 

established by Australia in 1954. 
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   By the end of the 20th century, intensive scientific and geographic exploration began in the Antarctic 

region with various expeditions launched from different countries. Since then, the pristine environment 

of the Antarctic continues to interest researchers and captivate the world’s imagination, drawing people 

from around the globe to the region. Today, seven countries; Argentina, Australia, Chile, France, New 

Zealand, Norway and the United Kingdom had made territorial claims to parts of Antarctica; some 

overlapping (Figure 1.6).  

 

Figure 1.6: Territorial claims in Antarctica. 

Image downloaded 

from https://en.wikipedia.org/wiki/Territorial_claims_in_Antarctica#/media/File:Antarctica,_territorial_cl

aims_including_Brazil.svg on June 2018. 

 

1.2.2 Governance 

   The Antarctic is an area unique not only in its geophysical qualities but also its governance. Early 

disputes over territorial claims eventually led to the signing of the Antarctic Treaty signed 1959 (59), and 

the other subsequent treaties. At present, the Antarctic Treaty System, which comprises four major 

international agreements, forms the basis for governance of the Antarctic. These agreements are; 

the 1959 Antarctic Treaty, the 1972 Convention for the Conservation of Antarctic Seals, the 1980 
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Convention on the Conservation of Antarctic Marine Living Resources and the 1991 Protocol on 

Environmental Protection to the Antarctic Treaty. 

   The main Antarctic Treaty, originally signed by 12 nations, applies to all area south of 60° latitudes to 

ensure the following: 

 

“in the interest of all mankind that Antarctica shall continue forever to be used 

exclusively for peaceful purposes and shall not become the scene or object of 

international discord.” 

 

   To this end, the treaty moves beyond the doctrine of territorial states by prohibiting military activities 

and the rights of sovereignty in Antarctica. It promotes freedom of scientific research, exchange of 

information and holds all territorial claims in abeyance. 

   As for the maritime areas, jurisdiction is usually vested in the coastal state adjacent to those areas as 

prescribed by the United Nations Convention on the Law of the Sea (UNCLOS) (60). This definition, 

however, gave rise to several contentious issues for the Antarctic. First, UNCLOS only came into force 

in 1994 and any sea claims off the Antarctic territory contradicts the Antarctic Treaty 1959, which states 

that no new claims are permitted. Second, UNCLOS determines maritime zones based on the low-

water line along the coast. For the Antarctic, the area where land meets the sea is frequently covered 

in thick ice so accurately establishing the low-water line is a challenge. Last, while territorial claims may 

be accepted by other countries, there is no requirement for them to recognise their validity. At present, 

all parties are restrained from having conflicts over these contentious issues while there is no imperative 

to change the legal status quo. However, governance of the Antarctic remains an area vulnerable to 

conflict and exploitation, comparable to the international space law for space exploration. Therefore, it 

plays a subtle yet pivotal role in influencing decision-making of AUV deployments, such as the choice 

of deployment location and potential liabilities in the event of loss. It is therefore, fair to say that 

governance of the Antarctic sets the context for the analysis of risk, directly and indirectly affecting the 

risk of AUV loss. Interested readers are therefore encouraged to refer to (61) for further details on the 

law governing AUV operations in the Antarctic. 

 

1.2.3 Research Value 

   Trading off the risk of AUV loss are the values in Antarctic research. The uniqueness of the Antarctic 

offers a vast amount of intrinsic scientific information across a wide range of scientific disciplines, 

offering insights from Earth’s climate system to human biology. This is evident from the quantity and 

diversity of new scientific discoveries emerged from the International Polar Year of 2007 to 2008. With 

the participation of more than 60 countries, the myriad new information ranges from climate system (62) 

to social processes (63) and human health (64).  
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   In particular, it is critically important to understand the impact of climate change on the Antarctic 

because of its contribution to global sea-level rise and its role in regulating the world’s climate system 

(65). The warming of the Antarctic has caused changes to both its physical and living environment. 

Noticeably, many glaciers have retreated, and ice shelves broke off and collapsed in recent decades. 

Under Antarctic’s ice, increasingly warm waters have caused underwater melt-off, which is a growing 

source of concern for the global sea-level rise (66). This has also affected marine biodiversity, with 

changes to the seafloor ecosystem and the decline of Antarctic krill stocks (67). To this end, further 

research of the Antarctic will enable better future climate predictions and allow policymakers to make 

informed decisions about climate change. 

   Beyond planet Earth, the Antarctic also offers a glimpse and often used as an analogue for other 

similar icy worlds such as that of Jupiter’s moon Europa, Saturn’s moons Enceladus and Titan, and 

even Neptune’s moon Triton (68). 

 

1.2.4 AUVs in the Antarctic, Advantages and Challenges 

   When the first AUV, the Unmanned Arctic Research Submersible (UARS) vehicle was deployed under 

Arctic’s ice in 1972, it demonstrated not only the feasibility, but also future potentials of AUVs in the 

Antarctic. The use of AUVs has several advantages over traditional data collection means such as 

visual observations, drilling from above the ice, ROVs or the use of ice-breaking vessels (21). It has the 

ability to access remote locations autonomously which was previously inaccessible, such as under ice 

shelves. Additionally, operating underwater also mean that AUVs are generally unconstrained by the 

vagaries of Antarctic’s weather, although that can still impact the launch and recovery of the vehicle. 

Other advantages include AUV’s versatility with customizable payloads, higher efficiency, improved 

quality of data collection and potentially lower costs of operations (2).  

   However, the deployment of AUV in the Antarctic is far from an easy undertaking. The remoteness, 

coupled with a limited summer field season meant that logistical, financial and operational challenges 

are ever-present. Additional considerations are also needed to account for ice cover, inaccessibility and 

emergency abort procedures during missions. Exacerbating the problem is the dynamic and harsh 

Antarctic environment: Temperature so cold that it freezes exposed skin, whiteout conditions which 

reduces visibility to inches, hurricane force katabatic winds and months of winter darkness, just to name 

but a few. Early Antarctic explorers offer a glimpsed of the hardships while working in the Antarctic 

through their written journals. One of those, written in 1912 by explorer Robert Falcon Scott (69) reads: 

 

“It fell below -40° in the night, and this morning it took 1½ hours to get our foot gear 

on, but we got away before eight.” 

 

Today, technological and medicinal advancements together with permanent research stations have 

improved accessibility and safety for researchers in the Antarctic. However, the harsh environment 
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continues to challenge on-site AUV personnel both physiologically and psychologically (22), increasing 

the likelihood of human error during deployment. The condition underwater is no better. Water turbidity, 

changes in water density and strong currents can affect sensors and navigation of an AUV. Underwater 

communication itself is subjected to propagation delays, limited ranges, relatively low bandwidth and 

limited data transfer rates (70)(37). Additionally, the southerly latitude affects navigation and ice-cover 

prevents surfacing of vehicle during an emergency. 

   Previous risk analysis of Autosub 3 AUV showed the median probability of AUV loss for under sea-

ice missions to be 4.9 times higher than that of open water missions (71). Risk of loss for under ice-shelf 

missions is even higher, with the median probability 9.4 times higher than open water missions (71). To 

this end, AUV owners also face another contentious issue pertaining to the uncertainty of the legal 

status of an AUV. The autonomous nature of AUVs resulted in ambiguity of whether an AUV should be 

classified as a ‘ship’, and this has legal implications in circumstances of loss, such as collision, salvage 

or incidents in foreign water (61). The uniqueness of governance in the Antarctic exacerbates the problem 

further with the lack of clarity. These challenges, together with the remoteness and adoption of the 

Antarctic treaty has so far suppressed commercial and economic motivation in the Antarctic, although 

the same cannot be said for the future. Thus far, only a few AUVs have been documented to have 

conducted research activities in the Antarctic, as presented in Table 1.1. As a result, there are very 

limited available risk studies of AUV deployment to the Antarctic. 

 

Table 1.1: Documented AUVs deployed for research activities in the Antarctic (Excluding gliders). 

AUV Built 

Odyssey I 1992 

Tadpole 1992 

Autosub 2 2000 

Autosub 3 2005 

Autosub 6000 2006-7 

Seabed (Puma) 2007 

Seabed (Jaguar) 2007 

UBC Gavia 2010 

4B4B4BAutosub Long Range 2010-11 

5B5B5BExplorer (nupiri muka) 2017 

 

1.2.5 Incidents of AUV Loss in the Antarctic 

   Despite the paucity of risk studies and historical data, some reports on the loss of AUV in the Antarctic 

are publicly available. In 1993, Tadpole, an AUV operated by the Institute of Antarctic and Southern 

Ocean Studies, Australia, was one of the first reported loss in the Antarctic (72). Modified from an actual 

torpedo, the AUV failed to return from its second mission after deviating from its intended course (72). 
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Another loss was that of Autosub2, an AUV developed and owned by the National Oceanography 

Centre, Southampton, United Kingdom. The AUV was lost in 2005 under the Fimbulisen ice-shelf with 

unknown exact cause of loss (2). A subsequent board of inquiry established that the cause of Autosub2 

loss was most likely to be due to a fault introduced during the manufacturing/assembly phase (32). 

Although the direct cause of loss was determined to be due to technical failure, organisational issues 

were also highlighted in the loss report. For example, there is little documented information on any prior 

risk assessment made for Autosub2 and the setting of risk acceptance criteria as well as approach to 

management of risks in projects was found to be inadequate (32). Seaglider SG522, owned by the 

University of East Anglia, United Kingdom, was lost at the Weddell Sea in the Antarctic in 2012. The 

subsequent inquiry panel concluded that an erroneous command script placed Seaglider SG522 in an 

unsafe state which eventually resulted in its loss (73). While the loss can be attributed to human error, it 

reveals other systemic issues such as the lack of pilot training and software design (73). Anecdotal 

evidence also exists for other near-miss incidents which could have potentially resulted in a loss in the 

Antarctic, such as the Seabed AUV (74) although these were never formally reported.  

   The loss of both Autosub 2 and Seaglider SG522 provided an indication that systemic issues played 

a role and any analysis of risk should be sufficiently holistic to consider these issues. Otherwise, the 

lack of publicly available investigation reports on AUV loss makes it challenging to pinpoint the exact 

commonalities between these incidents. The difficulty in recovering loss AUVs in the Antarctic 

environment for direct examination only further exacerbates the problem. This lack of systematic and 

regular data for AUV deployment, especially for missions in the Antarctic requires a tailored approach 

for analysis of risk. One which can cope with the lack of or non-existent data and account for 

uncertainties in the Antarctic AUV program. 

 

1.3  RISK OF AUV LOSS DURING ANTARCTIC DEPLOYMENT 

   The risk of AUV loss refers to the likelihood that, during a mission, an AUV will be rendered unusable 

for future missions. This can represent either a complete loss, or an AUV being destroyed or damaged 

beyond economic repair. The loss of an AUV during deployment in the Antarctic can have several 

adverse consequences. This includes higher insurance premiums for the AUV community, delay to 

research projects, damage to the reputation of the AUV community, loss of valuable research data and 

a possibility of harming the delicate Antarctic environment (2). It is therefore imperative that risk of loss 

be analysed and managed effectively prior to deployment of AUV to the Antarctic. The next few sections 

present the relevant fundamental concepts necessary for analysing risk, with additional information 

provided in appropriate references. 

 

1.3.1 Definition of Risk 

   Although risk pervades in all forms of human activities, it was only in the last few centuries that 

significant theoretical and empirical advances on the subject of risk have been made. Consequently, 

many different definitions for risk had been proposed. Most early definitions of risk simply refer it as the 
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likelihood of an adverse event (consequence) occurring. However, contrary this common perception, 

risk does not always represent negative outcomes. It also encompasses positive risk, which are 

opportunities that have a positive impact on the objectives. For instance, a change of government policy 

leading to increase funding in Antarctic research programs or a change in legislation leading to fewer 

restrictions in Antarctic AUV deployments. This presents a positive risk for an AUV owner who may fail 

to leverage on the opportunity. In 1995, the Australian and New Zealand standard on risk management 

AS/NZS4360 extended the definition to include both positive and negative events (75). In the latest 

edition published in 2004, risk is defined as: 

 

“The chance of something happening that will have an impact on objectives.” 

 

This dual view of risk gradually gained wide acceptance and led to the development of ISO 31000 in 

2009, the first global standard on risk management (13). In this commonly used standard, risk is defined 

as: 

 

“The effect of uncertainty on objectives.” 

 

Here, effect refers to a deviation from the expected and uncertainty results from a deficiency of 

information, understanding or knowledge of an event, its consequences or likelihood (13). This definition 

will be adopted for the remainder of this thesis. 

 

1.3.2 Origins of Risk 

   Risk arises from uncertainty about the future. An outcome which is certain to happen has no risk 

associated with it. If a specific component of an AUV will surely fail after exactly five years of service, 

then there is no risk because the exact moment of failure is known. Uncertainties are therefore future 

outcomes that are unknown or known only to a certain degree of precision. They are also dynamic in 

nature, evolving with time with the in-flow of information. 

   There are numerous causes of uncertainty and one of the most conventional and common distinctions 

categorises uncertainties into two different types, aleatory and epistemic. (Figure 1.7) 
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Figure 1.7: Two main types of uncertainties. 

 

   Aleatory uncertainty, also known as irreducible uncertainty, are variations associated with a physical 

system of environmental context (76). AUV component failures and environmental variables such as 

weather condition falls within this category. For example, despite knowing the Mean Time Between 

Failure (MTBF) for a specific AUV component, the precise moment of component failure is still never 

certain.  

   Epistemic uncertainties, also known as reducible uncertainty, exists due to a lack of knowledge, 

incomplete information, limited data or ambiguity and vagueness attached to experts’ judgement (76). 

An AUV which has yet to be commissioned or relatively new in operation will have a higher level of risk 

arising from epistemic uncertainties. With the operation of the AUV over time, the inflow of information 

and gaining of experience will result in a gradual reduction of epistemic uncertainties (Figure 1.8). 

Although generic data from other AUVs can be used as a reference to reduce epistemic uncertainties, 

the difference in specifications, manufacturers, design and systems can result in inaccurate risk analysis 

outcomes. Organisational risk management systems are often designed in attempt to identify and 

reduce epistemic uncertainties because they may be characterised statistically (76) with time and effort. 

 

Figure 1.8: The level of epistemic and aleatory uncertainties throughout an AUV program lifecycle. 

 

Aleatory 
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   Probabilistic approaches are often applied to assess both aleatory and epistemic uncertainties, 

typically the relative-frequency approach for the former and the subjective probability approach for the 

latter (77). As a result, there are many established probabilistic methodologies such as Monte Carlo 

simulation or Bayesian Belief Networks used for the assessment of risk (77). For handling the vagueness 

and ambiguity of risk analysis, a fuzzy-based approach is still the method of choice (78)(79)(80), although 

the use of interval probabilities may also provide a solution (81). 

 

1.3.3 Definition of Risk Analysis 

   It is irrefutable that the intent of performing a risk analysis is to enhance the ability of an organisation 

to achieve its objectives. However, debate exists over the precise definition for the term “Risk analysis”, 

particularly in reference to the scope of activities it encompasses. The term “Risk analysis”, often used 

synonymously or interchangeably with “Risk assessment”, is also frequently confused with terms such 

as “Risk estimation”, “Risk Characterization” or “Risk Evaluation”. Despite the somewhat equivocal 

definition for risk analysis, most would agree that it generally refers to the process of examination, 

judgement and evaluation of risk, under given circumstances. For the purpose of this dissertation, a 

broad definition based on the Society of Risk Analysis (SRA) is adopted (9). The SRA defines risk 

analysis as a: 

 

“Systematic process to comprehend the nature of risk and to express the risk, with 

the available knowledge” 

 

This ‘process’ stated in the definition refers to risk assessment, risk characterization, risk 

communication, risk management, and policy relating to risk, under a range of different contexts (9).  

 

1.3.4 Risk Analysis Methods 

   Over years of development, myriad risk analysis methodologies have been proposed in adaptation to 

different systems, industry, environments, components or stages of processes. There is no single 

method that suits all needs and most organisations adopt multiple methods for analysis of risk. The 

choice of method usually depends on a variety of factors, such as the purpose of analysis, nature of 

risk, and the availability and quality of data. Results from analysis of risk are used to inform decision-

makers on the types of response required, which generally falls into five main actions; transfer, tolerate, 

treat, terminate or leverage on the opportunity. Additionally,  leverage points and leading indicators can 

be identified for risk monitoring and risk control recommendations.  

   The most common analysis of risk uses either quantitative or qualitative means to measure the 

combination of magnitude of potential consequences and the likelihood of these consequences 

occurring: 
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Risk (Expected) = Likelihood (Consequence) x Magnitude (Consequence) 

 

Stemming from this formulation was arguably the most widespread tool used for evaluating risk, the risk 

matrix. Despite its flexible and ease of use, the risk matrix is limited by a strict interpretation of risk level 

based on risk rating number. This sharply fixed boundaries between risk ratings is further discussed in 

Chapter 2.  

   Even with the use of a risk matrix, calculating an accurate risk level is usually far from straightforward. 

One of the difficulties lies in quantifying the magnitude of potential consequences. While the loss of an 

AUV can be measured financially in dollars, other impacts such as delays to research projects or 

damage to reputation can be difficult to quantify accurately. Estimating the likelihood of consequences 

occurring can be even more challenging due to uncertainties. For example, the potential consequence 

of an AUV losing communication far under an ice shelf is the complete loss of the vehicle. However, it 

is hard to estimate the exact probability of an AUV losing communication while under an ice-shelf, which 

can be due to a wide variety of reasons, from modem failure to noise disturbance. Therefore, it came 

as no surprise that simply using the risk matrix to characterise risk often produce unrealistic estimate of 

risk level, impacting the quality of decisions made based on the estimate (82). As a result, myriad 

methods were developed over the years in attempt to improve the analysis of risk. These methods can 

be broadly grouped into three categories based on outputs of the analysis: qualitative, quantitative and 

semi-quantitative.  

   Qualitative risk analysis first requires risk factors to be identified before classifying them subjectively 

into descriptive categories of risk levels such as ‘minor’, ‘moderate’ or ‘major’. Results from the analysis 

are usually used to set priorities for the next course of actions, including further analysis, either semi-

quantitatively or quantitatively. Qualitative risk analysis methods offer many advantages such as 

simplicity, ability to handle a greater range of uncertainty due to lack of information, and time-saving 

(83). Not surprisingly, they received widespread adoption across industries and disciplinary boundaries. 

However, qualitative risk analysis methods also suffer from several limitations such as the lack of 

accuracy, high inherent subjectiveness and low discriminatory power.  

   Semi-quantitative risk analysis aims to establish ranking of risks against a quantification, to determine 

the order of priority for the next course of actions. It analyses risk using an indicator value rather than 

explicit probability or other measurable units. For instance, the risk matrix adopted by many 

organisations uses a score of 1 – 5 as a representation of likelihood and magnitude of consequences, 

where 1 may refer to rare likelihood or insignificant consequences and 5 refer to almost certain 

likelihood and catastrophic consequence. Although falling short of a comprehensive quantitative risk 

analysis, they are more rigorous than qualitative methods, providing more refined and precise estimates 

of risk level.  

   Quantitative risk analysis (QRA) aims to assign a set of measurable, objective data to determine the 

risk level, which is usually the probability of risk occurrence. Especially well-suited for situations where 
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quality data is available, QRA methods are effective in handling typically random failures and/or 

unorganized complexity within a system (84). With the ability to quantify risk instead of analysing risk in 

relative terms, it overcomes many limitations of qualitative and semi-quantitative methods. Although 

QRA methods are typically more time intensive and require additional effort to apply, there are many 

advantages to outweigh the associated effort and costs. First, QRA allows the complex interactions 

between risk factors within a system to be accounted for (85). Second, QRA recognises the need for 

contributions from diverse disciplines in the analysis of risk (85). Lastly, QRA enhance the completeness 

of the analysis by providing an in-depth understanding of potential failure modes, thus providing 

valuable inputs for decision making (85). There are many examples of QRA approaches, such as:  

• Bayesian Belief Network (BBN), which uses graphical statistical model used to describe 

probabilistic dependencies between random variables (86). 

• Markov Analysis, which uses models to represents possible chains of events to forecast 

the activity of a random variable at a given point in time based on current circumstances. 

• Monte Carlo Simulation (MCS), which generates random numbers for inherently uncertain 

factors, resulting in a probability distribution of all possible outcomes (87). 

• Artificial Neural Networks (ANN), which acquires, represents and compute a mapping from 

one multivariate space of information to another through an adaptive multi-layered 

connected neural net (88). 

• Genetic Algorithms (GA), which is adaptive in nature and inspired by the process of natural 

selection to derive solutions and solve optimization problems (89).  

• Petri Nets, which is uses both graphical and mathematical approach to model logical 

interactions and the dynamics of complex systems (90). 

   An attempt to review all risk analysis methods within these three categories is beyond the scope of 

this dissertation and unnecessary as many of them are very similar. Interested readers are therefore 

referred to Appendix B for examples of risk analysis methods within each of these categories, many of 

which, have been previously applied in the AUV domain.  

 

1.3.5 Risk Analysis of AUV Deployment 

   Being a relatively new domain, there is a paucity of literature on risk analysis of AUV operations. 

Herein, key relevant literature on risk analysis of AUV operations are reviewed and presented. 

   Most early AUV literature on risk had focus skewed towards improving technical reliability, with efforts 

centred around the prevention of technical failures. However, some risk studies provided an early 

indication that the broader aspect of risk may be an area that requires further attention. Griffiths et al. 

(91) initiated one of the earliest quantitative risk analysis of AUV deployment. Using statistical models on 

historical fault logs of Autosub AUV, the study estimated that the mean number of missions to failure 

under an ice shelf to be 53, or 0.27 faults per mission. Although this figure may not hold much relevance 

to other AUVs types or in today’s context, several pertinent issues were highlighted. First, a high 

incidence of human error was observed, possibly due to an overstretched team. Second, higher fault 



44 

 

incidence was observed during overseas deployments, which may be a result of time pressure and a 

shift in risk tolerance. Last, the introduction of new software can lead to a temporary decrease in 

reliability. This reduction in reliability as an effect of upgrades was also noted in a separate study (92), 

indicating that effective management of change may be important in ensuring reliability of an AUV. 

Chance (93) analysed the trend of availability for a C–Surveyor AUV over two years and 24,000 km of 

use. An increase in availability was observed to correlate with the amount of operating experience 

possessed by the AUV team. Another observation of the study, was a temporary reduction in availability 

whenever modifications were made to the vehicle, similar to that previously described by Griffiths et al. 

(91)(92). Manley (94) performed a qualitative risk analysis on the development and deployment of AUVs, 

which includes not only technical risks but also operational risks. Technical risk, which encompasses 

both software and hardware failure, arises from the complexity of AUV systems and challenges of 

undersea operations. Operational risk, arises from three main areas; First, physical deployment 

processes such as launch and recovery of the vehicle. Second, ambiguity in regulatory aspects of AUV 

operations. Last, legal risk and liability of AUV operators. Interestingly, the author noted that at the point 

of writing, underwriters considered operational risks to be a major concern as compared to technical 

risks. In conclusion, Manley emphasised the role of organisational factors in managing both technical 

and operational risks of AUV deployment. A thorough evaluation of the AUV program’s goals, objectives, 

budget, anticipated needs and existing situation was therefore, recommended for the effective 

management of risks. 

   As AUV technology gradually makes the transition from research and development to operations, 

Griffiths and Trembanis (2) recognised the need for a more proactive and systematic risk management 

framework to better support AUV owners in decision making. The proposed framework begins with the 

establishment of a risk acceptance level by the AUV owner and setting of campaign requirements. In 

the next step, the technical team has to exercise judgement in assessing the vehicle’s historical 

performance, to determine the impact level of each documented fault. A probability of loss is then 

derived quantitatively using Weibull distribution and Kaplan Meier estimator. Based on the calculated 

probability of loss, a decision can be made on whether to proceed with the campaign or implement 

additional measures to improve survivability. (Figure 1.9) 
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Figure 1.9: Risk management process for AUV operations, presented by Griffiths and Trembanis (2). 

(Permission granted to reproduce) 

 

   The realisation that expert judgement plays a vital role in analysing risks of AUV deployments 

necessitates the need for a systematic and structured elicitation procedure. Brito et al. (71) performed a 

quantitative risk analysis to estimate the probability of loss under four operating environment; Open 

water, coastal, sea ice and ice shelf. Experts’ assessment of historical faults were elicited, aggregated 

using linear opinion pool and clustered according to optimistic and pessimistic views. An extended 

Kaplan-Meier estimator was then applied on the experts’ assessment and frequentist probability of fault 

occurrence to predict the probability of loss. Using a forthcoming Autosub 3 AUV campaign at the 

Antarctic as a case study, the probability of loss was found to be in the range of 0.26 to 0.96 for four 

under ice-shelf operating scenarios. As this exceeds the risk acceptance limits defined by the AUV 

owner, a series of risk mitigation measures were subsequently implemented. This included fault 

rectification, preventing entanglement of recovery lines with propeller, use of penetrators for critical 

connections and having a pre-defined distance for monitoring the AUV’s performance prior to start of a 

mission. The similar elicitation procedure was applied in the reliability analysis of two Remus-100 AUVs 

(95). In the Remus AUV study, a recommendation was made for the use of behavioural aggregation 

instead of mathematical aggregation to minimise the intrusion of bias during the elicitation process. This 

recommendation was subsequently adopted and demonstrated to improve the accuracy of a risk 

analysis (96). 

   As AUV technologies continue to refine with improving reliability, risk analysis gradually broadens 

from analysing historical performance of a vehicle to other operating uncertainties and phases of 
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deployment. Griffiths and Brito (97) extended their earlier risk studies on the Autosub AUV program to 

account for sea-ice conditions and support vessels of differing ice capabilities. The use of Bayesian 

belief networks (BBN) was explored, and a risk model established based on expert judgement, past 

sea ice data, probability distributions of ice thickness and concentration, and ships of differing ice 

capabilities. BBN uses probabilistic dependencies between random variables, represented as a set of 

interconnected nodes representing variables and the causal relationships between them to solve 

complex problems (98). From the model, a probability distribution for risk of AUV loss during under-ice 

missions was derived. Apart from demonstrating the use of BBN as a structured approach for risk 

analysis, this work also represented significant progress in accounting for uncertainties of an AUV 

deployment. In a later study, the similar approach was demonstrated on risk analysis of Autosub 3 

AUV’s deployment to the Antarctic (99). The use of BBN also proved to be useful in accounting for the 

effectiveness of failure prevention and risk mitigation process, keeping the risk profile updated for better 

decision-making (100). However, a limitation of BBNs is that it does not account for feedback effects, 

which is a chain of cause-and-effect between risk factors that form a loop. It also depended on quality 

historical fault data and is a time-intensive process due to iterative elicitation of experts. With the 

recognition that risk of AUV loss may also depend on decisions made within different phases of an AUV 

deployment, Brito & Griffiths (101) proposed the use of Markov chains to model the sequential steps of a 

deployment, from pre-launch to recovery. Based on the AUV’s historical performance data and experts’ 

judgement, the resultant model allowed the overall risk of loss for a deployment to be estimated. The 

methods described so far represented the forefront of risk analysis for AUV deployment. However, one 

major limitation still exists; the heavy reliance on the availability of the vehicle’s historical performance 

data. 

   The broadening scope of risk analysis also meant that there is a need for reduced dependency on a 

vehicle’s performance data, as relevant data may not always be available. For instance, during the early 

phases of an AUV program or for an AUV which is relatively new in operation (102). Recognising such a 

need, Bian et al. (103) proposed the use of a fuzzy fault tree for technical reliability analysis of AUVs. The 

approach is an extension of traditional fault tree analysis to cope with the lack of data and accounts for 

uncertainties in AUV’s subsystem failure. However, fault trees adopt a chain of events approach starting 

with the top failure event before branching downwards to basic events. Such direct and linear view 

ignores the complex interrelationships between risk factors and oversimplifies the problem. Despite the 

limitations of fault tree analysis, the study clearly demonstrated the potential of hybrid fuzzy logic 

approaches for analysis of risk. Chapter 2 presents a detailed discussion on risk analysis of AUV 

operations based solely on fuzzy logic, which to the best of our knowledge, has never been attempted 

before. In another example of handling the lack of data, Xu et al. (104) demonstrated the use of a 

qualitative fault tree analysis, together with Monte Carlo simulation. The reliability of a 45000m AUV, 

which was in its design phase, was examined with the proposed approach to derive several risk control 

recommendations. First, to emphasise on user-centred software and structure design to facilitate future 

maintenance and operation of the vehicle. Second, implement sufficient testing to ensure robustness 

of the AUV software. Third, to use commercially available components whenever possible to reduce 
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the complexity of construction and ease of maintenance. Last, to design redundancy for critical 

components. In both examples, the fault tree analysis is applied on AUVs which are still in its design 

phase without historical performance data. Although the method facilitates prioritization of risks and 

creates the foundation for further analysis, it does not capture complex problems with multiple levels of 

causes and feedback loops.  

   In recent risk studies, there is more attention devoted to the role of organisational and human factors 

in the overall risk of AUV loss during deployment. Brito and Griffiths (105) applied system dynamics 

models to analyse the required risk mitigating efforts for AUV deployment. Based on a “rework cycle” 

system archetype, the risk model consists of several organisational factors such as workforce 

requirement, productivity, work scheduling and hiring rate. Although the study had focused more on 

human resource management, suggestions were made to investigate organisational, cultural and stress 

factors using the same approach. A detailed discussion on the application of system dynamics for risk 

analysis is presented in Chapter 3. Thieme et al. (106) presented the use of a qualitative BBN to assess 

the role of human factors in the monitoring of an AUV during missions. Trust, workload, fatigue and 

situation awareness were some of the factors mentioned to affect the performance of an AUV operator. 

Several other studies had also found human errors playing a significant role in contributing to the overall 

risk of AUV loss (107)(108). Notably, during a four years deployment of the Autosub AUV from 1996 to 

2000, Griffiths et al. (6) identified human error as the most common ‘fault’ instead of technological failures. 

As the scope for risk analysis broadens, Utne et al. (109) recognised the need for a structured and holistic 

risk analysis framework that accounts for technical failures, natural events, human errors and 

organisational failures. The recommendation was to adapt existing internal standards, such as the ISO 

31000 - Risk management, as basis for such a framework. A risk management framework which 

focused on both human and organisational factors was eventually proposed by the Thieme et al. in a 

separate literature (110). The framework, based on human reliability analysis (SPAR-H), fault tree and 

event tree analysis, was applied on a REMUS100 AUV as a case study. On top of revealing “internal 

faults of the AUV” as the most likely cause of AUV loss during mission, the case study also 

recommended risk reduction measures, in areas of maintenance, mission planning and fault recognition 

and solving. Although the focus on organisational and human factors represented significant progress 

in the scope of risk analysis for AUV deployments, further research is needed to account for the dynamic 

nature of risks and interactions between risk factors. 

 

1.3.6 Limitations of Existing Risk Analysis Methods in AUV Deployment 

  Since the first autonomous underwater vehicle (AUV) was developed more than 60 years ago, there 

have been significant developments in risk analyses methods to better control the risk of AUV loss in 

the Antarctic. Many aspects of risk for an AUV deployment, both spatially and temporally, had been 

examined in parts, some in details and others superficially. For one, further study is needed in specific 

areas, such as the role of human, organisational, social, political, governance and environmental 

influences in risk of AUV loss. But more importantly, the synergistic combination of technical system(s), 

people associated with the AUV program, operating environment, work activities, organisational factors 
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as well as external influences need to be analysed collectively as a whole. Consider an analysis 

focusing solely on a single risk factor such as operating experience of the AUV team. It would be fairly 

intuitive and statistically straightforward (With the availability of relevant data), to investigate the inverse 

relationship between operating experience of an AUV team and the risk of loss (Figure 1.10a). However,  

the inclusion of other risk factors complicates the analysis. For instance, reducing organisational 

commitment to the AUV program, poor interpersonal dynamics, high mental workload, etc (Figure 

1.10b). The uncertain inter-relationships between these risk factors, unclear degree of causality and 

their dynamic behaviour resulted in an unknown combined effect on the risk of AUV loss. Consequently, 

these complex interrelationships between risk factors are often neglected during risk analysis as they 

can be highly uncertain and difficult to quantify.  

 

 

 

 

Figure 1.10: A: An analysis focusing on experience of the AUV team. B: A more complex analysis 

involving additional risk factors with uncertain inter-relationships and unclear degree of causality. 

 

Such a situation is analogous to the folklore describing how a group of blind men drew different 

conclusions about the look of an elephant by touching different parts of it. While each of their perspective 

is correct to a certain extent, it does not sufficiently capture the entire picture. As Leveson (11) puts it, 

 

“A systems approach to safety recognizes that safety is a property of the system as a 

whole, not a property of individual system components: The socio-technical system 

must be treated as an integrated whole using a top-down rather than a bottom-up 

perspective. This fact, in turn, implies that effectively tackling safety problems will 

A 

B 
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require researchers and practitioners to step outside their traditional boundaries and 

take a broad view of the problems” 

 

   Contradictory as it may seem, the aim of a risk analysis is not to capture all possible risk factors and 

their interrelationships. Doing so is not only onerous and time-consuming, but it will also result in models 

which are too complex for any practical analysis. Instead, the risk analysis aims to tackle specific 

problems and include only relevant risk factors from different aspects, regardless of quantifiable or non-

quantifiable. 

   Another limitation of existing risk analysis method is the adoption of chain-of-events perspective. 

Chain-of-events approach views the loss of an AUV as the final unintended outcome and the chain 

must be disrupted to prevent the loss from happening. Such views promotes a reductionist mentality, 

which often results in a simple linear narrative that displaces more complex, and potentially fruitful 

accounts of multiple and interacting contributions. For instance, the fault tree analysis which has been 

applied on reliability analysis of AUVs (103)(104) starts from the top at a single event before branching 

downwards till it reaches the basic events. Such direct and linear view ignores the complex 

interrelationships between risk factors and oversimplifies the problem. It misdirects the focus on 

identification of a possible ‘root cause’ where there may not be one (111). In an attempt to break the chain 

of events, redundancies and upgrades are often introduced with little considerations on how these 

changes may adversely impact the overall vehicle reliability. Additionally, the chain of events 

perspective is also static in nature, and does not sufficiently capture the dynamic nature of risk.  

   The lack of systematic and regular data for AUV deployment, especially for missions in the Antarctic, 

posed another challenge to risk analysis. As a result, most existing approaches depended on the 

elicitation of expert’s opinions for subjective probability quantification. Although a formal experts 

elicitation process for risk analysis of AUV deployment had been proposed, experts may face difficulties 

to provide precise numerical figures due to the vagueness and ambiguity nature of risk (78)(79). 

Additionally, experts have varied level of experience working with different types of AUVs and 

organisations. As a result, assumptions, perceptions and expectations differ between experts, which 

can affect the overall accuracy of the risk analysis. 

   To overcome these limitations requires a new form of hybrid risk analysis approach, which is the core 

contribution of this dissertation. 

 

1.4   THESIS OBJECTIVE AND SCOPE 

   The focus of this dissertation is on the risk analysis of AUV deployments in the Antarctic. The eventual 

goal is to lay the foundation for a risk analysis framework to support the AUV community in reducing 

the risk of AUV loss. Specifically, the objective is to support safer AUV deployments in the Antarctic 

with a risk analysis framework that facilitates the identification, modelling and evaluation of risk 

associated with an AUV program. This novel framework will account for the dynamic nature of risk, 
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interrelationships between risk factors, as well as the uncertainties involved in the causality between 

risk factors. Insights gained through application of the framework can be used to improve mental models 

of decision makers for better decision making. Additionally, leverage points and leading indicators can 

be identified for risk monitoring and risk control recommendations. 

   The objective will be achieved through: 

a) Addressing uncertainties in causality and overcoming lack of data with fuzzy logic. 

b) Addressing the dynamic behaviour and complex interrelationships between risk factors with 

system dynamics. 

c) Proposing a novel fuzzy system dynamics (FuSDRA) risk analysis framework by leveraging on 

the strengths while overcoming limitations of both fuzzy logic and system dynamics. 

d) Demonstrating the application of the framework through an actual Antarctic AUV program. 

 

   The scope of this dissertation needs to be defined for clarity, in particular to three main areas: Risk of 

AUV loss, risk analysis and the focused level of abstraction within an AUV program. Here, the risk of 

AUV loss refers to the likelihood that during a mission, an AUV vehicle will be rendered unusable for 

future missions. While the term ‘AUV loss’ is commonly associated to the complete loss of an AUV, it 

can also represent an AUV being destroyed or damaged beyond economic repair. Not without 

precedent, there have been reported incidents of AUVs being destroyed by a ship propeller (94) or 

damaged by marine mammals such as killer whales and leopard seals (2).  

   Despite the broad definition for risk analysis adopted in this dissertation, the proposed framework 

limits the processes to identification of risk factors, risk modelling and risk evaluation. To simply state, 

the iterative framework encompasses familiarization to understand the problem, quantifying risk of loss, 

and develop recommendations for risk controls. Although the eventual control of risk is conditional upon 

successful implementation of risk control recommendations, details of the implementation process, 

which is highly dependent on the organisational context, is beyond the scope of this dissertation. 

   A functional AUV program comprises several levels of abstraction, from high level regulatory 

influences to detailed AUV technicalities. The focus of this dissertation is at the organisational level, 

where the overall management of an AUV program takes place. This includes the people working on 

the program and any external influences which may affect decision-making and contribute to the risk of 

loss. This is also the area which has received relatively lesser attention in the published risk studies of 

AUV deployments.  

 

1.5   THESIS OUTLINE 

   This dissertation is organised into six chapters. Four of the chapters have been submitted for 

publication and details are provided in their respective chapters. The chapters are structured according 

to natural progression, from background and literature review to details of the proposed risk analysis 

framework and lastly, a detailed case study on its application. In summary, Chapter 1 provided the 
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relevant background and literature review of which this dissertation is based on. Three main areas were 

highlighted, the AUV, the Antarctic and risk analysis of AUV deployments. Chapter 2 introduces fuzzy 

logic as a method to address the lack of data as well as the vagueness and ambiguity of many risk 

factors and their causal relationships. It also presents a fuzzy-based risk analysis framework for 

quantifying the risk of AUV loss for an Antarctic under-ice mission. Chapter 3 introduces system 

dynamics as a method to address the dynamic behaviour and complex interrelationships between risk 

factors. A risk analysis framework facilitated by system dynamics methodology is proposed and 

demonstrated in this chapter. Chapter 4 builds on the strengths of both methods in chapter 2 – Fuzzy 

logic and 3 – System Dynamics to present a hybrid fuzzy system dynamics risk analysis (FuSDRA). An 

eventual FuSDRA framework is proposed and demonstrated. Chapter 5 presents a case study on 

application of the FuSDRA framework in the University of Tasmania’s nupiri muka AUV program. 

Chapter 6 concludes this dissertation with the contributions from this work and suggestions for future 

work.  
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CHAPTER 2: ADDRESSING UNCERTAINTIES AND THE LACK OF DATA WITH 

FUZZY LOGIC 

 

   The content of this chapter is drawn mainly from the paper “A fuzzy-based risk assessment framework 

for autonomous underwater vehicle under-ice missions” which was published on the journal of risk 

analysis on the 18 Jul 2019. The following authors have also contributed in the preparation of the paper; 

Mario P. Brito, Neil Bose, Jingjing Xu and Kiril Tenekedjiev.  

   The aim of this chapter is to introduce a fuzzy-based risk analysis framework for AUV deployments in 

the Antarctic, which to the best of our knowledge, has never been attempted before. The use of a fuzzy-

based approach addresses uncertainties about causal relationships between risk factors and is well-

suited for the lack of historical data for precise quantification of risks. Additionally, the proposed 

framework facilitates knowledge elicitation from domain experts to derive a quantifiable risk level output 

to aid decision making.  

 

2.1   Introduction to Fuzzy Set Theory 

   The concept of multivalued logic was introduced by Lukasiewicz (112). Later, this concept was 

generalised by Zadeh (113) with mathematical logic, establishing the fuzzy set theory. One key difference 

between fuzzy set theory and classical probability theory lies in its ability to account for vagueness and 

ambiguity by representing a proposition with a degree of ignorance. 

   Fundamental to the theory are the two main concepts of linguistic variables and fuzzy sets. Linguistic 

variables are used in day to day conversations to represent opinions, which are independent of the 

measuring system and are easily comprehensible by most listeners. For instance, ‘weather condition’ 

during AUV deployment is a linguistic variable if it is described in linguistic terms of ‘bad’, ‘average’ and 

‘good’.  

   The second fundamental concept is fuzzy sets. In contrast with traditional set theory where an object 

either belongs to a set or not, every object (in the universe of discourse) belongs to a fuzzy set but with 

different membership function of 0 to 1 (113). To illustrate this, consider the ‘five by five’ risk assessment 

matrix, which is a commonly used semi-quantitative tool for assessing risks. The matrix, with an 

example from the University of Tasmania shown in Figure 2.1 and in Appendix J, defines risk level by 

considering the likelihood of occurrence and severity of consequence. It is a practical and simple tool 

with widespread usage across industries to assess risk and assist management in decision making.  
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Figure 2.1: Five by five risk matrix with the risk level of low, moderate, high and extreme, represented 

by risk ratings of 1-25. (Source: University of Tasmania) 

 

   Based on traditional set theory, the risk assessment matrix presents crisp boundaries between risk 

level categories, with the term ‘crisp’ referring to quantitative or countable data (114). In the matrix 

presented in Figure 2.1, each risk rating number from 1 to 25 belongs to a specific category of either 

‘Low’, ‘Moderate’, ‘High’ or ‘Extreme’. Adopting this strict interpretation means that two risks with ratings 

of 11 and 12 will belong to two separate risk levels of ‘Moderate’ and ‘High’ despite being only one 

rating apart. On the contrary, two risks with ratings of 12 and 17 will belong to the same risk level of 

‘High’ despite being five ratings apart. The graphical representation in Figure 2.2 shows an example of 

such crisp boundary. Such an approach cannot represent vague concepts and can be unnatural, as it 

does not match a human’s perception due to the sharply fixed boundaries (115). 

 

 

Figure 2.2: An example of membership value for ‘moderate’ risk (Top) and graphical representation of 

the risk assessment matrix shown in Figure 2.1, illustrating the crisp boundaries between risk level 

categories (Bottom). 
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   In contrast, fuzzy set theory takes a less rigid view and reflects more naturally each element’s 

association with a particular set. It does so by using membership function 𝜇(𝑥)  which assigns 

membership values of between 0 and 1 to its elements 𝑥, defined as: 

 

𝜇(𝑥): 𝑋 → [0,1]     ---- (2.1) 

 

   Applying fuzzy set theory to the risk assessment matrix in Figure 2.1 resulted in a gradual and smooth 

transition between risk level categories as illustrated in Figure 2.3. A risk rating of 11 under the new 

fuzzy risk assessment matrix now belongs to both risk level categories of ‘Moderate’ and High’ with 

membership function of 0.6 and 0.4 respectively. 

 

 

 

 

Figure 2.3: Graphical representations of the risk assessment matrix (Figure 2.1) after application of 

fuzzy set theory. Membership values (Top) and smooth transition between risk level categories 

(Bottom). 

 

   The application of fuzzy set theory for risk analysis has garnered attention over the years with 

application in various domains from nuclear power plants (116) through construction (117) to medical fields 

(118)(119). It is also often used in synthesis with other methodologies such as Bayesian network (BN) 

(120)(117), system dynamics (121) or fault and event tree analyses (122) to improve assessment of risks. In 

the AUV domain, Bian et al. (103) proposed the extension of traditional fault tree analysis with fuzzy logic 

for technical reliability analysis of AUVs. Besides lacking an applicable framework, the study focuses 

solely on technical risks and is subjected to limitations of fault tree analysis (Refer to section 1.3.5).  

   This work aims to present and demonstrate the use of fuzzy set theory in a risk analysis framework 

for AUV under-ice deployment. To the best of our knowledge, the analysis of operational risks based 
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solely on fuzzy logic has never been attempted before. In section 2.2, the details of the fuzzy-based 

risk analysis framework are presented. Section 2.3 demonstrates application of the framework, with a 

sensitivity analysis. Lastly, section 2.4 concludes the chapter with a discussion of the benefits, 

drawbacks, implications and potential areas of continuing research.  

 

2.2   METHODOLOGY 

2.2.1 Overview 

   The proposed fuzzy-based risk analysis framework incorporates the generic architecture of a fuzzy 

expert system (7) with the risk analysis process presented in widely used international standards such 

as ISO31000 (Risk Management) (13) and ISO45001 (Occupational Health and Safety) (123). Based 

primarily on experts’ judgement, the three steps iterative framework requires extensive discussion with 

domain experts. The overview of the framework is presented in Figure 2.4. 

 

Figure 2.4: Overview of the steps involved in the fuzzy-based risk analysis framework. Curved arrows 

represent the iterative nature of the steps. 
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2.2.2 Scenario identification  

   Adopting and referencing international standards (13) (123), the scenario identification phase lays the 

foundation for risk analysis by finding, recognising and describing sources of risk. It consists of several 

tasks and should be executed iteratively to ensure that objectives of the risk analysis are met.  

   The first task aims to establish the available sources of knowledge. In the early stages of an AUV 

program, expert knowledge is often the only source of information, and this can come from AUV 

engineers, AUV program owners as well as manufacturer or contractors. Additional information can 

also be sought indirectly from experts in the form of documentation such as technical specifications of 

the AUV, safe work procedures, fault logs, risk assessment records, program schedules, budget plans, 

previous audit findings, online articles or publications, organisation charts or incident reports. For 

instance, examining a budget plan can reveal budget priorities and the AUV program’s financial 

condition. This may be relevant to the risk analysis in terms of infrastructure investment, human 

resources and technical maintenance. In addition, specific deployment plans and expected 

performance requirements can also hold important information about possible risk factors influencing 

the risk of AUV loss.  

   The second task involves the identification of risk factors in the form of linguistic variables and the 

universe of discourse. The universe of discourse is the numerical range of possible values associated 

with the risk factor. There are two main ways to accomplish this task using available sources of 

knowledge:  

1. Through semi-structured interviews and discussion with domain experts, and  

2. Through the extraction of information from texts in documentation.  

   Important considerations for interviews are the choice and number of experts necessary to capture 

both spatial and temporal risk factors of interest and the fuzzy membership function. While there is no 

formal guidance tailored specifically to risk analysis of AUV operations, guidance can be taken from the 

recommended selection criteria published by Kotra et al. and Pulkkinen and Simola (124). The number 

of experts to interview lies between 6 - 12 as recommended by Cooke and Probst (125). These experts 

should be someone familiar with the AUV program, with responsibilities such as budget allocation for 

the AUV program, technical training on the AUV, determining operational strategies and objectives as 

well as implementation of risk controls based on any form of risk analysis conducted on the AUV. These 

usually comprises of the AUV engineers, AUV users, facility manager as well as the AUV owner. The 

eventual outcome of this task is a comprehensive list of risk factors relevant to the AUV under 

assessment. As an example using published risk studies, some risk factors influencing the risk of AUV 

loss during under-ice mission in the Antarctic and their possible associated universe of discourse are 

presented in Table 2.1.  

   The next task involves the definition of fuzzy sets and membership functions using same sources of 

knowledge as the previous task. Fuzzy sets allow the handling of linguistic uncertainties, such as the 

vagueness of good, average and bad weather. To ascertain fuzzy set, a list of typical adjectives 

associated with each risk factor is identified. Using some of the risk factors from Table 2.1 as an 
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example, the fuzzy sets were determined through a best estimate consensus by the authors of Paper 

1 (see page 4), resulting in an output similar to one shown in Table 2.2. 

Table 2.1: An example of some risk factors and their associated universe of discourse. 

Risk factor Reference(s) Possible Universe of Discourse (Units) 

Situation Awareness (132)(133)(134) 1-3 (Dimensionless, Level (135)) 

Annual Insurance Premium  (136) 0 – 12 (Dimensionless, % Capital Cost) 

Trust on the AUV (132)(133)(137)(138) Arbitrary - 0 to 10 (Dimensionless) 

Distance of Mission (56) 0 to 400 (Kilometres) 

Maximum Depth of Mission (139) 0 to 5000 (Meters) 

Weather Condition  (140)(76) Arbitrary - 0 to 10 (Dimensionless) 

Average Experience of AUV 
Team with Under-Ice Missions. 

(141) 0 to 30 (Years) 

Operator Stress and Fatigue 
Level 

(140)(142) Arbitrary - 0 to 10 (Dimensionless) 

Level of Interactions within AUV 
Team 

(140) Arbitrary - 0 to 10 (Dimensionless) 

Technical Reliability (143)(139)(68) 0 – 20 (MTBF, Years) 

Level of Automation (143) 0 – 10 (Automation Level (144) ) 

Mental Workload  (132)(133)(138) Arbitrary - 0 to 10 (Dimensionless) 

Operator Complacency Level (145) Arbitrary - 0 to 10 (Dimensionless) 

Time Duration Under-Ice (146) 0 to 48 (Hours) 

    

Table 2.2: Example of risk factors and their associated fuzzy sets. 

Risk factor Fuzzy Sets 

Situation Awareness Poor, Normal, Good 

Distance of Mission Short, Average, Long 

Maximum Depth of Mission Shallow, Intermediate, Deep 

Weather Condition  Good, Average, Bad, Severe 

Average Experience of AUV 

Team with Under-Ice Missions. 

Inexperience, Average, Experienced 

Operator Stress and Fatigue 

Level 

Low, Average, High, Extreme 

Time Duration Under-Ice Short, Medium, Long 
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To define the membership functions, experts’ opinion can be elicited using matrices, which are 

dependent on the adopted distribution shapes. For instance, bell-shaped, Gaussian, triangular or 

trapezoidal (126). The choice of distribution shape is problem dependent and reflects how experts relate 

the range of possible values to the fuzzy set. However, both triangular and trapezoidal shapes are most 

commonly used because of their effectiveness in capturing subjective and imprecise information, as 

well as being simple to compute (127)(128)(129). A triangular membership function is defined by a lower limit 

a, an upper limit c, and a most likely value b, as shown in Figure 2.5a. A trapezoidal membership 

function is defined by a lower support margin a, a lower core margin b, an upper core margin c, and an 

upper support margin d, as shown in Figure 2.5b. Table 2.3 shows an example of a matrix to define 

membership function for the risk factor ‘Maximum Depth of Mission’, with the graphical representation 

shown in Figure 2.6. 

 

  

 

 

 

 

 

 

Figure 2.5: Types of membership functions. a. Triangular membership function. b. Trapezoidal 

membership function. 

 

  Table 2.3: Matrix to elicit experts’ opinion for risk factor ‘Maximum Depth of Mission '. 

Maximum Depth of Mission (0 – 5000m) 

 Membership Functions 

Fuzzy Sets Min (m) Most Likely (m) Max (m) 

Shallow 0 500 750 

Intermediate 250 750 1500 

Deep 750 1500 5000 

 

a b 
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Figure 2.6: Membership function for the risk factor ‘Maximum Depth of Mission’. 

 

   Lastly, if more than one expert is elicited in the earlier described tasks, aggregation of different 

opinions will be required. Several aggregation methods have been proposed in the literature, a 

summary of which are described below:  

1. Using the lowest and greatest value provided by experts as the lower bound and upper bound 

For each fuzzy set, use the lowest and greatest value provided by experts as the lower bound 

and upper bound. The average value is then used as the modal value (130). 

2. The similarity aggregation method (SAM) (131) which utilises a similarity index to measure the 

consistency of each opinion from others. Other aggregation methods based on SAM can also 

be used, such as the consistency aggregation method (CAM) (132) and the optimal aggregation 

method (OAM) (133). 

3. The Delphi method (134) where opinions of experts are made to converge through iteration until 

it meets predefined criteria. The Fuzzy Delphi Method (FDM) draws ideas from fuzzy theory in 

synthesis with the original Delphi method. It utilises a similarity function to assess the level of 

consistency between experts. The similarity coefficient is then used to derive the fuzzy 

evaluation value of all experts. (135). 

 

2.2.3 Analysis 

   The analysis step aims to understand the nature, effects and relationships of risks variables by 

eliciting and constructing fuzzy rules. A fuzzy rule infers information using linguistic variables and fuzzy 

sets to derive an output. While there are several forms of fuzzy rules, one of the simplest representation 

uses If-Then rule statements in the form of: 

IF 𝑅𝑖𝑠𝑘 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 is 𝑥 THEN 𝑅𝑖𝑠𝑘 𝑜𝑓 𝐿𝑜𝑠𝑠 is 𝑦  

where 𝑥 and 𝑦 are adjectives associated with the risk factor and risk of loss respectively. The fuzzy rule 

can also be in the form of AND OR statement, such as:  

 



60 

 

IF weather condition is bad, AND the AUV team is inexperienced, 

THEN risk of AUV loss is high. 

   For intuitive elicitation of fuzzy rules based, a hypercube matrix can be used. A hypercube is a 

geometric shape of n-dimensions, determined by the number of input risk factors (136). For instance, a 

4D hypercube can be used for a fuzzy system consisting of four input risk factors and a 3D hypercube 

for a three-input risk factor fuzzy system. While fuzzy rules can be established using the same sources 

of information as earlier steps in the risk analysis framework, the process can become increasingly 

complex with the number of identified risk factors. This phenomenon, where the number of fuzzy rules 

increases exponentially with the number of inputs, is known as the ‘curse of dimensionality’ (137). One 

common method to overcome the curse of dimensionality is to implement the use of a hierarchical fuzzy 

system (138). The idea is to decompose a large fuzzy logic unit (Figure 2.7a) into several smaller, related 

fuzzy logic units which are then interconnected according to a given topology (138) (Figure 2.7b and 2.7c). 

Each single fuzzy logic unit consists of a fuzzifier, membership functions, a fuzzy rule base, an inference 

engine and a defuzzifier (114). Adopting a hierarchical fuzzy system reduces the total number of fuzzy 

rules which consequently reduces computational time and increases the efficiency of the system (138).  

As an example, an aggregated hierarchical fuzzy system is presented in Figure 2.8 using some risk 

factors from Table 2.1. 

 

Figure 2.7a: A single layer fuzzy system consisting of four risk variables as input and risk of loss as 

output. 

 

 

Figure 2.7b: An aggregated hierarchical fuzzy system based on Figure 2.7a 
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Figure 2.7c: An incremental hierarchical fuzzy system based on Figure 2.7a. 

 

  

Figure 2.8: Example of an aggregated hierarchical fuzzy system. 

 

   In the process of establishing of fuzzy rules, experts may provide differing opinions resulting in 

redundant, inconsistent or conflicting rules. This can affect the risk analysis outcome and interpretability 

of the model (139). Several methods had been proposed in the literature to overcome this, such as; 

complexity reduction with fuzzy clustering techniques, rule reduction by orthogonal transformation 

methods, algorithms based on similarity measures and genetic optimisation (140). 

   Upon establishment of fuzzy rules, the next task is to formulate the mapping from inputs to output in 

a process called fuzzy inference. Two most commonly used fuzzy inference methods are the Mamdani 

(141) and Sugeno (142) inference. The fundamental difference between these two methods lies in the way 

outputs are represented and determined (143)(144). Mamdani inference uses defuzzification of a fuzzy 

output to generate a crisp output while Sugeno inference uses a weighted average to compute the crisp 
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output (141)(142). The Mamdani method is widely accepted for capturing expert knowledge and is more 

intuitive while the Sugeno method works well with optimization and adaptive techniques, particularly for 

dynamic non-linear systems (143)(144). An example of the fuzzy inference process is presented in section 

3.3. Defuzzification is the process of deriving a quantifiable output from the fuzzy system. Consider the 

following rule: 

IF weather condition is bad, THEN risk of AUV loss is high. 

 

Defuzzification translates ‘high’ into a quantifiable risk level, such as a risk rating value based on the 

organisational risk matrix (Figure 2.1). There are several defuzzification methods such as the centroid 

method, weighted average method, centre of sums, centre of largest area, mean-max membership and 

max-membership principal (145)(146). Each method has its advantages and disadvantages, and the 

appropriate defuzzification method should be chosen based on nature of the problem, the number of 

input and output variables and sensitivity of the method (147).  

   The final task of the risk analysis step is to evaluate and fine-tune the system. Despite being a time-

consuming process, proper execution of this task improves reliability of the risk analysis and ensures 

that original objectives are met. Carried out in close consultation with experts and decision-makers, this 

task involves one or more adjustments of fuzzy rules and fuzzy sets (Table 2.4). 

 

Table 2.4: List of fine-tuning actions 

Fuzzy Rules Adjustment 

a. Add, reduce or optimise fuzzy rules. 

b. Add hedge operators by using adverbs such as “Very”, “Somewhat” or “Indeed”. 

c. Adjust rule execution weights to increase or reduce the force of any fuzzy rules. 

Fuzzy Sets Adjustment 

a. Add fuzzy sets. 

b. Widen or narrow existing sets by reviewing membership functions.  

c. Shift existing fuzzy sets to ensure sufficient overlaps. 

d. Review and adjust the shape of existing fuzzy sets. 

 

2.2.4 Evaluation 

   The objective of the risk evaluation step is to support decision making through significance of the 

results derived from the risk analysis step. The significance of which is based on its acceptability in 

relation to pre-determined evaluation criteria set by the AUV owner, higher management of the 

organisation or external groups. External groups who may exhibit interest in the results of the risk 

analysis may include insurance companies and the regulators. An acceptable probability of  AUV loss 

based on the capital and operating cost of the AUV (2) is an example of evaluation criteria. However, for 
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an AUV program in its early phases, the evaluation criteria may be uncertain and yet to be established. 

In such circumstances, the organisational Safety and Health standard can be used as a good starting 

reference for criteria setting.

   At the fundamental level, the risk of AUV loss will be either acceptable or unacceptable, as decided 

by the AUV owner. If deemed acceptable, the Antarctic under-ice mission can proceed under close 

monitoring and regular review to ensure that risk remains acceptable. if unacceptable, the AUV owner 

has to make decisions taking into consideration available resources and time constraints, which may 

include: 

a) Whether the deployment should proceed by accepting a higher risk of loss. 

b) Whether treatments are required, taking into consideration the adequacy of existing control 

measures.  

c) The priorities for risk treatment. 

   Although risk evaluation is the last step of the proposed risk analysis framework (Figure 2.4), analysis 

of new information and filling of data gaps needs to be performed on a regular basis. This iterative 

process helps ensure relevancy and effectiveness of the risk analysis. 

 

2.3   EXAMPLE OF APPLICATION 

2.3.1 Description 

   To demonstrate application of the fuzzy-based risk analysis framework, an example based on the 

nupiri muka AUV program is presented. Readers are referred to section 5.1 on details of the nupiri 

muka AUV program. Delivered in May 2017, the AUV was relatively new at the time of writing and has 

very limited historical failure fault log data. Initial semi-quantitative risk analysis was performed in 

accordance to the Work Health and Safety Policy stipulated by the University of Tasmania (148) and 

leveraging on prior experience of the AUV team.  

   To apply the proposed fuzzy-based risk analysis framework, the risk assessment matrix 

recommended under the University of Tasmania’s Work Health and Safety Policy (Figure 2.1) was 

converted to a fuzzy risk assessment matrix (Figure 2.3) as the output of the risk model. Assessment 

on risk of AUV loss was carried out on a planned deployment to the Sørsdal Glacier in Antarctica (Figure 

2.9), which took place between December 2018 and March 2019. There are several missions 

comprising of both open water and under-ice operation. One of the proposed mission requires the nupiri 

muka to travel approximately 100 kilometres from launch to recovery, with 6 hours under ice-shelf at a 

maximum depth of around 800 meters. Being the longest mission for this deployment in terms of both 

distance and time duration, the fuzzy-based risk analysis framework was applied to determine the risk 

level of this mission. 
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Figure 2.9: Map showing location of the Sørsdal Glacier in the Antarctica (Photo: Australian Antarctic 

Data Centre). 

 

2.3.2 Scenario Identification 

  In this initial step, five risk factors, their associated universe of discourse and fuzzy sets were identified 

(Table 2.5). These were based on best available deployment information at the time of writing, as well 

as through available sources of knowledge and information, which included in-house AUV engineers, 

technical specifications of the AUV, safe work procedures, risk analysis records and literature. The 

experts consist of three members of the University’s AUV team and an AUV researcher who is a main 

user of the AUV. These domain experts had a combined experience of 24 years working with AUVs 

and are currently responsible for different aspects of the AUV program, such as implementation of risk 

control measures, resource allocation, operation strategies, maintenance, technical training and the 

analysis of risk and data.  

 

Table 2.5: Identified risk factors, universe of discourse and fuzzy sets. 

Risk factors Universe of 

Discourse 

Fuzzy Sets 

Distance of Mission 0 to 140 

(Kilometres) 

Short, Average, Long 

Maximum Depth of Mission 0 to 5000 (Meters) Shallow, Intermediate, 

Deep 

Time Duration Under-Ice 0 to 24 (Hours) Short, Medium, Long 

Weather Condition 0 to 10 

(Dimensionless) 

Good, Average, Bad, 

Severe 

Average Experience of AUV Team 

with Under-Ice Missions. 

0 to 10 (Years) Short, Average, Long 
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   To define membership functions, a mixture of triangular and trapezoidal membership functions was 

used for elicitation after considering their advantages (Section 2.2.2). The resultant membership 

functions are represented graphically and presented in Figure 2.10a – 2.10e. For the risk factor 

‘Weather Condition’, there are existing weather classification systems being used, such as the 

classification by McMurdo Weather Office (Mac Weather) (149) for Antarctica. However, an arbitrary scale 

of 0-10 was in this case used for simplicity, where 0 represents excellent weather and 10 represents 

extreme weather. 

 

  

 

 

 

Figure 2.10: Membership function for the identified risk factors. a. ‘Distance of Mission’. b. ‘Maximum 

Depth of Mission’. c. ‘Time Duration Under-Ice’. d. ‘Weather Condition’. e. ‘Average Experience of 

AUV team with Under-Ice missions’. 

a b 

c d 

e 
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2.3.3 Analysis 

   To facilitate the construction of fuzzy rules and overcome the curse of dimensionality (Section 2.2.3), 

an incremental hierarchical fuzzy system as shown in Figure 2.11 was used. ‘Distance of Mission’, 

‘Maximum Depth of Mission’ and ‘Time Duration Under-Ice’ were grouped under ‘Mission Profile Risk’ 

as an AUV mission profile is often presented in terms of mission length, mission depth and operating 

environment characteristics. Existing literature has also identified these three mission profile 

characteristics as significant factors for risk of  AUV loss (71). ‘Weather Condition’, which is highly 

uncertain and ‘Average Experience of AUV Team with Under-ice Missions’ which is influenced by 

organisational policies, were separate input to ‘Risk of AUV Loss’. 

 

Figure 2.11: The risk factors in an incremental hierarchical fuzzy logic structure. 

    For intuitive elicitation of fuzzy rules based, a 3D hypercube matrix consisting of three input risk 

factors and one risk level output were used (Figure 2.12). The cube was further sliced into separate 

tables as shown in Table 2.6(a), where there are three slices and Table 2.6(b), where there are four 

slices. These tables represent a series of IF-THEN rules such as: 

IF Distance of Mission is Short AND Time Duration Under-Ice is Short AND Max. Depth of Mission is 

Shallow THEN Mission Profile risk is Low. 

 

Figure 2.12: A 3D hypercube matrix to elicit experts’ opinion on the construction of fuzzy rules for 

‘Mission Profile Risk’. 
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Table 2.6(a): Fuzzy rule table for ‘Mission Profile Risk’. 

 
Time Duration Under-Ice 

Short Medium Long 

Maximum Depth of Mission – Shallow 

Distance of Mission Short Low Low Mod 

Average Low Mod High 

Long Mod High Ext 

Maximum Depth of Mission - Intermediate 

Distance of Mission Short Low Mod High 

Average Low High Ext 

Long Mod High Ext 

Maximum Depth of Mission – Deep 

Distance of Mission Short Mod High High 

Average High High Ext 

Long High Ext Ext 

 

  For the next task of fuzzy inference, the Mamdani method was adopted as it is widely accepted for 

capturing experts’ knowledge (143). Many methods exist for the composition of fuzzy relations for use in 

Mamdani inference. Examples include min-max, max-max, min-min, max-min and max-product. Among 

these, the max-min and max-product inference are the most commonly used (150). In max-min inference, 

the inferred output of each rule is a fuzzy set chosen from the minimum firing strength, which is the 

degree to which the rule matches the input (141). The resultant output set has its membership function 

cut off at the top, resulting in some information loss. In the max-product inference, the inferred output 

of each rule is a fuzzy set scaled down by its firing strength via an algebraic product (141). This way, the 

original shape of the fuzzy set is preserved, resulting in less information loss as compared to max-min 

inference (151)(152). Therefore, the max-product inference was adopted for this example. To apply the 

max-product inference, consider two rules with three risk factors (RV) inputs and one risk level (RL) 

output of the following form:    

 

 IF RV1 is LA and RV2 is LB and RV3 is LC THEN RL = PD 

IF RV1 is LW and RV2 is LX and RV2 is LY THEN RL = PZ 

 

𝐿 and 𝑃 are adjectives of the fuzzy set associated with the risk factors and risk level respectively. The 

alphabetical subscripts differentiate different values of 𝐿 and 𝑃. The aggregated output membership 

function µQ(RV,RL), which is a function of both the input risk factors and output risk levels can then be 

calculated as follow: 



68 

 

 

Max {
min (µLA (𝑅𝑉1), µLB (𝑅𝑉2), µLC (𝑅𝑉3))µPD (𝑅𝐿),

min (µLW (𝑅𝑉1), µLX (𝑅𝑉2), µLY (𝑅𝑉3))µPZ (𝑅𝐿)
}  

 

Table 2.6(b): Fuzzy rule table for ‘Risk of AUV Loss’. 

 

Average Experience of AUV Team 

Experienced Average Inexperience 

Weather Condition – Good 

Mission Profile Risk 

Low Low Low Mod 

Mod Low Low Mod 

High Mod Mod High 

Ext High High Ext 

Weather Condition – Average 

Mission Profile Risk 

Low Low Low Mod 

Mod Mod Mod Mod 

High Mod High High 

Ext High High Ext 

Weather Condition – Bad 

Mission Profile Risk 

Low Mod Mod High 

Mod Mod High High 

High High High Ext 

Ext Ext Ext Ext 

Weather Condition – Severe 

Mission Profile Risk 

Low High High Ext 

Mod High Ext Ext 

High Ext Ext Ext 

Ext Ext Ext Ext 

 

   To demonstrate the Mamdani max-product inference, two fuzzy rules were extracted from Table 

2.6(a), of the following form:  
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IF Distance of Mission is Long and Maximum Depth of Mission is Intermediate and Time Duration 

Under-Ice is Medium, THEN Mission Profile Risk = High 

 

IF Distance of Mission is Long and Maximum Depth of Mission is Deep and Time Duration Under-

Ice is Medium, THEN Mission Profile Risk = Extreme 

 

Using the max-product inference, the aggregated output membership function µQ can be calculated as: 

 

Max {
min(µLong (𝐷𝑖𝑠𝑡), µInt (𝐷𝑒𝑝𝑡ℎ), µMed (𝑇𝑖𝑚𝑒)) µHigh (𝑅𝑖𝑠𝑘),

min(µLong (𝐷𝑖𝑠𝑡), µDeep (𝐷𝑒𝑝𝑡ℎ), µMed (𝑇𝑖𝑚𝑒)) µExt (𝑅𝑖𝑠𝑘)
} 

 

The graphical representation in Figure 2.13 shows the aggregation of output membership functions for 

each rule to result in µQ. Essentially, µQ comprises of the outer envelopes of the individuals truncated 

membership forms for each rule. 

Figure 2.13: The graphical representation of Mamdani max-product inference.  

 

    For defuzzification, the commonly used centroid method was chosen for this example. It has the 

advantage of being well-balanced, sensitive to the height and width of the fuzzy output and providing 

consistent results (153). The centroid method defuzzify by finding a point representing the centre of 
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gravity of the aggregated fuzzy set. For a fuzzy set A, the centre of gravity ꭓ* can be expressed 

mathematically as (Figure 2.14):  

ꭓ ∗ =  
∫ 𝜇A (𝑥) 𝑥 𝑑𝑥

∫ 𝜇A (𝑥) 𝑑𝑥
 

 

 

Figure 2.14: The centroid method of defuzzification. 

 

  The fuzzy inference and defuzzification process were implemented using MATLAB® fuzzy logic 

toolbox 2017 (154). An example of the graphical interface is shown in Figure 2.15. In the interface, 

membership functions from Figure 2.10a-c and fuzzy rules from Table 2.6(a) were used as inputs to the 

model to assess ‘Mission Profile Risk’. The fuzzy risk assessment matrix in Figure 2.3 was used as the 

output. Using the above information, the proposed mission with a distance of 100 Kilometres, Maximum 

Depth of 800 meters and 6 hours under-ice will have a mission profile risk rating of 14.97. Under the 

University of Tasmania’s organisation’s risk assessment matrix, a risk rating of 14.97 falls into the ‘High 

risk’ category. 

 

Figure 2.15: The graphical interface of MATLAB Fuzzy Logic Toolbox showing ‘Mission Profile Risk’. 
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   In the next level of the hierarchical fuzzy system (Figure 2.11), the risk of AUV loss was computed 

using ‘Mission Profile Risk’, ‘Weather Condition’ and ‘Average Experience of AUV Team with Under-

Ice Missions’ as inputs. The average experience of the team is approximately three years, information 

attained by speaking with the team. December to February is the summer season in the Antarctic with 

generally lower precipitation and wind speeds as compared to the winter season. Sørsdal Glacier, which 

is near to Davis Station, has a relatively milder climate due to the surrounding Vestfold Hills (155). Despite 

this, the weather conditions in Antarctica can be highly dynamic and unpredictable (156). Therefore, it 

can be assumed at this stage that the weather is ‘Good’ with a rating of 2 out of 10, with 10 being the 

most extreme weather expected. Using Simulink® software to construct the hierarchical fuzzy system 

as presented in Figure 2.16, it was now possible to estimate the Risk of AUV loss.  

Figure 2.16: The hierarchical fuzzy logic structure constructed using Simulink® to assess ‘Risk of 

AUV Loss’ 

 

   The resultant risk level for the risk of AUV loss has a rating of 11.5. Apart from achieving a numerical 

risk level, the behaviour of the risk factors and the risk of AUV loss can also be studied using 3-

Dimensional plots. An example showing the influence of ‘Mission Profile Risk’ and ‘Weather Condition’ 

over ‘Risk of AUV loss’ is shown in Figure 2.17. 

 

Figure 2.17: 3-Dimensional plot showing the behaviour of model output with changes to model inputs. 
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2.3.4 Evaluation 

   In the evaluation step, the significance of the result is used to support decision making. Referring to 

the University of Tasmania’s ‘five by five’ risk assessment matrix (Figure 2.1), the risk rating of 11.5 

falls between the ‘moderate’ and ‘high’ risk level category (Figure 2.18).  

 

 

 

Figure 2.18: Risk Rating of 11.5 on The University of Tasmania’s risk matrix. 

 

   Consequently, a set of actions can be determined using the Risk Management Standard from the 

University of Tasmania (Appendix J) (148) as the evaluation criteria. To err on the conservative side, the 

requirements for ‘high’ risk level should be considered. Under the standard, a mission with ‘high’ risk 

level requires approval from heads of school, budget centres or staff on authorised job risk analysis. 

The audit and risk committee of council and senior management team have to be kept informed of the 

mission and risk control measures reviewed annually. The risk of AUV loss is also to be included in 

strategic and capital planning and fiscal strategies. 

 

2.3.5 Sensitivity Analysis  

   A sensitivity analysis was performed on the model to examine how changes to each risk factor input 

can affect the risk rating output. Using the established model in Figure 2.16 as the base model, each 

input risk factor was then changed sequentially while the values of other risk factors remained constant. 

The universe of discourse for each risk factor was divided into ten equal incremental parts for the 

analysis, starting with minimum value.  Graphical representation of the results are shown in Figure 2.19. 
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Figure 2.19: Sensitivity analysis of how changes to each risk factor input affect the risk rating output. 

 

   The result of the analysis shows that the risk rating output is most sensitive to ‘Time Duration Under-

Ice’, with an increase of 215 percent from a risk rating of 5.81 to 18.31 when time duration under-ice 

increases from 0 to 9.6 hours. This is followed by risk factor ‘Distance of Mission’, ‘Maximum depth of 

Mission’, ‘Average Experience of AUV team with Under-Ice Missions’ and lastly, ‘Weather Condition’ 

which risk rating is least sensitive towards. The close similarity of sensitivity between ‘Time Duration 

Under-Ice’, ‘Distance of Mission’, ‘Maximum depth of Mission’ to risk rating is expected due to some 
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degree of proportionality. The result of the sensitivity analysis can also be used for identification of 

leverage points setting priorities for risk control. For instance, a reduction of ‘Time Duration Under-Ice’ 

from 6 hours to 5 hours reduces the eventual risk rating for AUV loss from 11.5 to 9.9.  

   It is difficult to validate the model at this stage with a lack of historical data record for the nupiri muka 

AUV. However, when results of the sensitivity analysis were compared to the risk and reliability analysis 

of Autosub 6000 AUV (157), the findings were found to be quite similar. In the report on Autosub 6000 

AUV, mission distance and depth were analysed against risk of AUV loss. For mission distance, the 

results show the probability of loss increasing at a near constant rate before plateauing off at about 90 

kilometres. For depth of mission, the probability of loss remains nearly constant from 1000 meters to 

2500 meters before a large increase in risk occurs at greater than 2500 meters’ depth. In the sensitivity 

analysis for nupiri muka AUV, risk level plateaus off at 84 kilometres for distance of mission and remains 

constant after 1500 meters of mission depth (Figure 2.19). 

 

2.4   DISCUSSION AND LIMITATIONS 

   The application of fuzzy-based risk assessment has its disadvantages.  In this section, we will discuss 

the approach proposed focusing on its limitations. Subject matter experts can sometimes have 

incomplete and episodic knowledge, especially when there is a lack of data. This can result in incorrect 

or incomplete fuzzy rule bases for the inference system, which lowers the model performance. 

Therefore, it is imperative that a suitable judgment elicitation process is adopted to enable 

reproducibility of the results. During elicitation of fuzzy rules, circumstances where redundant, 

inconsistent or conflicting rules may arise. Consequently, a significant amount of time is required to 

overcome this and fine-tune the model. Therefore similar to formal judgment elicitation methods, the 

proposed method must be applied iteratively. The inability to self-learn means the model requires 

consistent regular review of rules and membership functions to ensure relevancy.   

   To overcome some of these drawbacks and present a better risk assessment approach for the AUV 

community, further research can follow four tracks: 1. Expand on the list of risk variables as input into 

the fuzzy-based risk model. This includes having a more robust method for identifying risk variables 

and the use of both crisp and fuzzy risk variables in the model. 2. Develop and explore risk aggregation 

methods for the fuzzy-based risk models to establish a risk level for an entire AUV deployment. This 

usually includes a number of open water missions and under-ice missions during the deployment. Other 

aspects of the deployment such as launch and recovery as well as transportation of the AUV should 

also be considered. 3. Identify and quantify potential causal relationships between risk variables to 

better understand systemic behaviour. This can be performed with fuzzy cognitive maps or synthesising 

fuzzy logic with system dynamics or structural equation models. 4. Adopt the use of more advanced 

fuzzy approaches such as belief rule-base inference methodology by Yang et al (158). In this approach, 

a fuzzy rule base takes into consideration the belief degrees in all possible consequents of a rule, which 

increases its accuracy. Another example is the fuzzy rule-based evidential reasoning approach, which 

designs fuzzy rule-base using belief structure to capture uncertainty and non-linear relationships (159). 

Fuzzy rule-based Bayesian reasoning (FuRBaR) (160), can also be adopted to model the incompleteness 
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encountered in establishing the knowledge by assigning subjective belief degrees. A Bayesian 

approach is then used to aggregate all relevant rules to prioritise potential failure modes. These 

advanced methods can also be used to test the robustness of the fuzzy-based risk assessment as 

proposed in this chapter. 

   There are different types of AUV. Many faster vehicles (1m/s and more) have an endurance of days 

whilst slower buoyancy driven vehicles (such as underwater gliders) or propeller driven vehicles (speed 

less than 1m/s) tend to have an endurance of months. AUVs, also vary in terms of operating depth and 

the required human effort for operation. Different AUV characteristics imply different membership 

functions and different risk variables influencing its risk of loss. When using the proposed method one 

must be aware of this and update the membership functions and potentially the fuzzy rules according 

to the vehicle characteristics. As a result, the risk profile for different AUVs also differ.     

 

2.5   CONCLUSION TO CHAPTER 

   In this chapter, a fuzzy-based risk analysis framework for under-ice AUV missions in the Antarctic is 

presented. The use of a fuzzy-based approach is especially well-suited for an AUV program in its early 

phases due to the lack of historical fault log data for precise quantification of risks. It takes into account 

the vagueness and ambiguity of many risk factors and their causal relationships which are difficult to 

quantify and are usually described in natural language. The framework facilitates the capturing of 

knowledge and experience from domain experts, to derive a quantifiable risk level output. This output 

can then be evaluated against a set of risk criteria to aid decision making or to be used relatively to 

compare risks of different missions. Additionally, the framework can also be applied directly in the field 

during a deployment to assess risk in response to changes in situation. These benefits are the reasons 

the proposed fuzzy-based risk analysis framework is pragmatically useful for future Antarctic AUV 

deployments.  

   Sensitivity analysis enables the user to tune the model for particular risk scenarios. Our sensitivity 

analysis has considered five risk factors, but more variables could have been included in this analysis. 

We could have included other environmental and operational variables such as the distance between 

the AUV and the seabed, the presence of icebergs and others. We could also have included more 

detailed characteristics of the launch and recovery systems. The variables considered in this analysis 

were those deemed more important in the deployment under the Sørsdal Glacier in the Antarctic.  

   Advancement of this work can potentially further its application outside the AUV domain. For complex 

new technology there is often an absence of hard data and of expertise. This uncertainty is present in 

risk matrices used by organizations that are now adopting AUVs. We have proposed a method to 

homogenize the risk analysis used by organizations with those used for quantifying AUV risk. In doing 

so, a new methodology for AUV under-ice mission risk calculation is proposed. The fuzzy risk analysis 

framework can be adopted for other complex technologies such as other unmanned marine surface 

vessels or unmanned aerial vehicles (161)(162), where there is an apparent lack of data. The difference 

between the AUV applications and other are in the variables considered and their dependencies. For 
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example, with respect to AUV mission under-ice the mission profile risk must be calculated based on 

the Distance of mission, Max depth of Mission and Duration under-ice. If we apply this methodology to 

other technology, for example, to an unmanned ship the mission profile risk would have to consider 

other variables.   
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CHAPTER 3: ADDRESSING DYNAMIC BEHAVIOR AND INTERRELATIONSHIPS 

WITH SYSTEM DYNAMICS 

  

   The content of this chapter is drawn mainly from the paper “Human error in autonomous underwater 

vehicle deployment: A system dynamics approach.” The paper was submitted on the 22 May 2018 to 

the journal of risk analysis and accepted on 14 Feb 2020. The following authors have also contributed 

in the preparation of the paper; Mario P. Brito, Neil Bose, Jingjing Xu and Kiril Tenekedjiev.  

   The aim of this chapter is to introduce a systems-based risk analysis approach, with a structured 

framework, for Antarctic AUV programs. This represents an extension of the work by Brito and Griffiths 

(105) on the use of system dynamics in the AUV domain. The work by Brito and Griffiths (105), based on 

a generic “rework cycle” system archetype, represents a proof of concept for using system dynamics in 

risk analysis of AUV operations. Here, we proposed an additional framework to facilitate application of 

system dynamics for risk analysis as well as different ways to tests the model to ensure robustness.  

 

3.1   INTRODUCTION TO SYSTEM DYNAMICS 

   The use of a systems approach for analysing risk was first suggested by Reason (163) when he found 

most accidents are the result of underlying system flaws. Since then, there has been a gradual shift in 

risk analysis focus, from static chain of event models to complex dynamic risk models which are more 

representative of real-world systems (164)(165). The importance of adopting a systems approach for risk 

analysis was further recognised after investigations of several high-profile industrial accidents. For 

instances, the Three Mile Island accident (166), Bhopal gas tragedy (167) and the Chernobyl nuclear 

disaster (168). All three accidents were attributed, at least partially, to human errors of operators who 

played a supervisory controller role with passive monitoring of the system state. However, these human 

errors were the long-term effect of other systemic issues such as production pressure, poor workforce 

planning, weak governance, lack of communication channels, poor resource planning or placing priority 

on productivity over safety (111). An AUV operator plays a very similar supervisory controller role during 

an Antarctic deployment. The main difference between conventional systems and AUV systems is the 

level of autonomy, with the interactions between human operator and autonomous system being more 

complex to understand. This chapter adopts valuable lessons from past industrial incidents to propose 

a systems-based risk analysis framework using system dynamics. 

   The field of system dynamics was established by Jay Forrester (169) for analysis of dynamic complex 

systems. Sterman (1) described system dynamics as a method to learn about dynamic complexity, 

understand the sources of policy resistance and design of more effective policies. System dynamics 

uses concepts from the field of feedback control to demonstrate how the structure of the system with 

its feedback loops are responsible for its dynamic behaviour.  

   Central to system dynamics are models representing feedback processes, expressed through 

reinforcing and balancing loops (Figure 3.1), stock and flow structures (Figure 3.2) and time delays (1). 



78 

 

A reinforcing loop is one where an initial change influences more of the same change while a balancing 

loop seeks equilibrium by counteracting change. In the hypothetical example shown in Figure 3.1, 

schedule pressure increases the occurrence of human error, which slows down mission completion rate 

and causes a higher incident rate. This adds further schedule pressure in a reinforcing loop (R). On the 

contrary, schedule pressure can also increase team productivity, which increases the mission 

completion rate and reduces schedule pressure in a balancing loop (B). 

  

Figure 3.1: An example of a causal loop diagram showing both reinforcing feedback (R) and 

balancing feedback loop (B). 

 

   Stocks are referred to as entities that accumulate or deplete over time while flows define the rate of 

change in a stock. Stocks characterise the system state by providing inertia and memory, which can 

also lead to time delays when a difference between inflow and outflow rate exist. As the example in 

Figure 3.2 shows, the number of AUV engineers in an organisation is a stock that is increased through 

hiring inflow and is reduced by attrition outflow. The clouds represent boundaries of the model 

environment. 

 

Figure 3.2: An example of a stock and flow diagram. 

 

   The widespread application of system dynamics modelling transcends disciplinary boundaries from 

politics to healthcare. Cooke (170) modelled the systemic issues leading to the Westray mine disaster 

using system dynamics methodology. The models revealed that organisational factors such as putting 

a priority on productivity over safety accelerated incident rates at the mine. Bouloiz et al. (171) 

demonstrated the use of system dynamics models to formalise causal interdependencies between 

safety factors in the context of a chemical storage unit. The study also shows that integration of safety 

factors from technical, organisational and human dimensions allow for better risk analysis, leading to 

improved organisational decision making. The use of system dynamics in the AUV domain was first 

attempted by Brito and Griffiths (105). In their work, system dynamics models were used to analyse the 

impact of multiple AUVs deployments on risk mitigation efforts. Based on a generic “rework cycle” 
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system archetype, the risk model focused on human resource management with suggestions made to 

investigate organisational, cultural and stress factors using the same approach. Their study represents 

a proof of concept for using system dynamics in risk analysis of AUV operations. However, there is no 

proposal of a structured framework and the study also lacks validation of the risk model. 

   To our best knowledge, a systems dynamics framework has never been proposed for analysing risk 

of AUV loss. As an extension of the work by Brito and Griffiths (105), the approach is then demonstrated 

through an example to examine human errors, the most common ‘fault’ during AUV deployments (6). 

Policy recommendations are then provided to improve risk control of Antarctic AUV operations. This 

chaper is organised as follows: section 3.2 introduces the proposed risk analysis framework based on 

system dynamics. section 3.3 presents a well-developed example of the application of the framework. 

Finally, section 3.4 concludes the chapter with a discussion of the benefits, limitations and scope for 

future work. 

 

3.2   METHODOLOGY 

3.2.1 Overview 

   The generic risk analysis framework proposed in this paper and shown in Figure 3.3 consists of three 

main iterative steps with further description of each step presented in subsequent sections. 

  

Figure 3.3: A broad overview of the proposed risk analysis framework based on system dynamics 

methodology. 
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3.2.2 Identification 

   The objectives of this step are to acquaint with the AUV program objectives, expected performance 

requirements, as well as finding and recognising causes that can lead to the loss of the AUV during 

Antarctic deployment. The first task is to establish available sources of knowledge about the AUV of 

interest. Experts’ knowledge is often regarded as the best source of information (172), and this can come 

from AUV engineers, AUV program owner as well as manufacturer or contractors. Important 

considerations for experts’ elicitation are the choice and number of experts necessary to capture both 

spatial and temporal risk variables of interest. While there is no formal procedure tailored specifically to 

risk assessment of AUV operations, guidance can be taken from the recommended selection criteria 

published by Pulkkinen and Simola (124) and Kotra et al. (173). The number of experts to interview lies 

between 6 - 12 as recommended by Cooke and Probst (125). In addition to experts’ knowledge, 

information can also be sought from organisational documentation such as technical specifications of 

the AUV, safe work procedures, fault logs, risk assessment records, program schedule, budget plan, 

previous audit findings, organisation charts and previous incident reports. Future deployment plans and 

expected performance requirements also contain important information for the risk analysis. 

   The second task involves the investigation of context, systemic issues, existing risk controls and risk 

variables that can cause or culminate the loss of the AUV in the Antarctic. To address the shortfall of 

existing risk analysis approaches (Section 1.2) where focus very much lies on the technical dimension 

of an AUV, risk variables from other aspects should be considered. This includes human, organisational 

and external factors. As the use of AUVs is a relatively new domain, publicly available incident data are 

unavailable or very limited. Therefore, to faciliate a more comprehensive analysis of risk, a generic risk 

structure with some of the most frequently cited grouping of factors adopted from (4) and (5) is proposed 

(Figure 3.4). This risk structure, the first of its kind tailored for risk analysis of AUV operations, was the 

result of iterations of unstructured discussions and revisions with the AUV team at the University of 

Tasmania. Based on intuition and judgemental evaluation, the qualitative risk structure offers an 

indication of how the interactions between risk variables of different dimensions can influence the risk 

of AUV loss. It serves as a useful guide, supporting earlier established sources of knowledge.  The 

output of this task is a list of risk variables, which may influence the risk of AUV loss. 

   The third task to be performed for this step is to scope the risk analysis, which includes the setting of 

a realistic time horizon for the risk models. A realistic scope ensures relevancy of the models and yet 

avoids overwhelming both model users and the analyst. To do so, considerations on the availability of 

resources, knowledge and time had to be made. The analysis time horizon should be sufficient enough 

to capture both the emergence of systemic issues leading to the risk of losing AUV and the delayed 

effects of potential policies. This may encompass the entire AUV program period, from design through 

construction and operational phase to decommissioning. The determination of scope should follow the 

general decision analysis principles of defining decision context (174)(175). 

 



81 

 

 

Figure 3.4: Generic risk structure influencing the risk of AUV loss with  

some taxonomies adapted from  (4) and (5). 

   The last task of this step is to establish causal relationships between the identified risk variables. 

Using the available sources of knowledge established earlier, this step involves multiple iterations 

between interviews, data collection, data comparisons and causal loop diagram modelling.  

  Although the concept of causation is ubiquitous in every branch of theoretical science (176), one of the 

most commonly used criteria to determine causation was proposed by Sir Austin Bradford Hill (177). The 

same criteria can be adapted to establish causality in the context of AUV risk analysis. However, it is 

important to note that these criteria do not provide definitive causality conclusions and a certain level of 

judgement is still necessary. 

   Once causality has been established, it can be represented in a causal loop diagram. Causal loop 

diagram is a qualitative graphical tool that enables the visualisation of causal relationships, describes 

the causal mechanism and represent feedback structure of the system (178). In a causal loop diagram, 

risk variables are connected by arrows with a polarity of either positive (+) or negative (-). The polarity 

is positive when the effect of the first variable will cause an effect in the same direction for the linked 

variable. The polarity is negative when the effect of the first variable will cause an effect in the opposite 

direction for the linked variable (1). Where the causal effects take time to manifest, the delay is 

represented by a double line (//) on the arrow. In the example shown in Figure 3.5, quality of 

maintenance practices affects the occurrence of technical faults for the AUV, albeit a delay effect. As 

the number of technical faults increases, as does the risk of AUV loss, which reduces overall trust in 

the AUV systems. A lack of trust reduces complacency of the AUV team, which leads to an increase in 
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the quality of maintenance practices to complete the balancing loop. These causal loop diagrams will 

be the foundation for further in-depth risk analysis in the next step.  

 

Figure 3.5: Example of positive, negative polarity, and delay effects in a causal loop diagram.  

 

3.2.3 Modelling and Validation 

   Building on the causal loop diagrams developed in the previous step, the objective of this step is to 

further specifications of the model structures, estimate parameters, formulate causal relationships, and 

establish initial conditions. This yields quantifiable stock and flow models which describes the system 

with integral or differential equations.  

 

Figure 3.6: An example of stock and flow diagram, developed from Figure 3.2. 

 

  For example, consider a stock and flow model as shown in Figure 3.6. The model consists of two flows 

determining the stock of ‘Number of AUV engineers’ (Engr). ‘Hiring’ is the inflow and ‘Attrition’ is the 

outflow, which are influenced by parameters ‘Hiring Rate’ (HR) and ‘Attrition Rate’ (AR) with the 

following equations (3.1) and (3.2): 

       Hiring = HR x Engr       (3.1) 

 

      Attrition = AR x Engr     (3.2) 

 

To simulate the model, the rate of change of the stock and the level of stock at time (t) is required. This 

corresponds to the differential and integral equation of the model as: 

 

𝒅(𝑬𝒏𝒈𝒓𝒕)

𝒅𝒕
 = (HR - AR) x Engrt  (3.3) 
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Engrt = Engr0 + ∫ (𝑯𝑹 − 𝑨𝑹) 
𝒕

𝟎
x Engrt x 𝒅𝒕  (3.4) 

 

Where Engrt stands for equivalent full-time AUV engineers at time t and Engr0 stands equivalent full-

time AUV engineers at the start of the program.  

   The formulation of stock and flow models consist of multiple iterations between interviews, data 

collection, data comparison and fine-tuning of models. Other data sources such as publications, direct 

observations, organisational documents or additional interview sessions can be sought to fill information 

gaps. The conduct of interviews at this step focuses more on the testing and formulation of the stock 

and flow models. Any conflicting information provided by the interviewees should be reviewed and 

supported by other empirical sources of data as far as possible. The outcome of this step is a set of 

models demonstrating how risk of loss can culminate for an Antarctic AUV program.  

   To test the developed models, three main approaches were taken. First, local knowledge and 

available historical data were used to calibrate the model. Second, a series of tests were undertaken to 

uncover model errors and areas for improvement. Examples of key tests to be carried out are 

summarised in Table 3.1, adapted from Sterman (1). The testing must be performed through discussion 

with stakeholders until the models converge sufficiently to be deemed reflective of the real-world system 

by those involved in the modelling. Last, simulation results from the model were discussed and 

compared with domain experts’ opinion.  

 

Table 3.1: Key tests to be carried out on the developed models, adapted from (1). 

Test Purpose 

a. Dimensional 

Consistency 

Ensure that equations within the models are 

dimensionally consistent. 

b. Extreme 

Conditions 

Check whether models respond plausibly when 

subjected to extreme inputs. 

c. Behavioural 

Reproduction 

Ensure that the models are a good representation of the 

behaviour of real-world systems. 

d. Sensitivity 

Analysis 

Check for numerical, behavioural and policy sensitivity 

when assumptions about parameters, boundary and 

aggregation are varied over a plausible range of 

uncertainty. 

 

   Once sufficient confidence is gained on the developed models, simulation of the models for scenario 

analysis can be undertaken. Scenarios to be analysed can be derived primarily from earlier interviews 

and should be performed in close discussion with decision makers in preparation for the final step of 

the risk analysis. The finality of this step is to establish a set of systemic behaviours based on various 

risk scenarios which influence the risk of AUV loss.  
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3.2.4 Evaluation 

   Simulation results from the analysis can then be evaluated against pre-determined organisational 

criteria with eventual risk control policy recommendations. For instance, this can be an acceptable risk 

rating level based on the semi-quantitative risk matrix of the organisation. Insights attained through 

analysis of the risk models can also be used for policy recommendations through the following: 

a. Improving the mental models of decision makers, experts and stakeholders of the AUV program. 

According to Sterman (1) and Forrester (179)(180), the performance of an organisation and its 

systems will improve when there is a better understanding of system behaviour;   

b. Identifying leverage points to institute new management strategies or decision rules for risk 

controls; and ; 

c. Identifying leading indicators which may suggest a potential migration of risk from low to high 

level. This involves recognising measurable and observable risk variables in the AUV program 

which influences the risk of AUV loss. The AUV team’s average experience for Antarctic 

deployment, number of technical changes on the AUV per year or AUV engineer’s turnover rate 

are examples of possible leading indicators. 

   Effectiveness of recommendations can only be achieved if they are adequately implemented by 

organisational leaders. It is therefore critical that this step is conducted in close consultation and 

consideration of feedbacks from decision-makers, experts and other key stakeholders in the AUV 

program. Although this is the last step of the proposed risk analysis framework (Figure 3.3), the process 

is iterative in nature. Analysis of new information and filling of data gaps must be performed on a regular 

basis to ensure relevancy and more refined analysis of risks. 

 

3.2.5 System Dynamics Modelling Software 

     A number of software packages facilitating system dynamics modelling and simulation is available. 

Three commonly used software are Stella®, Vensim® and PowerSim®. All three software promotes the 

development of system dynamics model with visual clarity. For this work, Vensim® is chosen due to its 

user-friendly interface, dimensional checks, the clear visual output of system behaviour and system 

status. 

 

3.3   APPLICATION EXAMPLE 

3.3.1 Overview 

   To demonstrate the application of the proposed framework, it is used to examine the occurrence of 

human error for an actual Antarctic AUV program. Although being able to operate autonomously, 

humans still play an important role in AUV deployments. They take control during an emergency, 

determine mission plans and perform the launch and recovery of the vehicle. Notably, during a four 

years deployment of the Autosub AUV from 1996 to 2000, Griffiths et al. (6) identified human error as 

the most common ‘fault’ instead of technological failures (Figure 3.7). These included the lack of 
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attention, poor error checking, poor handling, distraction and wrong configuration setting. Thieme et al. 

(106) presented the use of a qualitative BBN to assess the role of human factors in the monitoring of an 

AUV during missions. Trust, workload, fatigue and situation awareness were some of the factors 

mentioned to affect the performance of an AUV operator. Manley (94) highlighted the importance of 

managing human errors during AUV operations and suggested that the best strategy to mitigate 

operational risk is to have an experienced and well trained AUV team. Several other studies had also 

found human errors playing a significant role in contributing to the overall risk of AUV loss (107)(108). The 

extremities of the Antarctic further amplifies the importance of managing human error not just during 

any mission, but also throughout the entire Antarctic AUV program. The proposed system approach is 

also aligned to Reason’s (181) suggestion that human error originates from systemic factors and are 

consequences rather than causes of incident. 

 

Figure 3.7: Pareto diagram of Autosub AUV failure modes during missions 1-240 by Griffiths et al. (6). 

 

   The AUV program in this example is funded by the Antarctic Gateway Partnership initiative and 

managed by the University of Tasmania (UTAS) in Australia. Readers are referred to section 5.1 on 

details of the nupiri muka AUV program. 

 

3.3.2 Identification 

   Delivered in May 2017 to UTAS, the nupiri muka AUV is relatively new at the time of writing and has 

very limited historical failure fault log data. The task of familiarisation was therefore performed using 

data from trial runs, information from manufacturer’s operating manual, discussions with AUV engineers, 

direct observations and organisational documents such as standard operating procedures and risk 

assessments records. Literature on other AUVs also proved to be valuable references, such as those 

of Autosub AUV, developed and operated by the National Oceanography Centre, Southampton.  

   The primary AUV team in UTAS consists of four personnel; a facility coordinator, an engineer, a 

technician and a researcher. Out of the four, only two had previous Antarctic under-ice operating 

experience working on other AUVs. This lack of operating experience on the new AUV was therefore 

0 2 4 6 8 10 12 14

Collision with Vessel

Bad GPS

Acoustic Interference

Pressure Vessel Leaks

Power Supply Problems

Mechanical Problems

Damage to Vehicle

Collision with Seabed

Software Error

Failure to Dive

Acoustic Telemetry

Electronics Hardware

Human Error

Arisings



86 

 

identified as one key risk factor. It can increase the likelihood of human error leading to higher incident 

rate and consequently, a higher risk of AUV loss (182)(183). Presented with a high incident rate due to 

human error, the AUV owner may be reluctant to deploy the AUV to the Antarctic. Yet without actual 

deployment of the AUV, the team gains limited operational experience. Such a situation is analogous 

to the dilemma facing new job seekers where employers prefer to hire people with experience but new 

job seekers cannot gain that experience if nobody hires them. To mitigate the lack of experience, a 

series of trials were planned for and performed in a relatively benign environment (Tamar River, 

Tasmania) before actual deployment in the Antarctic.  

   Through semi-structured interviews with the AUV team which was guided by the generic risk structure 

shown in Figure 3.4, experience of the team, as well as other key risk variables relating to human error 

were identified below: 

a. Human Resource (e.g Hiring and Attrition) 

b. AUV Utilisation Rate 

c. Management Risk Appetite 

d. Average Experience of AUV Team  

e. Experience Decay during Lull 

f. On-the-Job Experience Gain 

   For this work, the scope of the analysis focuses on the incidence of human error. The time horizon 

for the analysis was set as 10 years, the expected operating life of the nupiri muka AUV.   

   To establish causal relationships between the identified risk variables, feedback was sought through 

interviews with the primary AUV team in UTAS, as well as taking reference from literature, risk 

assessment records and standard operating procedures. The resultant causal loop diagram is 

presented in Figure 3.8.  

  

Figure 3.8: Causal loop diagram showing the influence of operating experience on human error 

incident rate. 
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   The causal loop diagram shows two reinforcing loops R1 and R2. In both of them, the risk variable 

‘Average Experience of AUV Team’ has a causal relationship to ‘Human Error Incident Rate’. This 

causality was supported both by interviews and the literature (182)(5). In addition, the ‘AUV Team’s Safety 

Commitment’ level also influences the ‘Human Error Incident Rate’. Depending on the level of risk 

tolerance by the organisation, ‘Human Error Incident Rate’ then affects the ‘Utilisation Rate’ of the AUV 

with a negative polarity. A decrease in utilisation of the AUV will result in less on-the-job experience 

gain which decreases the average experience of the AUV team, completing the R1 feedback loop. 

Conversely, a decrease in utilisation of the AUV will increase the amount of experience decay due to 

lull and decrease the average experience of the AUV team, completing the R2 feedback loop. This 

decay of experience is supported by several research on memory, which has shown that a significant 

amount of forgetting takes place naturally over time (184)(185). 

   The two reinforcing loops seem to aggravate the problem of the lack of operating experience through 

utilisation rate of the AUV. Quantification of the model is carried out in the next step. 

 

3.3.3 Modelling and Validation 

   To construct quantifiable stock and flow model, figures and equations used were elicited through 

multiple discussions with the primary AUV team, supported by other information sources as discussed 

previously. Interviews were carried out in semi-structured format using the questionnaire presented in 

Appendix G and went through several iterations, with the risk model updated after each cycle. The 

derived stock and flow diagram consist of four stocks; ‘Total Experience of AUV Team’, ‘Number of 

AUV Team Members’, Human Error Incident Rate’ and ‘Utilisation Rate’, as shown in 3.9. Details of the 

formulation, definitions and initial conditions used are listed in Table 3.2.  
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Figure 3.9: Stock and Flow diagram with four stocks. 

 

Table 3.2: Details of the formulation, definitions and initial conditions used in the stock and flow model. 

Risk variable Definition Equation Remarks 

Total Experience 
of AUV Team 

The total experience of the primary 
AUV team in Antarctic under-ice 
deployment.  

INTEG (Increase in Experience-
Loss of Experience);  
Initial value = 4 Years 

INTEG: Numerical 
Integration. 
 
Initial value is based 
on experience of 
existing AUV team. 

Increase in 
Experience 

The amount of experience gained 
on-the-job and from hiring. 

("On-the-Job Experience Gain 
Rate"*Utilisation Rate*Number of 
AUV Team Members)+Experience 
Gain from Hiring 

 

Loss of 
Experience 

The amount of experience loss 
through decay during lull and 
attrition. 

(Experience Decay Rate*Number 
of AUV Team Members)+(Attrition 
Rate*Average Experience of AUV 
Team) 

 

Experience Gain 
from Hiring 

The amount of experience gained 
from hiring. 

Average Experience of New 
Hire*Hiring Rate 
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Table 3.2: (Continuation) Details of the formulation, definitions and initial conditions used in the stock 

and flow model. 

Risk variable Definition Equation Remarks 

On-the-Job 
Experience  
Gain Rate 

The amount of experience gained on-the-
job. Set at 3 times the utilisation rate to 
account for preparation and planning of 
deployment. 

3 A constant value 
subject to change by 
model user. Current 
value is based on 
existing deployment 
plan for the AUV. I.e. A 
one-week AUV mission 
requires at least 2 
weeks of planning and 
preparation. 

Average 
Experience of 
New Hire 

The amount of relevant experience of 
new hire. 

1 Year A constant value 
subjected to change by 
model user. Current 
value is based on 
average experience of 
existing AUV team 
when they joined. 

Experience 
Decay Rate 

Amount of experience decay during lull. 
Assumed that time will be spent on non-
AUV related activities during lull. 

1-Utilisation Rate*3 Based on existing 
deployment plan for the 
AUV. 

Average 
Experience of 
AUV Team 

Average experience of the primary AUV 
team in Antarctic under-ice AUV 
deployment. 

MAX (0,Total Experience of 
AUV Team/Number of AUV 
Team Members) 
 

MAX: Maximum of two 
alternatives 

Number of AUV 
Team Members 

The total number of personnel in the 
primary AUV team. 

INTEG (Hiring Rate-Attrition 
Rate) 
Initial value = 4 Personnel 

Based on the number of 
crew in existing AUV 
team. 

Hiring Rate Rate at which new AUV team members 
are hired when there is a shortfall. 

MAX (0, Discrepancy/Average 
Time to Hire) 

 

Discrepancy Difference between desired number of 
AUV team members and current number. 

Desired Number of AUV Team 
Members-Number of AUV 
Team Members 

 

Desired Number 
of AUV Team 
Members 

Target number of personnel in the 
primary AUV team.  

6 A constant value 
subject to change by 
model user. Current 
value is based on 
interviews with the 
existing AUV team. 

Attrition Rate Rate at which AUV team member leaves 
the organisation. 

Number of AUV Team 
Members*Fractional Attrition 
Rate 

 

Industry Attrition 
Rate 

Reported annual attrition rate by industry 
and region. 

0.15 A constant value 
subject to change by 
model user. Current 
value is based on the 
average of best 
estimate by the AUV 
team. 

Fractional Attrition 
Rate 

The expected percentage of AUV team 
member leaving the organisation 
annually. Each excess in manpower 
increases attrition rate by 0.05 on top of 
industry attrition rate. 

IF THEN 
ELSE( Discrepancy<0 , 
0.05*Discrepancy+Industry 
Attrition Rate, Industry Attrition 
Rate ) 

 

Average Time to 
Hire 

Average time needed to fill a position in 
the AUV team. 

2 Months A constant value 
subject to change by 
model user. Current 
value is based on best 
estimate by the AUV 
team. 

Human Error 
Incident Rate 

Number of recorded human error related 
incidents. 

INTEG (Increase in Human 
Error Incident Rate-Decrease 
in Human Error Incident Rate) 
Initial value = 30 Cases 

Initial value is based on 
best estimate arising 
from trial runs in Tamar 
river. 

Increase in 
Human Error 
Incident Rate 

Rate at which new human error incidents 
are reported. 

(1-Safety Commitment 
Exponent)*Safety Deterioration 
Exponent 
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Table 3.2: (Continuation) Details of the formulation, definitions and initial conditions used in the stock 

and flow model. 

Risk variable Definition Equation  Remarks 

Decrease in 
Human Error 
Incident Rate 

Rate at which human error incidents 
reduces. 

(Human Error Incident Rate-
Baseline Human Error Incident 
Rate)*Effect of Experience on 
Human Error 

 

Effect of 
Experience on 
Human Error 

The degree of influence that average 
experience of the primary AUV team had 
over human error incident rate. 

Average Experience of AUV 
Team*Safety Commitment 
Exponent 

 

Safety 
Commitment 
Exponent 

Safety commitment level of the primary 
AUV team. Represents strength of the 
relationship between average experience 
and human error incident rate. Ranges 
from 0 to 1.0 with higher value indicates 
higher commitment level. 

0.8 A constant value 
obtained through 
average values of 
interview inputs with 
the existing AUV team. 

Safety 
Deterioration 
Exponent 

Baseline deterioration of safety 
commitment by the primary AUV Team 
due to lack of safety initiatives. Higher 
value indicates more deterioration. 

10 / Year A constant value 
subject to change by 
model user. Current 
value is based on the 
average of best 
estimate by the AUV 
team. 

Baseline Human 
Error Incident 
Rate 

Baseline human error incidents attributed 
to other reasons other than experience 
of the team. 

5 Cases A constant value 
subject to change by 
model user. Current 
value is based on the 
average of best 
estimate by the AUV 
team. 

Effect of Human 
Error Incident 
Rate on 
Utilisation Rate 

The degree of influence that human error 
incident rate had over utilisation rate. 

(Maximum Acceptable Human 
Error Incident Rate-Human 
Error Incident 
Rate)*Organisation's Risk 
Tolerance Exponent 

 

Maximum 
Acceptable 
Human Error 
Incident Rate 

The number of recorded human error 
related incidents before the organisation 
begins to reduce utilisation of the AUV. 

20 Cases A constant value 
subject to change by 
model user. Current 
value is based on the 
average of best 
estimate by the AUV 
team. 

Organisation's 
Risk Tolerance 
Exponent 

Risk tolerance level of the organisation. 
Represents strength of the relationship 
between human error incident rate and 
utilisation rate. Ranges from 0 to 1.0 with 
higher value indicates risk aversion. 

0.4, based on interviews with 
the existing AUV team. 

A constant value 
obtained through 
average values of 
interview inputs with 
the existing AUV team. 

Desired 
Utilisation Rate 

Target percentage of time the AUV 
spends at the Antarctic in a year. 

0.33 A constant value 
subject to change by 
model user. Current 
value is based on 
objectives for the AUV 
program. 

Change in 
Utilisation Rate 

The amount of change in utilisation rate 
of the AUV. 

(Desired Utilisation Rate-
Utilisation Rate)*Effect of 
Human Error Incident Rate on 
Utilisation Rate 

 

Utilisation Rate The percentage of time the AUV spends 
at the Antarctic in a year. 

IF THEN ELSE ((Utilisation 
Rate<=0, 0, INTEG (Change in 
Utilisation Rate)) 
Initial value = 2 Months 

IF THEN ELSE: 
Alternative formulations 
based on condition. 
Initial value is based on 
existing deployment 
plans.  

   

The model was checked for violations of physical law. For instance, real quantities such as number of 

AUV team members, utilisation rate and human error incident rate do not go into a negative value. 

Similarly, outflows from these stocks have shown to be zero if the stock is zero. The model was also 

checked for dimensional consistency using inbuilt <Check Units> function within the software. Any 
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inconsistencies with units of measure were reflected by the software when the equations were checked. 

Extreme condition tests were performed extensively to assess its robustness. By randomly changing 

variables to realistic maximum and minimum values while monitoring model behaviour, these tests 

ensure that the model behaves in a realistic manner even with extreme inputs. After performing these 

tests, simulation of the model was carried out with the result shown in Figure 3.10.  

  

 

Figure 3.10: Simulation results showing the trend of human error incident rate, average experience of 

AUV team (Top) and utilisation rate (Bottom).  

 

   The simulation result showed that in the first 7 months of operation, the lack of Antarctic operating 

experience resulted in an incident rate which was above the organisation’s tolerance level of 20 cases. 

As a result, deployment of the AUV was reduced which caused some loss of experience due to decay 

up to second year of the program. However, as the team gradually gain more experience through 

practice runs and training, the incident rate continues to decline towards the baseline level of 5 cases. 

This resulted in an increase in the utilisation rate. Overall, the simulation shows an overall declining 

human error incident rate with the increase in experience of the primary AUV team. With coherent results 

obtained thus far from the base model, three scenarios were simulated next to facilitate policy 

recommendations.  
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   In the first scenario, the effect of having regular training and practice runs during lull periods was 

examined. Based on best estimate elicited from the AUV team, ‘Experience Decay Rate’ was reduced 

by half to represent having such practices during lull period to mitigate the effect of lack of actual 

Antarctic deployment. The assumption here is that both training and practice runs remain consistently 

and equally effective throughout the span of the program for each person in the AUV team. Despite this 

simplification, many studies across industries have shown that effective training and practice runs do 

reduces the occurrence of human error (186)(187). Consequently, the simulation results show that there 

was no initial loss of experience as compared to the base scenario (Figure 3.11). In addition, there is 

also an apparent reduction of human error incident rate as compared to the base scenario, especially 

in the second and third year of operation (Figure 3.11).   

 

 

 

Figure 3.11: Simulation results showing the trend of average experience of AUV team (Top) and 

human error incident rate (Bottom) in an experience decay mitigated scenario.  

   The second scenario examines the impact of hiring and attrition on human error incident rate by 

varying the ‘Average Experience of New Hire’ (Figure 3.12). When recruitment policy requires new hires 
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to the primary AUV team to have two years of relevant experience, an apparent reduction of human 

error incident rate as compared to the base scenario is observed. On the contrary, when there is no 

such requirement, the simulation shows a gradual decline in the average experience of the AUV team. 

This decline eventually leads to an increase in human error incident rate after the second year of the 

AUV program due to delays in the system. Faced with an increasing incident rate, the organisation 

reduces the utilisation rate of the AUV, further exacerbating the situation with even lesser opportunity 

for the team to gain experience. As a result, the rate of decay exceeds the rate of gain, with average 

experience of the team reduced to zero by the third year. Without the consideration of other factors, this 

may be an oversimplification of human cognitive function. However, the lack of utilisation has an 

undeniable negative impact on experience of the AUV team, which eventually leads to a premature end 

to the AUV program. 
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Figure 3.12: Simulation results showing the trend of human error incident rate (Top), average 

experience of AUV team (Middle) and utilisation rate (Bottom) in different recruitment policy.   

 

   In the third scenario, the impact of the organisation’s risk appetite on human error incident rate was 

examined (Figure 3.13). Maximum acceptable human error incident rate, which represents either a risk-

averse or risk-prone culture within the organisation was varied by ±20% for the analysis. This figure was 

elicited from the AUV team based on the best highest and lowest estimate of future changes in 

organisational risk appetite. In the risk-prone scenario, utilisation rate of the AUV was higher than the 

base scenario. This allows the primary AUV team to gain valuable experience which translates to lower 

human error incident rate after first year of the program. In the risk-averse scenario, maximum 

acceptable human error incident rate was decreased by 20%. With the organisation being less likely to 

take risks, utilisation rate of the AUV was lower than the base scenario. Consequently, the primary AUV 

team gains little experience if not losing experience to decay throughout the operating lifetime of the 

AUV. This eventually leads to a higher human error incident rate as compared to the base scenario. 

Although the simulation results seem to suggest that a risk-prone culture is desirable for reducing risk 

of loss, it is clearly not a rational recommendation without considering other factors. Instead, the 

simulation demonstrates the importance of establishing an optimal risk tolerance level from the 

beginning of the AUV program. 

 

New Hire with no 

Experience 

Base Scenario 

New Hire with 2 Years of 

Relevant Experience 
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Figure 3.13: Simulation results showing the trend of utilisation rate (Top), average experience of AUV 

team (Middle) and human error incident rate (Bottom) in different risk culture. 
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   The last scenario analysis consisted of having different input combinations of the above three 

scenarios to reflect possible real-life situations. These combinations are presented in Table 3.3 with the 

corresponding graph presented in Figure 3.14. 

 

Table 3.3: Different input combinations of earlier presented scenarios, with corresponding graph 

number indicated in Figure 3.14. 

Graph 
Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
(Base) 

15 16 17 18 

Training and 
Practice 
during lull 
Y:Yes N:No 

Y Y Y Y Y Y Y Y Y N N N N N N N N N 

Average 
Experience of 
new hire (Yrs) 

0 0 O 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 

Organisation’s 
risk appetite 
RP: Risk 
Prone, RN: 
Risk Neutral, 
RA: Risk 
Averse 

RP RN RA RP RN RA RP RN RA RP RN RA RP RN RA RP RN RA 

 

   The results showed that the lowest level of human error incident rate occurs when the organisation 

provides training and practice runs during lull, requires new hires to the primary AUV team to have two 

years of relevant experience and is generally risk-prone (Graph 7). On the contrary, a risk-averse 

environment with no training or practice runs and a team without experience will incur the highest human 

incident rate (Graph 12). Notably, while training and a risk-prone culture do mitigate some effect from a 

lack of experience in new hires (See Graph 2 and Graph 10), the human error incident rate remains 

higher than the base scenario (Graph 14). However, the provision of training and the requirement for 

new hires to have 2 years of experience in a risk-averse culture reduces human error incident rate below 

the base scenario (see Graph 6 and Graph 18). More importantly, the simulation shows that the order 

of effectiveness in reducing human error incident rate is: having 2 years of experience for new hire 

(Graph 17), availability of training (Graph 5) and a risk-prone culture (Graph 13). 
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Figure 3.14: Simulation result showing human error incident rate for various combinations of 

scenarios.  

 

3.3.4 Evaluation 

   Although simulation results from the analysis can be used to evaluate against a pre-determined 

evaluation criterion, an exact set of evaluation criterion has yet to be established as the program is still 

relatively new. Despite so, results from the scenario analysis can still be used to facilitate the formulation 

of risk control policies. 

   Simulation results from the first scenario analysis emphasise the importance of implementing a regular 

training regime and practice runs during lull periods which are similar to actual Antarctic deployment. 

This mitigates experience decay of the AUV team and consequently, reduces the risk of AUV loss during 

actual deployment (188). It is, therefore, also logical that utilisation rate of the AUV, amount of practice 

run and relevant training are monitored as leading indicators to risk of AUV loss. The second scenario 

analysis demonstrated the impact of new hire’s relevant experience on human error incident rate. 

Optimising the recruitment criteria on the amount of required relevant experience can, therefore, be an 

ideal leverage point for reduction of risk of AUV loss. Conversely, the impact of staff turnover or attrition 

on the risk of loss can also be analysed with the model. While it is tempting to recommend recruiting as 

many experienced AUV engineers as possible, considerations have to be made on the effects of team 

dynamics and the amount of available resources (186). The third scenario analysis demonstrated that an 

excessively risk-averse culture may, ironically exacerbate the risk of AUV loss. This occurs when the 

primary AUV team loses experience through decay during lull period. While it is also illogical to ignore 

risks in Antarctic AUV deployment, the key to further risk reduction is to establish an optimal risk 

tolerance level. Finally, the combined scenario analysis shows 2 years’ experience for new hire, training 

and a risk-prone culture are ranked in order of effectiveness in mitigating risk of AUV loss. 
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3.4   DISCUSSIONS AND LIMITATIONS 

   Despite the advantages of applying system dynamics for risk analysis of AUV operations, it also has 

its drawbacks. The multidimensional, dynamic and sometimes fuzzy nature of risk (189) can make the 

modelling process a challenging and time-consuming task. Trying to model all identified issues faced 

by an Antarctic AUV program often result in models which are too complex for any practical analysis. 

As shown in the example, in the consideration of just a few risk variables relating to human error can 

result in a relatively complex risk model. Yet, the reduction of complexity meant working with 

assumptions which may be subjected to differing interpretations by different people. In addition, these 

assumptions may deteriorate relevance of the model to actual real-world situation. Other issues 

encountered are the poor availability of data as well as incomplete and episodic knowledge of domain 

experts. Lastly, the structural view of system dynamics models is often viewed as being too deterministic 

in nature (190). However, the origin of risk stems from uncertainties (111), which may not be explicitly taken 

into account by deterministic system dynamic models. This problem becomes especially evident when 

the number of uncertainties in the causal relationships between risk variables becomes very large (191). 

   To these drawbacks and improve the analysis of risk, further research can follow two tracks. First, 

further research can explore complimenting system dynamics with fuzzy set theory to develop a hybrid 

risk analysis approach. The main advantage of doing so is to account for the stochastic uncertainties in 

the system. This would overcome the constraint that system dynamics models are too ‘deterministic’ 

and result in a more robust risk analysis methodology. Additional research can explore means of 

effective data aggregation, especially for disparate information acquired during the risk analysis process. 

This can facilitate and expedite the identification of relevant risk variables, improve the clarity of 

assumptions and aid quantification of the risk models. 

   The proposed generic framework (Figure 3.3) and novel risk structure (Figure 3.4) can be adopted by 

any organisations that operates AUV. However, there are different types of AUV, operated by different 

organisations for different purposes. This implies that the issues and risk variables influencing the risk 

of AUV loss also varied widely. For instance, the parameters used in the application example were 

elicited from the AUV team and would be different for another team from a different organisation. It is 

important then, to tailor the system dynamics models according to the problem and intent of the 

organisation when applying the proposed framework. As a result, the risk profile may also differ 

significantly from this work.  

 

3.5   CONCLUSION TO CHAPTER 

   This work presents a systems-based risk analysis approach for an Antarctic AUV program. Presented 

as a framework, the use of system dynamics enables a comprehensive analysis of risks for more 

effective policy recommendations. It overcomes drawbacks of existing risk analysis approaches, which 

are generally based on a chain-of-events paradigm with focus inclined towards the technical aspects of 

an AUV. Application of the proposed framework facilitates modelling of the complex, interrelated and 

dynamic systems behind an Antarctic AUV program, which may lead to increased risk of AUV loss. An 
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example based on an actual Antarctic AUV program is presented, examining the occurrence of human 

error in the program. 

   Traditional human error analysis techniques such as Human Error Assessment and Reduction 

Technique (HEART) (192), Technique for Human Error Rate Prediction (THERP) (193) and others (194) have 

proven useful for estimating human error generation rate for well-defined and constrained tasks. Such 

techniques can also be applied to estimate human error incident rate for particular phases of the AUV 

deployment and operation, for example piloting. However, these techniques would not allow estimating 

the risk of AUV loss due to human error as a function of organisational factors. Application of the 

proposed framework showed an overall declining human error incident rate with the increase in 

experience of the primary AUV team. Three scenarios were then simulated with the following findings: 

First, implementing a regular training regime and practice runs similar to actual operation during lull 

periods mitigates the effect of lack of actual Antarctic AUV deployment. Second, the amount of new 

hire’s relevant experience is an important leverage point for reducing human error incident rate. Last, 

an optimal risk tolerance level must be established by the organisation as being excessively risk-averse 

may ironically exacerbate the risk of AUV loss. Despite the seemingly intuitive policy recommendations, 

this example demonstrates how the proposed framework could be pragmatically useful for analysing 

more complex issues in future AUV programs. 

   Further advancement of this work to enhance the risk analysis framework can focus on two areas. 

First, to incorporate secondary methodologies such as fuzzy logic to overcome the ‘deterministic’ nature 

of system dynamics, which is presented in Chapter 4. Secondly, to work on means of effective data 

aggregation, especially for disparate information. The generic nature of the proposed risk analysis 

framework allows for application in other areas apart from risk of loss in an Antarctic AUV program. It 

can be relevant to different organisational needs, AUV types and usage purposes. In addition, it may 

also be useful for analyzing risk of other complex technological systems, such as the budding field of 

autonomous cars, unmanned aerial vehicles and unmanned vessels.  
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CHAPTER 4: CREATING A HYBRID FUZZY SYSTEM DYNAMICS RISK 

ANALYSIS (FuSDRA) FRAMEWORK 

 

   The content of this chapter is drawn mainly from the paper “Fuzzy System Dynamics Risk Analysis 

(FuSDRA) of autonomous underwater vehicle operations in the Antarctic”. The paper was submitted on 

the 29 Jul 2018 to the journal of risk analysis, accepted on 12 Nov 2019 and published on 4 Dec 2019. 

The following authors have also contributed in the preparation of the paper; Mario P. Brito, Neil Bose, 

Jingjing Xu and Kiril Tenekedjiev.  

   The aim of this chapter is to build on the strengths while overcoming limitations of fuzzy logic as 

presented in Chapter 2, and system dynamics as presented in Chapter 3. The resulting hybrid FuSDRA 

approach aims to provide a structured, robust and effective solution for risk analysis of Antarctic AUV 

deployment. As presented in Chapter 3, system dynamics was used to model the complex, interrelated 

and dynamic systems behind an AUV program which may influence the risk of AUV loss during an 

Antarctic deployment. Fuzzy logic, as presented in Chapter 2, was then integrated into the system 

dynamics models to overcome limitations due to the lack of empirical data and accounts for the 

uncertainties about causal relationships between risk factors. 

 

4.1 INTRODUCTION TO FUZZY SYSTEM DYNAMICS 

   This chapter presents a hybrid FuSDRA approach which addresses limitations of existing risk analysis 

methods in AUV deployments (Section 1.3.6). System dynamics is an objective-oriented deterministic 

approach. It can overcome existing risk analysis shortfalls of AUV operations in the Antarctic by 

modelling the complex inter-relationships between risk variables of different risk dimensions. In addition, 

the use of stock and flow models expressed using differential equation notation also takes into account 

the dynamism of time-dependent risk factors. This strength of system dynamics is well recognised 

outside of the AUV domain and demonstrated in risk studies across various disciplinary boundaries, 

from chemical (195), mining (170) to aerospace (196). However, the deterministic nature of system dynamic 

models does not explicitly account for uncertainties in causal relationships and soft factors. This 

limitation has resulted in the recent development of various hybrid system dynamics approaches 

(197)(198)(199) as well as qualitative system dynamics models (191). Here, we propose the integration of fuzzy 

logic with system dynamics to overcome this limitation.  

   Despite being proposed as early as 1994 (121), the use of fuzzy system dynamics remained relatively 

uncommon.  Khanzadi et al. (200) applied the approach to determine an optimal concession period for 

build-operate-transfer infrastructure projects. Nasirzadeh et al. (201) used fuzzy system dynamics models 

to establish an optimum percentage of risk allocation between owners and contractors which helps to 

minimize construction project cost. Mutingi and Mbohwa (202) demonstrated how fuzzy system dynamics 

approach has the ability to solve real-world manpower planning problems and help organisations design 

more effective manpower management strategies. To our best knowledge, this is the first time the use 

of fuzzy system dynamics has been proposed for analysing operational risk of autonomous systems. In 
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addition, a systematic and structured framework to facilitate application and understanding of the 

approach is also novel. 

  Utilising the strengths while overcoming weaknesses of system dynamics and fuzzy logic, the 

proposed approach addresses existing risk analysis shortfalls. The application of FuSDRA reveals a set 

of systemic behaviours influencing the risk of AUV loss. Through these insights, risk control policies can 

be recommended, with the eventual goal of achieving both better control and monitoring of risks. This 

chapter is organised as follows: Section 4.2 describes the FuSDRA approach. Section 4.3 presents an 

example of FuSDRA application on an Antarctic AUV program. Section 4.4 discusses the benefits, 

limitations and scope for future work. Lastly, Section 4.5 concludes the chapter. 

 

4.2   METHODOLOGY 

   The proposed FuSDRA approach follows a three-stage iterative framework, comprising the 

identification of risk variables, risk modelling and risk evaluation (Figure 4.1).  

 
Figure 4.1: An overview of the FuSDRA framework. 

 

4.2.1 Identification 

  The first task is to become familiar with the Antarctic AUV program, the subject area under 

consideration and to identify domain knowledge sources. Experts’ knowledge is often the only and the 
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best source of information for this process (172). As far as possible, the number of experts to interview 

should lie between 6 - 12 as recommended by Cooke and Probst (125). Experts should have different 

roles and specialism in the AUV domain and this can come from AUV engineers, the program owner, 

the manufacturers or contractors. Additional information can also be sought from organisational 

documents such as the safe work procedures, technical specifications of the AUV, fault logs, risk 

assessment records, program schedules, budget plans, Antarctic deployment plans and expected 

performance requirements.  

   Tapping into the established domain knowledge sources, the second task involves identification of 

risk variables that can cause or culminate in the loss of the AUV during an Antarctic deployment. To 

ensure comprehensiveness, risk variables from different dimensions such as human, organisational, 

technical and external influences should be considered. Using semi-structured interviews with experts 

and other identified knowledge sources, causal relationships between risk variables are then identified 

and represented in a qualitative causal loop diagram (CLD). A CLD enables clear visualisation of the 

overall feedback structure influencing the risk of AUV loss during an Antarctic deployment. 

 

4.2.2 Modelling 

4.2.2.1 Establish FuSDRA Model 

   The next task aims to quantify the risk of loss by constructing quantitative stock and flow models from 

the qualitative CLDs. This is carried out through parameters’ estimation, formulation of causal 

relationships and establishing initial conditions. For causal relationships between risk factors which are 

vague and ambiguous, fuzzy logic is applied through a fuzzy expert system. The use of fuzzy expert 

system has many advantages. It provides consistent and objective results, help support and verify 

expert’s opinions and allows for modelling based on data and knowledge banks (152). More importantly, 

it allows for a combination of hard and soft factors as well as uncertain causal relationships to be 

modelled. The generic architecture of a fuzzy expert system is shown in Figure 4.2 (7). It involves 

determining the universe of discourse, defining fuzzy sets and membership functions, and constructing 

fuzzy rules. The universe of discourse is the numerical range of possible values associated with the risk 

variable. To ascertain a fuzzy set, a list of typical adjectives associated with the risk variable is identified. 

The membership function then defines the degree to which a parameter belongs to a particular fuzzy 

set. Additional details on the terminologies and process involved was presented in earlier Chapter 2. An 

example of universe of discourse, fuzzy sets and membership functions for the risk factor ‘AUV Annual 

Utilisation Rate’ is shown in Table 4.1. Fuzzy rules, usually elicited from experts, then infer information 

using linguistic variables and fuzzy sets to produce an output in a process called fuzzy inference. Two 

of the most commonly used fuzzy inference methods are the Mandani (141) and Sugeno (142) inference. 

Lastly, a crisp output value is derived through defuzzification using methods such as the centroid method, 

weighted average method, centre of sums, centre of largest area, mean-max membership or max-

membership principal (145)(146). 
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Figure 4.2: The generic architecture of a fuzzy expert system adapted from Mendel (7). 

 

Table 4.1: An example of the universe of discourse, fuzzy sets and triangular membership function for 

the risk factor ‘Annual Utilisation Rate’. 

Risk factor 
Universe of 

Discourse (Units) 

Fuzzy 

Sets 

Membership Function  

Min 
Most 

Likely 
Max 

AUV Annual 

Utilisation Rate  

(Time in water) 

0 – 0.5 (Year) Minimal - 0 0.125 

Low 0 0.125 0.25 

Average 0.125 0.25 0.375 

High 0.25 0.375 0.5 

Extreme 0.375 0.5 - 

 

   The resultant fuzzy expert systems are incorporated with the stock and flow models to construct 

integrated fuzzy system dynamics risk models. To do so, the stock and flow model is first converted into 

a block diagram. To demonstrate this, consider the stock and flow diagram given in Figure 3.6. The 

stock variable ‘Number of AUV Engineers’ (Engr) changes via flow variables ‘Hiring’ and ‘Attrition’ which 

are influenced by parameters ‘Hiring Rate’ (HR) and ‘Attrition Rate’ (AR).  The corresponding differential 

and integral equation of the model up to this point is given in equation 3.3 and 3.4.  

   Now, consider a situation where hiring rate is further influenced by ‘Supply of Labour’ and ‘Workload 

in AUV Team’ (Figure 4.3a), where causal relationships are harder to quantify deterministically due to 

uncertainty. To model this, a fuzzy expert system can be established through the elicitation of expert’s 

opinion and integrated into the stock and flow model using a block diagram. Using Simulink to build the 

block diagram, the resultant fuzzy system dynamics model is shown in Figure 4.3b. 
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Figure 4.3a: An example of stock and flow diagram to be modelled with fuzzy system dynamics. 

 

 

Figure 4.3b: Corresponding fuzzy system dynamics block diagram of Figure 4.3a. 

 

4.2.2.2 Model Testing, Simulation and Scenario Analysis 

   To ensure relevance and suitability for its intended purpose, the established FuSDRA models should 

then be tested, reviewed and calibrated. A wide variety of tests are available in the literature for both 

system dynamics models and fuzzy expert systems. These can be broadly classified into model 

structure, model behaviour and policy implications tests (1). The choice of tests often depends on several 

factors such as time and resource availability, size of the model and purpose of the model. Any 

unexpected behaviour revealed during the tests must be investigated and improvements made to the 

model accordingly. Once sufficient confidence is gained, simulation and scenario analysis can be 

undertaken. The types of scenarios to be analysed are selected based on discussion with the AUV team 

and decision maker in the AUV program; the result of which is a set of systemic behaviour influencing 

the risk of AUV loss in the Antarctic.   

 

4.2.3 Evaluation 

   To evaluate risk, simulation results are compared against pre-determined organisational evaluation 

criterion. For instance, this can be an acceptable probability of AUV loss based on the capital and 

operating cost of the AUV (2). Insights attained through analysis of the risk models can improve mental 

models of decision-makers and lead to the identification of leverage points. For example, the causal 
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loop diagram can be used to communicate risk, identify missing information and dispell misconception 

(203). The eventual aim is to derive and recommend risk control policies to prevent loss of AUV in the 

long run. To ensure the effectiveness and pragmatism of the recommended risk control policies, it is 

critical that decision-makers, experts and other key stakeholders in the AUV program are closely 

involved in the entire FuSDRA process.   

   The FuSDRA approach does not end in this last step of the iterative framework. During the analysis 

process itself, new risk factors and information can surface during both the modelling and evaluation 

stage of the framework. As a result, the analysis must return to the task of identification to enhance the 

risk model. Even upon completion of the analysis, the inclusion of new information, filling of data gaps 

and review of models need to be performed on a regular basis to maintain relevancy and more refined 

analysis of risks. Revisiting the analysis also helps to refresh knowledge and facilitate open discussions. 

This will ensure the effectiveness and sustainability in controlling the risk of AUV loss for future Antarctic 

deployments. 

 

4.2.4 Software 

   For this work, Vensim® (204) was chosen for system dynamics modelling, which includes both causal 

loop diagrams and stock and flow diagrams. It has the advantage of a user-friendly interface, 

dimensional checks and visual clarity. The fuzzy expert systems were developed using the MATLAB® 

fuzzy logic toolbox 2017 (154). This tool provides a comprehensive and user-friendly environment to build 

and evaluate fuzzy systems.  

   System dynamics models from Vensim® were converted into block diagrams to construct the fuzzy 

system dynamics models with the MATLAB® Simulink toolbox 2018 (205). This tool allows for the 

construction of mathematically complex systems involving many risk factors. More importantly, it 

enables the incorporation of fuzzy expert systems with system dynamics models with relative ease.  

 

4.3   APPLICATION EXAMPLE 

4.3.1 Overview 

   To demonstrate the application of the proposed framework, an example based on the nupiri muka 

AUV program is presented. Readers are referred to section 5.1 on details of the nupiri muka AUV 

program. Delivered in May 2017, the first Antarctic deployment to the Sørsdal Glacier took place during 

the summer field window, between December 2018 and February 2019. The nupiri muka AUV is 

relatively new at the time of writing, with very limited historical data. Without sufficient data for any 

meaningful probabilistic risk quantification, the high level of uncertainty makes the FuSDRA approach 

highly suitable for analysing the long term risk of AUV loss.  
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4.3.2 Identification 

   The AUV operating team in the University of Tasmania consists of a facility manager, a research 

engineer and an engineer. They serve as the primary information source throughout the entire risk 

analysis process and were elicited through a series of both individual and group interviews. The semi-

structured interview for individual consist of 11 questions including both open and closed questions. The 

group interviews were unstructured discussions focused on reviewing conflicting information provided 

by the interviewees to better understand the different perspectives, and to achieve a consensus. Other 

knowledge sources included data from trial runs, information from the manufacturer’s operating manual, 

direct observations, standard operating procedures, risk assessments records and literature on under-

ice missions of other AUVs. Two common issues which may affect long term survivability of the AUV 

were brought up by all members of the AUV team. They are, the securing of funding to ensure the long-

term sustainability of Antarctic deployments and the hiring of niche talent who are experienced in polar 

AUV operations. For example, an interviewee mentioned: 

 

 “Getting our finances right is one of the biggest risks. If we do not have the right 

finance, we will not be able to run the vehicle in the first place. The vehicle costs a lot 

of money to run and so that money has to come from somewhere.”  

 

The FuSDRA approach was applied to examine the impact of these two issues on the risk of AUV loss. 

Other risk variables associated with the two issues were also identified through the interviews, as 

presented in Table 4.2. 

   Through the interviews, causal relationships between the risk variables were also identified. For 

instance, an interviewer highlighted the causal relationship between “Effective AUV Age”, “Technical 

and System Faults” and “Reactive maintenance cost”: 

 

 “We have to be able to maintain the vehicle, have the budget, because in three to five 

years’ time, some things need to be replaced or keep up to date.” 
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Table 4.2: Identified risk variables influencing the risk of AUV loss for the nupiri muka AUV. 

Risk Dimension Risk Variable (s) 

Organisational  1. Utilisation Rate 

2. Allocated Annual HR Budget 

3. Reputation in AUV Operations 

4. Third Party AUV Hire Contracts 

5. Research Demand 

Human  6. Average Experience of AUV Team 

7. Human Error Incidents 

Technical  8. Technical and System Faults 

9. Effective AUV Age 

10. Reactive Maintenance Costs 

11. Preventive Maintenance Costs 

12. Total Expenses of Maintenance  

External  13. Commercial Demand 

 

 

Each causal link was verified by the AUV team during group discussions and supported with literature 

when possible. The final diagram (Figure 4.4.), gradually established through the series of interviews, 

had a resultant reinforcing loops R1 and R2, and balancing loops B1 and B2. This diagram was reviewed 

and validated through group discussions, with frequent reassessment of the model until the models 

converge sufficiently to be deemed reflective of the real-world system by all members of the AUV team. 

 

 

 

Figure 4.4: CLD showing causal relationships between identified risk factors and feedback loops. 
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In the reinforcing loops R1 and R2, average experience of the primary AUV operating team influences 

the number of human error incidents during a deployment. This causality is also supported in the 

literature (182)(5). Human error incidents determine partially, the overall incident rate, which reflects the 

risk level of losing the AUV in the Antarctic. Supporting this causality are several studies which found 

that human errors play a significant role in contributing to the overall risk of AUV loss (6)(107)(108). The 

occurrence of incidents during deployments can cause delays and adversely impact reputation of the 

organisation in AUV operations. The level of research demand also influences the reputation of the 

organisation through research output such as the number of research publications. Subjected to a time 

delay, reputation of the organisation has an influence over the number of third-party AUV hire contracts, 

albeit limited by external commercial demand. Based on the amount of revenue generated from AUV 

hire contracts and gain in reputation contributed by the AUV program, senior management of the 

University then determines the amount of budget to be allocated for the AUV program in the next work 

year. This includes budget for human resources (HR), which can impact management strategies in 

areas such as recruitment, turnover and training. Logically, a higher amount of budget allocation for 

human resources translates to higher average experience of the AUV team, thus completing the two 

reinforcing feedback loops. 

   In the B1 balancing loop, reputation of the organisation in AUV operations determines the level of 

future AUV utilisation. Higher AUV usage will result in a higher rate of ageing, vice versa. The effective 

age of the AUV then directly influences technical and system failure rate with a typical ‘bathtub’ curve 

relationship consisting of three phases: a relatively short infant mortality phase with a decreasing failure 

rate, a normal operating period with low, relatively constant failure rate and a wear-out phase that 

exhibits an increasing failure rate. Technical and system failures determine, partially, the overall incident 

rate, which affects reputation of the organisation and completes the feedback loop. 

   In the B2 balancing loop, the level of technical and system failures affects reactive maintenance costs. 

Together with preventive maintenance costs, they make up the total expenses for overall maintenance. 

With a lump-sum budget allocation to the AUV program, higher spending on maintenance reduces the 

amount of budget allocated to human resources and vice versa.  

   To better analyse the interactions between feedback loops and quantify the risk of AUV loss, 

construction of the FuSDRA model was carried out next. 

 

4.3.3 Modelling 

  Using the CLD as a basis, a stock and flow model was constructed and shown in Figure 4.5. 

Formulations, definitions and initial conditions were established using information sought from domain 

knowledge sources, as shown in Appendix C.  
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Figure 4.5: Stock and flow diagram with four stocks. 

 

    The formulations of causal relationships between several risk variables in the stock and flow model 

were uncertain due to a lack of data points and the presence of soft factors. These require the 

application of fuzzy logic through fuzzy expert systems to represent practical scenarios, which is the 

next step of the FuSDRA approach. 

   To develop fuzzy expert systems, the universe of discourse, fuzzy sets and membership function of 

the risk variables were identified through the semi-structured interviews with each member of the AUV 

team. Both triangular and trapezoidal membership functions were used as they are suited to effectively 

capture subjective and imprecise information, as well as being simple to compute (129). Aggregation of 

opinions was performed using the lowest and greatest value provided by experts as the lower bound 

and upper bound. The average value is then used as the modal value (130). Elicitation of fuzzy rules was 

then performed through group discussions with the AUV team using a hypercube matrix. A hypercube 

is a geometric shape of n-dimensions, determined by the number of input risk variables (136). For instance, 

a 4D hypercube can be used for a fuzzy system consisting of four input risk variables and a 3D 

hypercube for a three-input risk variable fuzzy system. The fuzzy rules were elicited from experts in the 

form of IF-THEN rules such as: 

 

IF Research Demand is High AND Incident Rate is Average  

THEN Reputation in AUV Operations is Good 



110 

 

 

   The universe of discourse, fuzzy sets, membership functions and fuzzy rules are presented in 

Appendix D. Fuzzy inference was then performed using the Mandani approach as it is widely accepted 

for capturing experts’ knowledge (143). Finally, defuzzification was carried out using the centroid method 

by finding a point representing the centre of gravity of the aggregated fuzzy set. It is chosen over other 

methods as it has the advantage of being well-balanced, sensitive to the height and width of the fuzzy 

output, and provides consistent results (153). The fuzzy inference and defuzzification process were 

implemented using MATLAB® fuzzy logic toolbox 2017 (154). 

   The established fuzzy expert systems were incorporated into the system dynamics model by 

converting the stock and flow model into a block diagram, with the resultant model shown in Figure 4.6.    

 

Figure 4.6: The Fuzzy System Dynamics model 

 

   The main components of the FuSDRA model include eight fuzzy logic blocks, representing the eight 

uncertain causal relationships formulations in the stock and flow model. There are four integrator blocks 

which compute the level of stock variables, ‘AUV Effective Age’, ‘Average Experience of AUV Team’, 

‘Reputation in AUV Operations’ and ‘Preventive Maintenance Costs’. Despite the nupiri muka being 

relatively new in operation, the primary AUV team had experience working on other AUVs such as the 

UBC-Gavia and the Memorial University Explorer AUV. Therefore, the initial average experience for the 
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team was set at two years. Initial conditions for reputation in AUV operations was set as average, at 

50%, due to positive publicity of the nupiri muka AUV program despite limited historical track record. 

For ‘Preventive Maintenance Costs’, the initial value was set at 50,000 AUD with a 5% annual increase 

to account for inflation, component deterioration and outdated technology. The integrator block outputs 

the integral of its input based on the following equation 4.1, 

 

𝒚(𝒕) = ∫ 𝒖(𝒕)𝒅𝒕 + 𝒚o 
𝒕

𝟎
  --- (4.1) 

 

where y is the output at simulation time t with input u and initial condition yo. There are also four constant 

blocks and two gain blocks representing ‘Commercial Demand’, ‘Research Demand’, ‘Designed 

Utilisation Rate’, ‘Baseline Aging of Components and Systems’, ‘Annual Increase in Preventive 

Maintenance Costs’ and ‘Average Reactive Maintenance Cost per Technical and System Fault’. After 

discussion with the primary AUV team, both research and commercial demand were set at an average 

value of 5 out of 10 due to limited awareness, high cost, regulatory requirements and geographical 

limitations. An AUV that is kept in storage will continue to age and deteriorate. Therefore, ‘Baseline 

Aging of Components and Systems’ was set at an equivalent of 20% utilisation rate. ‘Designed 

Utilisation Rate’, the amount of time the AUV is expected to be operating in the water was set at 50%, 

based on a best estimate. Lastly, the ‘Annual Increase in Preventive Maintenance Costs’ and ‘Average 

Reactive Maintenance Cost Per Technical and System Fault’ were set at 5% and 10,000 AUD 

respectively. These constants and gain blocks also allow for easy future calibration of the risk model for 

more accurate reflection of reality.  

    To build confidence in the developed FuSDRA model, three main approaches were taken. First, local 

knowledge and available historical data were used to calibrate the model. Second, a series of tests were 

undertaken to uncover model errors and areas for improvement. Last, simulations results from the 

model were discussed and compared with domain experts’ opinion. Some key tests were carried out on 

the resultant FuSDRA model, including boundary adequacy, structure assessment, dimensional 

consistency, extensive extreme conditions and behaviour anomaly tests. To check for completeness of 

the fuzzy rule bases, the completeness measure approach by Jager (206) was applied. Any unexpected 

behaviour revealed during the tests were investigated and improvements made to the model accordingly. 

Once sufficient confidence was gained in the FuSDRA model through extensive model testing, custom 

scenarios can be created and analysed through the model. 

   Results from simulation of the FuSDRA model showed a declining risk of loss from 0.293 in the early 

years of the Antarctic AUV program, reaching a minimal of 0.206 before increasing again in later years. 

(Figure 4.7a). As the AUV team gradually gains experience with utilisation of the AUV (Figure 4.7b), 

human error incidents declined steadily towards a ‘baseline’ human error incident rate (Figure 4.7c). 

Number of technical and system faults exhibited a ‘bathtub’ curve, common to reliability engineering, 

with higher failure rates in the early phase and late phase of the AUV program (Figure 4.7d). 
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Figure 4.7: Simulation results showing the trend of a: ‘Risk of AUV Loss’, b: ‘Average Experience of 

AUV Team’, c: ‘Human Error Incidents’ and d: ‘Technical and System Faults’. 

 

   To facilitate policy recommendations for risk control, various scenarios were simulated in the next step 

of the risk analysis. The first few scenarios concurrently checked for coherent results, useful in 

evaluating the accuracy of the model. Various input combinations of risk factors were then simulated 

next to reflect various possible real-life scenarios. 

   The first scenario examines how initial ‘Average experience of AUV team’ can affect risk of AUV loss 

(Figure 4.8). The initial value of ‘Average experience of AUV team’ was increased from two to three 

years to reflect hiring of additional experienced AUV engineers in the initial phase of the AUV program. 

Results showed an apparent lower risk of loss as compared to the base scenario, although the 

difference is less pronounced in later years of the AUV program. On the contrary, if the initial value for 

‘Average experience of AUV team’ was decreased from two to one year to reflect the departure of 

experienced AUV engineers, risk of AUV loss became higher throughout the entire timespan of the AUV 

program as compared to the base scenario.  

a b 

c d 



113 

 

 

Figure 4.8: Simulation results showing the trend of risk of AUV loss for different initial average 

experience of AUV team. 

 

   The next scenario analyses how varying both research and commercial demand on the use of nupiri 

muka can impact the risk of AUV loss in the Antarctic (Figure 4.9a). Higher demand for the use of nupiri 

muka can occur due to increase in oceanographic activities, awareness of AUV capabilities and a 

favourable regulatory framework. To simulate ‘average-high’ demand, a value of 7.5 instead of 5.0 out 

of 10 were used as inputs to both ‘Commercial demand’ and ‘Research demand’. Simulation results 

showed a lower risk of loss as compared to the base scenario. The contrary effect of ‘poor-average’ 

demand to reflect a situation such as technological obsolescence or unfavourable regulatory framework 

on the use of AUVs was simulated using a value of 2.5 as the inputs. Results showed a higher risk of 

risk throughout the entire timespan of the AUV program, being more pronounced in the later years. It is 

also noteworthy that under ‘poor-average’ demand, average experience of the AUV team reaches a 

peak between the third and fourth year of the AUV program before a steady decline (Figure 4.9b). This 

decline caused an increase in human error incident rates, thus exacerbating the problem further as 

explained in Figure 4.4 in reinforcing loops R1 and R2. 
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Figure 4.9: Simulation results showing (a) the trend of risk of AUV loss under different research and 

commercial demand and (b) average experience of AUV team under ‘poor-average’ demand. 

 

   With coherent results obtained thus far, the next scenario analysis consisted of having different input 

combinations of ‘Initial average experience of AUV team’, ‘Research demand’ and ‘Commercial demand’ 

to reflect different possible real-life scenarios. The resultant range for ‘risk of AUV loss’ is presented in 

Figure 4.10. 

 

a 

b 
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Figure 4.10: Simulation results showing range of ‘risk of AUV loss’ for various combinations of 

scenarios. Exp: Initial value for ‘Average Experience of AUV Team’ RD: ‘Research Demand’ CD: 

‘Commercial Demand’. 

 

   Results from the simulations showed that the lowest range for risk of AUV loss occurred in scenario 

6 and scenario 8. In both scenarios, the initial average experience of the AUV team is 3 years and 

research demand being ‘average-high’ on a scale of 7.5 out of 10. Commercial demand for scenario 6 

is ‘poor-average’ at 2.5 and ‘average-high’ in scenario 8 at 7.5. The significance of these results was 

evaluated in the next phase of the FuSDRA framework. 

 

4.3.4 Evaluation 

   In principal, simulation results from the base scenario can be used to evaluate against a pre-

determined evaluation criteria put forward by the AUV owner or higher management. However, the 

nupiri muka AUV program is still in its early phases with many uncertainties, such as the precise 

operating costs and level of value creation. Therefore, an exact set of evaluation criterion has yet to be 

established. The focus currently lies in ensuring the risk of loss to be as low as reasonably practicable 

before the first Antarctic deployment.  

   Despite lacking evaluation criterion, results from the scenario analysis can still be used to facilitate 

the formulation of risk control policies. For instance, the initial average experience of the AUV team has 

an apparent impact on the risk of AUV loss throughout the entire AUV program, as shown in Figure 4.8. 

and Figure 4.10. Therefore, it is an useful leverage point for risk control and more experienced crews 

should be recruited at the onset of the AUV program. Although such recommendation may seem 

intuitive, the FuSDRA model can support the optimising of recruitment strategy, taking into consideration 
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other factors such as team dynamics and availability of resources. Alternatively, an intensive training 

regime and practice runs similar to the actual Antarctic operation should be implemented to increase 

hands-on-experience of the existing AUV team. Policies to boost morale and increase engagement with 

the AUV team may also help to reduce turnover of experienced crew and ensure knowledge retention.  

   The importance of having both long-term research and commercial demand to ensure ongoing 

utilisation of the AUV was demonstrated in both Figure 4.9 and Figure 4.10. It is therefore recommended 

that sustainable and effective communication channels are established both internally and externally to 

facilitate research collaboration. Figure 4.10 also shows that research demand seems to have more 

influence in reducing the risk of AUV loss than commercial demand. A higher research demand on use 

of the AUV would result in more research publications and a better reputation for the organisation, 

translating to better research funding opportunities. While commercial demand also builds upon the 

reputation of the institution (207), it is an external variable which can change rapidly due to momentous 

political, economic, sociological and technological changes (208). However, in a realistic context of limited 

funding sources, it is not practical to recommend using the AUV solely for pure research or commercial 

works. Instead, the simulation result suggests that priority should be given for research purposes over 

commercial works. The AUV owner should also constantly support and encourage its own internal use 

of the AUV. High internal demand can also help to mitigate the effects of poor commercial demand and 

an AUV team with low experience. Finally, it is also logical to monitor the average experience of the 

AUV team and the level of demand for both internal and external use as leading indicators to risk of 

AUV loss.  

 

4.4   DISCUSSION AND LIMITATIONS 

   The multidimensional, dynamic and sometimes fuzzy nature of risk (189) makes the FuSDRA approach 

highly effective in analyzing risk of AUV loss in the Antarctic. It overcomes the shortcomings of existing 

risk analysis methods by taking into account complexity of the system, dynamic nature of risk variables, 

uncertainties in causal relationships as well as soft factors which are difficult to quantify. Therefore, the 

resultant risk control policy recommendations, if implemented, are expected to be more reliable and 

effective than those put forward by existing risk analysis approaches. As demonstrated in the application 

example, the FuSDRA approach, being without complex mathematical computations is relatively easy 

to understand and apply. The risk analysis process itself presents an invaluable learning opportunity for 

the involved stakeholders. Iterative discussions revealed insights on possible leverage points, indicators 

and decision rules to better manage the risk of AUV loss. In addition, regular review of the risk model 

not only helps to ensure relevance and sustainability of risk control efforts, but these sessions also act 

as refreshers on risk mitigation strategies for the stakeholders. 

   In our application example, the FuSDRA approach makes an attempt to capture the impact of funding 

and recruitment on the AUV risk, providing means to inform the implementation of risk management 

strategies. This enables AUV owners to adapt risk management strategies to the environment in which 

the department operates.  
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   Despite the advantages of the FuSDRA approach in analyzing risk of AUV loss in the Antarctic, we 

also recognise that there are limitations. One major limitation is that the approach is dependent on 

expert judgement, which is subjected to bias. AUV experts come with a varied level of experience 

working with different types of AUVs. Even those who have had Antarctic experience may have worked 

for different organisations with various objectives. As a result, assumptions, perceptions and 

expectations differ between experts, often resulting in inconsistent or conflicting opinions during 

construction of the FuSDRA model. Similar issue was also encountered in other studies involving fuzzy 

logic (209)(210). Exacerbating this problem is the fact that risk of AUV loss is a complex problem involving 

many risk variables. Attempts to include all suggested risk variables in a single risk model often results 

in models which are too complex for any practical analysis. To reduce the complexity of the risk model 

meant that assumptions had to be made, which may be subjected to differing interpretations. Lastly, the 

inability of the FuSDRA model to self-learn means that regular review is required to ensure the relevance 

and sustainability of risk control efforts. Despite these limitations, the long-term reduction to risk of AUV 

loss arising from implementation of the recommended policies justifies the effort for the modelling. 

   To overcome some of the mentioned challenges to further improve risk analysis of AUV operations in 

the Antarctic, further research can follow two tracks: First, to account for varying degrees of trust in 

experts in the risk model. This can be done with the use of intuitionistic fuzzy logic, which is an extension 

of classical fuzzy logic. It deals with vagueness by assigning to each element a membership degree 

and non-membership degree. Inputs provided by each individual experts can then be assigned a 

‘certainty degree’ based on the level of trust (211). Secondly, to explore means of optimising fuzzy rules 

and facilitating self-learn by applying optimisation methods such as a genetic algorithm, neural networks 

or simulated annealing among others.  

   There are many different types of AUVs and organisations use them for different purposes in the 

Antarctic. This implies a wide variety of risk variables may influence the risk of AUV loss depending on 

the context. It is therefore important, to tailor the FuSDRA approach according to the identified problem 

and intent of the organisation. As a result, the output may also differ vastly depending on the 

organisations, vehicle characteristics or deployment types, and should only be compared with caution. 

 

4.5   CONCLUSION TO CHAPTER 

  The deployment of AUVs in the Antarctic is of relatively high risk due to the extreme environment, 

which pushes the limits of both human and AUV technology. However, the risk of AUV loss is a dynamic 

and complex problem, influenced not only by Antarctic’s operating environment but also other risk 

variables. It is under such situations that the AUV owner often has to devise risk control measures and 

make difficult deployment decisions. Existing risk analysis approaches tend to be discrete-based and 

focus more on technicalities of the AUV, often neglecting risk variables from other risk dimensions 

including soft factors which are often neglected due to difficulties in quantification.  

   To overcome existing shortfalls, this chapter presents an integrated FuSDRA approach to achieve 

both better control and monitoring of long term risk of AUV loss in the Antarctic. System dynamics was 

used to model the dynamic complex inter-relationships between risk variables influencing the risk of 
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AUV loss. Fuzzy logic was then integrated into the system dynamics models to account for uncertainties 

in causal relationships and soft factors. The proposed hybrid FuSDRA approach follows a three-stage 

iterative framework comprising of identification of risk variables, risk modelling and risk evaluation.  

   To demonstrate the application of FuSDRA, it was applied to the nupiri muka AUV program, managed 

by the University of Tasmania. A risk model was constructed, and simulation of the resultant risk model 

showed a declining risk of loss in the early years of the AUV program, reaching a minimal level before 

increasing again in later years. Scenario analysis was then performed to validate the risk model and 

facilitate policy recommendations. Results showed that the initial ‘Average experience of the AUV team’ 

is a suitable leverage point for reducing risk of AUV loss, which can be increased or maintained through 

recruitment, staff retention, as well as training and practice runs. Also demonstrated was the importance 

of having both external commercial and internal research demand on the use of the AUV for reducing 

risk of loss.  As commercial demand may fall outside the control of the organisation, priority should be 

placed on internal research demand. AUV owners should continuously support and encourage their 

own use of AUV for research purposes as increased usage can help control risk of AUV loss in the long 

run. It is also recommended that the average experience of the AUV team and the level of demand for 

both internal and external use of the AUV be monitored as leading indicators to risk of AUV loss. These 

results arising from FuSDRA translates into policy recommendations to manage and control the risk of 

loss. For example, the University can implement an operation policy which places a priority on internal 

research use of the AUV over commercial use. There can also be a recruitment policy which requires 

new AUV crew to have a minimal of 3 years relevant experience. In addition, the risk analysis process, 

which revealed and analyses new risk variables, helped to improve mental models of decision-makers. 

For example, the role of organisational reputation and demand on AUV use have never been considered 

in other risk studies on AUV operations. 

   In summary, the FuSDRA framework provides a systematic and structured approach for risk analysis 

of AUV operations in the Antarctic, facilitating the building and customizing of risk models in accordance 

with the context of circumstances. It overcomes limitations of existing AUV risk analysis approaches, 

improves comprehensiveness of the analysis and can be used as a decision support tool. In the face of 

increasingly complex AUV operations such as higher autonomy and multi-vehicle missions, FuSDRA 

can help to understand the effectiveness of different risk management strategies. Due to the generic 

nature of the approach, the framework can also be applied to other types of AUV operations apart from 

Antarctic deployment. It may also be relevant to similar complex technological systems, such as the 

budding field of autonomous cars, unmanned aerial vehicles and unmanned vessels. The 

commonalities that they share is the apparent lack of data and the potential for low probabilities and 

high consequences accidents (212)(213)(214). The only foreseeable difference between application of the 

FuSDRA approach to AUV and other technological systems lies in the risk variables being considered.  

   The proposed FuSDRA framework is not only useful to practitioners for analysis of risk. Academically, 

it also explores further into the concepts of non-probabilistic risk modelling, which is often challenging 

in real-life problems. Therefore, the FuSDRA approach provides both contribution to knowledge, as well 

as a pragmatic tool for the AUV community for better analysis of risks. Further advancement of this work 
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to enhance the FuSDRA approach can focus on data aggregation, intuitionistic fuzzy logic as well as 

optimization and self-learning of the risk model.  
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CHAPTER 5: CASE STUDY – RISK ANALYSIS OF THE NUPIRI MUKA AUV 

PROGRAM 

   The content of this chapter is partially presented in two paperss. The first paper, “A hybrid fuzzy 

system dynamics approach for risk analysis of AUV operations.” was submitted to Journal of Advanced 

Computational Intelligence and Intelligent Informatics on 15 Mar 2019, accepted on 29 Aug 2019 and 

published on 20 Jan 2020. The following authors have also contributed in the preparation of the paper; 

Mario P. Brito, Neil Bose, Jingjing Xu, Natalia Nikolova and Kiril Tenekedjiev. The second paper, “Policy 

Recommendations for Autonomous Underwater Vehicle Operations Through Hybrid Fuzzy System 

Dynamics Risk Analysis (FuSDRA).” was accepted for publication in the Proceedings of the 

International Association of Maritime Universities Conference (IAMUC) 2019  on 26 Aug 2019 

with in press date 29 Oct 2019.The following authors have also contributed in the preparation of the 

paper; Mario P. Brito, Neil Bose, Jingjing Xu and Kiril Tenekedjiev.  

 

   This chapter aims to demonstrates application of the FuSDRA framework on an Antarctic AUV 

program. The case study is grounded on the nupiri muka AUV program, which is funded by the 

Australian Research Council (ARC) Special Research Initiative for Antarctic Gateway Partnership and 

the Australian Maritime College (AMC), University of Tasmania. The chapter starts with an overview of 

the nupiri muka AUV program, presenting relevant background information useful for analysing the risk 

of AUV loss. Thereafter, the stepwise FuSDRA framework and outcome models are presented, followed 

by model testing and scenario analysis. Simulation results were then evaluated against organisational 

criteria with eventual risk control policy recommendations. Lastly, the chapter closes with a conclusion 

to the case study. 

 

5.1   OVERVIEW OF THE NUPIRI MUKA AUV PROGRAM  

   The name nupiri muka means ‘Eye of the Sea’ in palawa kani, the language of Tasmanian Aborigines. 

Funded by the Antarctic Gateway Partnership and the University of Tasmania, the primary objective of 

the nupiri muka program is to develop a polar capable AUV for the acquisition of high-quality underwater 

data. Apart from bathymetry and physical oceanography surveys beneath Antarctic’s ice, the vehicle is 

also equipped with a suite of other scientific instruments to support the four research themes of the 

Antarctic Gateway Partnership. The program itself falls under theme 4 (Marine Technology and Polar 

Environments) of the partnership. The interested reader is referred to Appendix E for additional details 

on the Antarctic Gateway Partnership initiative. 

 

5.1.1 Program Objective and Timeline 

   The dynamic nature and complexity of risk meant that factors that can cause or culminate in the loss 

of nupiri muka AUV in the Antarctic may reside in different phases of the program. It is, therefore useful 

to have an understanding on the project timeline to account for time-dependent risks factors and setting 

a time horizon for the risk analysis. 
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   At the beginning, the original project synopsis aimed to produce a baseline AUV which is versatile and 

modular in nature. This would allow for future enhancement to sensors and tooling capabilities on the 

AUV for tailoring to specific mission requirements. The tender process for such a state of the art AUV 

started back in 2015. The contract was subsequently awarded to International Submarine Engineering 

(ISE) from Canada at approximately 5 million AUD. Apart from the physical AUV, the contract also 

included sea trials and acceptance, handling equipment such as cradle and dollies, and launch and 

recovery lines/slings. The explorer-class AUV was eventually delivered in May 2017 to UTAS and 

underwent a series of trials in a relatively benign environment, mostly in the Tamar River, Tasmania. 

The first Antarctic deployment to the Sørsdal Glacier took place during the field season of December 

2018 to March 2019. Being more of an engineering trial than scientific survey, the Antarctic deployment 

demonstrated the capabilities of nupiri muka AUV in under-ice missions and helped improve the 

operational model for future similar deployments. The overall project timeline is presented in Figure 5.1, 

with a target AUV service life of 10 years.  

 

 

Figure 5.1: Planned timeline of the nupiri muka AUV program. 

 

5.1.2 International Submarine Engineering Ltd. (ISE) 

   As one of the leading companies in the AUV business, ISE has delivered more than 30 AUV systems 

globally since its formation in 1974. Over the years, the company has received various awards from 

international bodies such as the Marine Technology Society, the IEEE Oceanic Engineering Society 

and the Offshore Energy Center Hall of Fame. Apart from AUVs, ISE also develops and manufactures 

ROVs, towed bodies (towfish) and human-occupied submersibles. 

   ISE AUV’s were the first to carry out operation under the Arctic icecap and have conducted the longest 

missions of any AUV in both under-ice and open water environment. Apart from the Theseus AUV and 

two Arctic Explorer vehicles owned and operated by Natural Resources Canada, the nupiri muka is 

ISE’s fourth under-ice capable AUV. This Explorer-class AUV is the core of ISE’s AUV product line, with 

the first Explorer AUV delivered in 2003 to Ifremer, a French oceanographic agency. Including the nupiri 

muka, there are currently more than ten Explorer-class AUV in operation, owned by various scientific 

agencies, ocean survey companies and government organisations. This track record for reliability and 

quality manufacturing plays a critical role in influencing the risk of AUV loss and is taken into 

consideration during the risk analysis. 
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5.1.3 Technical Specifications of nupiri muka AUV 

 

Figure 5.2: Overview of a typical explorer-class AUV. 

 

   The nupiri muka is a 6.3m long, 1.6 tonnes and 5000m depth rated AUV. It consists of a torpedo-

shaped body with four aft control planes, two forward control planes, a propeller, and surface features 

in the form of transducers, antenna, and a strobe light. A typical explorer-class AUV is shown in Figure 

5.2. The main body of the AUV comprises of a pressure hull and free-flooding payload sections. Within 

the pressure hull lies all the batteries and dry electronic components such as the Vehicle Control 

Computer (VCC). The free-flooding sections, including the nose and tail, house all the wet electronics 

and sensors, including payloads, acoustic sensors, Doppler velocity log, bottom avoidance sonar and 

depth sensor. The bottom avoidance sonar resides in the nose of the vehicle while the aft section houses 

the propulsion unit. The modular design of the vehicle allows easy access to components and sensors, 

which also enables a user to upgrade the vehicle without the need for re-engineering, reducing the risk 

of technical failures (92). A brief description of the critical systems relevant to the risk of AUV loss are 

presented below, with additional technical specifications based on the manufacturer’s manual located 

in Appendix F 

a. Power System: Currently powered by rechargeable lithium-ion battery modules in the 

pressure hull. It has a present cruising range of approximately 140 km with a standard 

charging time of approximately 10-12 hours. 

b. Control System: The four aft planes and rudder control pitch and yaw while the forward 

planes enhance stability and provide heave and roll control. The vehicle control computer 

(VCC) inside the pressure hull provides guidance and control using information from the 

AUV sensors and actuators. The surface control computer (SCC) displays the primary 

Graphical User Interface (GUI) used for piloting the AUV on the water surface, performing 

pre-dive testing and managing mission downloads to the vehicle. The SCC receives 

telemetry data, either by radio or acoustic communications ports. A separate mission 

planning workstation (MPW) runs the navigation chart display and mission planning 

software, as well as miscellaneous diagnostic utilities provided by the various equipment 

manufacturers.  

c. Navigational System: Highly accurate positioning and navigation systems which include 

a fibre-optic inertial navigation system, fibre-optic gyroscopes and accelerometers, a 
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downward facing RDI Doppler Velocity Log (DVL), an obstacle avoidance sonar, an Ultra 

Short Baseline System (USBL), a temperature compensated depth sensor and lastly, a 

Global Positioning System (GPS). 

d. Communication System: Four systems enable communications with the AUV during 

mission: the on-deck Ethernet cable, a radio for surface communication before and after 

diving, an Iridium modem for long-range surface communication, and an acoustic 

telemetry system for underwater communications of up to 15 km. Additionally, the 

acoustic telemetry system also works as an emergency locator. 

e. Emergency System: An inbuilt fault manager is designed to address a wide range of 

exceptions in a way that will enable the AUV to continue with the mission with full or 

reduced capabilities. Fault responses are pre-determined and configured during the 

mission planning stage and may change throughout the mission. In addition to the fault 

manager, nupiri muka is equipped with a Watchdog Timer system. The hardwired 

Watchdog Timer system acts as a safeguard against the AUV running with the thruster 

engaged but without computer control. Another safety device is the drop weight, activated 

either by the VCC, the watchdog timer or an acoustic command. The drop weight consists 

of a lead weight that changes the buoyancy of the AUV enough to make it surface without 

propulsion. Once on the water surface, a high-intensity strobe light is activated and can 

be seen from approximately 5 km from the air. Additionally, a radio beacon provides a 

radio locator signal that can be tracked using a hand-held radio locator with a maximum 

detection range of 42 km. 

 

5.1.4 nupiri muka’s AUV Crew and Organisational Structure 

   The nupiri muka AUV is maintained and operated by a team of specialist research and technical staff 

at the University of Tasmania AMC’s Autonomous Maritime Systems Laboratory, an engineering 

research facility. At the time of writing, the primary team responsible for operations and maintenance of 

the AUV consists of a facility manager, a research engineer and an engineer. The team reports to both 

the principal of AMC, who took on the role as the AUV owner, and to the director of the Antarctic 

Gateway Partnership (AGP) initiative. While the AMC principal has accountabilities to the AMC board, 

the director of AGP works closely with the Australian Research Council (ARC), who is under the direct 

responsibility of Australia’s Minister for Education and Training.  

   Notably, the AUV team also work closely with the following entities; AMC Search Ltd, the commercial 

arm of the Australian Maritime College, who support liaison with external parties on potential commercial 

use of the AUV; Research scientists from the Institute for Marine and Antarctic Studies (IMAS), a 

teaching and research institute of the University of Tasmania, and the Commonwealth Scientific and 

Industrial Research Organisation (CSIRO), an independent Australian federal government agency 

responsible for scientific research. The Australian Antarctic Division (AAD), part of the Australian 

Government's Department of the Environment and Energy that leads Australia’s Antarctic Program, 

supports the nupiri muka program by coordinating activities from scientific research through to logistics 

and transport. Last but not least, with ISE Ltd, for post-delivery support of the AUV. An overview of the 
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personnel and organisations closely associated with the nupiri muka AUV program is presented in 

Figure 5.3. 

 

Figure 5.3: Personnel and organisations closely associated with the nupiri muka AUV program. 

 

5.1.5 Existing Risk Management 

   Since conceptualisation of the AUV program back in 2014, the AUV team had adopted a proactive 

approach to managing risk of loss. The risk management process was guided primarily by UTAS’s risk 

management policy (148), which articulates the University’s commitment to establishing a robust risk 

management framework based on the Australian and New Zealand Standard for risk management, 

AS/NZS ISO 31000:2009 (75). Under the framework, risks were analysed using a semi-quantitative risk 

matrix (Appendix J), which was discussed earlier in Chapter 2. The main outputs were a series of 

recommended control measures, such as having a comprehensive set of Standard Operating 

Procedures (SOPs) and familiarising the team through a series of trials.  Additionally, the manufacturer's 

manuals also provided valuable information and procedures on safe use of the AUV. This included pilot 

checklists, mechanical checklists, mission planning manual, maintenance manual and operations 

manual.   

   Apart from compliance to the University’s risk management policy and manufacturer’s manuals, 

several workshops were conducted to solicit peer review from AUV experts. Through the workshops, 

AUV experts from different organisations shared best practices and provided feedback regarding the 

readiness of the nupiri muka AUV program. For an example, the interested reader can refer to (215) for 

details of a recent workshop hosted by ISE. 
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5.2   FuSDRA - IDENTIFICATION 

   Using the presented background information on the nupiri muka AUV program, the next few sections 

demonstrates application of the FuSDRA framework to the program. The identification phase of the 

framework consists of several tasks, which includes scoping of the analysis, familiarisation, identification 

of knowledge sources, identification of risk factors and representing possible causal relationships in 

qualitative causal loop diagrams (CLDs). Additional details of this phase can be found in earlier section 

4.2.1.  

 

5.2.1 Scope of Analysis 

   The operation of the nupiri muka program involves several levels of abstraction, from Australian 

federal legislation down to detailed technical specifications of the AUV. The focus of this risk analysis 

lies in the management of the nupiri muka AUV program at the organisational level. This included factors 

associated with the performance of the AUV team, UTAS’s policies, processes and systems, as well as 

relevant external influences. The time horizon for the analysis is set at 10 years, the pre-determined 

target service life of the AUV.  

 

5.2.2 Familiarization and Knowledge Sources 

   For the most part, the task of familiarization and establishing domain knowledge sources were 

conducted concurrently. The following sections describe the various sources of information that were 

used to familiarize with the nupiri muka AUV program, as well as to facilitate the creation of subsequent 

risk models. 

 

5.2.2.1 Organisational and Manufacturer Documents 

   Useful information relating to the risk of AUV loss was found to be scattered throughout various 

organisational documents such as: 

a. UTAS’s risk management policy and framework 

b. Standard operating procedures 

c. Risk assessment records 

d. The business case for procurement of AUV 

e. Fault logs  

f. Insurance policy 

g. Budget plans and costing models 

h. Meeting minutes 

Additionally, documents provided by the manufacturer (ISE Ltd) also contained valuable information for 

identifying risk factors and their possible causal structures. This includes various manuals, checklists 

and technical specifications associated with the nupiri muka AUV. Both organisational and manufacturer 



126 

 

documents were mainly utilised as secondary sources of information, for calibrating the risk models and 

complementing the interviews of domain experts. 

 

5.2.2.2 Literature 

   Several books and journal articles were used to identify possible risk factors and their causal 

structures. This included the recommended code of practice on the operation of AUVs (61), risk research 

articles, such as those from the Autosub AUV program (Section 1.3.5), as well as others which had 

been reviewed in earlier chapters.  

 

5.2.2.3 Domain Experts 

   Although available documentation and literature provided useful information for the risk analysis, they 

often lack sufficient details, especially about the causal relationships between risk factors. Such 

information was, therefore, sought through a series of elicitation interviews with domain experts involved 

in the nupiri muka AUV program. They consist of the University’s AUV team (Figure 5.3) and an AUV 

researcher (Scientist) who works closely with the team. These domain experts had a combined 

experience of 24 years working with AUVs and are currently responsible for, or are familiar with: 

 

a. Implementing control measures based on the results of risk analysis 

b. Resource allocation 

c. Operation strategies and objectives of the nupiri muka program 

d. nupiri muka’s operating systems 

e. Technical training, experience, knowledge of data and theory on AUV 

f. Analysis of risk through both qualitative and quantitative judgement   

g. Various aspects of the AUV program, either directly or indirectly 

 

Prior to the actual interview, a brief description of the FuSDRA methodology was sent to the 

interviewees for pre-reading. The interviews were conducted primarily face to face, with some follow 

ups over phone calls as well as through email correspondence to suit the convenience of the 

interviewees. These were carried out in both unstructured and semi-structured format, with questions 

focusing in the following areas: 

a. Background of the interviewee, including roles and responsibilities as well as relevant 

experience. 

b. Risk factors influencing the risk of losing nupiri muka during under-ice missions in the 

Antarctic (Guided by the generic risk structure presented in Figure 3.4, with changes and 

external influences added based on inputs from interviewees.). 

c. Causal relationships between the identified risk factors (Guided by the generic risk structure, 

Figure 3.4). 

d. Membership functions of risk factors 
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e. Fuzzy rules governing fuzzy causal relationships of risk factors. 

f. Current situation and possible future scenarios  

g. Other relevant issues relating to the study 

The interviews went through several iterations, with the risk models updated after each cycle. Early 

interviews focused on identifying risk factors and causal structures while later sessions focused on 

establishing fuzzy rules used to define model behaviour. Transcripts of each interview and the 

developed risk models with descriptions to aid understanding were sent to the interviewees for validation. 

To minimise the intrusion of biases in the interviews, constant comparisons were made with information 

provided by other interviewees and data sources to check for consistencies and account for differences. 

The developed risk models were reviewed, calibrated and tested through discussion with the 

interviewees until the models converge sufficiently to be deemed acceptable by the those who are 

interviewed. In total, these sessions generated close to 100 pages of interview transcripts and 

observation notes which were used as the basis to construct the FuSDRA model and subsequent testing 

exercises. Additionally, a research journal was kept to document both verbal and non-verbal responses 

of interviewees to check for signs of bias or heuristics.  

   Specific details of the interview, including the ethics approval, consent form and interview protocol 

are presented in Appendix G. 

 

5.2.3 Causal Loop Diagram 

   Using the information gathered through the interviews and other knowledge sources as discussed 

earlier, risk factors, as well as their causal relationships were identified. These were used to establish 

the causal loop diagram which describes the causal mechanism and represent feedback structure of 

the system. Details about causal loop diagram modelling including the conventions used can be found 

in section 3.2.2. 

   The causal loop diagram for the nupiri muka AUV program consists of four main subsystems which 

directly and indirectly influences the risk of loss. They are the ‘budget’, ‘utilisation’, ‘technical reliability’ 

and ‘human reliability’. Figure 5.4 shows an overview of the subsystems and their interrelatedness, with 

the arrows indicating causal relationships.   

 

Figure 5.4: Overview of the causal loop diagram for the nupiri muka AUV program. 
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   The human reliability subsystem captures the contribution of human error to the risk of loss, including 

possible underlying causes of these errors. Similarly, the technical reliability subsystem considers the 

contribution of technical failures to the risk of loss and factors influencing the technical reliability of the 

nupiri muka AUV. Both technical and human reliability are affected by other subsystems, namely the 

utilisation of the AUV and annual allocated budget to the AUV program. For example, “Experience gain 

rate” of the AUV team, which is a function of the AUV’s “Utilisation”, influences human reliability during 

an Antarctic deployment. Similarly, “Budget allocation” has a direct bearing on the “Quality of 

maintenance and repair”, which influences the technical reliability of the AUV. In addition, the University 

does not operate in a vacuum and there are several identified external influences which can impact both 

utilisation of the nupiri muka and the allocated budget for the program.  

   The interactions between the four subsystems, risk of AUV loss and external influences resulted in a 

causal loop diagram which is presented in Figure 5.5. The dotted boxes broadly marked the four main 

subsystems and their associated risk factors. To reduce complexity of the model for analysis, these 

subsystems will be examined separately as stock and flow models in the next few sections.  
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Figure 5.5: Overview of the causal structure relating to risk of AUV loss for the nupiri muka AUV program, categorised broadly into four sub-models. A: Budget 

B: Utilisation C: Technical reliability D: Human reliability.
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5.3   FuSDRA - RISK MODELLING 

   The next step, which is the risk modelling phase of the three-stage iterative FuSDRA framework 

(Figure 4.1), aims to quantify the risk of loss through constructing fuzzy system dynamics models. 

Based on the established qualitative causal loop diagram (Figure 5.5), the next task aims to quantify 

the risk of loss by constructing quantitative stock and flow models. This is carried out through 

parameters’ estimation, formulation of causal relationships and establishing initial conditions. 

 

5.3.1 Stock and Flow Models 

   First, stock and flow models of the four subsystems, their interactions with external influences and 

relationship with the risk of AUV loss are presented. Details about stock and flow models including the 

conventions used can be found in section 3.2.3. 

 

5.3.1.1 Technical Reliability  

 

Figure 5.6: Stock and flow model for ‘technical reliability’ sub-model. 

 

   The technical reliability sub-model is presented in Figure 5.6. Almost all interviewees, except for one, 

mentioned overall reliability of nupiri muka as one of the two main risk factors influencing the risk of 

loss. An interviewee puts it:  
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“Mechanical issues such as the loss of forward-looking obstacle avoidance sonar 

through either leak or collision could lead to the loss of the vehicle. There are also the 

‘regular stuff’ like water ingress into the pressure hull or power issues.” 

Not surprisingly, the causal relationship between reliability and effective age of the AUV was also 

brought up by several interviewees: 

 “Surely in a few years time, things will start to age. But as we are sitting now, the 

vehicle is quite new and running very well.”  

Without sufficient historical data for statistical analysis, this causal relationship between effective age 

and reliability was modelled to exhibit a ‘bathtub’ curve trend, commonly used in reliability engineering. 

The higher likelihood of failure in the early and late operational life of an AUV was explained in the 

earlier section of 4.3.2. Also supported by the literature (216)(217), the rate of ageing (effective) was 

modelled to depend both on the utilisation rate of the AUV, and also the quality of maintenance and 

repair. 

   In another technical aspect, the calendar age of the nupiri muka is predicted to influence the cost of 

maintenance. An interviewee puts it: 

“We have to be able to maintain the vehicle, have the budget, because in three to five 

years’ time, some things need to be replaced or keep up to date.” 

This is also supported by studies in the aviation industry, such as the US Airforce (218) and Boeing (219), 

where a positive causal relationship has been found between calendar age of an equipment and its 

maintenance and operating costs. The increasing maintenance costs constitute part of the overall 

budget requirement for the AUV program, which will be further examined in the budget allocation sub-

model. 
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5.3.1.2 Human Reliability 

 

Figure 5.7: Stock and flow model for the ‘human reliability’ sub-model. 

 

   Human error was mentioned by all interviewees as one of the main contributing factors to the risk of 

AUV loss, which gave rise to the human reliability sub-model (Figure 5.7). Some examples of human 

errors were provided by an interviewee:  

 “I think the primary thing that would cause the AUV to be lost would be human error 

in the vehicle configuration or response. For example, something was misconfigured 

or not set up correctly so that it did not function, and that could be one of the sensors 

for avoiding the bottom. Or a mistake made in the mission planning fault response 

where the vehicle reacts to something in a wrong way.” 

Also mentioned during the interviews were two main factors influencing the likelihood of human error; 

operating experience and the risk perception of the AUV team, with the latter being influenced by the 

level of stress the team is working under. The evidence of a causal relationship between stress level, 

risk perception and human error is supported by many published research articles on stress and human 

performance. For example, Brito and Griffiths found that stress factors played a role in risk mitigating 

activities for missions involving multiple AUVs (105). Baradell & Klein found reductions in the amount of 

information used in reaching decisions when people work under stress (220). Hocket et. al. reported an 

increase in riskiness for people under stress due to fatigue (221). Dhillon et al. (222) listed some of the 

factors which may result in stress, many of which are relevant to deployment in the Antarctic (Table 

5.1). 
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Table 5.1: Stress factors and example of scenarios relevant to an Antarctic deployment. 

 

 

While a thorough analysis on the cause and effect of stress on the AUV team may be necessary, it is 

beyond the scope of this case study and dissertation. Using information provided by interviewees as 

the basis, the sub-model considers interpersonal dynamics and AUV program outputs to have a causal 

relationship with stress on the AUV team, influencing the level of risk perception. An interviewee puts 

it: 

 “Interpersonal dynamics can be broadly split into inter-team dynamics and intra-team 

dynamics. Inter-team dynamics includes communication with other stakeholders such 

as boat operators, station support and other scientific groups. Miscommunication or 

conflict may arise due to competition for resources, time or fatigue due to the Antarctic 

environment. Intra-team dynamics may be affected by a lack of clarity on roles and 

responsibility as a team. For example, scope of mission, maintenance and deployment 

plan. These issues may magnify in the Antarctic environment.” 

The role of interpersonal dynamics in influencing stress level is further supported by the literature (223).  

In addition to stress and experience of the AUV team, comprehensiveness of insurance coverage was 

also included in the model to have a causal relationship with the level of risk perception. Although not 

explicitly mentioned, the topic of insurance was brought up by several interviewees and the causal 

relationship is well documented in the literature (224)(225)(226). A reduced risk perception can cause 

requirement creep leading to decision biases, such as taking on additional missions of higher risks in 

an attempt to produce more outputs from the AUV program. A couple of interviewees provided further 

explanation of requirement creep:  

No. Stress Factors Examples 

1 Environment 
Deprivation of sunlight in winter and continuous daylight in Antarctic 

summer. Cold temperature.  

2 Equipment Design 
Quality and reliability of equipment including both the AUV and the 
surface control computer (SCC). 

3 Equipment Layout The location and labelling of spares and tools. 

4 Procedures 
The quality of standard operating procedures and the effectiveness of 
maintenance and checks. 

5 Skill Training and experience of AUV team in Antarctic deployment. 

6 Complexity of Task 
The difficulty of deployment, including the duration, location and 
number of missions.  
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 “If you don’t have a clear set of objectives, then you might get into a situation when 

you do something down at the Antarctic and then think that maybe you need to do 

more, and that is when things start to get extra risky.” 

“The current AUV team is appropriately conservative. The line we often hear is, can 

the vehicle do this? And we will say of course it can, but are we willing to take the risk? 

At the moment, the team is less influenced by external pressure, but we are human.”  

   Another key risk factor in the human reliability sub-model is the average experience of the AUV team. 

As mentioned by an interviewee: 

“Another big risk is that only 50% of the team have polar experience. However, as a 

team operating a large AUV, we’ve had 18 months of operational experience, which 

is not tiny but not massive either.” 

It is reasonable to consider that relevant experience can be gained through utilisation of the vehicle or 

employing and retaining skilled personnel. Contrariwise, it can also be lost due to attrition, turnover or 

low utilisation of the vehicle. While the human resource is primarily influenced by the budget, the optimal 

period between utilisation was further explained by an interviewee: 

“You have to be running regularly. If the vehicle sat for two years without being 

deployed, the risk will go up because the familiarity is not there anymore. So you need 

to operate regularly to keep the team trained and familiar. Almost monthly or bi-

monthly, you really want to get out, like half a dozen or ten times a year not only to 

practice and to keep the state of readiness, but also to check the condition of the 

vehicle.” 
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5.3.1.3 Utilisation 

 

Figure 5.8: Stock and flow model for the ‘utilisation’ sub-model. 

 

   The utilisation sub-model (Figure 5.8) focused on the utilisation level of the nupiri muka AUV, which 

is an indication of the time that the AUV is in use while available. All interviewees mentioned the 

importance of utilising the nupiri muka to generate output to the program. For example, an interviewee 

puts it: 

“If the vehicle isn’t seen as providing value, people will stop spending money on it. 

Both commercial and research aspects are important. Either the vehicle has to bring 

in real money to offset the cost or be producing a lot of relevant research that allow 

justification.” 

Here, the interviewee also suggested that there are expectations on the AUV program to be met in 

terms of providing value, which can represent both commercial and research outputs. Although not 

explicitly mentioned, it is reasonable to assume that the amount of output will then influence the 

organisation’s commitment to the AUV program and the reputation/track record of the organisation. Any 

improvement to the reputation and track record of the organisation will further increase demand for use 

of nupiri muka, albeit at a delay. This forms a reinforcing loop as shown in Figure 5.9. However, 

utilisation of the AUV does not increase indefinitely and will eventually be constrained by other risk 

factors. These include the ‘Availability of Alternatives’, ‘Government Support’, ‘Awareness, Availability 

and Accessibility of AUV Solutions’, ‘Requirement Creep’ and ‘Average no. of Faults/Incidents per 

Mission’. These risk factors serve to stabilise and limit growth of the nupiri muka AUV program, or in 
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severe cases, lead to the failure of the program. For instance, a high utilisation rate may increase ageing 

of the AUV, reducing its reliability, leading to a higher risk of loss and consequently reduces its utilisation. 

 

Figure 5.9: Reinforcing loop involving utilisation of the nupiri muka AUV. 

 

5.3.1.4 Budget  

 

Figure 5.10: Stock and flow model for the ‘budget’ sub-model. 

 

   The importance of budget preparation and administration in influencing the risk of AUV loss was 

mentioned by all interviewees. This gave rise to the budget sub-model as shown in Figure 5.10. An 

interviewee explained the current funding situation for the nupiri muka program: 

“At the moment, the program is funded by AMC and AGP. Facility is funded by AMC, 

staff cost is funded by AGP and then there is an ongoing depreciation cost and 

insurance cost which is currently under AMC. At the moment, some of the money 

comes directly from government through the ARC via AGP. But where does AMC gets 

the money to pay for facility and insurance, which is quite a large line-up on AMC’s 
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budget, that is an open question. So it could be AGP is very successful in its funding 

but AMC isn’t. That is a risk. 

Without delving into specific budgeting details, the annual budget requirement for the AUV program 

was consolidated in the model into three broad inputs of; ‘Insurance premium’, ‘Maintenance costs’ and 

‘Other operating costs’. Operating costs refers to the recurring costs of operating the AUV, such as staff 

cost, facility expenses, depreciation costs, wear and tear of the AUV and license or fees imposed by 

the government for deployment. Another interviewee elaborated on the insurance cost: 

“We have insurance for open water operation but not yet for under-ice operation. The 

current ball-park premium is about 200,000 AUD a year. They take the replacement 

cost of the vehicle, comes out with a risk profile and then comes out with some 

percentage. If anything, the premium should improve overtime because one of the 

things they ask you when you go for insurance is they want to know your experience. 

So the longer you go without incidence, the more reliable you appear. It’s like car 

insurance.” 

With the AUV program currently funded primarily by the Australian government and the University, a 

reduction in commitment from either party over time could adversely impact sustainability of the 

program, leading to higher risk of loss. Also, according to the interviewees, areas of maintenance and 

repair, and staffing for the AUV program will be most adversely impacted by budgetary constraints. An 

interviewee puts it: 

“Resource is not too bad at the moment, but I guess if there is a risk, it’s the risk of 

reducing commitment from the University, to tighten the budget belt and therefore 

reduce the maintenance schedule. But I guess also, is the lack of personnel because 

we are still running the vehicle as brand new and doesn’t require regular maintenance 

at the moment. But between three of us, it’s at the upper limit of what we are capable 

of without doing overtime.” 

The impact of the budget on staffing was modelled to influence ‘AUV team experience’, representing 

the hiring, attrition or turnover of personnel. Although other intangible aspects, such as compensation 

satisfaction could be involved in human resource management, these were not explicitly mentioned by 

the interviewees and therefore, excluded in the model.   

 

5.3.2 FuSDRA Model Parametrization and Construction 

   To construct the FuSDRA model from the stock and flow diagrams, formulations, definitions and initial 

conditions had to be set in the model. Such information was sought primarily from interviews and 

supported by other domain knowledge sources, with the parameters presented in Appendix H. Like the 

example presented in Chapter 4, uncertain causal relationships due to vagueness or ambiguity were 

represented through the application of fuzzy logic using fuzzy expert systems. The fuzzy rules are 
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presented in Appendix I. Triangular and trapezoidal membership functions were used for both input and 

output variables in the fuzzy expert systems. Fuzzy inference was performed with the Mamdani 

approach and defuzzification carried out using the centroid method. The established fuzzy expert 

systems were subsequently incorporated into the system dynamics model by converting the stock and 

flow models into a block diagram (Section 4.2.2). Each individual block in the diagram transforms the 

input signal(s) into an output signal, with the entire block diagram representing the dynamic relationship 

between input(s) and output(s) of a system. Using MATLAB® Simulink toolbox 2018 (205), the resultant 

fuzzy system dynamics model was constructed and is shown in Figure 5.11. 

   In an overall sense, the FuSDRA model consisted of four sub-models, namely, ‘utilisation’, ‘budget’, 

‘human reliability’ and ‘technical reliability’; Sixteen fuzzy logic blocks, each representing causal 

relationships which are vague or ambiguous; Seven integrator ‘blocks’ which transform rate of change 

into the level of stock variables, and; Lastly, six constant and four gain blocks for ease of user inputs to 

allow for calibration and testing of the model.  
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Figure 5.11: The resultant FuSDRA model, categorised into four sub-models. 
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5.3.3 Assumptions 

   Models are an attempt to understand some aspect of the varied world through a selection of 

perceptions and experience associated with the problem (227). Consequently, an ordered set of 

underlying assumptions lie at the heart of all risk models. In this respect, the assumptions used in 

development of the FuSDRA model play a critical role in ensuring a realistic reflection of the real-world 

scenario. Conversely, poor or overly optimistic assumptions can result in an inaccurate picture of the 

risk exposure, potentially resulting in flawed recommendations.   

 

   The FuSDRA model of this case study was built on five major assumptions, which are stated as below:  

 

a) The use of time as the basis for determining the risk of AUV loss, which requires accurate 

parameterization of causal relationships between risk factors.  

b) Both the formulation and fuzzy rules used to represent the causal relationship between risk 

factors, remained similar throughout the time horizon of the model. 

c) Domain experts, which are the primary source of information for the risk analysis, have an 

adequate grasp of what are the key issues in relation to the nupiri muka AUV program.  

d) The use of the incident rate, including faults, as an accurate lagging indicator for the risk level 

of AUV loss.  

e) The mission profiles, including the number of under-ice missions for each deployment remains 

relatively similar for each Antarctic deployment throughout time horizon of the analysis. 

 

5.3.4 Model Testing - An Introduction 

   To build confidence in the developed FuSDRA model, three main approaches were taken. First, local 

knowledge and available historical data were used to calibrate the model. Second, a series of tests 

were undertaken to uncover model errors and areas for improvement. Last, simulations results from the 

model were discussed and compared with domain experts’ opinion. In this section, details of model 

testing are presented.   

   FuSDRA models, like any other risk models, are simplified representations of the real world and 

always differ from reality, no matter how large or small the difference may be. This difference arises 

from imperfectly measured data, abstractions, aggregations and simplifications(1). Therefore, this 

dissertation is inclined towards the belief that complete validation and verification of a risk model is 

impossible, a claim based on concepts presented by Sterman(1) and supported by others(169)(228).   

Unfortunately, the terms testing, validation and verification are often used interchangeably, leading to 

confusion. To avoid a lengthy discussion on fitting definitions, the term testing will be used here to 

represent the iterative process of checking and uncovering errors. 

   The objective of model testing is to increase confidence, in both soundness and usefulness of the 

FuSDRA model through uncovering errors and improvement. Some important questions that should be 

asked when testing the FuSDRA model include:  
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▪ Whether the FuSDRA model fulfils its primary purpose of facilitating understanding and 

controlling of risk factors that can cause or culminate in the loss of an AUV during deployment 

in the Antarctic?  

▪ Are important risk factors being included in the model? 

▪ Are the time horizon and model boundaries relevant to the problem?  

▪ Does the FuSDRA model conform to basic physical laws such as conservation laws where 

inflows into the system either accumulate or become outflow?  

▪ Are the fuzzy rules within the fuzzy expert system complete and logical?  

▪ How does the FuSDRA model behave under specific conditions for which its inputs take on 

extreme values?  

▪ Are the policy recommendations arising from the model pragmatic and sensitive to plausible 

variations in assumptions?  

▪ Are the results of the FuSDRA model reproducible?  

   A wide variety of tests are available in the literature for both system dynamics models and fuzzy expert 

systems. These can be broadly classified into model structure, model behaviour and policy implications 

tests (1). A summary of these tests, adapted from (1) are presented in Table 5.2. The choice of tests often 

depends on several factors such as time and resource availability, size of the model and purpose of the 

model. Although it may be tempting to perform as many tests as possible on the risk model, doing so 

can be excessively time-consuming and resource intensive. For this case study where there is limited 

historical data for model development, most problems were revealed during the risk analysis process 

through discussion with domain experts. This triggered frequent reassessment of the model, resulting 

in a time-consuming iterative cycle of model analysis, testing and analysis. Nevertheless, some key 

tests were carried out on the resultant FuSDRA model, including boundary adequacy, structure 

assessment, dimensional consistency, extensive extreme conditions and behaviour anomaly tests. Any 

unexpected behaviour revealed during the tests were investigated and improvements made to the 

model accordingly. Details of these tests will be discussed in subsequent sections.   

 

Table 5.2: List of recommended tests that can be performed on the developed FuSDRA model. 

No. Test Purpose (s) 

Model Structure Tests 

1. Boundary Adequacy 

• Assess whether important concepts associated to the 
risk of AUV loss is included in the model.  

• Assess whether behaviour of the model and risk 
control policy recommendations change significantly 
when the boundary is changed? 

2. Structure Assessment 

• Check that the model structure is consistent with 
descriptive knowledge of risk of AUV loss in the 
Antarctic. 

• Assess whether the FuSDRA model conforms to basic 
physical laws such as conservation laws where inflows 
into the system either accumulates or becomes 
outflow. 
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• Assess fuzzy expert systems for inconsistencies, 
conflicts, redundant or missing rules.  

3. Dimensional Consistency 
• Check that equations used in the model, including 

fuzzy systems are dimensionally consistent. 

4. Parameter Assessment  
• Assess parameter values on consistency with 

descriptive and numerical knowledge of risk of AUV 
loss in the Antarctic. 

Model Behavior Tests 

6. Extreme Conditions 
• Assess how the FuSDRA model behaves under 

specific conditions for which its inputs take on extreme 
values. 

7. Integration Error 
• Assess sensitivity of simulation results to the choice of 

time step or integration method. 

8. Behaviour Reproduction 
• Check that the model reproduces behaviour of risk 

factors associated with an AUV program, with influence 
over the risk of AUV loss.  

9. Behaviour Anomaly 
• Assess the behaviour of FuSDRA model when 

assumptions or the model are changed or deleted. 

10. Family Member 
• Evaluate behaviour of the FuSDRA model to other 

types of nupiri muka operations or that of other AUVs. 

11. Surprise Behavior 
• Assess whether are there discrepancies between 

model behaviour and expectations. It checks for 
previously unobserved or unrecognised behaviour. 

12. Sensitivity Analysis 
• Assess whether the outcome of the risk analysis 

changes significantly when assumptions are varied 
over a plausible range of uncertainty.  

Policy Implications Tests 

13. System Improvement 

• Assess whether the eventual goal of the FuSDRA 
model to facilitate risk control is met. To pass the test, 
policy recommendations derived from the FuSDRA 
model must be implemented and risk of AUV loss 
prove to actually reduce. 

 

5.3.4.1 Model Structure Tests 

   To determine the boundaries of the FuSDRA model, a generic risk structure associated with the risk 

of AUV loss (Figure 3.4) was established during early phase of the risk analysis. Based mainly on 

literature review and preliminary informal discussions with the AUV team, the structure acts as a model 

boundary chart. It depicts the scope of the model and facilitates identification of likely endogenous and 

exogenous risk factors, as well as important feedback loops. The risk structure was subsequently used 

to guide formal discussions with the domain experts, with the construction of the FuSDRA model based 

on refinement to the structure. Additionally, the resultant FuSDRA model was presented to the domain 

experts for iterative improvements and the eventual consensus on the final model.  

   The FuSDRA model was also checked for violations of physical law. For instance, real quantities such 

as annual utilisation rate of nupiri muka, calendar age, operating and maintenance costs, effective age, 
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and experience of the AUV team do not go into a negative value. Similarly, outflows from these stocks 

have shown to be zero if the stock is zero.  

   Parameters assessments were performed using the knowledge sources described earlier (Section 

5.2.2), except for cases where opinions had to be elicited from domain experts in the form of fuzzy rule 

bases. To check for completeness of the fuzzy rule bases, the completeness measure approach by 

Jager (206) was applied. According to Jager (206), the measure of completeness of a fuzzy rule base is 

defined as: 

𝐶𝑀 (𝒙) =  ∑{ ∏ 𝜇𝐴𝑖,𝑘 
(𝑥𝑖)}

𝑁𝑋

𝑖=1

𝑁𝑟

𝐾=1

 

Where 𝒙  is a numerical data vector, Nr the number of rules and Nx the number of fuzzy sets. A 

completeness measure (CM) value of 0 means incomplete, where there are combinations of input 

where no output is defined. A CM value of < 1 means subcomplete, CM value of 1 means strict complete 

and CM value of > 1 means overcomplete, where there are presence of redundant rules. For all sixteen 

fuzzy expert systems in the FuSDRA model, a CM value of 1 were achieved, inferring strict 

completeness of the fuzzy rule bases.  

   All stock and flow models of the four subsystems were checked for dimensional consistency using 

inbuilt <Check Units> function within the Vensim® (204) Software. Any inconsistencies with units of 

measure were reflected by the software when the equations were checked. Details on the units of 

measure for each risk factor is listed in Appendix H.  

 
5.3.4.2 Model Behavior Tests 

   Extreme condition tests were performed extensively on the FuSDRA model to assess its robustness. 

By randomly changing variables to realistic maximum and minimum values while monitoring model 

behaviour, these tests ensure that the FuSDRA model behaves in a realistic manner even with extreme 

inputs. Here, three examples of extreme condition test are presented. 

   In the first example, a simple extreme condition test was applied by changing the value of one risk 

factor. The level of ‘interpersonal dynamics’ was set to extreme values of 0 (Very Poor) and 10 (Very 

High) to observe its impact on stress level of the AUV team. Since they have a negative causal 

relationship, it is expected that as the level of interpersonal dynamics increases or decreases, stress 

level of the AUV team changes in the opposite direction. Simulation of the FuSDRA model showed 

results consistent with the expected outcomes (Figure 5.12). The stepwise reduction of the stress level 

can be traced back to ‘organisation’s commitment to the AUV program’. The antagonistic effect of an 

increase in AUV calendar age and utilization rate resulted in a stepwise reduction of commitment level, 

which translates downstream to other risk variables. 

 

--------------- (5.1) 
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Figure 5.12: Impact on stress level with extreme input of interpersonal dynamics. A: Interpersonal 

dynamics = 0 (Very Poor), B: Interpersonal dynamics = 10 (Very High) 

 

   For the second extreme condition test, the values of two risk factors were changed to examine their 

impact on the risk of AUV loss. They are the level of government support for the AUV program and the 

availability of alternatives to AUVs for Antarctic research. Intuitively, it is expected that a high level of 

government support with low availability of alternatives to AUVs would result in greater commitment to 

the program and consequently, a lower risk of AUV loss and vice versa. To test the model, the level of 

government support was set to 0 (very low) and the availability of alternatives to AUVs set at 10 (very 

high) for one extreme, with the reverse for the opposite extreme. Simulation results presented in Figure 

5.13 showed that the risk of AUV loss behaved as per expectation. It is also noteworthy that the 

presence of delays within the system resulted in a noticeable difference in risk level only after a year 

into the AUV program. In the scenario of very low government support and very high alternatives to 

AUVs, the risk of loss shows a sharp increase in the last year of the AUV program. This can be attributed 

to a lack of quality maintenance and repair due to budget limitation.  
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Figure 5.13: Impact on the risk of AUV loss with extreme input of government support and the 

availability of alternatives. A: Government support = 0 (Very Low), availability of alternatives = 10 

(Very High) B: Government support = 10 (Very High), availability of alternatives = 0 (Very Low). 

 

   The last example of extreme condition test examines the positive relationship between the risk of AUV 

loss and both the budget requirement for the AUV program and the level of government support. Three 

risk factors were varied for this test, namely ‘government support’, ‘annual increment of maintenance 

costs’ and ‘annual increase/decrease of other operating costs’. It is expected that a higher budget 

requirement together with low government support would adversely affect the availability of resources, 

consequently leading to a higher risk of AUV loss and vice versa. At one extreme, the annual increment 

of maintenance costs was set at 1% with an annual decrease of other operating costs set as 5% and a 

government support value of 10 (very high). At the other extreme, the annual increment of maintenance 

costs was set at 5% with an annual increase of other operating costs of 5% and government support 

value of 0 (very low). The simulation results are presented in Figure 5.14. Unsurprisingly, the results 

showed a lower risk of loss with lower budget requirement and higher government support. With more 

funding available, resources can be channelled into quality maintenance and repair of the AUV, as well 

as the retention or recruitment of experienced personnel. The risk of AUV loss between the two extreme 

scenarios diverges as the AUV program progresses, once again reflecting the presence of delays within 

feedbacks in the system. In the scenario of higher budget requirement with low government support, 

the risk of loss again shows a sharp increase in the last year of the AUV program, with reason similar 

to the previous extreme condition test. 
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Figure 5.14: Impact on risk of AUV loss with extreme input of budget requirement for the AUV 

program and the level of government support. A: Annual increment of maintenance costs = 1%, 

annual decrease of other operating costs = 5% and government support = 10 (very high). B: Annual 

increment of maintenance costs = 5% annual increase of other operating costs = 5% and government 

support = 0 (very low). 

 

5.3.4.3 Sensitivity Analysis 

   Sensitivity analysis aims to examine how varied assumptions over a plausible range of uncertainty 

can influence the risk of AUV loss. It helps to evaluate the reliability of simulation results and provide 

additional insights into the FuSDRA model structure, revealing surprise and anomaly behaviour, 

potential errors, and areas for improvement. Additionally, results from the analysis can help to identify 

leverage points for risk control by identifying the risk factors which the risk of AUV loss be most sensitive 

towards.  

   A series of “one-at-a-time” (229) univariate analyses were performed on risk factors identified during 

interviews as having a significant impact on the risk of AUV loss. For example, an interviewee suggested 

the importance of ‘initial average experience of AUV team’, saying: 

 

   “I guess one of the big risk is that only one-third of the team is experienced. Likely 

an engineer from ISE will be joining us in the upcoming Antarctic mission and that puts 

the experience to 50:50, with polar AUV operators and non-polar AUV operators. So 

it sort of even the odds a little bit more.” 
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   The univariate sensitivity analysis of three risk factors, namely the ‘initial average experience of AUV 

team’, ‘government support’ and ‘comprehensiveness of insurance coverage’ are presented here. 

Different input values of these risk factors were used to examine their effect on risk of AUV loss. For 

‘initial average experience of AUV team’, values ranging from 0.5 to 2 years were used. The simulation 

results are presented in Figure 5.15 and Table 5.3, followed by a discussion on the results. For 

‘government support’, values of 2 (Low), 5 (Average) and 8 (High) out of an arbitrary scale of 10 were 

used, with the results presented in Figure 5.16 and Table 5.4. Last, for ‘comprehensiveness of 

insurance coverage’, values of 1 (Low), 5 (Average) and 9 (High) out of an arbitrary scale of 10 were 

used, with the results presented in Figure 5.17 and Table 5.5.  

 

Figure 5.15: Risk of AUV loss for different ‘Initial average experience of AUV team’. A: 0.5 yr. B: 1 yr 

C: 1.5 yr D: 2 yr. 

 

Table 5.3: Risk of AUV loss for different ‘Initial average experience of AUV team’. 

IE: Initial experience. 

Year 
Risk of AUV Loss 

IE = 0.5 IE = 1 IE = 1.5 IE = 2 

0 0.150 0.146 0.132 0.100 

1 0.112 0.111 0.110 0.085 

2 0.096 0.094 0.085 0.077 
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3 0.100 0.084 0.076 0.060 

4 0.095 0.086 0.080 0.078 

5 0.109 0.105 0.101 0.078 

6 0.133 0.124 0.101 0.085 

7 0.131 0.120 0.100 0.100 

8 0.128 0.109 0.100 0.100 

9 0.134 0.120 0.114 0.095 

10 0.150 0.142 0.126 0.100 

 

   Results from the simulation showed apparent differences in the ‘risk of AUV loss’ with varied ‘initial 

average experience of AUV team’, with higher initial experience leading to lower risk of loss. However, 

the general oscillatory behaviour of the risk of loss remained the same for all four simulations, showing 

an overall initial decrease in risk, followed by an increase in the middle phase and in later phase of the 

AUV program. This can be attributed to higher likelihood of human error in the early phase of the AUV 

program due to lack of experience and poorer reliability of the AUV in the later phase of the program 

due to aging of the vehicle. While all the simulations showed an increase in risk from 3.5 years to 5.5 

years into the AUV program, the peak risk level for ‘initial average experience of AUV team’ of 0.5 yr 

and 1 yr is notably higher than that of 1.5 yr and 2 yr. There is also a significant difference in risk of loss 

right at the start of the AUV program, especially between an AUV team of initial average experience of 

1.5 yr and 2 yr. It is therefore recommended that new AUV team members recruited at the start of the 

AUV program should ideally possess 2 years of relevant experience. Additionally, the simulations 

showed the risk level plateauing between 6.5 and 8.5 years into the program. This is the period where 

both technical reliability of the AUV and human reliability remains relatively stable in the mature AUV 

program.  

   The simulation results appear to differ slightly from the application example as presented in Figure 

4.8. This is the result of additional risk factors and feedbacks in the system. However, the bathtub curve 

behaviour is still apparent, especially in the first six years of the AUV program. These simulation results 

have important implications for human resource management, such as optimising recruitment criteria 

in terms of desirable experience level or assessing the impact of staff turnover or attrition.  
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Figure 5.16: Risk of AUV loss for different levels of ‘‘government support’. A: 2 (Low). B: 5 (Average) 

C: 8 (High). 

 

Table 5.4: Risk of AUV loss for different levels of ‘‘government support’. 

GS: Government support 

Year 
Risk of AUV Loss 

GS = 2 GS = 5 GS = 8 

0 0.146 0.146 0.146 

1 0.118 0.111 0.111 

2 0.100 0.096 0.094 

3 0.111 0.107 0.085 

4 0.143 0.138 0.085 

5 0.150 0.138 0.104 

6 0.150 0.150 0.124 

7 0.150 0.150 0.120 

8 0.305 0.235 0.110 

9 0.338 0.331 0.117 

10 0.338 0.337 0.142 
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      The impact of varied level of government support on the risk of AUV loss ressembled earlier 

sensitivity analysis example, where the general behaviour of the risk of loss remained relatively similar 

for all simulations. The difference to risk of loss only starts to become evident after 2.5 years into the 

AUV program. Apart from a negative relationship between the level of government support and risk of 

AUV loss, a considerable increase in the risk of loss near the end of the AUV program under low (value 

of 2) and average (value of 5) government support was observed. A lack of government support can 

adversely impact the amount of budget for the AUV program, which is important for both proper 

maintenance and repair of the AUV and retention of experienced personnel. Once the budget falls 

below a threshold level, experienced personnel may leave the team and critical AUV components such 

as the navigational or control systems starts to fall into disrepair. This increases the risk of loss 

significantly when the components start to age in later phase of the AUV program. Although the level 

of government support may be beyond the organisation’s control, understanding its impact on risk of 

AUV loss can allow UTAS to better anticipate and respond to changing government policies. For 

instance, to seek diversity in funding base, such as commercial contracts. 

 

 

Figure 5.17 Risk of AUV loss for different ‘comprehensiveness of insurance coverage’. A: 9 (High). B: 

5 (Average) C: 1 (Low). 
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Table 5.5: Risk of AUV loss for different ‘comprehensiveness of insurance coverage’.  

IC: Insurance coverage 

Year 
Risk of AUV Loss 

IC = 9 IC = 5 IC = 1 

0 0.146 0.146 0.146 

1 0.116 0.110 0.109 

2 0.096 0.096 0.070 

3 0.108 0.108 0.050 

4 0.130 0.123 0.065 

5 0.126 0.120 0.052 

6 0.150 0.148 0.077 

7 0.150 0.150 0.082 

8 0.148 0.145 0.068 

9 0.150 0.145 0.068 

10 0.150 0.150 0.068 

 

   The effects of varied comprehensiveness of insurance coverage showed an apparent impact on the 

risk of AUV loss. The presence of delays within feedbacks in the system resulted in the difference being 

evident only after first year of the AUV program. Contradictory as it seems, a higher insurance coverage 

translates to higher risk of loss. This is due to the negative relationship between insurance coverage 

and risk perception of individuals within the AUV team and the management, which eventually affects 

the risk of AUV loss. Although such relationship between insurance and risk perception is well supported 

in the literature (224)(225)(226), many other factors, such as social and cultural influences also play important 

roles in influencing an individual’s perception of risk (230). Therefore, obtaining direct evidence on 

individual beliefs of the AUV team may be important for assessing risk perception. This however, 

warrants further investigation which is beyond the scope of this dissertation. Although the simulation 

results seem to suggest that lower insurance coverage is desirable for reducing risk of loss, it is clearly 

not a pragmatic recommendation. Instead, it is recommended that measures should be taken to improve 

the perception of risk among the AUV team and relevant stakeholders, such as enhancing training and 

risk communications. To increase effectiveness, such measures should be implemented in the early 

stages (<2 years) of the AUV program. 

 

5.3.5 Scenario Analysis 

   Once sufficient confidence was gained in the FuSDRA model through extensive model testing, custom 

scenarios can be created and analysed through the model. There are numerous scenarios involving 

different risk factor combinations and permutations that can lead to an increased risk of AUV loss. A 

thorough analysis of all scenarios is onerous, impractical and time-consuming. Therefore, the choice of 

scenarios for analysis was based primarily on issues highlighted by the interviewed domain experts. 
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The following sections present three of these scenarios, accompanied by an analysis of the FuSDRA 

model and risk control recommendations. 

 

5.3.5.1 Scenario 1: Experience Loss due to Departure of Critical Employee. 

5.3.5.1.1 Scenario Motivation 

The scenario of experience loss due to the departure of critical employee was inspired by the concerns 

of several interviewees, who highlighted strong reliance on the facility manager for the current nupiri 

muka AUV program. The following quote was taken from one of the interviews: 

“One thing that we have talked about in the past, is the risk of over-reliance on one 

person. It highlights the issue, like being one person deep across the board, like so 

many organisations are. His approach is to make sure the training and knowledge of 

how to run the vehicle is passed on the operational team. But it is a risk we have been 

vocal about but what are we going to do? Are we going to hire two people? Three 

people?” 

   It is also noteworthy that the facility manager is currently employed on a biennial contractual basis, 

thus being offered less job security as compared to a permanent arrangement. Experience loss due to 

the departure of employees is a natural part of a business in any industry. In the mid-1990s, the 

departure of many experienced mechanics from Delta Air Lines Inc. resulted in flight delays and 

cancellations due to longer diagnosis and repair time (231). In Australia’s context, a recent survey by 

specialist recruiter Robert Half in 2018 showed that 15% of Australian workers are likely to seek a new 

job in the coming year, and 67% of Australian employers saying they have seen an increase in staff 

departures in the last three years (232). It is thus imperative that UTAS understand the impact of 

employee turnover, the facility manager for this scenario, to implement effective employee and 

knowledge retention strategies and attract quality employees into the organisation.  

5.3.5.1.2 Scenario Simulation  

   To simulate departure of the facility manager, a loss of 2 years ‘average experience of the AUV team’ 

was introduced at the 2nd, 4th, 6th and 8th year of the AUV program in the FuSDRA model. To do so, a 

‘transport delay’ block was added, as shown in Figure 5.18. Simulation results showing the impact of 

the departure to ‘average experience of AUV team’ and the ‘risk of loss’ are presented in Figure 5.19 

and 5.20. As intended, the ‘average experience of AUV team’ decreases sharply at the point where the 

facility manager departs, with the ‘risk of AUV loss’ showing a sharp increase. Notably, the risk of loss 

remained elevated as compared to the base scenario for the remaining of the AUV program. Also, the 

departure of the facility manager caused a snowball effect which resulted in a jump in the risk of loss in 

later stages of the AUV program.  
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Figure 5.18: Addition of the ‘transport delay’ block in the human reliability sub-model (Circled) to 

simulate loss of average experience at different timing of the AUV program. 

 

 

Figure 5.19: The ‘average experience of AUV team’ when the facility manager leaves at different time 

points of the AUV program. A: 2 yr B: 4 yr C: 6 yr D: 8 yr 
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Figure 5.20: The impact on ‘risk of AUV loss’ when the facility manager leaves at different time points 

of the AUV program. A: 2 yr B: 4 yr C: 6 yr D: 8 yr 

 

The above results assumed that there is no replacement for the facility manager, which is highly unlikely 

given the criticality of this position and the existing lean AUV team. However, finding appropriate 

replacement candidates with such niche skills and specific experience is understandably complicated 

and time-consuming. Therefore, a hiring period of one year was used in the model for recruiting a 

replacement of similar experience level, to model turnover of the facility manager. The simulation results 

are shown in Figure 5.21 and 5.22. 
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Figure 5.21: The ‘average experience of AUV team’, with a 1 yr replacement period for the departed 
facility manager at different time points of the AUV program. A: 2 yr B: 4 yr C: 6 yr D: 8 yr  
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Figure 5.22: Impact on ‘risk of AUV loss’ (arrow) as compared to the base scenario (dotted) with a 1 

yr replacement period for the departed facility manager at different time points of the AUV program. 

A: 2 yr B: 4 yr C: 6 yr D: 8 yr 

 

Figure 5.21 shows the ‘troughs’ in ‘average experience of AUV team’ with the turnover of the facility 

manager at different point of the AUV program. Figure 5.22 shows the impact on the risk of loss as 

compared to the base scenario, with the increase in risk highlighted by an arrow. Notably, the turnover 

in the earlier stages (2nd year) of the AUV program appears to have a lesser impact to the risk of loss 

as compared to the later stages (4th, 6th and 8th year). The extensive amount of feedback loops and 

fuzzy rules makes it challenging to pinpoint the exact reason for such a behavior. However, it is likely 

that departure of the facility manager in mature stages (> 4 years) of the AUV program has a greater 

impact to the risk of loss due to increasing maintenance activities and budgetary constraints.  

   In the next simulation, the turnover period for the facility manager was shortened from a year to 6 

months to simulate a reduction of hiring time. The simulation results are shown in Figure 5.23. 
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Figure 5.23: Impact on ‘risk of AUV loss’ (arrow) with 6 months and 1 yr replacement period for the 

departed facility manager at different time points of the AUV program. The base scenario (dotted) is 

also included for reference. A: 2 yr B: 4 yr C: 6 yr D: 8 yr 

 

Simulation results showed that reducing the replacement period for the facility manager mitigates 

impact of the turnover on risk of loss. This is especially apparent when the reduction in hiring period 
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was simulated in the 8th year of the AUV program. In addition, the risk of loss was also noted to exhibit 

a sharper decline upon recruitment of the replacement in a 6 months period as compared to a year.  

 

5.3.5.1.3 Recommendations 

   Simulation results from both the sensitivity analysis (Figure 5.16) and scenario analysis suggested 

that average experience of the team plays a critical role in influencing the risk of AUV loss. In particular, 

the current facility manager is influential over the current nupiri muka program because of his relevant 

and extensive polar AUV experience. The following recommendations are therefore offered with the 

aim of retaining an experienced employee, secure replacement in a shorter period, and promote an 

effective knowledge transfer process. 

   With the current program supported primarily by a lean team of three, the departure of any crew can 

negatively impact the workload and morale of the team. Therefore, it is recommended that an effective 

employee retention program be implemented to improve retention. This may include open lines of 

communication, provision of training and professional development and fostering of teamwork. In 

addition, considerations can be made to provide an option for the facility manager to convert existing 

contractual arrangement into a permanent role, under the condition that the facility manager is found to 

be suitable for the job. Providing such an option to the facility manager, especially in later stages of the 

AUV program (>4 years) may improve retention and consequently, a lower risk of AUV loss.  

  Sourcing for an employee replacement specialising in AUV operations means dipping into a very niche 

talent pool. To reduce hiring time and achieve a lower risk of loss (Figure 5.23), strategies are 

recommended to attract niche talents. This may include sourcing internationally with competitive 

relocation packages, hosting AUV-related conferences to create networking opportunities and offering 

flexibility in working arrangements. It is also important to note that a more experienced team at the 

beginning of the program translates to a lower risk of loss throughout the entire program (Figure 5.15). 

Therefore, recruitment criteria in terms of desirable experience level can be established early in the 

program using the simulation results. 

   Last, an ongoing effective knowledge transfer plan should be executed to mitigate the risk of 

experience loss in the event of employee departure. The transfer of both tacit knowledge and explicit 

knowledge should be included in the plan, which may include mentorship, training, work shadowing, 

knowledge repository or rotational assignments. This will increase the pool of knowledgeable personnel 

who can take on each other’s role whenever the need arises. It is also critical to evaluate and measure 

effectiveness of the knowledge transfer regularly to identify gaps and make improvement to the plan.  

   Although these recommendations may seem intuitive and obvious to any organisations, they can be 

overlooked in routine organisational practices, especially in the event where commitment to the AUV 

program decreases over time. The next scenario analyses examine such a reduction in commitment, 

with a resulting cutback in government support. 
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5.3.5.2 Scenario 2: Reducing Government Support and Increasing Alternatives to AUV. 

5.3.5.2.1 Scenario Motivation 

   The current nupiri muka AUV program is co-funded by both AMC and AGP. Broadly speaking, AMC 

supports the infrastructure and insurance fees while AGP funds the staff cost. However, it is worth 

highlighting that the funding arrangement by AMC and AGP is not independent of each other, with both 

parties working in close collaboration to support the program. A reduction in government support to the 

nupiri muka AUV program is arguably one of the most pressing concerns raised by many of the 

interviewees. Apart from directly influencing the risk of AUV loss through budgetary pressure, several 

interviewees also expressed concerns on how such reduction can affect the continued renewal of their 

employment contracts. An interviewee highlighted the possibility of a future funding reduction: 

“It is fine because the vehicle is new now and everybody is excited but next year, 

people will take a very hard look and go, we are spending a lot of money but not 

everybody will probably feel that they have gotten value from it.” 

And another interviewee mentioned the risks of a funding reduction: 

“Getting our finances right is one of the biggest risks. If we do not have the right finance, 

we will not be able to run the vehicle in the first place. The vehicle costs a lot of money 

to run and so that money has to come from somewhere.”  

   Apart from government support, another risk factor external to the organisation is the availability of 

alternatives to AUVs for Antarctic data collection. The obsolescence of technological equipment with 

increasingly shorter lifecycles is a continual challenge faced by many industries. The exponential rate 

of technological evolution can render old AUV technologies less practical and competitive either against 

newer AUVs or other means of data collection. With more options available, Scientists and other users 

will naturally choose the most effective and cost-efficient means of data collection, adversely impacting 

the quantity of output from the nupiri muka AUV program. As one scientist openly mentioned:  

“I don’t care about AUVs, it is useless to me until it provides a data set, and then it is 

the data set I care about. To a large part, the actual concern for failure rates, I am 

interested only as a curious person. But strictly as a scientist, a seagoing 

oceanography focused scientist, it is not really my problem. Just like if I am on a ship, 

it is not really my problem if it is using a propeller with five blades or four as long as it 

meets specific requirements.” 

   Currently, alternatives to AUVs include polar profiling floats, ice-tethered profilers, subsurface 

moorings, oceanographic instruments deployed on marine mammals and satellite technology (21). With 

rapidly developing technologies, future Antarctic under-ice observation systems may also include pop-

up storage capsules and data telemetry, airborne observation platforms, low-cost expendable buoys, 

oceanographic mooring deployment using ROVs and enhanced acoustic capabilities (21). Therefore, it 
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is conceivable that alternatives to AUVs may render the nupiri muka obsolete for Antarctic marine 

science research in the future. 

 

5.3.5.2.2 Scenario Simulation 

   To simulate a scenario of government support reduction and an increasing number of alternatives to 

the nupiri muka AUV, two integrator blocks were added to replace the constant blocks of ‘government 

support’ and ‘availability of alternatives’ in the FuSDRA model (Figure 5.24). The output of the integrator 

block is equal to the time-integral of the input, plus the initial value (at t = 0) of the output. The first 

simulation examines the effect of gradual government support reduction on the risk of AUV loss, at a 

rate of 10% each year (On the arbitrary scale of 10). The simulation result is presented in Figure 5.25. 

The second scenario examines a more abrupt reduction in government support at various time points 

of the AUV program. To do so, a ‘transport delay’ block was used, similar to the one shown in Figure 

5.18. ‘Government support’ was simulated to reduce from a level of 8 (High) to 2 (Low) out of an arbitrary 

scale of 10 at the 2nd, 4th, 6th and 8th year of the AUV program in the FuSDRA model. Results of the 

simulation are presented in Figure 5.26. The next simulation analyses the effect of increasing 

alternatives to the nupiri muka AUV on the risk of AUV loss, at a rate of 10% each year (On an arbitrary 

scale of 10). Lastly, a combination of gradual reduction in government support (rate of 10% each year) 

and an increasing number of alternatives (rate of 10% each year) to the AUV were simulated to 

determine their combined impact on the risk of AUV loss. 

 

Figure 5.24: Addition of the ‘integrator block’ in the FuSDRA model to simulate increasing or 

decreasing time-dependent risk factors. 
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Figure 5.25: Impact on ‘risk of AUV loss’ with a 10% annual reduction in government support, as 

compared to the base scenario. A: Base scenario. B: Reducing government support.  

 

  The simulation results showing the impact of gradual government support reduction on the risk of AUV 

loss is presented in Figure 5.25. Initial reduction in government support does not appear to impact the 

risk of AUV loss, due to a latency period represented by delays in the system. However, as government 

support continue to decline, a difference in risk of loss emerges from the third year of the AUV program 

when compared to the base scenario. The subtle difference of mostly less than 0.01 continues till 5.5 

years into the program before becoming more apparent in the last 2 years of the simulation. 

 

Figure 5.26: Impact on ‘risk of AUV loss’ with a more abrupt reduction in government support from a 

level of 8 (High) to 2 (Low) out of an arbitrary scale of 10 at various time points of the AUV program. 

The base scenario (dotted) is also included for reference. A: 2 yr B: 4 yr C: 6 yr D: 8 yr 
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      As shown in Figure 5.26, the risk of AUV loss increases correspondingly when the level of 

government support reduces abruptly at various points of the AUV program. Similar to the earlier 

simulation of gradual reduction in government support, the risk of loss increases significantly in late 

phase (>7 years) of the AUV program in all four reduction scenarios. Notably, reduction of government 

support at 2nd year of the program resulted in an earlier peak in the risk of loss as compared to a 

reduction at 8th year of the AUV program. 

 
Figure 5.27: Impact on ‘risk of AUV loss’ with a 10% annual increment in alternatives to the nupiri 

muka AUV, as compared to the base scenario. A: Base scenario. B: Increasing alternatives to the 

nupiri muka AUV. 

 

   Simulation results showing the impact of increasing alternatives to the nupiri muka AUV on the risk of 

AUV loss is presented in Figure 5.27. For the most part of the AUV program, the increasing number of 

alternatives do not appear to impact the risk of AUV loss as compared to the base scenario. The 

difference only becomes apparent in the last year of the AUV program, with the reason for this 

being twofold. First, the nupiri muka adopts newest AUV technologies and is considered state-of-the-

art, manufactured by one of the leading company in AUV business (Refer to section 5.1.2 and Appendix 

F). Second, the use of AUV for Antarctic marine science research is a relatively new development with 

many potentials and advantages over other means of data collection (Refer to section 1.2.5). Therefore, 

the obsolescence rate for the nupiri muka AUV is currently deemed to be very low, thus having an 

impact on the risk of loss only in the late stages of the AUV program.  
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Figure 5.28: Combined impact on ‘risk of AUV loss’ with a 10% annual increment in alternatives to the 

nupiri muka AUV and 10% annual reduction in government support, as compared to the base 

scenario. A: Base scenario. B: Combined effect. 

 

   Results from simulations of the final scenario, which examines the combined effect of a gradual 

reduction in government support and increasing number of alternatives, is presented in Figure 5.28. 

When compared to the base scenario, the risk of AUV loss noticeably deviates after the second year 

of the AUV program. After 7 years into the program, the risk of loss exhibited a sharp increase and 

diverges significantly from the base scenario. The jump in risk can be attributed to the reduction of 

budget below a threshold level, where experienced personnel may leave the team and critical AUV 

components fall into disrepair (See section 5.3.4.3). Interestingly, the combination of reducing 

government support and increasing alternatives has a synergistic effect on the risk of AUV loss, 

resulting in a greater increase in the risk of loss than the sum of their individual effects. Although the 

extensive amount of feedback loops and fuzzy rules makes it challenging to pinpoint the reason behind 

this synergistic effect, the significant increase in risk clearly requires attention for tightened controls. 

 

 5.3.5.2.3 Recommendations 

   Based on the scenario analysis, measures are required to dampen the combined effect of reducing 

government support and increasing number of alternatives to the nupiri muka AUV. To better prepare 

for the possibility of reduced government support, measures to consider may include: (1) Having a 

robust system for monitoring budgets and forecast future additional funding requirements. (2) Actively 

seek diversity in funding base, such as commercial contracts and establish strong stakeholder 

relationships. (3) Establish a robust finance strategy, with regular review, which is aligned to the 
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strategic plan. The strategy should include plans to maintain or build funds to ensure sustainability of 

the AUV program, and. (4) Implement a process for reviewing and updating strategic or operational 

plans in response to changes in government support. These measures are especially crucial from early 

stages of the AUV program as reduction in government support at any point can have a consequential 

effect on the risk of loss later in the program (Figure 5.26 and Figure 5.25). 

. While competitive market pressures and rapid evolution of technologies may be outside the 

organisation’s control, measures can be adopted to better manage the risk of obsolescence. This 

includes: (1) Ensure a comprehensive repair and preventive maintenance program is in place. An 

effective maintenance program can increase the reliability and availability of the nupiri muka AUV over 

the long run. (2) Implement a process for regular review of published literature and other information 

sources to spot emerging trends in both AUV technologies and alternative technology to AUVs. (3) 

Develop a strong partnership with ISE Ltd. The company should be well-aware of any impending 

obsolescence and have a migration or upgrade strategy. (4) Establish a robust and clear long-range 

plan for the nupiri muka AUV program. This plan should assign a return of investment, state cost 

avoidance strategies, process optimization and best practices, and (5) To position the AUV program as 

a multipurpose research program going beyond the AUV itself, such as battery capabilities or adaptive 

controls. This should lead to a strong underwater robotics research program at AMC UTAS, exploring 

next generation alternatives to AUVs. As Figure 5.27 shows, these measures are especially important 

in later stages of the AUV program (>7.5 years). 

 

5.3.5.3 Scenario 3: Increasingly Dysfunctional Interpersonal Dynamics 

5.3.5.3.1 Scenario Motivation 

   The last scenario analysis examines the impact of increasingly dysfunctional interpersonal dynamics 

on the risk of AUV loss. The concern on interpersonal dynamics, particularly inter-team dynamics was 

raised by several interviewees, as one of them put it:  

 “Having four to six people in a very small enclosed space (boat) for numerous hours 

in a very cold conditions is a recipe for conflicts. Having boat operators that are not 

part of the team is a risk as far as I’m concern because there is usually discrepancy 

in understanding. Because they are not part of our team day-to-day, they would 

otherwise be very unfamiliar with how we operate and what needs to be done slightly 

differently.” 

And from another interviewee: 

“An operational team would be focused on making sure the vehicle survives while a 

science team is less interested in that and more interested in getting its shot. So if it’s 

now or never, might as well be now if you are a user. Because if the vehicle doesn’t 

come back, I wasn’t to get my data anyway, it’s worth the risk. That is not true for the 
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guys who have to plan for the next trip. So you got two very different incentives around 

users and operators. That is the inter-team difficulty.” 

   An increasingly dysfunctional interpersonal dynamic can be caused by several reasons, such as 

weakening leadership, deterioration in communication, decreasing trust, groupthink and excessive 

deference to authority. The relationship between interpersonal dynamics and risk is also well 

documented in the literature. For instance, Morphew (233) found that interpersonal dynamics between 

crew members in long-duration space flight is one of the main human-related stressors that can impact 

mission safety and risk. Of closer relevance to operations in the Antarctic, Robertson (234) shared her 

account of leading a team through four months of Antarctic winter at Davis station. She highlighted the 

challenges in managing human interactions over the harsh physical conditions and recalled an incident 

over a stand-off over whether the bacon should be cooked crispy or soft. The bacon argument nearly 

derailed the $20 million Antarctic science program. 

 

5.3.5.3.2 Scenario Simulation 

   To simulate the effect of increasingly dysfunctional interpersonal dynamics on the risk of AUV loss, 

an integrator block similar to that shown in Figure 5.24 was added to replace the constant block of 

‘interpersonal dynamics’ in the FuSDRA model. The first simulation examines the effect of reducing 

interpersonal dynamics at a rate of 10% each year (On the arbitrary scale of 10). The second simulation 

analyses the same reduction, but at a higher rate of 20% each year (On an arbitrary scale of 10). Results 

of both simulations are shown in Figure 5.29, with the main difference to the risk of AUV loss highlighted 

in the circle and further shown in Figure 5.30.  

 

Figure 5.29: Minimal impact on ‘risk of AUV loss’ with the reduction of ‘interpersonal dynamics’, as 

compared to the base scenario.  
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Figure 5.30: Impact on ‘risk of AUV loss’ with an annual reduction in ‘interpersonal dynamics’, as 

compared to the base scenario (dotted). A: 10% annual reduction. B: 20% annual reduction. 

 

   When compared to the base scenario, reduction in interpersonal dynamics increases risk of loss by 

causing a higher stress level leading to an increase in likelihood of human error. However, both 

simulations appear to increase the risk of loss minimally, of less than 0.015. Additionally, the difference 

in risk of AUV loss was observed only after 6 years into the AUV program. This result is unexpected but 

not surprising. In the FuSDRA model, the level of interpersonal dynamics influences the stress level of 

the AUV team directly, which is one of the risk factor influencing risk perception of the AUV team. The 

other two risk factors identified as having influence over risk perception are the average experience of 

the AUV team and comprehensiveness of insurance coverage. As compared to stress level, the 

experience of the team and comprehensiveness of insurance coverage presents more immediate and 

quantifiable concerns. Stress itself is a complex and subjective phenomenon which is highly dependent 

on individual’s perception (235). Therefore, it is not surprising that during elicitation of fuzzy rules, a 

relatively lower emphasis was given to stress level of the AUV team as compared to the average 

experience of the AUV team and comprehensiveness of insurance coverage. As a result, any 

fluctuations in the level of interpersonal dynamics would have produced minimal impact on the risk of 

AUV loss. Although a greater emphasis on stress level of the AUV team will produce a different set of 

simulation results, it is difficult to ascertain the exact weightage without further quantitative studies, such 

as using the Hassles Scale (236) or the Perceived Stress Scale (237). 
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5.3.5.3.3 Recommendations 

   Despite the simulation results, the importance of interpersonal dynamics should not be 

underestimated. Therefore, it is recommended to further investigate the impact of changing 

interpersonal dynamics on stress level and risk perception of the AUV team. Additionally, initiatives to 

improve interpersonal dynamics and stress awareness should still be considered. This may include 

increasing awareness through workshops, defining clear roles and responsibilities during deployment, 

and improving both inter and intra-team communications through meetings or group messaging 

systems.  

 

5.4   FuSDRA - EVALUATION 

5.4.1 Organisational Criteria 

   As highlighted in the earlier section 4.3.4, an exact set of evaluation criterion has yet to be established 

for the nupiri muka AUV program. Therefore, risk evaluation was performed using UTAS’s semi-

quantitative risk matrix (Appendix J), which was discussed earlier in Chapter 2. The base scenario of 

the FuSDRA model showed that the risk of AUV loss lies between 0.147 and 0.080. Using the evaluation 

criteria associated with UTAS’s semi-quantitative risk matrix, this falls between the likelihood scale of 

likely and possible. With the loss of the nupiri muka AUV falling under the consequence scale of <Major>, 

the overall risk level was therefore evaluated to be <Extreme>, as circled in Figure 5.31. 

 

Figure 5.31: Risk evaluation based on UTAS’s semi-quantitative risk matrix. 

 

Using the Risk Management Standard from the University of Tasmania as shown in Appendix J (148), 

any activity of extreme risk requires the senior management team for risk acceptance before it can 

proceed. In addition, the University’s audit and risk committee of council needs to be communicated on 

the requirements of the AUV program, with all risk control measures to be reviewed at least bi-annually. 

Additional control measures are also to be implemented within a year.  
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5.4.2 Policy Recommendations 

  To reduce the risk of loss for the nupiri muka AUV program, a set of effective control measures are 

required. Using simulation results from model testing and scenario analysis, a series of policy 

recommendations are suggested. These are summarised as follows: 

a) Any new AUV team members recruited during the current early phase of the AUV program 

should ideally possess 2 years of relevant experience (Figure 5.15). 

b) Establish an effective budget management system with regular review, based on Figure 5.13 

and scenario 2 (Section 5.3.4.2). This includes built in contingencies, a robust system for 

monitoring budgets and forecast of future additional funding requirements, and a robust finance 

strategy. 

c) Implement a process for reviewing and updating strategic or operational plans in response to 

changes in government support (Scenario 2, section 5.3.4.2). Additionally, diversity in funding 

base is recommended to reduce reliance on government support. This includes commercial 

contracts and establishing strong stakeholder relationships. In particular, these measures 

should be implemented in early stages of the AUV program as any reduction in government 

support has a considerable impact on the risk of loss later in the program (Figure 5.16, 5.25 

and 5.26). 

d) Improve management on the risk of obsolescence (Scenario 2, section 5.3.4.2). This includes 

a comprehensive repair and preventive maintenance program, regular review of emerging 

technological trends, a strong partnership with ISE Ltd, having a robust and clear long-range 

plan for the nupiri muka AUV program and building of a strong underwater robotics research 

program at AMC UTAS. These measures are important for later stages of the AUV program 

(>7.5 years). 

e) Provide an option for the facility manager to convert existing contractual arrangement into a 

permanent role, under the condition that the facility manager is found to be suitable for the job. 

Providing such an option to the facility manager, especially in later stages of the AUV program 

(>4 years) may improve retention and consequently, a lower risk of AUV loss.  

f) Optimize recruitment strategy in terms of desirable experience level and attracting niche talents. 

Additionally, human resource policies to improve retention and knowledge transfer should be 

implemented. These suggestions, together with an intensive training regime and practice runs 

should reduce the risk of AUV loss, as shown in Figure 4.8, 4.10, 5.14 and scenario 1 (Section 

5.3.4.1). 

g) Improve the perception of risk among the AUV team and relevant stakeholders, such as through 

enhancing training and risk communications. Such measures should be implemented in the 

early stages (<2 years) of the AUV program to increase effectiveness (Figure 5.17) 

h) Implement initiatives to improve interpersonal dynamics and stress awareness, such as 

workshops, defining clear roles and responsibilities, and improving communications. 

Additionally, further investigation on the impact of changing interpersonal dynamics is 

necessary due to the inconclusive simulation results shown in scenario 3 (Section 5.3.4.3). 
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5.5   CASE STUDY CONCLUSION 

   One of the main goals of this dissertation is to improve existing risk management of AUV operations 

in the Antarctic, to prevent, as far as reasonably practicable, loss of the AUV. This case study shows 

that application of the FuSDRA approach not only facilitates effective quantitative analysis of risk, but 

also allows for deeper qualitative understanding on the overall system of an AUV program. The risk 

analysis process itself presents an invaluable learning opportunity for both the risk analyst and the 

involved personnel. Meaningful discussions revealed insights on possible leverage points, indicators 

and decision rules to better manage the risk of AUV loss. In this chapter, the FuSDRA approach was 

applied to the nupiri muka AUV program, with the following demonstrated:  

a) The ability to build and customise risk models using the three-stage iterative FuSDRA 

framework in accordance to context of the circumstances. 

b) The identification, modelling and evaluation of risk associated with an AUV program, with 

improved comprehensiveness of the risk analysis. 

c) The ability to account for the dynamic nature of risk factors, thus improving the understanding 

and control of time-dependent risks such as those presented in the scenario analysis. 

d) The ability to account for the complex interrelationships between risk factors within the AUV 

system, as well as the uncertainties involved in these relationships through fuzzy logic.  

e) An improvement to the analysis of risk using a combination of domain knowledge sources in 

addition to expert’s opinion.  

f) The attainment of insights from the analysis which improves mental models for better decision 

making. These insignts also helps to identify both leading indicators and leverage points for risk 

monitoring and risk control recommendations. 

g) The ability to derive and test policy recommendations for improving the control of risks in an 

Antarctic AUV program.  
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CHAPTER 6: CONTRIBUTIONS, FUTURE WORK AND CONCLUSIONS 

 

6.1   SUMMARY 

   The deployment of AUVs in the Antarctic for under-ice marine science research is a complex 

operation, involving multiple stakeholders, adverse environmental conditions and often fraught with 

logistical, financial and technical challenges. It is, therefore, indisputable that the risk of AUV loss during 

missions in the Antarctic is higher when compared to open water missions in other relatively benign 

environments. There are shortfalls to be addressed in existing risk analyses methods to reduce the risk 

of loss, such as; overcoming the chains of events perspective, improving the comprehensiveness of 

analysis and accounting for the complex dynamic interactions between risk factors. Additionally, 

complexities in risk analysis of AUV deployment is often exacerbated by imprecise or lack of data 

regarding the performance of an AUV. In this dissertation, the use of fuzzy logic, system dynamics 

and eventually, a hybrid fuzzy system dynamics approach were proposed to address these shortfalls. 

In particular, the fuzzy system dynamics framework facilitates identification of relevant risk factors, 

modelling of systemic behaviour and evaluation of the risk of AUV loss. It leverages on strengths and 

overcoming limitations of both fuzzy logic and system dynamics by accounting for the dynamic nature 

of risk, interrelationships between risk factors within the system, as well as the uncertainties of these 

relationships. The practicality of these approaches were demonstrated on the nupiri muka AUV program, 

producing a set of policy recommendations for effective risk control.  

 

6.2   CONTRIBUTIONS 

The following sections present a summary of the contributions made in this dissertation.  

6.2.1 Generic Risk Structure Associated with an AUV Program 

   A generic static risk structure associated with the risk of AUV loss was established and presented in 

Figure 3.4, improving the comprehensiveness of the risk analysis. The structure presents an overview 

of the explicit causal links between various risk factors associated with an AUV program, including 

organisational factors, performance shaping factors, AUV technicalities and external factors. The 

generic components serve as a useful guide to identify possible areas of concerns influencing the risk 

of loss, facilitating the risk analysis process to those with limited knowledge of risk analysis 

methodologies. It applies to different types of AUV deployment, augmenting established sources of 

knowledge to improve analysis of risk. The nupiri muka case study presented in Chapter 5 of this 

dissertation illustrated the usefulness of the risk structure for facilitating the elicitation process and the 

creation of complex risk models.  
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6.2.2 A Fuzzy-Based Risk Analysis Framework for AUV Operations 

   An AUV program in its early phases lacks historical data and any assessment of risk may be vague 

and ambiguous. In Chapter 2, a fuzzy-based risk analysis framework is proposed for quantifying the 

risk of AUV loss in such circumstance. The framework utilises the knowledge, prior experience of 

available subject matter experts and the widely used semi-quantitative risk assessment matrix, albeit in 

a new form. 

   The use of a fuzzy-based approach accounts for the vagueness and ambiguity of many risk variables 

which are difficult to quantify and are commonly described in natural language. The proposed 

framework also facilitates the capturing of knowledge and experience from domain experts, with the 

evaluation of risk either against a set of criteria or relatively to compare the level of risk for different 

missions. Additionally, the framework can also be applied directly in the field during a deployment to 

assess risk in response to changes in situation. An application example presented in Chapter 2 guides 

the reader through the framework and further supports the usefulness of the fuzzy-based risk analysis 

framework for future Antarctic AUV deployments. A sensitivity analysis carried out on the fuzzy risk 

model shows that the risk level of an Antarctic mission is most sensitive to ‘Time Duration Under-Ice’. 

Therefore, it acts as a good leverage point for risk control. For instance, a reduction of ‘Time Duration 

Under-Ice’ from 6 hours to 5 hours reduces the eventual risk rating for AUV loss from 11.5 to 9.9. 

 

6.2.3 A Dynamic and Systems-Based Risk Analysis Framework for AUV Operations 

   In Chapter 3, a dynamic systems-based risk analysis framework was proposed for Antarctic AUV 

operations. The framework accounts for the dynamic behaviour of systems and the complex 

interrelationships between risk factors through a system dynamics approach. The approach enables an 

inclusive and broad analysis of risks by considering other aspects of risk apart from technical 

specifications, such as human errors. It is also well suited to model empirical data about known risk 

factors, such as information gathered from historical fault logs of an AUV. Simulation results from the 

resultant risk models can be used to enhance risk controls through more effective policy 

recommendations. Additionally, the generic nature of the proposed risk analysis framework allows for 

broad application to different organisations, AUV types and usage purposes. It may also be relevant to 

other complex technological systems which are similar to the AUV. 

   An example was presented in the chapter, demonstrating the step-by-step application of the proposed 

systems-based risk analysis framework. Scenario analysis performed on the risk model resulted in the 

following recommendations: 

• To implement a regular training regime and practice runs similar to actual operation during lull 

periods. This mitigates experience decay of the AUV team which consequently reduces the risk 

of AUV loss during actual under-ice deployment (188). In addition, utilisation rate of the AUV, 

amount of practice runs, and relevant training should be monitored as leading indicators to risk 

of AUV loss. 
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• To utilise recruitment criteria on the amount of required relevant experience as a leverage point 

to control risk of AUV loss. However, considerations have to be made on the effects of team 

dynamics and the amount of available resources. 

• To determine an optimal risk tolerance level for deployment of AUV. While it is illogical to take 

blind risks in the deployment of AUV, being excessively risk-averse may, ironically exacerbate 

the risk of AUV loss. 

Although the policy recommendations may seem intuitive, they demonstrate how the proposed 

framework could be pragmatically useful for risk analysis of more complex issues for future AUV 

programs. 

 

6.2.4 A Hybrid Fuzzy System Dynamics Risk Analysis (FuSDRA) Framework for AUV Operations 

   The effective management of the risk of AUV loss in the Antarctic is a challenge characterised with 

dynamic, fuzzy risk factors and their complex interrelationships. Therefore, the formulation of risk control 

policies requires an analysis tool which addresses both the dynamic and fuzzy characteristics of the 

problem. The main contribution of this dissertation is the development of such a tool, a risk analysis 

methodological framework based on the integration of system dynamics and fuzzy logic. Leveraging on 

the strengths of both fuzzy logic and system dynamics, the proposed approach addresses shortfalls of 

existing risk anaysis approaches to reveal a set of systemic behaviours influencing the risk of AUV loss. 

The use of fuzzy logic allows human perceptions to be incorporated in the system dynamics models, 

offering robust human judgements useful in situations where historical data may be imprecise or lacking. 

In summary, the contributions arising from the FuSDRA framework include: 

a) Providing a systematic and structured approach for risk analysis of AUV operations, facilitating 

the building and customizing of risk models in accordance with the context of circumstances. 

b) Improving the comprehensiveness of the analysis by incorporating risk factors associated with 

various dimensions of an AUV program 

c) Accounting for the dynamic nature of risk, improving the ability to understand and control time-

dependent risks. 

d) Allowing for the use of linguistic variables instead of crisp precise variables which may not 

always be possible, thus appealing to decision makers and facilitating elicitation process with 

domain experts 

e) Offering a decision support tool for decision makers to analyse various scenarios, and 

experiment with different policies to derive the most effective risk control strategies. 

f) Facilitating the identification of both leverage points and leading indicators associated with the 

risk of AUV loss, to achieve better control and monitoring of risk. 

g) Facilitating a reasonable risk modelling timeframe with the use of readily available software. 

h) Providing applications not only for deployment of AUVs in the Antarctic but also other types of 

AUV operations. Due to the generic nature of the approach, it may also be relevant to other 

complex technological systems similar to that of the AUV. 
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   The proposed FuSDRA framework is not only useful to practitioners for analysis of risk. Academically, 

it also explores further into the concepts of non-probabilistic risk modelling, which is often challenging 

in real-life problems. Therefore, FuSDRA approach provides both contribution to knowledge, as well as 

a pragmatic tool for the AUV community for better analysis of risks. An application example (Chapter 4) 

and a case study (Chapter 5) provided step-by-step guidance on the risk analysis process, which further 

demonstrates usefulness of the FuSDRA framework. 

   In the application example, scenario analysis of the risk model identified the initial average experience 

of the AUV team having an apparent impact on the risk of AUV loss throughout the entire AUV program. 

Therefore, recruitment strategy should be optimised with the consideration of other factors such as 

team dynamics and availability of resources. In addition, training regime and practice runs similar to the 

actual Antarctic operation should be implemented, as well as policies to boost morale and increase 

engagement with the AUV team to reduce turnover and ensure knowledge retention.  

   The risk model also demonstrated the importance of the ongoing AUV utilisation. Therefore, a 

sustainable and effective communication channels should be established both internally and externally 

to facilitate research collaboration. Although the simulation shows research demand having more 

influence in reducing the risk of AUV loss as compared to commercial demand, it is not practical to 

recommend using the AUV solely for pure research or commercial works. Instead, the simulation result 

suggests that priority should be given for research purposes over commercial works. The AUV owner 

should therefore constantly support and encourage its own internal use of the AUV, and build a research 

program around the AUV, such as in areas of battery capabilities or adaptive controls. 

  

6.2.5 Case Study Related Insights 

   The application of the FuSDRA framework to the nupiri muka AUV program was presented in Chapter 

5. After sufficient confidence was gained in the FuSDRA model through extensive model testing, custom 

scenarios were created and analysed through the model. The result of which, are insights that facilitates 

the formulation of risk control policy recommendations, summarised as follows: 

Policies to Implement from Early Stages of the AUV Program:  

• To institute as a requirement, that the recruitment of new AUV team members should ideally 

possess 2 years of relevant experience.  

• To establish an effective budget management system with regular review. This includes built in 

contingencies, a robust system for monitoring budgets and forecast of future additional funding 

requirements, and a robust finance strategy. 

• To establish a process for reviewing and updating strategic or operational plans in response to 

changes in government support. Additionally, diversity in funding base is recommended to 

reduce reliance on government support. This includes commercial contracts and establishing 

strong stakeholder relationships.  

• To optimize recruitment strategy in terms of desirable experience level and attracting niche 

talents at different stages of the AUV program. Additionally, human resource policies to improve 



176 

 

retention and knowledge transfer should be implemented. These suggestions, together with an 

intensive training regime and practice runs should reduce the risk of AUV loss. 

• To improve the perception of risk among the AUV team and relevant stakeholders, such as 

through enhancing training and risk communications. 

• To implement initiatives to improve interpersonal dynamics and stress awareness, such as 

workshops, defining clear roles and responsibilities, and improving communications. 

 

Policies to Implement from Middle to Late Stages of the AUV Program: 

• To Improve management on the risk of obsolescence. This includes a comprehensive repair 

and preventive maintenance program, regular review of emerging technological trends, a 

strong partnership with ISE Ltd, having a robust and clear long-range plan for the nupiri muka 

AUV program and building of a strong underwater robotics research program at AMC UTAS.  

• To provide an option for the facility manager to convert existing contractual arrangement into a 

permanent role, under the condition that the facility manager is found to be suitable for the job. 

Providing such an option to the facility manager may improve retention and consequently, a 

lower risk of AUV loss.  

   More importantly, the case study shows that application of the FuSDRA approach not only facilitates 

analysis of risk, but also allows for deeper qualitative understanding on the overall system of the AUV 

program. The risk analysis process itself presents an invaluable learning opportunity to reveal insights 

on possible leverage points, indicators and decision rules to better manage the risk of AUV loss in the 

Antarctic. 

 

6.3   FUTURE WORK 

This section presents some areas of possible future research to improve the FuSDRA framework, with 

the aim of achieving better risk control for AUV operations in the Antarctic. 

  

6.3.1 FuSDRA Software Tools 

   The proposed FuSDRA framework facilitates the risk analysis process within a reasonable modelling 

time through readily available software. However, model building requires the use of multiple software, 

namely Vensim® (204) for system dynamics modelling, MATLAB® fuzzy logic toolbox 2017 (154) for 

developing fuzzy expert systems and MATLAB® Simulink toolbox 2018 (205) to construct the final 

FuSDRA risk model. This makes application of the framework challenging for those without experience 

and knowledge of these software. The lack of an all-inclusive multifunctional software can impede the 

extensive use of the FuSDRA approach in real-world systems, regardless of how effective the proposed 

approach may be. Therefore, a commercial quality software should be developed to facilitate the three-

stage iterative FuSDRA process. The software should include a repository of generic risk factors and 

allow for easy addition of new ones to customise risk models without extensive software knowledge. 
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Furthermore, either automated or manually input tests of the FuSDRA model (Section 5.3.4) can be 

integrated into the software, to gain confidence in the developed model. Users should also be able to 

customise evaluation criteria and perform various scenario analysis with relative ease to aid decision-

making and policy formulations. Lastly, intuitive graphical user interface and clear interactive 

visualization are necessary in the software, to improve the model building process and understanding 

of the risk model. 

 

6.3.2 Improvement to Elicitation of Fuzzy Rules 

   One of the main challenges encountered in application of the FuSDRA framework lies in the elicitation 

of fuzzy rules.  First, domain experts may have incomplete and episodic knowledge from their 

experience, causing incorrect or incomplete fuzzy rule bases. Second, various experts holding different 

assumptions can result in inconsistent or conflicting opinions during the elicitation process. Last, the 

inability of the FuSDRA model to self-learn means that regular review of fuzzy rules is required to ensure 

relevance. Therefore, further research should focus on two areas. First, to improve the elicitation of 

fuzzy rules by considering varied degrees of trust in the domain experts. The use of intuitionistic fuzzy 

logic is one way of achieving this. An extension of classical fuzzy logic, it is able to deal with vagueness 

by assigning a ‘certainty degree’ on inputs, based on the level of trust on each domain expert. The 

second focus area is to explore possible means of self-learning to ensure long-term relevancy of fuzzy 

rules. This can be carried out through optimisation methods such as a genetic algorithm, neural 

networks or simulated annealing among others.  

 

6.3.3 Further Applications of the FuSDRA Approach 

   The FuSDRA framework was created based on AUV operations in the Antarctic. However, the generic 

nature of the approach will be useful to other types of AUV operations. It may also be applicable to 

managing risks of other complex technological systems similar to that of the AUV, such as the budding 

field of autonomous cars, unmanned aerial vehicles and unmanned vessels. It is anticipated that further 

research in this direction will significantly expand the repository of risk factors found to be relevant in 

other systems, providing cross-disciplinary insights which are useful for both practitioners and 

academics. 

   Another possible area of further research is to augment FuSDRA with real-world data. Empirical data, 

if available, can be used to test robustness of the developed FuSDRA models and to calibrate the 

models to improve its performance. Comparison can also be made between conventional probabilistic 

risk analysis methodologies and the proposed FuSDRA approach.   

 

6.3.4 Observations from Case Study 

   Simulation results and the ensuing policy recommendations from the case study presented in Chapter 

5 may be suggestive of similar behaviour for different types of AUV operations in the same organisation. 
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However, it may or may not reflect the issues encountered by other organisations operating an AUV 

program, regardless of vehicle characteristics. Therefore, further research is required to verify some of 

the observations made in the case study and to determine generality of the findings. Once determined, 

these generic risk components and their causal relationships can be integrated into the repository of a 

FuSDRA Software to facilitate future risk analysis process. The following section list some areas of 

potential further research arising from the case study presented in Chapter 5. 

 

6.3.4.1 Significance of Risk Perception 

   In the FuSDRA model presented in Figure 5.11, risk perception was modelled to be influenced by 

three main factors, namely the comprehensiveness of insurance coverage, experience and stress level. 

However, risk perception is a complex multidetermined phenomenon influenced by many other factors, 

such as social and cultural influences. Therefore, further research on the influence of individual’s risk 

perception on the overall risk of AUV loss will prove invaluable to improve risk control.  

 

6.3.4.2 Synergistic Effect of Poor Support and Technological Obsolescence 

   In the scenario analysis 5.3.5.2.2, simulations showed that a combination of reducing government 

support and increasing alternatives has a synergistic effect on the risk of AUV loss (Figure 5.26). 

Reducing support and technological obsolescence is a concern commonly shared by other 

organisations operating technological equipment and systems. Therefore, additional investigation to 

bolster our understanding of this synergistic effect can prove to be relevant not only within the AUV 

domain, but also in other areas. 

 

6.3.4.3 The Role of Stress Level in Risk of AUV Loss 

   In the last scenario analysis, reduction in interpersonal dynamics increases risk of loss minimally due 

to the lower emphasis given to stress level of the AUV team during elicitation of fuzzy rules. To improve 

accuracy of the risk model, further quantitative studies on stress such as using the Hassles Scale (236) 

or the Perceived Stress Scale (237) should be considered. 

 

6.3.4.4 Review and Calibration of FuSDRA Risk Models 

   With planned annual deployment to the Antarctic, there is a constant inflow of new information to the 

nupiri muka AUV program. For instance, the most recent deployment to the Sørsdal Glacier saw minor 

damage to the AUV hull due to collision with ice during manoeuvring of the AUV at the water surface. 

Such information can be used to review and calibrate existing FuSDRA risk models, such as the 

effectiveness of training in AUV manoeuvring. When carried out on a regular basis, this iterative process 

ensures relevancy and effectiveness of the risk analysis. 
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6.4 CONCLUSION 

   The methodological frameworks presented in this dissertation provided a systematic and structured 

approach to risk analysis of AUV operations in the Antarctic. One of the main contributions is the 

development of a hybrid risk analysis approach. One which leverages on the strengths and overcoming 

limitations of both fuzzy logic and system dynamics. The system dynamics aspect of the FuSDRA 

approach facilitates comprehensive risk analysis and improves the ability to understand and control 

time-dependent risks. It does so by accounting for the dynamic nature of risk and interrelationships 

between risk factors within the system. The fuzzy logic aspect of the FuSDRA approach is appealing 

with its use of linguistic variables which are easily comprehensible. Furthermore, it also accounts for 

vagueness and ambiguity due to imprecise or lack of empirical data. 

   Application of the FuSDRA framework facilitates the identification, modelling and evaluation of risk 

associated with an AUV program. The process of the risk analysis itself offers a learning opportunity, 

revealing areas of concern and possible risk control measures. Outputs from the analysis offer insights 

to improve mental models of decision makers and aid the identification of leverage points and leading 

indicators for risk control and monitoring. Furthermore, established risk models can be used as a 

decision support tool to analyse various scenarios and experiment with different policies to derive the 

most effective risk control strategies. 

   Through application on the nupiri muka AUV program, the FuSDRA approach demonstrated 

effectiveness and potential in revealing risk behaviour and possible risk control measures. Many of 

these observations would not have been possible with the use of existing risk analysis approaches. 

Therefore, the FuSDRA approach lays the foundation for a risk analysis framework to support the AUV 

community in reducing the risk of AUV loss during Antarctic deployment. The approach may also be 

relevant to other types of AUV operations or other complex technological systems similar to that of the 

AUV. Further work is proposed to enhance both the usability and ability of the FuSDRA methodology 

to solve real-world problems and to advance our understanding to the knowledge of risk analysis. 
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APPENDIX A: LIST OF ACRONYMS 

AAD Australian Antarctic Division 

AGP Antarctic Gateway Partnership 

AMC Australian Maritime College 

AMSA Australian Maritime Safety Authority 

ARC Australian Research Council 

AUD Australian Dollar 

AUV Autonomous Underwater Vehicle 

BBN Bayesian Belief Network 

CAM Consistency Aggregation Method 

CLD Causal Loop Diagram 

CM Completeness Measure 

CSIRO Commonwealth Scientific and Industrial Research 

DVL Doppler Velocity Log 

FuSDRA Fuzzy System-Dynamics Risk Analysis  

FDM Fuzzy Delphi Method 

GPS Global Positioning System 

GUI Graphical User Interface 

HEART Human Error Assessment and Reduction Technique 

IEEE Institute of Electrical and Electronics Engineers 

IMAS Institute for Marine and Antarctic Studies 

ISE International Submarine Engineering Ltd. 

ISO 0B0B0BInternational Organization for Standardization 

MATLAB 1B1B1BMatrix Laboratory Software 

MPW 2B2B2BMission Planning Workstation 

MSR Marine Science Research 

MTBF 3B3B3BMean Time Between Failure 

NASA National Aeronautics and Space Administration 

OAM Optimal Aggregation Method 

QRA Quantitative Risk Analysis 

REMUS Remote Environmental Monitoring Units 

RMP Risk Management Process 

ROV Remotely Operated Vehicles 

SAM Similarity Aggregation Method 

SCC Surface Control Computer 

SPAR-H Standardised Plan Analysis Risk – Human 

SRA Society of Risk Analysis 

STAMP Systems-Theoretic Accident Model and Processes 

TDR Time Delay Relay 
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THERP Technique for Human Error Rate Prediction 

UNCLOS The United Nations Convention on the Law of the Sea 

USBL Ultra Short Baseline System 

UTAS The University of Tasmania 

UUV Unmanned Underwater Vehicle 

VCC Vehicle Control Computer 
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APPENDIX B: COMMON RISK ANALYSIS METHODS 

 

Hazard and Operability (HAZOP) Study 

   Widely used within the chemical process industry, HAZOP study is a structured and systematic 

qualitative technique which analyses risks of processes or operations. It breaks down overall complexity 

into simpler sections to investigate potential deviations from norms. Usually carried out by a multi-

disciplinary team over a series of meetings, the study aims to uncover potential risks through the use 

of guide words.  

   Although initially developed for the chemical process industry, it has since branch out to many other 

domains such as aviation, mining and software engineering. 

 

What-If Analysis 

   What-if analysis is a structured brainstorming approach based on expert’s judgement. A series of 

questions in the form of ‘What If’ are used to determine possible deviations from operational norms, the 

likelihood and magnitude of undesired events. Once identified, these concerns can be evaluated against 

a risk acceptability level to determine the necessary follow up actions.  

   Despite being subjective and relies heavily on experience of the experts, what-if analysis offers 

simplicity and quick analysis results. Special tools are not required, and experts can participate 

meaningfully even with little risk analysis knowledge. 

 

Checklist 

   Checklist contains a detailed list of pre-defined evaluation criteria for an operator to assess status of 

the system or perform a desired action. The list, usually constructed based on historical data or expert’s 

judgment, enables identification of critical steps within a process or important component parameters. 

   In the AUV domain, checklists are often used to facilitate preventive maintenance, deployment 

logistics, pre-launch checks, in-water pre-mission checks, post mission checks and post recovery 

checks. An example of a pre/post dive checklist is presented below.  
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Bayesian Belief Network (BBN) 

   Bayesian Belief Network (BBN) is a semi-quantitative approach that uses graphical statistical model 

used to describe probabilistic dependencies between random variables. The approach conceptualises 

a model of interest as a set of interconnected nodes representing variables and the causal relationships 

between them.  

   Griffiths and Brito (97) explored the use of BBN for quantifying the probability of AUV loss during under-

ice missions. A model was established based on expert judgement on historical faults of the AUV, past 
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sea ice data, probability distributions of ice thickness and concentration, and ships of differing ice 

capabilities. The output was a probability distribution for risk of AUV loss during under-ice missions. 

This work demonstrated the use of BBN as a structured approach to manage risks of AUV deployments. 

   The deployment of AUVs, especially in the Antarctic, involves high level of uncertainties, particularly 

from the operating environment. BBNs allows these uncertainties to be addressed by incorporating data 

from different sources such as expert judgement or observations. However, feedback effects are not 

accounted for due to the acyclic property of BBNs (Barton et al, 2008). It is also a time intensive process 

due to the iterative elicitation of expert judgement. 

 

Fault Tree Analysis (FTA) 

   FTA is a top-down deductive failure analysis method which visually depicts the pathways that can 

lead to failures or undesired events. Starting from the top at a single point, it branches downwards in 

sequences of either series relationships (OR Gates) or parallel relationships (AND Gates) till it reaches 

the basic events. The structured and graphical fault tree allows for easy interpretation and 

communication, facilitating the prioritization of risks for follow up actions or creates the foundation for 

further analysis. However, FTAs may not be able to capture complex problems with multiple levels of 

causes and feedback loops. FTA can be used either qualitatively or quantitatively for risk analysis and 

has been applied in the AUV domain (103)(104). 

 

Event Tree Analysis (ETA) 

   Similar to FTA, ETA is a graphical approach which is set up left to right starting from the failure or 

undesired event. The event tree then splits at stages which are significant events that may arise during 

the event chain. The event is either true or false, and each is associated with a certain probability. At 

the end of the event tree, the consequences and the cumulative probability are listed, representing the 

risk arising from the specific hazardous event. Through ETA, design and procedural weaknesses can 

be identified. ETA was the methodology used for the assessment of possible causes leading to the loss 

of Autosub2. Through analysis, the board of inquiry established that the cause of Autosub2 loss was 

most likely to be due to a fault introduced during the manufacturing/assembly phase (32). 

 

Markov Analysis 

   Markov Analysis uses models which represents possible chains of events to forecast the activity of a 

random variable at a given point in time based on current circumstances. Markov analysis is often used 

as a decision aid for decision makers by providing probabilistic information about a situation. It is well-

suited for systems which exhibit probabilistic changes from one state to another. For instance, to predict 

the probability of failure for an equipment.  
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   In the AUV domain, Brito & Griffiths (101) demonstrated the use of Markov chains to model the 

sequential steps of an AUV deployment, from pre-launch to recovery. Based on the AUV’s historical 

performance data and experts’ judgement, the resultant model allowed the overall risk of loss for a 

deployment to be estimated. 

 

Monte Carlo Simulation (MCS) 

   MCS performs risk analysis by is widely used for generating random numbers for any factor which 

has inherent uncertainty. Carried out numerous times, the result is a probability distribution of all 

possible outcomes. This way, MCS facilitates a comprehensive risk analysis and provides decision 

makers on information about the range of possible outcomes and their probabilities of occurrence. 

Because of its advantages, MCS is used in various industries for risk analysis, from engineering, 

manufacturing, oil and gas to finance. 

   In the AUV domain, Griffiths and Brito (97) uses MCS to generate faults for inputs into a non-parametric 

Kaplan-Meier estimator to analyse probability of mission survival with distance. Xu et al. (104) 

demonstrated the use of a qualitative fault tree analysis, together with Monte Carlo simulation to handle 

the lack of data.  
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APPENDIX C: DETAILS OF STOCK AND FLOW MODEL (FIGURE 4.5) 

Table I. Formulations, definitions and initial conditions for the stock and flow diagram presented in 

Figure 4.5. 

Risk variable Definition Equation  

Allocated Annual HR 

Budget 

Amount of budget to be allocated for 

human resources in the AUV 

program. Affects recruitment, 

turnover and training. 

Function of (Third Party AUV Hire 

Contracts), (Reputation in AUV 

Operations) and (Expenditure) 

Uncertain1 

Average Experience 

of AUV Team 

Average experience of the primary 

AUV team in AUV operations. 

INTEG (Change in Experience) 

Initial value = 2 Years 

INTEG = Numerical Integration 

Baseline Aging of 

Components and 

Systems 

Aging of AUV components and 

systems which are independent of 

usage. 

0.2 years per year (For each year 

in operation) 

Change in AUV 

Effective Age 

Rate at which the effective age of the 

AUV increases. 

MAX (Baseline Aging, Relative 

Utilisation Rate) 

MAX= Maximum of two 

alternatives 

Change in 

Experience 

The amount of experience gained or 

lost due to turnover or training of 

staff. 

Function of (Allocated Annual HR 

Budget) 

Uncertain 

Change in 

Reputation 

Changes to reputation of the 

University of Tasmania in AUV 

operations. 

Function of (Research Demand) 

and (Incident Rate) 

Uncertain 

Commercial Demand Pool of potential customers hiring the 

AUV at a specific period considering 

the costs, awareness, regulations, 

geographical limitations and 

economic conditions. Utilises an 

arbitrary range of 0 – 10 where 

higher number indicates higher 

demand. 

5.0: Average commercial demand 

Designed Utilisation 

Rate 

The expected utilisation rate 

considered by the AUV manufacturer 

during design and production of the 

AUV. Measured in time spent in 

water. 

50% annually 
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Effective AUV Age Basis of remaining useful life, which 

can be less than actual calendar age 

of the AUV 

INTEG (Rate of Aging) 

Initial value = 0 

Human Error 

Incidents 

Number of recorded human error 

related incidents. 

Function of (Average Experience 

of AUV Team) 

Uncertain 

Incident Rate Overall recorded incident rate, per 

AUV year in water. 

(Human Error Incidents + 

Technical and System Faults) / 

Utilisation Rate 

Increase in Costs Increase in costs of preventive 

maintenance as AUV components 

and systems deteriorates or become 

obsolete with time. 

5% Annual Increase 

Preventive 

Maintenance Costs 

Amount of spending on routine 

preventive maintenance. 

INTEG (Increase in Costs) 

Initial value = 50,000 AUD 

Reactive 

Maintenance Costs 

Amount of spending on repairs in 

response to breakdown, fault or 

defect. 

10,000 AUD x Technical and 

System Faults 

Relative Utilisation 

Rate 

Actual utilisation rate as compared to 

designed utilisation rate. 

Utilisation Rate / Designed 

Utilisation Rate 

Research Demand Amount of internal scientific or 

engineering research requests on 

use of the AUV. Utilises an arbitrary 

range of 0 – 10 where higher number 

indicates more requests. 

5.0: Average research demand 

Reputation in AUV 

Operations 

Perceived level of reputation of the 

University of Tasmania in AUV 

operations. Utilises an arbitrary range 

of 0 – 100 where higher number 

indicates better reputation. 

INTEG (Change in Reputation) 

Initial value = 50: Average 

reputation 

Risk of AUV Loss Likelihood of losing the AUV during a 

deployment to the Antarctic. 

Function of (Incident Rate) 

Uncertain 

Technical and 

System Faults 

Number of recorded technical and 

system related faults 

Function of (Effective AUV Age) 

Uncertain 
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Third Party AUV Hire 

Contracts 

Perceived level of annual third-party 

AUV hire contracts. Utilises an 

arbitrary range of 0 – 10 where 

higher number indicates more 

contracts 

Function of (Reputation in AUV 

Operations) and (Commercial 

Demand) 

Uncertain 

Total Expenses of 

Maintenance  

Total expenditure on both preventive 

and reactive maintenance. 

Reactive Maintenance Costs + 

Preventive Maintenance Costs 

Utilisation Rate The amount of time the AUV spends 

in water in a year. 

Function of (Reputation in AUV 

Operations) 

Uncertain 

 

1 Bolded uncertain represents presence of random factors somewhere in the functional relationships 

which may not be deterministically defined at this point in time. 
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APPENDIX D: UNIVERSE OF DISCOURSE, FUZZY SETS, MEMBERSHIP 

FUNCTION AND FUZZY RULES (FIGURE 4.6) 

Table II-A. Risk factors and their associated universe of discourse, fuzzy sets and membership 

functions. 

Risk factors Universe of 

Discourse 

(Units) 

Fuzzy Sets and Membership Function 

Commercial 

Demand 

0 to 10 

(Dimensionless) 

 

Reputation in AUV 

Operations. 

0 to 100 

(Dimensionless) 

 

Third Party AUV 

Hire Contracts 

0 to 10 

(Dimensionless) 

 

Very Low  

Research Demand 0 to 10 

(Dimensionless) 

 

Incident Rate 0 to Positive 

Infinity, in 

practice usually 

ranges from 0 to 

250 

(No. of Cases / 

Year in Water) 
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Change in 

Reputation. 

-5 to 5 

(Dimensionless) 

 

 

Risk of AUV Loss 0 to 1 

(Dimensionless) 

 

AUV Effective Age 0 to 100, in 

practice usually 

ranges from 0 to 

10 (Years) 

 

Technical and 

System Faults 

0 to Positive 

Infinity, in 

practice usually 

ranges from 0 to 

20 (Cases per 

Year)  
 

Actual Utilisation 

Rate 

  

 

0 to 0.5  

(Percentage of 

time operational 

in water) 

 

Allocated HR 

Budget 

0 to Positive 

Infinity, in 

practice usually 

ranges from 

100,000 to 

800,000 (AUD)   
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Change in 

Experience 

-1.5 to 2 (Years) 

 

Average 

Experience of AUV 

Team 

0 to 50, in 

practice usually 

ranges from 0 to 

10 (Years) 

 

Human Error 

Incidents 

0 to Positive 

Infinity, in 

practice usually 

ranges from 0 to 

25 (Cases per 

Year) 
 

Total Expenses of 

Maintenance. 

0 to Positive 

Infinity, in 

practice usually 

ranges from 

50,000 to 

350,000 (AUD 

per Year) 

 

 

Table II-B. Elicited fuzzy rules. 

 

Table II-B (a). Fuzzy rules for ‘Third Party AUV Hire Contracts’ depending on ‘Commercial Demand’ 

and ‘Reputation in AUV Operations’ 

 
Commercial Demand 

Poor Average High 

Reputation in AUV 

Operations 

Notorious Very Low Low Low 

Poor Very Low Low Average 

Average Low Average High 

Good Low Average High 

Excellent Low High Very High 
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Table II-B (b). Fuzzy rules for ‘Reputation in AUV Operations’ depending on ‘Research Demand’ and 

‘Incident Rate’   

 
Research Demand 

Low Average High 

Incident Rate 

Poor Notorious Poor Average 

Average Poor Average Good 

Good Average Good Excellent 

 

 

Table II-B (c). Fuzzy rules for ‘Risk of AUV Loss’ depending on ‘Incident Rate’   

 Risk of AUV Loss 

Incident Rate 

Poor High 

Average Moderate 

Good Low 

 

 

Table II-B (d). Fuzzy rules for ‘Technical and System Faults’ depending on ‘AUV Effective Age’   

 Technical and System Faults 

AUV Effective Age 

Infancy Average 

Early Low 

Intermediate Very Low 

Late Average 

Retiring Very High 

 

 

Table II-B (e). Fuzzy rules for ‘Actual Utilisation Rate’ depending on ‘Reputation in AUV Operations’ 

 Actual Utilisation Rate 

Reputation in AUV Operations 

Notorious Minimal 

Poor Low 

Average Average 

Good High 

Excellent Extreme 
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Table II-B (f). Fuzzy rules for ‘Change in Experience’ depending on ‘Allocated Annual HR Budget’ 

 Change in Experience 

Allocated Annual HR Budget 

Very Low High Loss 

Low Loss 

Normal Minimal Impact 

High Gain 

Very High High Gain 

 

 

Table II-B (g). Fuzzy rules for ‘Human Error Incidents’ depending on ‘Average Experience of AUV 

Team’ 

 Human Error Incidents 

Average Experience of AUV Team 

Inexperienced High 

Some Experience Intermediate 

Average Experience Intermediate 

Experienced Low 

Very Experienced Excellent 
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Table II-B (h). Fuzzy rules for ‘Allocated Annual HR Budget’ depending on ‘Total Expenses of 

Maintenance’, ‘Third Party AUV Hire Contracts’ and ‘Reputation in AUV Operations’ 

Total Expenses of Maintenance = 

Low 

Third Party AUV Hire Contracts 

Very Low Low Average High 
Very 

High 

Reputation in AUV 

Operations 

Notorious Low Low Low Normal Normal 

Poor Low Low Normal Normal Normal 

Average Low Normal Normal High High 

Good Normal Normal High High 
Very 

High 

Excellent High Very High Very High 
Very 

High 

Very 

High 

 

Total Expenses of Maintenance = 

Average 

Third Party AUV Hire Contracts 

Very Low Low Average High 
Very 

High 

Reputation in AUV 

Operations 

Notorious Very Low Low Low Low Normal 

Poor Low Low Low Normal Normal 

Average Low Normal Normal Normal High 

Good Normal Normal High High High 

Excellent High High Very High 
Very 

High 

Very 

High 

 

Total Expenses of Maintenance = 

High 

Third Party AUV Hire Contracts 

Very Low Low Average High 
Very 

High 

Reputation in AUV 

Operations 

Notorious Very Low Very Low Low Low Low 

Poor Very Low Low Low Low Low 

Average Low Low Low Normal Normal 

Good Low Normal Normal Normal Normal 

Excellent Normal Normal High High 
Very 

High 
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APPENDIX E: THE ANTARCTIC GATEWAY PARTNERSHIP INITIATIVE 

 

   Funded by the Australian Research Council’s (ARC) Special Research Initiatives Scheme, the 

Antarctic Gateway Partnership (AGP) is a collaboration between the University of Tasmania (UTAS), 

centred at the Australian Maritime College (AMC); the Institute for Marine and Antarctic Studies (IMAS); 

the Australian Antarctic Division (AAD) and the Commonwealth Scientific and Industrial Research 

(CSIRO). Led by the administering organisation, UTAS, the AGP focussed on Antarctic and Southern 

Ocean research. 

   Commencing in 2014, the program provides funding of $24 million over a three years period to 

successful initiatives. Apart from enhancing Australia’s existing research efforts in the Antarctic, the 

partnership also aims to reinforce Tasmania’s place as a global leader in Antarctic and Southern Ocean 

science. In collaboration with researchers from over ten countries, research will be undertaken across 

four integrated themes of: 

1. Cryosphere-Ocean Interaction, 

2. Open Water and Under Ice Foodwebs,  

3. Solid Earth Cryosphere Interaction and; 

4. Marine Technology and Polar Environments.  

   One primary objective under the theme of <Marine Technology and Polar Environments> is to develop 

an innovative, next-generation, polar Autonomous Underwater Vehicle (AUV) to acquire high-resolution 

data under sea ice and ice shelves in the Antarctic. Central to achieving this objective lies the effective 

management of risks, which is one of the main objective of this research. 
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APPENDIX F: TECHNICAL SPECIFICATIONS OF THE NUPIRI MUKA AUV 

Principal Vehicle Data 
 

Characteristic: Specification: 

Total Vehicle Weight ~1600kg 

Displacement ~1600 kg 

Overall Length 6.25 m 

Height 1.4 m (including antennas) 

Beam 1.5 m (Including fore planes) 

Main Body Diameter 0.74 m 

Turning Radius 10 m 

Maximum Operating Depth 5000 m 

Normal Operating Speed 1.5 m/s 

Maximum Speed 2.6 m/s 
 

Navigation 

INS 

Characteristic: Specification: 

Manufacturer iXBlue 

Type Fiber Optic Gyroscope 

Model # OI PHINS 3 

DVL 

Characteristic: Specification: 

Manufacturer Teledyne RDI 

Type 300 kHz DVL 

Model # WHN300-I-UG22 

GPS Receiver 

Characteristic: Specification: 

Manufacturer Hemisphere 

Type L1 10Hz GNSS Receiver 

Model # R330 GNSS 

Obstacle Avoidance Sonar 

Characteristic: Specification: 

Manufacturer Imagenex 

Type Delta T Multibeam Sonar, 260 kHz 120° x 10° Beam 

Model # 837A-000-405 

Depth Sensor 

Characteristic: Specification: 

Manufacturer Paroscientific 

Type RS232 

Model # 8B7000-I 
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Ultra Short Baseline 

Characteristic: Specification: 

Manufacturer iXBlue 

Type OCEANO Miniature Transponder 

Model # MT862S/HD-R 

NTP Server 

Characteristic: Specification: 

Manufacturer Masterclock 

Model # GMR1000 
 

Scientific Payload 

Conductivity Temperature and Depth Sensor (CTD) 

Characteristic: Specification: 

Manufacturer Sea Bird 

Type FastCAT 

Model # SBE49 

Sidescan Sonar/Sub-Bottom Profiler 

Characteristic: Specification: 

Manufacturer EdgeTech 

Type 
ICD, Ducer, SideScan, 2205, 230-550 KHz 550Khz Bathy 
with Preamp Box, 6000M 

Model # 2205 

Energy 

Main Battery 

Characteristic: Specification: 

Manufacturer EXIDE Technologies 

Model Onyx +48V M70X48V034P 

Energy capacity per module (9 installed) 1.6 kWh 

Material Lithium Ion 

Voltage minimum per module 42 VDC 

Voltage maximum per module 54.0 VDC 

Maximum current discharge per module 20 Amp per module 

Number of modules 11 

Total energy capacity 28.8 kWh 

Communication 

Ethernet Radio 

Characteristic: Specification: 

Manufacturer Encom 

Type Ethernet Radio Modem 

Frequency 2.4 GHz ISM Band 

Model # Commpak EP-BB24NC 

Emissions Designator DSSS 
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Acoustic Modem: Communication 

Characteristic: Specification: 

Manufacturer Sercel 

Type MATS 3G 12 kHz 

 
Model # 

AUV Top: 10003037 
AUV Bottom: 10003037 

Ships Modem: 10003041 

Ethernet Deck Cable 

Characteristic: Specification: 

Manufacturer ISE Ltd. 

Type Industrial Waterproof 

Model # EL9999-001-77-01 

Length 25 m 

Satellite Modem 

Characteristic: Specification: 

Manufacturer Iridium 

Type L-Band modem data transceiver 

Model # 9522B 
 

Emergency Devices 

Strobe Light / Iridium Beacon 

Characteristic: Specification: 

Manufacturer Apollo 

Power Source 7 of “AA” size alkaline batteries 

Model # Apollo RH 

Drop Weight 

Characteristic: Specification: 

Weight 44.5 kg 

Model # EE5634-100-00-01 

Emergency Battery 

Characteristic: Specification: 

Manufacturer Magnavolt 

Model SLA12-20 (12V20AH) 

Battery Type Rechargeable Sealed Lead Acid 

Voltage per module 12VDC 

Current 20Ah 

Number of modules 2 

Total energy capacity 24 VDC 
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APPENDIX G: EXPERT ELICITATION (ETHICS APPROVAL, CONSENT FORM 

AND INTERVIEW PROTOCOL)    

 

 



200 

 

 

 



201 

 

 
 

 

Consent Form 

Risk Analysis of Autonomous Underwater Vehicle (AUV) Operations in the Antarctic 
 

First and foremost, we sincerely thank you for agreeing to take part in this research study. Your 
contribution will make a difference in ensuring the success of this research. The purpose of this consent 
form is for you to understand and agree to the terms and conditions of participation. If you agree to the 
terms and conditions, please sign at the bottom of this form and scan a copy to 

Tzuyang.Loh@utas.edu.au or pass the signed hard copy to Loh Tzu Yang. 

The purpose of this research is to understand better the systemic process risks behind an AUV program, 
which influences the risk of losing an AUV during operations in the Antarctic. Through a better 
understanding of the risks involved, we aim to design and propose recommendations for safer 
operations of AUVs in the Antarctic. 

You have been chosen because of your notable experience, knowledge or involvement in AUV 
operations. Your participation is entirely voluntary, and you have the right to stop or withdraw from the 
study at any time. By signing at the bottom of this form, you agree to the following:  

1. I agree to take part in the research study named above. 
 

2. I have read and understood the Information Sheet sent earlier to me. 
 

3. I am aware of the nature of the study and the scope of my involvement.  
 

4. I understand that this research involves an iterative modelling process and I will likely be elicited 
more than once. Each session will last no longer than one hour and for face-to-face or phone 
calls, it will be recorded. I will receive summarised transcripts to correct any factual errors. 
 

5. I understand that participation does not involve any foreseeable risk. However, I may choose 
to stop or not answer any particular question if I am uncomfortable.  
 

6. I understand that all research data will be kept in a password secured drive in a UTAS issued 
laptop and in the One drive server of UTAS. Additional password protection will be in place for 
interview data files which includes identity of participants. Data will be deleted from the drives 
five years from the publication of study results.   
 

7. Any questions that I have asked pertaining to this research have been answered to my 
satisfaction. 
 

8. I understand that the researcher(s) will maintain confidentiality and that any information I supply 
to the researcher(s) will be used only for this research. 
 

9. I understand that the results of the study will be published in academic publications or other 
academic outlets. However, I will be anonymised and care will be taken so that I cannot be 
identified as a participant.  

 
10. I understand that the final results of the study will be made available on a website with links 

sent to me. I can choose to access these results if I wish to. 
 

11. I understand that my participation is voluntary and that I may withdraw at any time without any 
adverse consequences. I may also request that any data which I have supplied to be withdrawn 
from this research. 
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Contact Information   
 
If you have any further questions or concerns about this study, please communicate with the research 
investigator:  
 
Loh Tzu Yang  

Tzuyang.Loh@utas.edu.au 

 
Alternatively, you can contact the investigator’s supervisor Prof Kiril Tenekedjiev at 

kiril.tenekedjiev@utas.edu.au 

 
Or if you have concerns or complaints about how it is being conducted, please contact the Executive 

Officer of the HREC (Tasmania) Network on +61 3 6226 6254 or email human.ethics@utas.edu.au. 

The Executive Officer is the person nominated to receive complaints from research participants. Please 
quote ethics reference number _________.” 

 

Participant’s name:  ______________________________________________________  

 

Participant’s signature: ____________________________________________________ 

 

Date:  ________________________ 

 

 

 

 

 

To be completed by investigator 

Statement by Investigator 

 

 

I have explained the project and the implications of participation in it to this volunteer. I 
believe that the consent is informed and that he/she understands the implications of 
participation. 

If the Investigator has not had an opportunity to talk to participants prior to them participating, the 
following must be ticked. 

 

The participant has received the Information Sheet where my details have been provided. 
Participants have had the opportunity to contact me prior to consenting to participate in this 
project. 

 

Investigator’s name:  ______________________________________________________ 

 

Investigator’s signature: ____________________________________________________ 

 

Date:  _______________________ 
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Elicitation Protocol/ 

Risk Analysis of Autonomous Underwater Vehicle (AUV) Operations in the Antarctic 

Introduction 

We sincerely thank you for agreeing to take part in this research study. Your participation will 

make a difference in ensuring the success of this research. Please feel free to clarify any 

questions which you may have at any point in this study.  

Background 

▪ The use of Autonomous Underwater Vehicles (AUVs) for marine science research in the 

Antarctic has grown with maturing technology and improved accessibility. With more 

prevalent use of AUVs, effective management of risks, especially the risk of losing an AUV 

during operations, becomes a key focus area for the AUV community. The loss of an AUV 

is not only financially costly due to the higher insurance premium, but it can also delay 

research projects, damage the reputation of the AUV community, cause the loss of 

valuable research data and a possibility of harming the delicate Antarctic environment. 

▪ Existing risk management approaches focus mainly on the technical dimension of the 

AUV, with much attention on immediate risks to an AUV during deployment and less on 

systemic risks. Systemic risks arise from inadequate or failed internal processes, human 

errors or external events. 

▪ The purpose of this research is to understand better the systemic process risks behind an 

AUV program, which influences the risk of losing an AUV during operations in the Antarctic. 

Time pressure, poor workforce planning, weak governance, lack of communication 

channels and poor resource planning are some examples of systemic process risks. 

Through a better understanding of the risks involved, we aim to propose risk control 

recommendations for safer operations of AUVs in the Antarctic.  

▪ Fuzzy system dynamics is the chosen modelling methodology for this research. 

Methodology 

We will elicit your perspectives on risk factors influencing the risk of AUV loss during under-ice missions 

in the Antarctic. As this research involves an iterative process, you are likely to be elicited more than 

once to assist in reviewing, fine-tuning and validating the risk models.  

Confidentiality  

We will take steps to preserve the confidentiality of your identity. Results from this study will be released 

in academic publications or other academic outlets. However, you will be anonymised, and care will be 

taken to ensure that your identity will not be revealed through any forms of information. This interview 

session will be recorded, and you will receive summarised transcript to correct any factual errors. You 

may also choose to stop or not answer any particular question if you feel uncomfortable. 
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PART 1  

Background 

1. Please describe in detail, your experience in the operations of AUVs, including duration, 

organisations, types of AUVs involved and types of deployments. Please also state the amount of 

experience in under-ice AUV operations. 

 

2. Please provide a description either in words or diagram of the organisational structure involved in 

running the AUV program in your organisation. For example, who is the AUV owner and the number of 

personnel in the AUV team? 

 

3. What are your roles, responsibilities and expertise in the above organisational structure? 

 

Risk Identification 

4. In your opinion, what are the main risk factors or scenarios influencing the risk of losing an AUV 

during under-ice mission in the Antarctic? You may wish to consider the following areas: 

 

Human Factors e.g. Operating Experience of Team 

AUV Technicalities e.g. Reliability of Components 

Organisational Factors e.g. Resource Allocation 

External Influences e.g. Insurance Coverage, Regulations, Operating Environment  

Other Risk Factors 

 

5. Based on the risk factors, please provide some recommendations to improve the survivability of 

AUVs during under-ice mission in the Antarctic. 

 

6. Please provide a description either in words or diagram of some possible causal relationships and 

the strength of these relationships between the risk factors you have stated earlier?  

 

7. What are the assumptions, if any, that you have made for the above opinions? 

 

Open Discussion 

 

8. Please share any other comments or thoughts relating to the risk of losing an AUV during under-ice 

mission in the Antarctic. 

 

 

 

-  End of Part 1  - 
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PART 2  

 

Review of Fuzzy Rule Bases and Models 

 

1. Based on earlier interviews and other information sources, causal relationships in the form of rule 

bases were established. Please review and comment on these rule bases between the identified risk 

factors. 

 

2. Please review and comment on the risk models developed partly from your earlier contribution. This 

represents our current understanding of potential issues influencing the risk of AUV loss during 

deployment in the Antarctic. Do not hesitate to let us know if you think that the model or specific parts 

of the model is wrong. 

 

3. We have established several recommendations for risk control based on the risk models. Please 

provide us with feedback on these recommendations. For example, ease of implementation of these 

measures? 

 

4. Please share any other comments or thoughts relating to the risk of losing an AUV during under-ice 

mission in the Antarctic. 

 

-  End of Part 2  - 

We have come to the end of this interview session and will like to again, thank you for your valuable 

contributions to this research study. We will be sending you the transcript shortly and be in touch with 

you. If you have any further questions or concerns about this study, please reach me at: 

 

Tzuyang.Loh@utas.edu.au 

 

Or if you have concerns or complaints about how it is being conducted, please contact the Executive 

Officer of the HREC (Tasmania) Network on +61 3 6226 6254 or email human.ethics@utas.edu.au. 

The Executive Officer is the person nominated to receive complaints from research participants. Please 

quote ethics reference number H0017392 

 

To be filled by investigator 

Interviewee: A B C D E F G H I J K

  L M N O P Q R S T U V 

 

Elicitor: Loh Tzu Yang  

Date:  ____/_____/_____ 

Time Start: ________________  Time End: _____________ 

Venue:  ________________ 

Session No.:  ___ 
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APPENDIX H: FuSDRA MODEL PARAMETERS AND FORMULATIONS (FIGURE 

5.11) 

Table III. Formulations, definitions, units and initial conditions. 

Risk factor Definition Equation 

Utilisation Sub-model 

Annual Utilisation 
Rate 

Time that the AUV is underwater over the 
time which the AUV is available to 
operate, in a year. 

Function of (Requirement 
Creep) and (Request for AUV 
Use) 
Fuzzy Logic1 

Availability of 
Alternatives 

Newer AUVs or other means of data 
collection available to scientists and other 
users of the nupiri muka. 

3.0 (Low) on an arbitrary scale 
of 0 (Very Low) – 10 (Very 
High) 

Request for AUV 
Use (Internal and 
External) 

Quantity of request received for use of the 
nupiri muka AUV. Consists of both internal 
research and external commercial 
requests at a specific period considering 
the costs, awareness, regulations, 
geographical limitations and economic 
conditions. 

Function of (Availability of 
Alternatives), (Awareness, 
Availability and Accessibility of 
AUV Solutions) and 
(Reputation/Track Record) 
Fuzzy Logic1 

Difference Between 
Expected and 
Actual Output 

Difference between expected output from 
the AUV program and actual output. 
Outputs may include income, journal 
articles, books, book chapters, conference 
publications. 

Function of (Annual Utilisation 
Rate) and (Fraction of Budget 
Approved) 
Fuzzy Logic1 

Change of 
Reputation/Track 
Record in AUV 
Operations 

Rate of change to the reputation of UTAS 
in Antarctic AUV operations. 

Function of (Annual Utilisation 
Rate) and (Average no. of High 
Impact Faults/Incidents Per 
Mission) 
Fuzzy Logic1 

Reputation/Track 
Record  

Overall perception of UTAS in Antarctic 
AUV operations, held by both internal and 
external stakeholders based on its track 
records and predicted future behavior. 

INTEG (Change in 
Reputation/Track Record in 
AUV Operations) 
Initial value = 50 

Awareness, 
Availability and 
Accessibility of AUV 
Solutions 

Level of awareness, availability and 
accessibility to the use of nupiri muka AUV 
by both internal and external stakeholders. 
This may include geographical limitations, 
cost of deployment and knowledge of AUV 
capabilities. 

1 x Government Support, On 
an arbitrary scale of 0 (Poor) – 
10 (Very High). 

Budget Sub-model 

Comprehensiveness 
of Insurance 
Coverage 

Types of situation which falls under 
insurance coverage. From relatively low 
risk to high risk situations such as damage 
or loss whilst in storage, being 
transported, open water operations, 
under-ice operations etc. 

3.0: Average-Low. on an 
arbitrary scale of 0 (Low) – 10 
(High). At time of writing, nupiri 
muka has insurance coverage 
for open water missions. 

Annual Insurance 
Premium 

The amount of money UTAS have to pay 
annually for the insurance policy on loss of 
nupiri muka. 

Annual Insurance Premium 
Fraction x AUV Replacement 
Cost 

AUV Replacement 
Cost 

The actual cost to replace the nupiri muka 
at its pre-loss condition. 

AUD$ 500,0000 

Annual Insurance 
Premium Fraction 

Fraction of replacement value for the 
nupiri muka AUV which translates into 
annual insurance premium. 
 

Function of 
(Comprehensiveness of 
Insurance Coverage) and 
(Reputation/Track Record) 
Fuzzy Logic1 
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Government 
Support 

The level of Australia’s government 
support for the nupiri muka AUV program. 
For instance, in terms of funding or 
support programs. 

8.0: High. On an arbitrary 
scale of 0 (Poor) – 10 (Very 
High). 

Annual 
Increase/Decrease 
of Other Operating 
Costs 

Increase or decrease in operating costs 
other than maintenance. 

-2.0% 

Other Operating 
Costs 

The recurring costs of operating the nupiri 
muka, such as staff cost, facility expenses, 
depreciation costs, wear and tear of the 
AUV and license or fees imposed by the 
government for deployment. 

INTEG (-0.02 x Other 
Operating Costs) 
Initial value = AUD $150,000 
 

Annual Increment of 
Maintenance Costs 

Increase in costs of maintenance and 
upgrades as AUV components and 
systems deteriorates or become obsolete 
with time. 

2.0% 

Maintenance Costs Costs of maintenance and upgrades. INTEG (0.02 x Maintenance 
Costs) 
Initial value = AUD $20,000 

Annual Budget 
Requirement 

Forecast annual budget requirement to 
operate the nupiri muka AUV program. 

Annual Insurance Premium + 
Maintenance Costs + Other 
Operating Costs 

Fraction of Budget 
Approved 

Fraction of annual budget approved by 
management for the nupiri muka AUV 
program. 

Function of (Annual Budget 
Requirement), (Government 
Support) and (Organisation’s 
Commitment to the AUV 
Program) 
Fuzzy Logic1 

Organisation’s 
Commitment to the 
AUV Program 

Management’s psychological attachment 
to the nupiri muka AUV program, which 
translates into resource allocation for the 
program. 

Function of (Annual Utilisation 
Rate) and (Calendar Age of 
AUV) 
Fuzzy Logic1 

Human Reliability Sub-model 

Change in Average 
Experience of AUV 
Team 

The amount of experience gained or lost 
due to turnover, recruitment policies or 
hands-on experience from deployments. 

Function of (Fraction of Budget 
Approved) and (Annual 
Utilisation Rate) 
Fuzzy Logic1 

Risk Perception Overall risk perception of the primary AUV 
Team, which is the subjective judgement 
the team estimates about occurrence and 
severity of a risk. 

Function of (Average 
Experience of AUV Team), 
(Comprehensiveness of 
Insurance Coverage) and 
(Stress on AUV Team) 
Fuzzy Logic1 

Rate of Requirement 
Creep 

Rate of change to the original risk 
evaluation criteria. 

Function of (Risk Perception) 
and (Difference Between 
Expected and Actual Output) 
Fuzzy Logic1 

Requirement Creep Changes to the original risk evaluation 
criteria, to undertake AUV missions of 
higher risk without accounting for 
additional risk control measures. 

INTEG (Change in 
Requirement Creep) 
Initial value = 0 
 

Average Experience 
of AUV Team 

Average experience of the primary AUV 
team in Antarctic AUV operations. 

INTEG (Change in Average 
Experience of AUV Team) 
Initial value = 1 

Interpersonal 
Dynamics 

Refers to the quality of relationships and 
interactions that the AUV team has within 
the team as well as with other 
stakeholders. 

8.0: High. On an arbitrary 
scale of 0 (Very Poor) – 10 
(Very High). 
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Stress on AUV 
Team 

The adverse reaction experienced by the 
AUV team due to expectations and 
responsibilities which may be greater than 
what is comfortably manageable. 

Function of (Interpersonal 
Dynamics) and (Difference 
Between Expected and Actual 
Output) 
Fuzzy Logic1 

Likelihood of 
Human Error 

The likelihood of unintentional action or 
decision which may lead to loss of the 
nupiri muka AUV in the Antarctic 

Function of (Risk Perception) 
and (Average Experience of 
AUV Team) 
Fuzzy Logic1 

Technical Reliability Sub-model 

Effective AUV Age Basis of remaining useful life, which can 
be less than actual calendar age of the 
AUV 

INTEG (Rate of Effective 
Ageing) 
Initial value = 0 

Rate of Calendar 
Ageing 

Rate of increase in the chronological age 
of the nupiri muka AUV. 

1.0 

Calendar Age of 
AUV 

The actual age of the AUV. INTEG (1) 
Initial value = 0 

Rate of Effective 
Ageing 

Rate at which the effective age of the AUV 
increases. 

Function of (Quality 
Maintenance and Repair) and 
(Annual Utilisation Rate) 
Fuzzy Logic1 

Reliability of AUV The ability of the nupiri muka AUV to 
operate without technical faults for a 
stipulated period. 

Function of (Effective AUV 
Age) 
Fuzzy Logic1 
 

Quality Maintenance 
and Repair 

The level of high quality maintenance and 
repair which includes both reactive and 
preventive maintenance of the AUV 

Function of (Average 
Experience of AUV Team) and 
(Fraction of Budget Approved) 
Fuzzy Logic1 

Risk of Loss 

Risk of AUV Loss in 
the Antarctic 

Likelihood of losing the nupiri muka AUV 
during a deployment to the Antarctic. 

Function of (Likelihood of 
Human Error) and (Reliability of 
AUV) 
Fuzzy Logic1 

Average Number of 
Faults/Incidents per 
Mission 

Average number of high impact faults and 
incidents encountered per mission. High 
impact faults could potentially lead to the 
loss of the AUV, such as major pressure 
vessel leak or battery short circuit. 
Incidents include both near-misses and 
accidents such as collision with vessel. 

0.089 x Risk of AUV Loss. 
(Using the risk study on 
Autosub (6) as the reference) 

 

1 Represents the likely presence of random factors in the functional relationships which may not be 

deterministically defined at this point in time. Causal relationships are therefore modelled with fuzzy 

logic, with inputs from domain experts in the form of fuzzy rule bases. 
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APPENDIX I: UNIVERSE OF DISCOURSE, FUZZY SETS, MEMBERSHIP 

FUNCTION AND FUZZY RULES (FIGURE 5.11) 

Table IV-A. Risk factors and their associated universe of discourse, fuzzy sets and membership 

functions. 

Risk factors (In 
alphabetical order) 

Universe of 
Discourse 

(Units) 

Fuzzy Sets and Membership Function 

Annual Budget 
Requirement 

0 to Positive 
Infinity, 
expected to 
range from 
$200,000 to 
$1,500,000 
(AUD per Year) 

 
Annual Insurance Premium 
Fraction 

0 to 1.0, 

expected to 

range from 0 to 

0.5 (Fraction of 

replacement 

value per Year) 

  
Annual Utilisation Rate 0 to 1.0, 

expected to 
range from 0 to 
0.5 (Fraction of 
available time 
per Year) 

 
Availability of Alternatives 0 to 10 

(Dimensionless) 

 
Average Experience of 
AUV Team 

0 to 50, 
expected to 
range from 0 to 
20 (Years) 

 
Average Number of 
Faults/Incidents per 
Mission 

0 to Positive 
Infinity, 
expected to 
range from 0 to 
0.05 
(Cases/Mission) 
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Awareness, Availability and 
Accessibility of AUV 
Solutions 

0 to 10 
(Dimensionless) 

 
Calendar Age of AUV 0 to Positive 

Infinity, 
expected to 
range from 0 to 
20 (Years) 

 
Change in Average 
Experience of AUV Team 

Negative Infinity 
to Positive 
Infinity, 
expected to 
range from -2.0 
to 2.0 (Years 
per year) 

 
Change in 
Reputation/Track Record in 
AUV Operations 

-20 to 20 
(Dimensionless 
per year) 

 
Comprehensiveness of 
Insurance Coverage 

0 to 10 
(Dimensionless) 

 
Difference Between 
Expected and Actual 
Output 

0 to 10 
(Dimensionless) 

 
Effective AUV Age 0 to Positive 

Infinity, 
expected to 
range from 0 to 
20 (Years) 
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Fraction of Budget 
Approved 

0 to 1.0, 
(Fraction of 
Requested 
Budget) 

 
Government Support 0 to 10 

(Dimensionless) 

 
Interpersonal Dynamics 0 to 10 

(Dimensionless) 

 
Likelihood of Human Error 0 to 1.0, 

expected to 
range from 0 to 
0.5 (Likelihood 
of human error) 

 
Organisation’s Commitment 
to the AUV Program 

0 to 10 
(Dimensionless) 

 
Quality Maintenance and 
Repair 

0 to 10 
(Dimensionless) 

 
Rate of Effective Ageing 0 to Positive 

Infinity, 
expected to 
range from 0 to 
2 (Years per 
year) 
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Rate of Requirement Creep 0 to 1.0 
(Dimensionless) 

 
Reliability of AUV 0 to 1.0, 

expected to 
range from 0 to 
0.5 (Probability 
of hardware 
failure) 

 
Reputation/Track Record -200 to 200, 

expected to 
range from -100 
to 100 
(Dimensionless) 

 
Request for AUV Use 
(Internal and External) 

0 to 10 
(Dimensionless) 

 
Requirement Creep 0 to 10 

(Dimensionless) 

 
Risk of AUV Loss in the 
Antarctic 

0 to 1.0, 
expected to 
range from 0 to 
0.5 (Probability 
of loss) 

 
Risk Perception 0 to 10 

(Dimensionless) 
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Stress on AUV Team 0 to 10 
(Dimensionless) 

 
 

 

Table IV-B. Elicited fuzzy rules. 

 

Table IV-B (a). Fuzzy rules for ‘Risk Perception’ depending on ‘Average Experience of AUV Team’, 

‘Comprehensiveness of Insurance Coverage’ and ‘Stress on AUV Team’. 

Comprehensiveness 
of Insurance 

Coverage = Low 

Average Experience of AUV Team 

Inexperience 
Some 

Experience 
Experienced 

Very 
Experienced 

Expert 

Stress on 
AUV 
Team 

Very Low Average Average High Very High Very High 

Low Poor Average High High Very High 

Average Poor Poor Average High Very High 

High Poor Poor Average High Very High 

Very High Very Poor Very Poor Poor Average High 

 

Comprehensiveness 
of Insurance 

Coverage = Average 

Average Experience of AUV Team 

Inexperience 
Some 

Experience 
Experienced 

Very 
Experienced 

Expert 

Stress on 
AUV 
Team 

Very Low Poor Average High High Very High 

Low Poor Poor Average High Very High 

Average Poor Poor Average High Very High 

High Very Poor Poor Average Average Very High 

Very High Very Poor Very Poor Poor Average High 

 

Comprehensiveness 
of Insurance 

Coverage = High 

Average Experience of AUV Team 

Inexperience 
Some 

Experience 
Experienced 

Very 
Experienced 

Expert 

Stress on 
AUV 
Team 

Very Low Poor Poor Average High Very High 

Low Poor Poor Average High Very High 

Average Very Poor Poor Poor Average Very High 

High Very Poor Very Poor Poor Average High 

Very High Very Poor Very Poor Very Poor Poor High 
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Table IV-B (b). Fuzzy rules for ‘Annual Utilisation Rate’ depending on ‘Requirement Creep’ and 

‘Requests for AUV use (Internal and External)’. 

 Request for AUV Use (Internal and External) 

Very Low Low Average High Very High 

Requirement 
Creep 

Very Low Very Low Low Average Average Average 

Low Very Low Low Average Average High 

Average Very Low Low Average High High 

High Very Low Low Average High  Very High 

Very High Very Low Low Average High  Very High 

 

Table IV-B (c). Fuzzy rules for ‘Rate of Requirement Creep’ depending on ‘Risk Perception’ and 

‘Difference Between Expected and Actual Output’. 

 Risk Perception 

Very Poor Poor Average High Very High 

Difference 
Between 

Expected and 
Actual Output 

Very Low Average Low Low Very Low Very Low 

Low Average Average Low Low Very Low 

Average High Average Average Low Very Low 

High Very High High High Average Low 

Very High Very High Very High Very High High Average 
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Table IV-B (d). Fuzzy rules for ‘Request for AUV Use (Internal and External)’ depending on ‘Availability 

of Alternatives’, ‘Awareness, Availability and Accessibility of AUV Solutions’ and ‘Reputation/Track 

Record’. 

Availability of 
Alternatives = Very Low 

Awareness, Availability and Accessibility of AUV Solutions 

Very Low Low Average High 
Very 
High 

Reputation/
Track 

Record  

Notorious Low Low Average Average Average 

Poor Low Average Average High High 

Average Average Average High High Very High 

Good Average High High Very High Very High 

Excellent High High Very High Very High Very High 

 

Availability of 
Alternatives = Low 

Awareness, Availability and Accessibility of AUV Solutions 

Very Low Low Average High 
Very 
High 

Reputation/
Track 

Record  

Notorious Very Low Very Low Low Low Low 

Poor Low Low Average Average Average 

Average Low Low Average High High 

Good Low Average High High Very High 

Excellent Low Average High Very High Very High 

 

Availability of 
Alternatives = Average 

Awareness, Availability and Accessibility of AUV Solutions 

Very Low Low Average High 
Very 
High 

Reputation/
Track 

Record 

Notorious Very Low Low Low Low Low 

Poor Very Low Low Low Average Average 

Average Low Low Average Average High 

Good Low Average Average High High 

Excellent Low Average High High Very High 

 

Availability of 
Alternatives = High 

Awareness, Availability and Accessibility of AUV Solutions 

Very Low Low Average High 
Very 
High 

Reputation/
Track 

Record 

Notorious Very Low Very Low Very Low Low Low 

Poor Very Low Very Low Low Low Average 

Average Very Low Low Low Average Average 

Good Low Low Low Average High 

Excellent Low Low Average High High 

 

Availability of 
Alternatives = Very High 

Awareness, Availability and Accessibility of AUV Solutions 

Very Low Low Average High 
Very 
High 

Reputation/
Track 

Record 

Notorious Very Low Very Low Very Low Very Low Low 

Poor Very Low Very Low Very Low Low Low 

Average Very Low Very Low Low Low Average 

Good Very Low Low Low Low Average 

Excellent Low Low Low Average Average 
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Table IV-B (e). Fuzzy rules for ‘Difference Between Expected and Actual Output’ depending on ‘Annual 

Utilisation Rate’ and ‘Fraction of Budget Approved’. 

 Annual Utilisation Rate 

Very Low Low Average High Very High 

Fraction of 
Budget 

Approved 

Very Low Average Low Very Low Very Low Very Low 

Low Average Average Low Very Low Very Low 

Average High Average Low Low Very Low 

High High High Average Average Low 

Very High Very High High High High Average 

 

Table IV-B (f). Fuzzy rules for ‘Organisation’s Commitment to the AUV Program’ depending on 

‘Calendar Age of AUV’ and ‘Annual Utilisation Rate’. 

 Annual Utilisation Rate 

Very Low Low Average High Very High 

Calendar 
Age of AUV 

Infancy Very High Very High Very High Very High Very High 

Early Average High High Very High Very High 

Intermediate Low Average Average High Very High 

Retiring Very Low Very Low Low Average Average 

 

Table IV-B (g). Fuzzy rules for ‘Annual Insurance Premium Fraction’ depending on 

‘Comprehensiveness of Insurance Coverage’ and ‘Reputation/Track Record in AUV Operation’. 

 Reputation/Track Record 

Notorious Poor Average Good Excellent 

Comprehen-
siveness of 
Insurance 
Coverage 

Low High Reasonable Reasonable Low Low 

Average Very High High Reasonable Reasonable Low 

High Very High Very High High Reasonable Reasonable 

 

Table IV-B (h). Fuzzy rules for ‘Change in Reputation/Track Record in AUV Operations’ depending on 

‘Annual Utilisation Rate’ and ‘Average No. of High Impact Faults/Incidents per Mission’. 

 Annual Utilisation Rate 

Very Low Low Average High Very High 

Average No. of 
High Impact 

Faults/Incidents 
per Mission 

Very Low Average Good Good Excellent Excellent 

Low Poor Average Good Good Excellent 

Average Poor Poor Average Average Good 

High Notorious Poor Poor Poor Average 

Very High Notorious Notorious Notorious Poor Poor 
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Table IV-B (i). Fuzzy rules for ‘Fraction of Budget Approved’ depending on ‘Annual Budget Requirement’, 

‘Organisation’s Commitment to the AUV Program’ and ‘Government Support’. 

Government Support = 
Very Low 

Annual Budget Requirement 

Very Low Low Average High Very High 

Organisation’s 
Commitment 
to the AUV 
Program 

Very Low Low Very Low Very Low Very Low Very Low 

Low Low Low Low Very Low Very Low 

Average Average Average Low Low Very Low 

High Average Average Average Average Low 

Very High High High High High Average 

 

Government Support = 
Low 

Annual Budget Requirement 

Very Low Low Average High Very High 

Organisation’s 
Commitment 
to the AUV 
Program 

Very Low Low Low Very Low Very Low Very Low 

Low Average Low Low Very Low Very Low 

Average Average Average Average Average Low 

High High Average Average Average Average 

Very High High High High High Average 

 

Government Support = 
Average 

Annual Budget Requirement 

Very Low Low Average High Very High 

Organisation’s 
Commitment 
to the AUV 
Program 

Very Low Average Low Very Low Very Low Very Low 

Low Average Low Low Low Very Low 

Average High Average Average Average Low 

High High High High Average Average 

Very High Very High Very High High High High 

 

Government Support = 
High 

Annual Budget Requirement 

Very Low Low Average High Very High 

Organisation’s 
Commitment 
to the AUV 
Program 

Very Low High Average Low Low Very Low 

Low High Average Average Average Low 

Average High High High Average Average 

High Very High High High High Average 

Very High Very High Very High Very High High High 

 

Government Support = 
Very High 

Annual Budget Requirement 

Very Low Low Average High Very High 

Organisation’s 
Commitment 
to the AUV 
Program 

Very Low High High Average Average Low 

Low Very High High High Average Low 

Average Very High High High Average Average 

High Very High Very High Very High High Average 

Very High Very High Very High Very High High High 
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Table IV-B (j). Fuzzy rules for ‘Change in Average Experience of AUV Team’ depending on ‘Annual 

Utilisation Rate’ and ‘Fraction of Budget Approved’. 

 Annual Utilisation Rate 

Very Low Low Average High Very High 

Fraction of 
Budget 

Approved 

Very Low High Loss High Loss Loss 
Minimal 
Change 

Gain 

Low High Loss Loss 
Minimal 
Change 

Gain High Gain 

Average Loss Loss 
Minimal 
Change 

Gain High Gain 

High 
Minimal 
Change 

Minimal 
Change 

Gain High Gain High Gain 

Very High 
Minimal 
Change 

Gain Gain High Gain High Gain 

 

Table IV-B (k). Fuzzy rules for ‘Stress on AUV Team’ depending on ‘Interpersonal Dynamics’ and 

‘Difference Between Expected and Actual Output’. 

 Difference Between Expected and Actual Output 

Very Low Low Average High Very High 

Interpersonal 
Dynamics 

Very Poor Low Average High Very High Very High 

Poor Low Average Average High Very High 

Average Very Low Low Average High High 

High Very Low Very Low Low Average High 

Very High Very Low Very Low Low Average Average 

 

Table IV-B (l). Fuzzy rules for ‘Likelihood of Human Error’ depending on ‘Average Experience of AUV 

Team’ and ‘Risk Perception’. 

 Risk Perception 

Very Poor Poor Average High Very High 

Average 
Experience of 

AUV Team 

Inexperience Extreme High High High Average 

Some 
Experience 

Very High High High Average Low 

Experienced High Average Average Low Low 

Very 
Experienced 

Average Average Low Low Very Low 

Expert Low Low Low Very Low Very Low 
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Table IV-B (m). Fuzzy rules for ‘Quality Maintenance and Repair’ depending on ‘Average Experience 

of AUV Team’ and ‘Fraction of Budget Approved’. 

 Fraction of Budget Approved 

Very Low Low Average High Very High 

Average 
Experience of 

AUV Team 

Inexperience Very Poor Poor Poor Average Average 

Some 
Experience 

Very Poor Poor Average Average High 

Experienced Poor Average Average High High 

Very 
Experienced 

Average Average High High Very High 

Expert Average High High Very High Very High 

 

Table IV-B (n). Fuzzy rules for ‘Rate of Effective Ageing’ depending on ‘Quality Maintenance and Repair’ 

and ‘Annual Utilisation Rate’. 

 Annual Utilisation Rate 

Very Low Low Average High Very High 

Quality 
Maintenance 
and Repair 

Very Poor Average Average Fast Very Fast Very Fast 

Poor Average Average Fast  Fast Very Fast 

Average Slow Slow Average Fast  Fast 

High Very Slow Slow Average Average Fast 

Very High Very Slow Very Slow Slow Average Average 

 

Table IV-B (o). Fuzzy rules for ‘Reliability of AUV’ depending on ‘Effective AUV Age’. 

 Reliability of AUV 

Effective AUV Age 

Infancy Average 

Early Very High 

Intermediate High 

Mature Average 

Advanced Low 

Retiring Low 

Beyond Service Life Very Low 

 

Table IV-B (p). Fuzzy rules for ‘Risk of AUV Loss in the Antarctic’ depending on ‘Likelihood of Human 

Error’ and ‘Reliability of AUV’. 

 Likelihood of Human Error 

Very Low Low Average High Very High Extreme 

Reliability 
of AUV 

Extreme Moderate Major Major Catastrophic Catastrophic Catastrophic 

Very 
Low 

Moderate Moderate Major Major Catastrophic Catastrophic 

Low Minor Moderate Moderate Major Major Catastrophic 

Average Minor Minor Moderate Moderate Major Major 

High Insignificant Minor Minor Moderate Moderate Major 

Very 
High 

Insignificant Insignificant Minor Minor Moderate Moderate 
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APPENDIX J: UTAS RISK MATRIX 

 

 

LIKELIHOOD SCALE: 

Descriptor Description 

Almost certain The event is expected to occur in most circumstances /commonly repeating / occurs weekly 

Likely The event will probably occur in most circumstances / known to occur / occurs monthly 

Possible The event might occur, say yearly / has a 1 in 20 chance of occurring 

Unlikely The event could occur at some time, say once in every 10 years / say 1 in 100 chance of occurring 

Rare Event may only occur in only exceptional circumstances / less than a 1% chance of occurring 

 

Consequence 
Likelihood Insignificant Minor Moderate Major Catastrophic 

 

 
Almost Certain 

 

Mod 11 
 

High 13 
 

Ext 20 
 

Ext 23 
 

Ext 25 

 

 
Likely 

 

Mod 7 
 

High 12 
 

High 17 
 

Ext 21 
 

Ext 24 

 

 
Possible 

 

Low 4 
 

Mod 8 
 

High 16 
 

Ext 18 
 

Ext 22 

 

 
Unlikely 

 

Low 2 
 

Low 5 
 

Mod 9 
 

High 15 
 

Ext 19 

 

 
Rare 

 

Low 1 
 

Low 3 
 

Mod 6 
 

Mod 10 
 

High 14 

UNIVERSITY OF TASMANIA RISK MATRIX 
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Risk Level Authority to Accept Risk / Risk Delegation Level 
Notification / Communication 

Requirements 
Formal Recording / Reporting 

Requirements 
Inherent Risk Review and Control 

Requirements 

 
Extreme 

 
SMT 

 
Audit and Risk Committee of Council 

Mandatory to Faculty Risk Register, 
Business Cases and Project Plans 

Reviewed 6 monthly - Controls 
implemented to reduce residual risk to 

high or below within 12 months 
 

High 

Heads of School / Budget Centres 
(or Director level and above for a UTAS wide 

Corporate Governance type risk) 
or all staff on authorised Job Risk Analysis 

 
Audit and Risk Committee of Council and 

SMT 

 
Mandatory to Faculty Risk Register, 

Business Cases and Project Plans 

Reviewed 12 mthly - Include 
consideration of this risk in strategic 

and capital planning and fiscal 
strategies 

 

Moderate 
Senior Lecturer / Senior Researcher / Manager 

level 
or all staff on authorised Job Risk Analysis 

SMT 
Heads of School / Budget Centres 

(or Director level and above for a UTAS-wide 
Corporate Governance type risk) 

 
Mandatory to Faculty Risk Register, 

Business Cases and Project Plans 

Controls to be identified and actions to 
reduce residual risk opportunistically 

pursued 

 
Low 

 
All staff 

Heads of School / Budget Centres 
(or Director level and above for a UTAS-wide 

Corporate Governance type risk) 

 
Included in Risk Register 

 
No 

 

Incident / Event / 
Consequence Level 

Authority to sign off incident report, accept 
investigation report and sign off both response 

and preventive action 

Notification / Communication 
Requirements 

Formal Recording / Reporting 
Requirements 

 
Investigation Requirements 

Catastrophic Audit and Risk Committee of Council 
Audit and Risk Committee of Council and 

SMT 
Yes - mandatory 

Formal - including detailed root cause 
analysis 

Major VC 
Audit and Risk Committee of Council 

SMT 
Yes - mandatory 

Formal - including detailed root cause 
analysis 

Moderate SMT 
Audit and Risk Committee of Council 

SMT 
Yes - mandatory 

Formal - include identification of 
preventive follow up actions 

 
Minor 

Heads of School / Budget Centres 
(or Director level and above for a UTAS-wide 

Corporate Governance type risk) 

 
Faculty Dean / Executive Director 

 
Yes - mandatory 

Formal - include identification of 
preventive follow-up actions 

 
Insignificant 

All staff 
(or Manager level and above for a UTAS-wide 

Corporate Governance type risk) 

Heads of School / Budget Centres 
(or Director level and above for a UTAS-wide 

Corporate Governance type risk) 

 
Yes - mandatory 

 
Informal 
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Consequence Scale 

D
e

sc
ri

p
to

r 

 Description 

Financial, Legal, Commercial HR, OHS 
Service Quality, Operations, 

Business Interruption and 
Infrastructure 

Political, Reputation 
and Image 

Environmental and 
Community 

Project 

In
si

gn
if

ic
an

t 

Up to $5000 for Faculties, Institutes, 
Schools, Centres, Divisions & Sections (Up 
to $500K for a UTAS wide corporate 
governance risk) 
or 0.5% of budget 
Unlikely to result in adverse regulatory 
response or action. 

Injury report 
and/or first aid 
only, and/ or 
may include 
substantial stress 
event reducing 
work 
effectiveness 
without lost time 

An event the impact of which can easily be 
absorbed through normal activity. 
Repeat theme complaints at a school level and / or 
one or more registered formal complaints. 
Up to 10 recommendations from accreditation / 
licensing body. 
Loss of <1 days lectures or research or other 
operational activity or work from such activity. 
Negligible impact business interruption, brief loss of 
service. 

Issue resolved promptly by 
day to day management 
processes/Little or no 
stakeholder interest 

Brief pollution - no discernable 
impact or measurable impairment - 
for example, not exceeding 
published guideline values for 
"normal" or "background" levels. 
Internally reported. Environmental 
liability or remediation cost < 
$A5,000. 

Small potential for cost impacts - 0.5% of 
budget, no time impact, no quality impact. 
There may issues that impact on the ability 
of the University to fully operate services or 
activities proposed for the building at time 
of delivery 

M
in

o
r 

$5,001 to $50,000 for Faculties, Institutes, 
Schools, Centres, Divisions & Sections, ($.5m 
to $2.5m for a UTAS wide corporate 
governance risk) 
or 0.5-1% of budget 
Minor non - compliances & breaches of Acts, 
regulations or consent conditions. Not likely 
to result in regulatory action, may result in 
infringement notice. Incident reportable to 
regulatory authorities. 

Medical 
Treatment Injury 
and/ or 
may include 
substantial stress 
event requiring 
professional 
clinical support 

An event, the consequences of which can be 
absorbed but management effort is required to 
minimise impact. Minor delivery delays. 
Service issue causing / contributing to loss of up to 10 
EFSLs or loss of research  or consultancy project < 
$10,000 

Up to 2 non-compliance recommendations but 
accreditation 
/ license not immediately threatened. 
Loss of 1-5 days lectures or research or other 
operational activity or work from such activity 
Local interruption only, service loss for minimum period 

Issue raised by students 
and/or local press/ Minor, 
adverse local public or 
media attention & 
complaints. Reputation is 
adversely affected with a 
small number of affected 
people 

Transient harm - Minor effects on 
biological or physical environment. 
Minor short- medium term damage 
to a localised area or that ceases 
once the event is over. 
Environmental liability or 
remediation cost $A5,000 - 50,000. 

Small potential for cost impacts - 0.5- 1% of 
budget, no time impact, no quality impact. 
There may issues that impact on the ability 
of the University to fully operate services or 
activities proposed for the building at time 
of delivery 

M
o

d
e

ra
te

 

$50K-$0.5m for Faculties, Institutes, Schools, 
Centres, Divisions & Sections, ($2.5m to $10m 
for a UTAS wide corporate governance risk) 
or 1-5% of budget 
Serious breach of Act, regulation or 
consent conditions with potential for 
regulatory action such as issuance of a 
formal notice, a fine or prosecution. 

Hospital 
treatment injury 
less than 3 days / 
lost time / 
serious 
temporary 
disability/ minor 
permanent 
disability 

Significant event , which can be managed under 
special circumstances. 
Service issue causing / contributing to loss of 10- 100 
EFSLs,or loss of research or consultancy project ( 
$10,000 - 
$500,000). 
More than 2 non-compliance recommendations and 
/or ongoing accreditation & licensing under 
immediate threat Loss of 5 days - 6 weeks lectures 
or research or other operational activity or work 
from such activity 
Critical service interruption not back in agreed time. 

Student and or community 
concern, heavy local media 
coverage/ Criticism by 
NGOs. Reputation impacted 
with some stakeholders. 

Moderate harm- Measurable 
impairment on biological or 
physical environment but not 
affecting ecosystem function. 
Short- medium term impacts, 
where the ecosystem will recover 
quickly & without intervention. 
Environmental liability or 
remediation cost $A50,000- 
500,000. 

Medium potential for cost or time impact. 
1-5% of budget, manageable impact on 
time, cost, resources and quality. Minimal 
impact on operation of services or activities 
proposed for the building 

M
aj

o
r 

$0.5m to $5m for Faculties, Institutes, 
Schools, Centres, Divisions & Sections ($10m 
to $20m for a UTAS wide corporate 
governance risk) 
or 5-10% of budget 
Major breach of Act, regulations, or consent 
conditions that is expected to attract 
regulatory attention. Investigation 
prosecution and / or major fine possible. 

Single death/ 
longer term 
hospitalisation/ 
permanent 
disabilities 
multiple persons 

Major event that with prioritised and focused 
management will be endured. 
Service issue causing /contributing to loss of more 
than 100 EFSLs / subject viability threatened or loss of 
some research 
& consultancy clients. 
Limited accreditation of Faculty or School with 
conditions of accreditation & limitations applied. 
Loss of 6 -13 weeks lectures or research or other 
operational activity or work from such activity. 
Critical infrastructure service loss for < 1 month 

Embarrassment for the 
University, including adverse 
media coverage/ Significant 
adverse national media / 
public coverage/ reputation 
impacted with a significant 
number of stakeholders/ 
Breakdown in strategic & or 
business partnership 

Significant harm - Serious 
environmental effects with some 
impairment of ecosystem function 
relatively widespread medium - 
long term impacts, requiring 
remediation, where ecosystem will 
recover over time once clean up 
has been completed. 
Environmental liability or 
remediation cost $A0.5m - $A5m 

Major potential for cost or time impact. 5-
10% of budget, will impact on time, cost, 
resources or quality. Potential impact on 
multiple work streams, projects or 
stakeholders. University will need to 
operate service or activity in another 
location for an extended period of time or 
delay commencement of service or activity 
for > 3months or Practical Completion Date 
increased by > 25%. 
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C
at

as
tr

o
p

h
ic

 
Above $5m for Faculties, Institutes, 
Schools, Centres, Divisions & Sections 
(or Above $20m for a UTAS wide corporate 
governance type risk) 

or 10% of budget 
May be considered ' willful' or 'negligent' by 
regulator. Significant prosecution & fines 
likely. May result in significant litigation, 
including class actions. May jeopardise 
future approvals, registration, licensing & 
funding. 

Multiple 
deaths/ 
permanent 
disability 5 plus 
persons 

Extreme event with potential to lead to failure of 
most objectives or collapse of part of the 
business. 
School viability threatened by loss /lack of students or 
loss of a significant number of research or consultancy 
clients (more than 10% of budget or 5 clients). 
Non-accreditation of Faculty or School. 
Loss of 13+ weeks lectures or research or other 
operational activity or work from such activity 
Critical infrastructure service loss for > 1 month 

Reputation and standing of 
the University affected 
nationally and 
internationally/ Serious 
public or media outcry 
(International coverage)/ 
Reputation impacted with 
majority of key 
stakeholders/ Significant 
breakdown in strategic & or 
business partnerships 

Long term harm - Very serious 
environmental effects with 
significant impairment of 
ecosystem function. Long term, 
widespread effects. Remediation 
required. Environmental liability or 
remediation cost >$A5m 

Major potential for cost or time impact - 
>10% of budget. Will have an 
unmanageable impact on time, cost, 
resources and quality. Potential impact on 
multiple work streams, projects or 
stakeholders. University cannot operate 
service or activity proposed in 
new/refurbished building. Potential 
showstopper. 
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