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ABSTRACT 
 

The mechanisms and predictability of Pacific decadal climate variability (PDV) is an 

active area of research in climate science and is one of high societal importance. To date, 

most research into PDV has been focused on mechanisms and responses in the North 

Pacific. This thesis presents a comprehensive investigation, based on the development 

and application of a family of hierarchical stochastically forced models, of the 

mechanisms underpinning PDV climate predictability and that focuses on the role of the 

South Pacific Ocean and coupling to the tropics. 

First, a simple one-dimensional first-order autoregressive (AR1) model was used to 

understand the space and time variations of the South Pacific decadal oscillation (SPDO) 

– which represents the leading sea surface temperature (SST) mode in the South Pacific. 

The analysis revealed that the first Pacific-South American (PSA1) pattern is the key 

atmospheric driver of the SPDO. Further, the leading mode of integrated subsurface upper 

ocean temperature variability was shown to match expectations from the propagation of 

oceanic Rossby waves across the extratropical South Pacific, with the atmospheric PSA 

variability providing the high-frequency ‘noise’ source of the observed low-frequency 

(‘reddened’) SST SPDO response. 

Second, the stochastically forced AR1 model was generalised to higher-dimensional 

fields with the inclusion of spatial features using a linear inverse model (LIM) approach. 

The deterministic dynamics underpinning the combined tropical and South Pacific system 

was investigated, with the seasonal predictive skill of the SPDO and El Niño–Southern 

Oscillation (ENSO) quantified under the LIM framework. It was found that, although the 

oscillatory periods of ENSO and the SPDO are distinct – the former oscillating on 



Abstract 

x 
 

interannual timescales and the latter oscillating on (inter-)decadal timescales – their 

damping time scales were very similar, and their predictive skill comparable. With the 

inclusion of subsurface processes in the extratropical South Pacific, the linear predictive 

skill of both ENSO and the SPDO was found to be enhanced. Overall, the study showed 

that Pacific SST variability forecast skill from the computationally cheap LIMs was 

competitive with state-of-the-art operational seasonal forecast systems that employ 

sophisticated initialisation schemes and general circulation models, thus providing a 

useful benchmark for these operational systems. 

Third, the LIM framework was applied to gain a deeper understanding of the role of 

stochastic forcing from the atmospheric PSA variability and to determine the optimal 

structures for initialised forecasts of the tropical and South Pacific climate system and its 

variability. This analysis revealed the spatial imprint of atmospheric PSA variability 

combined with temporal stochastic forcing that acts to drive the low frequency oceanic 

SST variability across the tropical and South Pacific, and excites optimal initial 

perturbations for the prediction of ENSO and the SPDO.   

Finally, informed by the aforementioned hierarchy of stochastically forced linear reduced 

space models, the thesis culminates with an overarching framework that links the 

atmosphere to the surface and subsurface oceans across a range of time scales from 

(intra-)seasonal to (inter-)decadal. Hence, the thesis provides, for the first time, a 

mechanistic framework and integrated understanding of the drivers of large-scale South 

Pacific climate variability and predictability. 

 



 

CHAPTER 1 

 

Introduction 
 

Large-scale modes of climate variability of the atmosphere and ocean over the Pacific 

basin significantly affect the weather and climate systems around the globe (Mo and 

Ghil 1987; Mantua et al. 1997; Power et al. 1999; McPhaden et al. 2006; Di Lorenzo 

et al. 2008; Chen and Wallace 2015; Newman et al. 2016; Amaya 2019). These 

intrinsic modes of variability oscillate on a wide range of time scales from days to 

seasons, and years to decades. Due to the great volume and large heat capacity of the 

Southern Hemisphere oceans, the South Pacific Ocean provides one of the major 

sources of seasonal to interannual climate predictability, and therefore is one of high 

societal importance. 

El Niño–Southern Oscillation (ENSO; Fig. 1.1) is the dominant mode of interannual 

climate variability across the globe (McPhaden et al. 2006; 2020) arising from coupled 

air-sea interactions in the tropical Pacific Ocean. On (inter-)decadal timescales, a 

number of intrinsic modes of variability have been proposed to represent the main 

variations in the Pacific basin. For example, the Pacific decadal oscillation (PDO: 

Mantua et al. 1997; Mantua and Hare 2002) was proposed to track the leading sea 

surface temperature (SST) mode in the North Pacific Ocean (Fig. 1.1). Some studies 

(Power et al. 1999; Folland et al. 2002) then extended the PDO to the entire Pacific 

Ocean by introducing the interdecadal Pacific oscillation (IPO) with the emphasis on 

the low-frequency (~decadal) SST variations. The IPO has been shown to impact 
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global mean surface temperature trends (e.g., England et al. 2014; Trenberth 2015), 

precipitation (Hsu and Chen 2011; Dai 2013; Bo and Dai 2015) and ecosystems (Miller 

and Schneider 2000; Di Lorenzo et al. 2013). Although the Pacific-wide IPO shares a 

various range of spatiotemporal similarities with the PDO in the North Pacific, they 

are not identical. Recently, the South Pacific decadal oscillation (SPDO: Chen and 

Wallace 2015) has been proposed as the analogue of the PDO, representing the leading 

SST mode of variability in the South Pacific Ocean (Fig. 1.1). In a re-examination, 

Newman et al. (2016) refer to the PDO and SPDO respectively as the North Pacific 

and South Pacific centres of action of the Pacific-wide IPO. For consistency, in this 

thesis, we make use of Pacific decadal variability (PDV) to refer broadly to internal 

climate variability fluctuating on (inter-)decadal (> 10 years) time scales over the 

Pacific basin, such as the IPO, PDO, and the SPDO. 
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Figure1. 1 

Figure 1.1: The spatial patterns (a-c) of the PDO, ENSO, and SPDO, defined as the 

leading mode of the monthly SST anomalies [taken from Hadley SST (HadISST) 

dataset and for the period of 1870-2016] in the North Pacific, tropical Pacific, and 

South Pacific, respectively, and the corresponding spectral analysis (d-f) of the time 

series of the PDO, ENSO, and SPDO.  

 

Even a cursory reading of the literature indicates that the impacts, mechanisms and 

predictability of PDV in the North Pacific (e.g., Alexander et al. 2002; Newman et al. 

2016, and references therein) have been well-documented, and are currently active 

areas of research in climate science. In contrast, our understanding of PDV in the South 

Pacific is lacking. This in part might be mainly due to the sparse coverage of observed 
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data in the South Pacific Ocean (Rhein et al. 2013) and partly due to the fact that the 

observed variability in the South Pacific is not as high as in the North Pacific (see, for 

example, Figs. 1.1d and f). This study aims to reveal the mechanisms underpinning 

PDV with a specific focus on the South Pacific Ocean and to investigate the 

predictability of PDV in the South Pacific on a multiple range of time scales.   

 

1.1 Mechanisms of Pacific decadal variability 

 

In order to understand the dynamics of PDV, previous studies (e.g., Chen and Wallace 

2015; Liu and Di Lorenzo 2018) tend to decompose the whole Pacific region into three 

latitudinal domains, including two extratropical regions poleward of 20oN and 20oS 

(referred to as the North Pacific and South Pacific, respectively), and a broad tropical 

region between 20oS-20oN (referred to as the tropical Pacific), primarily according to 

geophysical characteristics of each domain. In the extratropical Pacific, many previous 

studies (e.g., Latif and Barnett 1994; Deser et al. 1996; Pierce et al. 2001; Fu and Qiu 

2002; Di Lorenzo et al. 2010; 2011, and references therein) investigate the dynamics 

of PDV confined to the Northern Hemisphere. It has recently been recognised that the 

PDO is not a single physical mode of variability, but instead largely represents multiple 

processes operating on a range of timescales from seasonal to (multi-)decadal (see, for 

example, Schneider and Cornuelle 2005; Newman et al. 2016). These processes 

primarily include stochastic forcing, ENSO teleconnections, and oceanic dynamics 

(summarized in Fig. 1.2). While a number of dynamical mechanisms have been 

proposed, debate still remains as to the relative importance of each mechanism and 

what is the dominant cause of the observed PDV.  
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Figure1. 2Figure 1.2: Schematic of the main processes involved in the PDO (source: Newman 

et al. 2016). The schematic shows that the PDO is not a single phenomenon, but is 

instead the result of a combination of different physical processes, including stochastic 

forcing (i.e, Aleutian Low (AL)), ENSO teleconnections via the atmospheric bridge or 

ocean coastal waves, and oceanic process (for example, oceanic Rossby waves, the 

Kuroshio and the Oyashio Extensions (KOE), and reemergence). 

 

In the extratropical South Pacific, some studies emphasize the relative roles of the 

atmosphere and ocean in contributing to the observed PDV. Shakun and Shaman (2009) 

highlight that the tropical Pacific is the dynamical origin of the South Pacific decadal 

variability. Okumura (2013) suggests that the atmospheric Pacific-South American 

(PSA: Karoly 1989; Ghil and Mo 1991; O’Kane et al. 2017) pattern is the dominant 

driver of the PDV in the South Pacific. Power and Colman (2006) stress the importance 

of oceanic Rossby waves in maintaining observed decadal variability in the South 

Pacific. Since the relative importance of these proposed mechanisms in affecting the 
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observed PDV in the South Pacific remains unclear, we adapted the dynamical 

framework originally proposed for the PDO in the North Pacific (i.e., Fig. 1.2) and 

hypothesized that the SPDO in the Southern Hemisphere also integrates multiple 

dynamics including stochastic forcing, ENSO teleconnections, and oceanic processes 

in this study.  

This thesis aims to illustrate the different roles of these mechanisms in generating 

overall SPDO variability. It is worth noting that it is not our intention to clarify the 

relative importance of each mechanism in generating South Pacific decadal variability 

since the dominant driver varies from case to case. Rather, the focus is on how the 

overall SPDO variability incorporates those different processes operating on different 

time scales and exhibits the observed spatiotemporal features. 

 

1.1.1 Stochastic forcing and stochastically forced models 

 

The idea that fast-moving atmospheric variability may act as stochastic forcing of 

observed low-frequency PDV has been extensively discussed in the literature, 

beginning with the classic studies by Hasselmann (1976) and Frankignoul and 

Hasselmann (1977). In climate science, a time series 𝑥௧  can be decomposed into a 

dynamically determined component 𝑠௧ and a stochastic component 𝜉௧, such that  

𝑥௧ ൌ 𝑠௧ ൅ 𝜉௧.                           (1.1) 

If the time evolution of 𝑠௧ is independent of the stochastic component 𝜉௧, it follows 

that the evolution of 𝑠௧ is deterministic (e.g., tides that are externally forced). In this 

thesis, the dynamically determined component 𝑠௧  largely depends on the stochastic 
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changes 𝜉௧. Such processes become deterministic when the stochastic forcing is absent. 

In this simplified scenario, Fig. 1.3 illustrates how the sea surface variability in the 

extratropical Pacific may be considered as the superposition of fast-moving 

atmospheric noise forcing and slowly varying subsurface oceanic variability. The 

addition of the atmospheric noise introduces some uncertainty and reduces the 

predictability of the surface ocean, but it does not significantly modify the period or 

phase of the surface ocean oscillations. In contrast, the subsurface variability acts as a 

potentially predictable background state, which modulates the low-frequency flavours 

of the surface variability and tends to add predictability to the surface system. 

 

 

Figure1. 3Figure 1.3: An idealised scenario showing how the SST variability is considered as 

the superposition of atmospheric variability and subsurface processes in the 

extratropical Pacific.  Noise time series (upper) is generated from random values 

satisfying a normal distribution to mimic fast-moving atmospheric variability. 

Subsurface time series (bottom) is a pure sine function to mimic the slowly varying 
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subsurface oceanic variability. The surface time series (middle) is the superposition 

of the time series from the atmosphere and subsurface ocean. 

 

Hasselmann (1976) and Frankignoul and Hasselmann (1977) first introduced the first-

order autoregressive (AR1) model to climate science, where the dynamically 

determined component 𝑠௧  linearly depends on the previous value of 𝑥௧ାఛ  (i.e., 𝑠௧ ൌ

𝛼ఛ𝑥௧, where 𝛼ఛ describes the decorrelation time scale of the variability). Now, Eq. 1.1 

can be written as 

𝑥௧ାఛ ൌ 𝛼ఛ𝑥௧ ൅ 𝜉௧，         (1.2) 

where the predictability of the evolution of 𝑥 depends on the decorrelation time scale 

𝛼ఛ. Without stochastic forcing 𝜉, the evolution of 𝑥 decays monotonically under the 

AR1 framework. 

Many previous studies applied this AR1 hypothesis to assess changes of physical 

ocean variables in response to atmospheric forcing. For example, Di Lorenzo and 

Ohman (2013) suggest that the PDO can be regarded as the integrated version of the 

atmospheric Aleutian Low (AL) in the North Pacific. By integrating this AR1 process 

twice, Di Lorenzo and Ohman (2013) further argue that cumulative responses to 

atmospheric forcing (i.e., AL) explain a large fraction of long-term state transitions in 

marine ecosystems. 

Although useful conceptually, stochastically forced one-dimensional AR1 models are 

limited by their simplicity (Newman 2007). For example, AR1 models cannot reveal 

spatial features due to there being only one spatial degree of freedom in their 

construction. In addition, the growth of the deterministic system and the corresponding 
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optimal initial conditions cannot be examined due to the time series that decays 

monotonically without stochastic forcing. This motivated the development of higher-

dimensional multivariate AR1 processes in a methodology known as principal 

oscillation pattern (POP) analysis (von Storch et al. 1995) or, alternatively, linear 

inverse modelling (LIM: Penland and Sardeshmukh 1995). As follows:  

𝐗௧ାఛ ൌ 𝜜ఛ𝐗௧ ൅ 𝛏௧.                     (1.3) 

POP/LIM approaches provide an observationally based, stochastically forced model 

where the evolution of the state vector 𝐗 can be approximated as slowly varying 

dynamical processes via a linear deterministic dynamical operator 𝜜ఛ, and the effect 

of fast processes 𝛏୲ as Gaussian white noise. 

Since the late 1980s, POP/LIM techniques have been widely used to empirically infer 

the characteristics of spatiotemporal variations and to quantify the predictive skill of a 

complex system in a high-dimensional space. POP/LIM techniques have been 

successfully applied to investigate, for example, the atmospheric Madden-Julian 

oscillation (von Storch and Xu 1990; Cavanaugh et al. 2014), ENSO (Penland and 

Magorian 1993; Penland and Matrosova 1993, 2006; Tang 1995; Gehne et al. 2014) 

and the related ENSO diversity (Newman et al. 2011; Vimont et al. 2014; Capotondi 

and Sardeshmukh 2015; Capotondi et al. 2015; Thomas et al. 2018), Atlantic 

Multidecadal Variability (Zanna 2012; Huddart et al. 2016), North Pacific decadal 

variability (Alexander et al. 2008), tropical Indo-Pacific SST (Newman et al. 2017),  

tropical and North Pacific SST (Newman 2007), Atlantic sea surface height (SSH) 

(Fraser et al. 2019), and global surface air temperature (Newman 2013). Under the 

POP/LIM framework, Newman (2007) suggested that the dynamics of the PDO could 
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be decomposed into several phenomena, each of which represents a different red noise 

spectrum with its own spatial pattern and decorrelation time scale.   

In this thesis, we apply the stochastically forced POP/LIM framework for the first time 

to investigate the tropical and South Pacific combined system with inclusion of 

subsurface processes in the extratropical South Pacific. We use this approach to 

systematically investigate the dynamics of the reduced-order system and to examine 

the seasonal to multiyear predictability of the leading modes in the tropical and South 

Pacific oceans.     

 

1.1.2 ENSO teleconnections 

 

To first order, not only does extratropical PDV act to redden the local atmospheric 

noise, but also the tropical ENSO signal. Some studies (e.g., Newman et al. 2003; 

Power and Colman 2006; Shakun and Shaman 2009) argue that the PDO and SPDO 

can be viewed as the reddening version of tropical ENSO variability under the simple 

AR1 framework. Specifically, ENSO-driven changes in the tropical Pacific affect the 

extratropical Pacific Ocean via two main pathways – an atmospheric bridge (e.g., 

Alexander 1992; Lau and Nath 1994, 1996; Alexander et al. 2002) and oceanic 

pathways (Power and Colman 2006). The atmospheric bridge links the tropical Pacific 

and extratropical Pacific through changes in, for example, the Hadley and Walker cells 

(Gill 1980; Feng and Li 2013; Adam et al. 2014; Bayr et al. 2020), atmospheric Rossby 

waves (Hoskins and Karoly 1981; Hamilton 1985; Hoskins and Ambrizzi 1993; 

Ambrizzi et al. 1995), and interactions between the mean flow and the subtropical and 

polar jet streams (Held et al. 1989; Trenberth et al. 1998; Freitas and Ambrizzi 2012; 
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Freitas et al. 2016). Previous studies (e.g., Alexander et al. 2002; Alexander and Scott 

2008) argue that when tropical ENSO variability peaks in boreal wintertime, the 

enhanced cyclonic circulation around a deepened AL over the North Pacific changes 

the surface heat fluxes, wind stress curl, and oceanic Ekman transport, after which a 

positive PDO pattern (i.e., positive PDO defined as shown in Fig. 1.1 a) tends to be 

manifest.  

In the South Pacific, some studies (e.g., Mo 2000; Mo and Paegle 2001; Cai et al. 2011) 

argue that the atmospheric PSA variability is associated with tropical ENSO and acts 

as a teleconnection mode that links the tropics to the South Pacific. For example, Mo 

and Paegle (2001) suggest that the low frequency variability of the PSA patterns is 

attributed to stationary atmospheric Rossby waves generated by large-amplitude 

tropical SST anomalies associated with ENSO. Cai et al. (2011) suggest that the PSA 

patterns occurring and radiating poleward and eastward from the central Pacific 

convective anomalies are predominantly related to ENSO variability. In contrast, 

O’Kane et al. (2017) examined the multiscale spectral features of the PSA and found 

that the majority of the PSA patterns on synoptic to intra-seasonal timescales might be 

considered as a manifestation of internal midlatitude waveguide dynamics and local 

disturbances. Renwick and Revell (1999) argue that linear atmospheric Rossby wave 

propagation provides the link between anomalous convection in the tropics and the 

occurrence of blocking over the southeast Pacific Ocean on synoptic scales. It has been 

recognised that the PSA variability on interannual timescales is closely associated with 

ENSO (e.g., Mo and Paegle 2001, and references therein). However, how PSA 

variability on synoptic to intra-seasonal timescales connects to the tropical ENSO 

variability remains unclear. 
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The oceanic pathways link the tropical Pacific to the extratropical Pacific through 

changes in, for example, thermocline conditions, Ekman transport (Alexander and 

Scott 2008), and interactions between oceanic Kelvin waves and Rossby waves (e.g., 

Power and Colman 2006). In theory, tropical wind stress variability associated with 

ENSO forces the oceanic equatorially trapped Kelvin waves that propagate eastward 

to the eastern boundary, where Kelvin waves excite coastally trapped waves along the 

eastern boundary and reflect equatorially trapped Rossby Waves. Although the former 

impacts the ocean only within about 50 km of shore (e.g., Gill 1982, Power and 

Colman 2006), they can excite oceanic Rossby waves at higher latitudes, which 

propagate westward back into the interior of the ocean and affect changes of PDV 

basin wide.  

   

1.1.3 Oceanic processes  

 

Due to the thermal inertia of the ocean, the dynamical time scale of the upper ocean is 

on the order of months and longer (e.g., Deser et al. 1996). Among all the proposed 

mechanisms, oceanic Rossby wave propagation (e.g., Gill 1982, pg. 159-175) has long 

been identified as the key driver to modulate the phase and period of the observed 

extratropical ocean PDV. Oceanic baroclinic Rossby waves primarily generated by the 

wind stress curl anomalies have been shown to have the capability of shaping the 

patterns of SST and SSH on months to multi-year time scales (e.g., White 1977; 

Chelton and Schlax 1996; Holbrook and Bindoff 1999; Capotondi and Alexander 2001; 

Fu and Qiu 2002; Capotondi et al. 2003; McGregor et al. 2004, 2007; 2008; 2009; 
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Maharaj et al. 2005; Qiu and Chen 2006; Holbrook 2010; Holbrook et al. 2011; Lyu 

et al. 2017; Chapman et al. 2020; Li et al. 2020).  

Deser et al. (1999) show that the dynamical adjustment of the extratropical ocean gyre 

circulation via westward-propagating first-order baroclinic Rossby waves to stochastic 

wind stress forcing may lead to SST variability on decadal timescales in the North 

Pacific Ocean. Qiu and Chen (2006) argue that wind driven Rossby waves play an 

important role in generating observed decadal SSH variability in the interior of South 

Pacific Ocean. Maharaj et al. (2005) found that the presence of bottom topography 

(e.g., meridional ridges) can lead to long Rossby wave refraction and dispersion, and 

therefore creates higher order Rossby wave modes which tend to enhance low-

frequency variability of the mid-latitude ocean system. Holbrook and Bindoff (1999) 

and Kessler and Gourdeau (2007) demonstrate that annual thermocline depth 

variability in the southwest interior South Pacific is related to linear wind forcing via 

baroclinic Rossby wave dynamics.  Holbrook et al. (2011) show that planetary linear 

baroclinic Rossby waves provide an important mechanism for modulating western 

boundary current transports and corresponding observed sea level variations in Sydney 

Harbour on ENSO to decadal time scales.  

Aside from the classic first-order planetary baroclinic Rossby wave theory, some 

studies highlight the nonlinear and multiscale characteristics of oceanic Rossby waves. 

For example, O’Kane et al. (2014a) show that nonlinear instabilities associated with 

baroclinically unstable Rossby waves in ocean storm tracks in the extratropical South 

Pacific are key to the multiscale properties of extratropical Rossby waves and further 

enhance decadal variability over the South Pacific. In a recent study, Travis and Qiu 

(2017) investigate the decadal variations of baroclinic instability in the South Pacific 

Subtropical Counter-current (STCC) region, where the baroclinic Rossby wave 
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dynamics break down (Qiu and Chen 2006). Travis and Qiu (2017) found that the 

decadal changes are mainly attributed to a combination of variations of vertical 

velocity shearing and stratification.  

 

1.1.4 Extratropical Pacific impacts on the tropics 

With specific focuses on how tropical ENSO variability affects the extratropical 

Pacific in Section 1.1.2, here we focus on the mechanisms by which the extratropical 

Pacific modulates ENSO events and the decadal flavours of the ENSO-related 

variability in the tropics. The extratropical influence may occur through, for example, 

the seasonal footprinting mechanism (Vimont et al. 2001, 2003; Alexander et al. 2010), 

Pacific meridional modes (PMM) and associated wind-evaporation-SST (WES) 

feedback (Chiang and Vimont 2004; Chang et al. 2007; Zhang et al. 2014; You and 

Furtado 2017; Larson et al. 2018; Liguori and Di Lorenzo 2019; Amaya 2019; Chung 

et al. 2019), oceanic Rossby waves (Capotondi and Alexander 2001; Capotondi et al. 

2003; McGregor et al. 2007, 2009), and oceanic temperature and salinity (spiciness: 

the temperature and salinity of seawater of a given density) variability (Schneider 2004; 

O’Kane et al. 2014b). 

The seasonal footprinting mechanism proposed by Vimont et al., (2001, 2003) 

established a seasonal connection between midlatitude atmospheric variability and 

tropical zonal wind stress anomalies associated with ENSO variability. They argue 

that atmospheric fluctuations in the midlatitude Pacific create an anomalous SST 

“footprint” in boreal spring via changes in surface heat flux, which then persists 

through boreal summer, and sustains sea level pressure (SLP) and wind stress 

anomalies that are effective initiators of ENSO events. Vimont et al. (2003) suggest 
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that the seasonal footprinting mechanism might be less effective in linking the 

atmospheric variability in the South Pacific to tropical variability in comparison to that 

between the North Pacific and tropics. However, Ding et al. (2015) argue that the PSA-

forced SST footprint variability in the South Pacific still plays an important role in 

forcing the observed tropical ENSO variability. 

Recent growing evidence suggests that PMMs (see the recent review paper by Amaya 

2019) in the North Pacific [referred to as the North PMM (NPMM: Chiang and Vimont 

2004; Di Lorenzo et al. 2015)] and South Pacific [referred to as the South PMM 

(SPMM: Zhang et al. 2014)] play a role in triggering/modulating ENSO evolutions 

and ENSO diversity. As illustrated in Fig. 1.4, atmospheric North Pacific oscillation-

induced modulations of the trade winds can lead to SST anomalies in the extratropical 

North Pacific that propagate south-westward via a WES mechanism (Xie and 

Philander 1994; Xie 1999) which can initiate an ENSO event as they reach the equator 

(Chiang and Vimont, 2004; Chang et al., 2007). A similar mechanism has been 

identified in the South Pacific via an SPMM-WES feedback (see, for example, Zhang 

et al. 2014; You and Furtado 2017). Liguori and Di Lorenzo (2019) and Chung et al. 

(2019) compared the relative role of the NPMM and SPMM in affecting tropical 

ENSO variability. They found that the absence of the SPMM significantly reduces 

tropical PDV by 30%, while the NPMM significantly affects tropical ENSO variability 

on interannual timescales. 
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Figure1. 4 

Figure 1.4: A schematic of the interactions between tropical and extratropical Pacific. 

(Source: Di Lorenzo et al. 2015) 

 

Aside from atmosphere – ocean interactions, many previous studies highlight the 

importance of interior ocean dynamics in affecting the tropical ENSO variability. Gu 

and Philander (1997) argue that exchanges between extratropical and tropical water 

masses through thermocline ventilation can modulate the decadal flavours in the depth 

of the thermocline in the equatorial Pacific, which in turn can cause changes in tropical 

SST and a modulation of ENSO variability. Giese et al. (2002) suggest that warm 

spiciness anomalies in the tropical South Pacific Ocean propagating towards the 

equator are amplified by air–sea interactions and account for the observed tropical 

climate regime shift to warmer conditions in 1976/77. O’Kane et al. (2014b) further 

show that South Pacific ocean spiciness anomalies have a considerable impact on the 

decadal climate shift to a regime favouring strong El Niño events in the late 1970s. 
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Although we did not attempt to address the origins of the tropical ENSO variability in 

this thesis, and it is nevertheless correct that individual ENSO events and decadal 

flavours of ENSO differ substantially in triggers, drivers, amplitudes, spatial patterns, 

and temporal evolutions, the influence from the extratropical Pacific should be 

included when considering the contribution that affects the tropical ENSO variability 

(e.g., Boschat et al. 2013; Ding et al. 2014; Min et al. 2017). 

 

1.2 Predictability of the Pacific decadal variability and ENSO 

 

Owing to societal needs and economic benefits, seasonal to decadal climate predictions 

are emerging as one of the hot research areas in climate science (Goddard et al. 2001; 

Meehl et al. 2009, Kushnir et al 2019). Climate predictions can be made using 

numerical tools and statistical methods. The former typically proceed by integrating 

the governing equations forward in time from observational-based initial conditions 

(e.g., Meehl et al. 2016). The latter relate current to future conditions using statistical 

relationships estimated from past system behaviour (e.g., Alexander et al. 2008; 

Newman et al. 2011). Generally, numerical methods are used to solve the governing 

equations on a discrete grid at particular resolutions, and the physical processes that 

occur on the sub-grid scales or within time intervals need to be represented by 

parameterizations. Such approximations suggest that even if a perfect initial condition 

could be provided to initialize the equations, errors associated with, for example, 

model discretization, and parameterization, in climate predictions are inevitable 

(Bengtsson et al. 2019). On the other hand, statistical predictions are relatively easy 

and computationally cheap to perform, and their skill can be sufficiently comparable 
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relative to the nonlinear general circulation models (GCMs) (e.g., Newman 2013). In 

practice, statistical methods are therefore useful in providing empirical knowledge that 

may lead to more skilful forecasts in the absence of explicit physical understanding 

and serving as benchmarks for the more sophisticated state-of-the-art GCMs. 

Formally, predictability is an intrinsic attribute of a physical system itself and indicates 

the extent to which two initially close states of the system diverge with time (i.e., the 

rate of separation in, for example, Boer 2000, 2004; Kirtman et al. 2013).  If one of 

the states is referred to as the true state of this system and the other is considered as 

the true state with some errors, then the rate of separation can be interpreted as the rate 

of error growth. However, since in any practical case, different sources of errors can 

be involved, predictability in this sense does not represent a practical ability to predict 

the future evolutions of the system (e.g., Boer 2004). Predictability is then used in a 

less restrictive and loose way to measure our current “ability to make skilful 

predictions/forecasts”, which is then equivalent to the definition of predictive/forecast 

skill and largely depends on, for example, the accuracy of predictive models and initial 

conditions and the correctness of external boundary conditions (see, for example, the 

review paper of Goddard et al. 2001). 

There are two broad perspectives to investigate predictability – a) potential 

predictability (Boer 2004, 2010; Power and Colman 2006; Frederiksen et al. 2015; Lou 

et al. 2016) and b) practical predictability (Boer 2000; Meehl et al. 2009, 2010; Nadiga 

and O’Kane 2017). The former is not a direct measure of predictability in the classical 

sense of the rate of separation of initially close states or the rate of error growth. Rather, 

it is a diagnostic analysis of variance which attempts to quantify the fraction between 

the variance of the long timescale variability of interest and the total. As such it implies 

long timescale variability is an appreciable fraction of the total variance, and hence 
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predictions on these long timescales might be possible. Without considering 

uncertainties from the initial conditions, parameterization schemes of the models, and 

other sources of errors, potential predictability assumes a perfect or idealized situation 

and represents an upper bound to the skill that might be attained for prediction of this 

long timescale component (Boer 2010). Practical predictability takes account of the 

multiple sources of errors arising from models and observations (e.g., initial conditions, 

model characteristics, parameterizations, coupling formulations, and observational 

errors, etc.) and reflects our actual ability to make predictions. Boer (2000) documents 

that the practical predictability is limited and may be out of reach on long timescales 

due to the lack of sufficient oceanographic observations to specify initial conditions. 

In what follows, we discuss the predictability of the PDV and ENSO from the 

perspectives of numerical and statistical modelling. 

 

1.2.1 Numerical modelling 

 

Historically, climate predictions have been made using numerical models of varying 

complexity, ranging from; intermediate coupled models, where the interactions 

between atmosphere and ocean are simulated under a simplified physical framework 

within the tropical Pacific domain (e.g., Cane et al. 1986; Zebiak and Cane 1987); 

hybrid coupled models that incorporate a physical ocean model with coupling to a 

statistical atmosphere model (e.g., Barnett et al. 1993; Balmeseda et al. 1994; 

McGregor et al. 2008); and coupled GCMs (e.g., Kirtman et al. 1997; Stockdale et al. 

1998; Saha et al. 2006).  
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The complexity of state-of-the-art coupled GCMs over the past decade has increased 

dramatically. For example, improved model resolutions – in particular increased 

vertical resolution in the stratosphere has allowed complex middle atmosphere 

chemistry to be incorporated, added optimized parameterization schemes (e.g., 

representations of clouds), and inclusion of important Earth system modules (e.g., 

biogeochemistry, ice sheets, etc.). These additional processes are fundamentally 

important to represent key climate feedbacks and to better estimate climate sensitivity, 

however they may also increase the spread of climate simulations and predictions 

among the multi-model ensembles (Eyring et al. 2019). In addition, a lack of historical 

ocean observations for testing and evaluating numerical models will continue to make 

it challenging to comprehensively address the mechanisms and processes that produce 

decadal climate variability (Balmaseda et al. 2013; Stouffer et al. 2017), which, in turn, 

limits our understanding of the origins of predictability on the dynamical timescales 

of the oceans. While significant challenges remain (Stouffer et al. 2017), there are now 

nearly a dozen operational centres for near-term climate predictions 

https://hadleyserver.metoffice.gov.uk/wmolc/, including the first in the Southern Hemisphere 

(O’Kane et al 2020). 

Model-based ENSO predictions have existed for a few decades (Latif 1994, 1998; 

Barnston et al 2012; O’Kane et al 2019, 2020). Early in the 21st century, ENSO 

predictions on seasonal timescales have transitioned from experimental to operational 

stage primarily due to improved observing and assimilation systems, improved 

parameterizations, higher model resolutions, and better understanding of tropical 

atmospheric and oceanic processes underlying the ENSO events (Guilyardi et al. 2009; 

Barnston et al. 2012, O’Kane et al 2020). 
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 Improved ENSO predictions have now been shown to have utility across a wide 

variety of stakeholders (Jin et al. 2008; Johnson et al. 2019). However, the success of 

any particular ENSO prediction strongly depends on the season, ENSO phase, and 

ENSO intensity. For example, the skill of ENSO forecasts initiated during the boreal 

spring (March, April, and May) drops faster than those initiated during the boreal 

wintertime. This behaviour is often referred to as the ENSO boreal spring 

predictability barrier (e.g., Barnston et al. 2012; Duan and Wei 2012; Lai et al. 2018; 

Liu et al. 2019; Chen et al. 2020). Because of this, state-of-the-art forecasting schemes 

traditionally do not predict beyond the ENSO boreal spring barrier. Skilful long-range 

(beyond seasonal timescales) forecasts of ENSO are in high demand but are 

statistically unreliable. 

Although some studies (e.g., Jin 2001) argue that PDV might simply be the product of 

the background amplitude modulation of tropical ENSO events, many other studies 

(Pierce et al. 2001; Power and Colman 2006; Meehl and Hu 2006; Meehl et al. 2009; 

Holbrook et al. 2014) consider that PDV might have deterministic dynamics that are 

distinct from the interannual ENSO and therefore might be predictable beyond ENSO 

timescales. Power and Colman (2006) investigate the integrated upper ocean 

temperature in the Pacific Ocean and suggest that the source of the predictability of 

PDV resides in the subsurface upper ocean in the extratropical Pacific, whereas the 

main deterministic dynamics are associated with the mid-latitude oceanic Rossby 

wave propagations. Hermanson and Sutton (2010) report that subsurface oceanic 

variables (e.g., ocean heat content) are more predictable than atmospheric and surface 

variables. Mochizuki et al. (2010) further show that such deterministic mechanisms 

may arise from the subsurface ocean based on modelling studies where the inclusion 

of the observed historical upper ocean in the initial forecast conditions were shown to 
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be effective for generating successful hindcasts of the PDO. This work has great 

implications for future developments in numerical climate prediction. However, the 

degree to which these specific deterministic mechanisms enhance predictability of 

PDV remains to be determined.   

  

1.2.2 Statistical modelling 

 

Predictability can also be understood by using statistical tools (referred to as diagnostic 

predictability in Kirtman et al. (2013)) including linear methods such as multiple linear 

regression (Landsea and Knaff 2000; Lean and Rind 2009; Branstator et al. 2012), 

autoregressive integrated moving average (ARIMA) models (Ho et al. 2012), 

canonical correlation analysis (Barnett et al. 1988; Barnston and Ropelewski 1992; 

Barnston 1994), POPs/LIMs (Penland 1989; von Storch et al. 1995; Penland and 

Sardeshmukh 1995, and references therein), decadal variance decomposition methods 

(Frederiksen et al. 2015; Lou et al. 2016; Ying et al. 2018); constructed analogue 

methods (Barnston et al. 1994; Ho et al. 2012), nonlinear techniques such as nonlinear 

neural networks (Tangang et al. 1998), nonlinear principal component analysis 

(Monahan 2001), machine learning (Dijkstra et al. 2019), and quadratic inverse models 

(Kondrashov et al. 2005).  

The predictive skill from these diverse statistical tools can be sufficiently high that 

they are useful both in their own right and for providing empirical knowledge that may 

lead to more skilful forecasts in the absence of explicit physical understanding and as 

benchmarks for more complex numerical models (e.g., Krueger and von Storch 2011). 

Some other simple statistical benchmarks such as persistence, damped persistence (i.e., 
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AR1 process), and climatology have been extensively used as thresholds in the 

evaluation of seasonal and near-term climate predictions (e.g. Barnston et al 1994; 

Colman and Davey 2003; Alexander et al. 2008; Newman 2013). 

With specific interest in POPs/LIMs, some applications of POP/LIM predictions are 

discussed next. As shown in Eq. (1.3), the POP/LIM technique involves a linear 

transformation of a predictor field 𝐗௧ to produce a forecast of a predictand field 𝐗௧ାఛ, 

which is the predictor field at some later time. Then, the POP/LIM is built upon the 

eigen-decomposition as a result of minimizing the errors between the predictand and 

the transformed predictor (e.g., Penland and Magorian 1993).  

The linear deterministic dynamics are encapsulated in the dynamical operator  𝜜ఛ in 

Eq. (1.3) and can be estimated from the Green’s function (Penland and Sardeshmukh 

1995), that is, 

𝑨ఛ ൌ 〈𝐱𝐭ାఛ𝐱𝐭
୘〉〈𝐱𝐭𝐱𝐭

୘〉ିଵ,      (1.4) 

where the dynamical operator 𝑨ఛ can be estimated from the time-lag covariance matrix 

〈𝐱𝐭ାఛ𝐱𝐭
୘〉 and the inverse matrix of concurrent covariance 〈𝐱𝐭𝐱𝐭

୘〉ିଵ. 𝑨ఛ𝐱𝐭 represents 

the “best” prediction (in a least square sense) of 𝐱𝐭ାఛ (Alexander et al. 2008). 

POPs/LIMs have been widely used in diagnosing dynamics (see in Section 1.1.1) and 

investigating predictability since the late 1980s (Hasselmann 1988; Penland 1989). 

After a few decades of development and applications, POPs/LIMs have been shown 

to be effective at providing skilful predictions over a wide range of time scales from 

weeks to years (Penland and Magorian 1993; Newman et al. 2003; Newman 2013, and 

references therein). LIMs (Penland and Matrosova 1994; Penland and Sardeshmukh 

1995) are now successfully applied to make real-time tropical SST forecasts that are 
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incorporated in the National Oceanic and Atmospheric Administration (NOAA) 

regular Climate Diagnostic Bulletin.  

Newman (2007) and Alexander et al. (2008) constructed stochastically forced LIMs 

from observationally based SSTs finding that predictability of PDV and ENSO are 

generally limited to the order of a year, although at times exceeding this. Newman and 

Sardeshmukh (2017) compared the forecast skill of tropical Indo-Pacific SSTs made 

by the operational National Multi-Model Ensemble (NMME) and LIMs and found that 

the NMME and LIM skills closely track and are only slightly lower than the idealized 

potential predictability, indicating that we might be approaching the predictability 

limit of tropical Indo-Pacific SSTs. Dias et al. (2018) applied the LIM technique to 

investigate the seasonal to decadal predictive skill of the Pacific SSTs finding that, on 

seasonal timescales, the predictive skill of the LIMs is comparable with those from 

three operational forecast systems in the NMME and exhibited increased skill in some 

specific areas, for example, northeast Pacific. Dias et al. (2018) showed that the 

seasonal forecast skill of ENSO is enhanced with the inclusion of the extratropical 

Pacific, suggesting that interactions between different time scales and regions may be 

crucial to understanding the predictability limit of PDV and ENSO. However, as 

documented in Newman (2007), most GCMs underestimate interactions between the 

North Pacific SSTs and the tropical SSTs. Crucially, there are few if any comparable 

studies of interactions between the South Pacific SSTs and the tropical SSTs using the 

POP/LIM framework. 

Without fully understanding of our changing climate system, statistical tools, such as 

LIMs that capture linear predictability and uncertainty of a dynamical system, offer an 

effective perspective for harnessing the predictable multivariate GCM information as 

a low-cost climate forecast alternative and benchmark (Perkins and Hakim 2020). 
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1.3 Thesis aim and objectives 

 

The overall aim of this thesis is to better understand South Pacific decadal climate 

variability and predictability. The main objectives are 1) to explore the spatiotemporal 

features of the dominant modes of variability in the South Pacific Ocean, 2) to identify 

the key atmospheric drivers in generating and maintaining South Pacific Ocean 

decadal variability, 3) to understand the source of predictability and identify key 

locations where the predictable signal is amplified to enable climate monitoring, and 

4) to evaluate the extent to which the low-frequency variability is predictable. 

In this thesis, we seek to understand how South Pacific decadal variability incorporates 

different atmospheric and oceanic processes that operate on different time scales from 

seasonal to decadal and exhibits the observed spatiotemporal features. By better 

understanding the mechanisms underlying the dominant modes of variability in the 

tropical and South Pacific oceans, we first seek to identify where the source of low-

frequency (~decadal) climate variability is located. With the inclusion of such low-

frequency variability, we aim to understand to what extent the dominant modes of 

variability in the tropical and South Pacific oceans are predictable on seasonal to 

(inter-)annual timescales. In order to achieve those objectives, we make use of a series 

of diagnostic analyses and a family of hierarchical stochastically forced models with 

different complexity to investigate the mechanisms through which PDV occurs and its 

predictability with a specific focus on the South Pacific Ocean and coupling to the 

tropics. 

The rest of the thesis is organised as follows. Chapter 2 is presented in the form of a 

published paper in the Journal of Climate that explores the leading decadal climate 
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variability in the South Pacific from the surface ocean to the subsurface ocean. The 

chapter identifies the role of oceanic processes and atmospheric forcing in generating 

the observed PDV in the South Pacific by applying a series of diagnostic analyses and 

a double integrated AR1 model. Chapter 3 comprises a paper published in the Journal 

of Climate that extends the univariate stochastically forced AR1 model to a high-

dimensional multivariate field fitted into a LIM to diagnose the dynamics 

underpinning the reduced-order tropical and South Pacific combined system and to 

understand the predictive skill of the SPDO and ENSO. Chapter 4 comprises a paper 

that is published in the Journal of Climate. It is based on the POP/LIM framework 

illustrated in Chapter 3, in which we explore the optimal initial conditions for 

maximum growth of the SPDO and ENSO by separating the contribution from 

deterministic evolution and the unpredictable noise-forced evolution associated with 

the atmospheric PSA variability. Chapter 5 will be converted into a paper for 

submission to an international journal, which seeks to propose an overarching big 

picture for understanding the large-scale South Pacific climate dynamics and 

predictability that links the atmosphere to the surface ocean and to the subsurface 

ocean across a range of time scales from (intra-)seasonal to (inter-)decadal. 

 

 

 

 



 

CHAPTER 2 

 

South Pacific Decadal Climate Variability and 

Potential Predictability 

 

2.1 Chapter overview 

 

This chapter explores and analyses the spatiotemporal features of the dominant South 

Pacific decadal climate variability from the surface ocean to the subsurface upper ocean 

by applying a series of diagnostic statistics and a doubly integrated AR1 model. 

Specifically, we seek to characterise the mechanisms that give rise to South Pacific Ocean 

decadal variability in terms of local oceanic processes and atmospheric forcing. The 

potential predictability of the SPDO is then examined using a variance fraction and the 

AR1 model.  

The main text of this section is a paper published in the Journal of Climate (Lou, J., N. J. 

Holbrook, and T. J. O’Kane, 2019: South Pacific decadal climate variability and potential 

predictability. J. Climate, 32, 6051-6069. https://doi.org/10.1175/JCLI-D-18-0249.1). 

The American Meteorological Society (AMS) publishers of the corresponding paper 

incorporating in this Chapter hold the copyright for this content, and access to the material 
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should be sought from the respective encyclopaedia and journal. © American 

Meteorological Society. Used with permission. 

 

Candidate’s contribution to this paper 

The analysis methods were jointly discussed between Dr. Holbrook, Dr. O’Kane and 

myself. Dr. O’Kane supplied the ACCESS-O model output data used in this study, and 

Dr. Holbrook provided the MATLAB code to perform the significance test. I performed 

all the data analysis, however input from Dr. Holbrook and Dr. O’Kane was attained 

regularly throughout the process. All sections of the co-authored Journal of Climate 

publication and the peer-review processes were led by myself under the supervision of 

both co-authors. 
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2.3 Chapter summary 

This chapter reveals the spatiotemporal characteristics of the SPDO and the role of 

extratropical oceanic processes and atmospheric forcing in contributing to the SPDO by 

using a series of diagnostic statistics and a double integration of univariate AR1 models 

based on the observations and model simulation. The spatiotemporal details of the leading 

surface and subsurface temperature variability have been first examined based on the 

empirical orthogonal function (EOF)/principal component (PC) analysis. The dynamical 

interactions between the atmosphere, surface and subsurface ocean in the South Pacific 

have then been illustrated using univariate AR1 models, in which the slowly varying 

oceanic temperature variability is explained as the integral response to continuous 

‘random’ atmospheric variability. 

We found that the first Pacific-South American (PSA1) pattern is the dominant 

atmospheric driver of the SPDO. The large fraction of the subsurface counterpart of the 

SPDO can be viewed as cumulative integrations of the atmospheric PSA1 variability 

exciting internal ocean processes. Our results suggest that the source of the predictability 

of Pacific decadal variability resides in the subsurface upper ocean in the extratropical 

Pacific, whereas the main deterministic dynamics are associated with the mid-latitude 
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oceanic Rossby wave propagation. In particular, Rossby waves interacting with bottom 

topography (i.e., large meridional sea ridges) in the extratropical South Pacific tend to 

enhance the low-frequency variability, and, therefore, increase the variance fraction 

explained by the decadal variability, and lead to increased potential predictability of the 

observed SPDO. 



CHAPTER 3 

A Linear Inverse Model of Tropical and South 

Pacific Seasonal Predictability 

3.1 Chapter overview 

The previous Chapter concluded that with the inclusion of subsurface processes in the 

South Pacific, the predictability of the SPDO is increased. The nonlinear baroclinic 

Rossby waves in the extratropical southwest Pacific Ocean act as the lowpass filter of 

oceanic variability and add potential predictability to the SPDO. By applying the 

univariate AR1 model, the previous Chapter also showed that the subsurface SPDO can 

be considered as the reddened response to the corresponding surface variability or 

cumulative integrated version of white-noise atmospheric variability (i.e., PSA1). 

However, limited by the simplicity of AR1 models, they are not capable of revealing 

spatial variability of a system since AR1 models only have one degree of freedom.  

In this Chapter, we extended the univariate stochastically forced AR1 model discussed in 

the previous Chapter to a multivariate field by applying a Principal oscillation pattern 

(POP) /Linear inverse model (LIM) approach to understand the spatiotemporal dynamics 

of tropical and South Pacific combined system and to investigate the seasonal 

predictability of ENSO and the SPDO. 

The main text of this Chapter is a paper published in the Journal of Climate (Lou J, T. J. 

O’Kane, and N. J. Holbrook, 2020: A linear inverse model of Tropical and South Pacific 
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seasonal predictability. J. Climate, 33, 4537-4554, doi:10.1175/JCLI-D-19-0548.1. The 

AMS publishers of the corresponding paper incorporating in this Chapter hold the 

copyright for this content, and access to the material should be sought from the respective 

encyclopaedia and journal. © American Meteorological Society. Used with permission. 

Candidate’s contribution to this paper 

The experiments and analyses are a natural multivariate generalization of the previous 

chapter. All the experiments and analyses were conducted on my own. At its initial stage, 

Dr. Holbrook and I came up with the idea of using LIM techniques to understand the 

predictability of the SPDO after constructive discussion with Dr. Craig Bishop at the 

IMAS, and at the same time Dr. O’Kane was interested in adapting the POP methods to 

the South Pacific Ocean. Those two methods are equivalent. Thus, both of my co-authors 

and I contributed to the primitive ideas of this chapter. The LIM experiment design was 

jointly discussed with Dr. O’Kane and Dr. Holbrook throughout the process. The 

simulated data from the ACCESS-O model is the same as used in the previous chapter, 

which was provided by Dr. O’Kane. All the LIM experiments, data analysis and the co-

authored Journal of Climate paper was led by myself with input from the other two co-

authors. 
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3.3 Chapter summary 

The one-dimensional univariate AR1 models introduced in Chapter 2 were generalized to 

a high-dimensional multivariate field in this chapter with inclusion of the spatial features 

in the tropical and South Pacific oceans. We developed the POP/LIM technique linking 

the tropical Pacific with the South Pacific to investigate the deterministic dynamics and 

predictability of the dominant modes of SST variability. The predictive skills of three 

LIM configurations were further evaluated based on the combination of modes, variables, 

and regions.  
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As the South Pacific has received considerably less attention in comparison to numerous 

studies of North Pacific Ocean variability, this chapter makes an important contribution 

to our understanding of the mechanisms underlying the SPDO and its predictability. The 

results suggest that the SPDO can be viewed as a collection of multiple processes 

operating on distinct time scales. Although ENSO and the SPDO have distinct oscillatory 

periods – primarily, the former oscillates on interannual timescales and the latter on 

decadal timescales – they have very close damping time scales, indicating the predictive 

skills of ENSO and the SPDO are comparable. Reduced-order LIM predictions of ENSO 

and the SPDO are comparable with state-of-the-art general circulation models. The ENSO 

boreal spring predictability barrier (MAM) is similarly apparent in LIM predictions. 



CHP 3: A Linear Inverse Model of Tropical and South Pacific Seasonal Predictability   

70 



CHAPTER 4 

Optimal Structure and Stochastic Forcing of 

Tropical and South Pacific Climate Variability 

4.1 Chapter overview 

The previous chapter demonstrated the deterministic dynamics and seasonal 

predictability of the dominant modes of variability from the tropical and South Pacific 

oceans by applying the POP/LIM technique. This chapter is a companion work to the 

information presented in Chapter 3. Here, we explore the optimal initial conditions for 

maximizing the linear growth of the SPDO and ENSO using a POP/LIM framework to 

separate the contribution from the deterministic dynamics and the unpredictable noise-

forced SST evolutions associated with the atmospheric PSA variability. 

The main text of this Chapter is a paper published in the Journal of Climate (Lou, J., T. J. 

O’Kane, and N. J. Holbrook, 2021: A Linear Inverse Model of Tropical and South Pacific 

Climate Variability: Optimal Structure and Stochastic Forcing. J. Climate, 34, 143-155. 

Doi: https://doi.org/10.1175/JCLI-D-19-0964.1. The AMS publishers of the 

corresponding paper incorporating in this Chapter hold the copyright for this content, and 
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access to the material should be sought from the respective encyclopaedia and journal. © 

American Meteorological Society. Used with permission.  

Candidate’s contribution to this paper 

The experiments and analyses are a natural follow-on work from the Chapter 3. Namely, 

the LIM experiment design and data analyses were conducted on my own. Finer details 

of the LIM methods were refined through the discussion between Dr. O’Kane, Dr. 

Holbrook, and myself. The simulated ACCESS-O model data are the same as used in the 

previous chapters, which were provided by Dr. O’Kane. All the experiments, data 

analysis and the co-authored Journal of Climate paper was led by myself with input from 

the other two co-authors. 
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4.3 Chapter summary 

 

This chapter continues the work presented in Chapter 3 by utilizing the same POP/LIM 

framework, but with a specific focus on the identification of optimal perturbations for 

maximizing the linear growth of the SPDO and ENSO and the role of atmospheric 

stochastic forcing associated with the variability in the PSA sector. In this Chapter, the 

contribution from the deterministic dynamics and the unpredictable noise-forced SST 

evolutions has been separated. 

The results suggest that a specific set of initial conditions can optimally determine how 

the system will evolve along its deterministic (linear) trajectory. The South Pacific 

meridional mode is found to be an optimal SST precursor for the development of the 

SPDO and ENSO. The subsurface SST variability associated with oceanic Rossby wave 

propagation sets a background state to modify and guide the SST evolutions. The 

atmospheric propagating PSA patterns (i.e., PSA1 and PSA2) are associated with higher-

order noise-forced SST variability and contribute not only to excite the optimal initial 

perturbations that maximize ENSO and SPDO development, but in general to activate the 

stochastic SST forcing. 
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CHAPTER 5 

 

A New Paradigm of Large-scale South Pacific 

Climate Variability and Predictability 

 

5.1 Chapter overview 

 

Informed by the systematic development and utilisation of a family of stochastically 

forced reduced order models illustrated in Chapter 2 to Chapter 4, this chapter proposes 

an overarching paradigm linking atmospheric variability to the surface ocean and 

subsequently the subsurface ocean across a range of time scales from (intra-)seasonal to 

(inter-)decadal. This provides, for the first time, an integrated framework to understand 

the ocean-atmosphere coupling and potentially predictable time and space scales of South 

Pacific climate variability. 

 

5.2 The importance of the atmospheric Pacific-South American mode 

 

The Pacific-South American (PSA) mode comprises of two important patterns, referred 

to here as PSA1 and PSA2 (Mo and White 1985; Mo and Ghil 1987; Karoly 1989; Mo 
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and Higgins 1998; O’Kane et al. 2017) (Figs. 5.1 a-d), that strongly influence the weather 

and climate across the extratropical South Pacific. The PSA mode is represented by an 

eastward-propagating wave train extending from eastern Australia to Argentina 

characterised in mid-tropospheric geopotential height by either by a single complex 

empirical orthogonal function (EOF) or in terms of two invariant patterns identified as 

the second (PSA1) and third (PSA2) real EOFs whose phases are nearly in quadrature 

with each other and whose associated eigenvalues are of nearly equal amplitude (Lau et 

al. 1994) (see Chapter 2 to Chapter 4). 

Previous studies (e.g. Karoly 1989; Mo and Paelge 2001; and references therein) argue 

that the PSA mode is in part an atmospheric response to the tropical El Niño–Southern 

Oscillation (ENSO). Regression analysis shows that there is indeed a very close 

relationship between PSA1 and ENSO (Fig. 5.1 a). However, the connection between 

atmospheric PSA2 and tropical sea surface temperature (SST) variability is less clear. Mo 

and Paegle (2001) argue that PSA2 is responsible for the quasi-biennial component of 

ENSO, which is evidenced in Fig. 5.1b. 

Despite clear evidence showing that the PSA mode is connected to ENSO, there are 

diverse views on the mechanisms that link the atmospheric PSA mode with tropical 

ENSO. Some studies (Karoly 1989; Renwick and Revell 1999; Mo and Paegle 2001; Cai 

et al. 2011) argue that the ENSO-PSA connection is directly linked via atmospheric 

Rossby wave propagation, and many other studies (McIntosh and Hendon 2018; 

Rodrigues et al. 2019) also highlighted the importance of Indian Ocean in generating 

Rossby wave trains. However, other studies (Ambrizzi et al. 1995; Ambrizzi and Hoskins 

1997; Li et al. 2015) point out that Rossby waves are primarily generated and trapped 

within the Southern Hemisphere subtropical and polar jet streams according to ray tracing 

theory. Unlike the MJO-NAO teleconnection (Lin and Brunet 2018), there is little direct 
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dynamic evidence in terms of Rossby wave source or wave activity flux (see for example 

Karoly et al. 1989; O’Kane et al 2015; Li et al 2015) to suggest that poleward propagating 

large scale tropical Pacific Rossby waves initiated by ENSO variability tele-connect the 

PSA to ENSO. Even if sufficient Rossby wave sources were to be generated in the 

equatorial Pacific, ray tracing theory and wave activity flux calculations make it readily 

apparent that they are blocked by a reflecting barrier, associated with the presence of the 

subtropical jet, and low latitude wave breaking, from propagation to the midlatitudes. 

Instead, O’Kane et al. (2017) argue that the PSA mode is linked to ENSO via a direct 

modulation of the midlatitude jets by the thermal winds generated by tropical convection 

and highly correlated with ENSO, and indirectly influencing the interannual variability 

of coherent synoptic features forming within these midlatitude waveguides where local 

Rossby waves sources are prevalent. 

 

5.3 Reddening processes driven by the PSA mode 

 

Analysis of South Pacific SST shows that the first two SST modes of variability, referred 

to as the South Pacific decadal oscillation (SPDO) (Chen and Wallace 2015; Lou et al. 

2019) and South Pacific quadrupole SST pattern (Ding et al. 2014), are primarily driven 

by the atmospheric PSA1 and PSA2 patterns (Figs. 5.1e and f), respectively. In Chapter 

2 of this thesis, it was shown, using a univariate first-order autoregressive model (AR1) 

(Frankignoul and Hasselmann 1977; Hasselmann 1976), that the integrated atmospheric 

PSA1 and PSA2 variability could explain a significant fraction of the variance of the first 

two SST modes in the South Pacific Ocean (Figs. 5.1 e and f; R=0.76 and 0.71, 

respectively; significant at >99% level).  
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Taken one step further, we applied a second integration of the AR1 model (following a 

similar approach to Di Lorenzo and Ohman (2013)) – with the first integration being from 

the atmosphere to the surface ocean, and the second integration from the surface ocean to 

the subsurface ocean (refer to Chapter 2 in this thesis or Lou et al. (2019)). This double 

integration reveals that the leading SST mode is further reddened by the extratropical 

upper ocean (Fig. 5.1 e). The integrated SPDO signal (blue curve in Fig. 5.1 e) resembles 

the time evolution of the leading vertically averaged temperature (VAT) mode of the 

upper 300 m of the ocean, with a temporal correlation of R=0.88 (statistically significant 

at the 99% level). To first order, we concluded that the South Pacific Ocean integrates the 

fast-varying atmospheric “noise” forcing to produce a ‘‘reddened’’ oceanic signal, with 

a pronounced increase in amplitude of the spectrum at low frequencies and decreased 

amplitude at high frequencies, where the main potentially predictable signal is generated 

on the timescales of the ocean dynamics. 
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figure 5. 1 

 

Figure 5.1 | The atmospheric forcing of the leading two SST modes in the South 

Pacific Ocean. a, b, The PSA1 (a) and PSA2 (b) patterns are obtained by regressing the 

monthly near-global Z500 anomalies (NCEP-NCAR; contour) and monthly SST 

anomalies (ACCESS-O; shade) onto the PSA1 and PSA2 time series, respectively. The 

PSA1 and PSA2 are derived from the second and third EOF modes of the monthly Z500 

anomalies (NCEP-NCAR) in the Southern Hemisphere. (c) and (d), The corresponding 

normalized PSA1 and PSA2 time series. (e) and (f), The time series of the leading two 

SST modes of variability in the South Pacific Ocean (ACCESS-O; black) are 

reconstructed (red) using an AR1 model forced by the PSA1 and PSA2 time series. The 

blue curve in (e) indicates the second integration forced by the SST SPDO time series. 

The units are in standard deviations (s.d.). The significance of the temporal correlations 
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(R=0.76 and 0.71; >99%) is estimated taking account of the effective number of degrees 

of freedom due to serial correlation (Davis 1976).    

 

5.4 Coherence resonances driven by the PSA mode 

 

The ocean not only responds via the reddening processes to the fast-varying atmosphere 

but also via the coherence resonance (Pierini 2011). Specifically, the atmospheric forcing 

imprints its variations onto the surface ocean and further enhances internal SST variability 

at its preferred frequency, subject to forcing due to coherent disturbances in the synoptic 

atmosphere. To take this further, we generalized the univariate AR1 model to a higher-

dimensional multivariate field through inclusion of SST anomalies in the tropical and 

South Pacific oceans using a linear inverse modelling approach (e.g. Penland and 

Sardeshmukh 1995) (LIM; see Chapters 3 and 4 for details). Previous studies (Penland 

and Magorian 1993; Penland and Sardeshmukh 1995; Newman 2007; Capotondi and 

Sardeshmukh 2015; Lou et al. 2020) show that the tropical and South Pacific oceans can 

be approximated as a stochastically forced linear system, where different dynamical 

processes are represented by distinct damping time scales via the decomposition of the 

LIM. 

Fig. 5.2 shows the fastest damped SST mode pair with a damping time scale of two 

months. This pair of real and imaginary patterns (Figs. 5.2 a and b) constitutes a single 

propagating wave with a complete cycle of 26 months. Along with the propagating 

features, the spatial patterns of the fastest damped modes also bear a strong resemblance 

to the atmospheric PSA1 and PSA2 patterns. We then projected the corresponding time 

series of the real and imaginary components of the fastest damped mode onto the monthly 
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Z500 anomalies. The regression maps (Figs. 5.2 c and d) closely resemble the 

atmospheric PSA1 and PSA2 with spatial correlations of 0.74 and 0.69 (statistically 

significant at the 95% level), respectively, in the South Pacific region. This suggests that 

the high-frequency atmospheric PSA fluctuations can excite SST modes whose 

frequencies are subject to the atmospheric drivers. However, in contrast to the reddening 

processes that acts to excite the potentially predictable low frequency ocean signal, the 

leading complex SST damped modes are correlated with the atmospheric PSA forcing 

and act as noise forcing of the system. 

figure 5. 2 

 

Figure 5.2 | The fastest damped SST modes. a, b, The imaginary (a) and real (b) parts 

of the fastest damped SST modes are obtained by using a reduced-order linear inverse 

model (see Chapter 3 and 4 for details). The pair of the SST modes shown has the fastest 

damping time scales of 2.3 months. c, d, the regression maps are obtained by regressing 
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the monthly Z500 anomalies (NCEP-NCAR) onto the time series of the imaginary (c) and 

real (d) parts of the quickest damped modes. 

 

5.5 The optimal growth and extratropical precursor 

 

Previous studies have extensively discussed the tropical and extratropical precursors of 

ENSO including those that maximize ENSO development (Penland and Sardeshmukh 

1995; Penland and Matrosova 2006; Ding et al. 2014; Zhang et al. 2014; Liguori and Di 

Lorenzo 2019). Despite there being little direct evidence, in terms of atmospheric 

dynamics, to show that the atmospheric PSA patterns can directly modulate ENSO 

evolution in the tropics (O’Kane et al. 2017), the indirect influence (i.e. correlation 

between low pass filtered PCs 2 and 3 of geopotential height and ENSO interannual 

variability) has nevertheless been widely identified in both observations (You and 

Furtado 2017) and model simulations (Zhang et al. 2014: Liguori and Di Lorenzo 2019) 

via the “atmosphere  extratropical ocean  tropical ocean” pathway. One mechanism 

by which this indirect influence may occur is through a “seasonal footprinting” 

mechanism (Vimont et al. 2003), where the atmospheric forcing drives an extratropical 

anomalous SST “footprint” in the boreal spring, which persists through boreal summer, 

and sustains wind stress anomalies in the tropics that are conducive to trigger ENSO 

events.  

The LIM approach enables an objective determination of the optimal initial perturbations 

that maximize ENSO and SPDO growth, providing an ideal framework through which to 

investigate the dynamical precursors to, and predictability of, mature (peak phase) ENSO 

and SPDO. Unlike lead-lag correlations that have been widely applied to identify ENSO 
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precursors (Ding et al. 2014; You and Furtado 2017; Zhao and Di Lorenzo 2020), the 

LIM is a dynamical approximation and, as the LIM is a multivariate linear stochastic 

model, implies conditionally causal (Grainger 1988) relationships between the optimal 

precursors and their peak phases. The connection between the reduced-order LIM and 

physical reality is described by Hasselmann (1976), who identifies “slow” processes that 

constitute the deterministic system and “fast” processes that constitute the noise forcing.  

ENSO and SPDO growth is non-normal, i.e. it is primarily due to the non-orthogonality 

of the damping SST modes that are able to interact with each other, giving rise to a 

transient amplification of the variance of the system at a preferred growth temporal scale. 

Such transient amplification is useful in sampling and interpreting errors in initial 

conditions (Moore and Kleeman 1996) and explains the actual variance growth in the 

system (Penland and Sardeshmukh 1995). Transient amplification of monthly tropical 

and South Pacific SST anomalies allows a specific set of initial perturbations to develop 

into the peak phases that are found to exist at 6- to 10-month lead times (Penland and 

Sardeshmukh 1995; Newman et al. 2011; Capotondi and Sardeshmukh 2015; Zhao and 

Di Lorenzo 2020; Lou et al. 2020). Our LIM experiment results show that, with 

consideration of SST anomalies from the tropical and South Pacific oceans, the optimal 

growth time (see Chapter 4 for details) is 9 months. These results imply that potentially 

predictable linear growth events that maximize ENSO and SPDO development can exist 

if the initial perturbations are well specified. 

The spatial patterns of the initial SST perturbations in the tropical Pacific and South 

Pacific are shown in Figs. 5.3 a and c, respectively. These initial patterns co-evolve over 

nine months into the optimal final peak phases in Figs. 5.3 b and d, which are closely 

associated with ENSO and the SPDO with pattern correlations of 0.99 and 0.97 

(statistically significant at the 99% level), respectively. The tropical ENSO precursor (Fig. 
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5.3 a) has been discussed in previous studies (Capotondi and Sardeshmukh 2015; Penland 

and Sardeshmukh 1995; Penland and Matrosova 2006) and is associated with the 

recharge-discharge mechanism as first described by Jin (1997). The extratropical 

precursor (Fig. 5.3 c) resembles a quadrupole structure similar to the second South Pacific 

SST mode with the pattern correlation of 0.85 (significant at the 95% level). The initial 

and final spatial patterns (Figs. 5.3 c and d) were projected onto the monthly SST 

anomalies to reconstruct the time series. The reconstructed time series of the optimal 

initial perturbations and final peak phases in the South Pacific (Figs. 5.3e and f) are highly 

correlated with the second and first South Pacific SST modes with temporal correlations 

of 0.86 and 0.98 (statistically significant at the 99% level) respectively, suggesting that 

the South Pacific quadrupole SST pattern is the optimal local (linear) precursor that 

maximizes the SPDO growth. Given the almost synchronous features between ENSO and 

the SPDO (Chen and Wallace 2015; Lou et al. 2019), these results imply that the 

extratropical SST precursor of ENSO is also related to the quadrupole SST pattern in the 

South Pacific Ocean. Our results agree with the “seasonal footprinting” mechanism 

whereby the atmospheric PSA2 excites the South Pacific quadrupole SST anomalies, 

which then persist through the boreal summer to initiate ENSO growth. 
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figure 5. 3 

 

Figure 5.3 | The optimal evolution of the tropical and South Pacific SST. The optimal 

initial structures in the (a) tropical Pacific and (c) South Pacific are obtained by using a 

linear inverse model (see Chapter 3 and Chapter 4 for details), which linearly co-evolve 

9 months later into their peak phases in the (b) tropical Pacific and (d) South Pacific. The 

spatial patterns shown in a-d are normalized according to the variance in each domain. e 

and f, the reconstructed time series of the (e) optimal initial structure and (f) peak phase 

in the South Pacific (black) are compared with the time series of the leading two South 

Pacific SST modes (red).  
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Fig. 5.4 summarizes the atmospheric PSA mode and its South Pacific Ocean responses 

based on the combined results from the AR1 and LIM investigations. Our results suggest 

that the eastward-propagating PSA mode (identified by the PSA1 and PSA2 patterns) 

provides an important source of atmospheric forcing to excite the extratropical South 

Pacific Ocean responses that operate on multiple time scales via reddening processes and 

coherence resonances. To first order, the close relationships between the integrated PSA 

patterns and the leading South Pacific SST modes support the general concepts of the 

autoregressive processes that fast atmospheric variations are a critically important source 

for the excitation of low frequency oceanic variability, bearing in mind that the actual 

observed nonlinear dynamics are more complicated than the tangent linear dynamics that 

form the basis of the LIM propagator. The leading integrated subsurface temperature 

mode, that resembles the spatial pattern of its SST counterpart, can be regarded as a 

cumulative response to atmospheric PSA1 forcing. That is, the inclusion of extratropical 

subsurface processes further reddens the SST variations, whereby the most persistent and 

potentially predictable signal is enhanced. Furthermore, the atmospheric PSA1 and PSA2 

patterns can excite SST variations via coherence resonance such that the resultant 

damping SST modes are slaves to the atmospheric forcing but synchronized to the 

spatiotemporal features of the real and imaginary components of the propagating PSA.    

The extratropical SST precursor of ENSO and SPDO growth is strongly associated with 

the South Pacific quadrupole SST pattern. The set of initial conditions related to this 

quadrupole pattern can optimally determine how the SST anomalies will evolve along its 

deterministic (linear) trajectory and lead to the SPDO and ENSO peaks over the following 

nine months, and from which the linear predictability intrinsic to the SST system can be 

inferred. While the influence of the atmospheric PSA patterns on the tropical SST 

variability is less apparent than the influence of the tropical SST variability on the PSA 
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patterns (Ding et al. 2014; Li et al. 2015; O’Kane et al. 2017), our results indicate that the 

South Pacific quadrupole SST pattern acts as an oceanic bridge that links the atmospheric 

PSA forcing to tropical ENSO, and represents the most probable pathway for midlatitude 

synoptic variability to influence tropical SST. 
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figure 5. 4 

 

Figure 5.4 | Schematic of the atmospheric drivers and the corresponding South Pacific 

Ocean responses. a) and b) represent the fastest damped mode pair, which are the same 

as shown in Fig. 5.2. c) and d) are the second and third EOF modes of the monthly Z500 

anomalies (NCEP-NCAR) in the Southern Hemisphere. e) and g) are the leading EOF 

modes of the monthly SST anomalies and VAT anomalies in the South Pacific Ocean, 

respectively. f) is the same as shown in Fig. 5.3 c indicating the optimal precursor of the 

SPDO (illustrated by the green arrow). Red arrows indicate reddening processes. Blue 

arrows indicate coherence resonances. Grey arrows indicate the propagating features of 

the corresponding modes.     
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CHAPTER 6 

 

Discussion and Conclusions 
 

 

6.1 Aim and objectives 

 

The overall aim of this thesis is to better understand South Pacific decadal climate 

variability and predictability. The main objectives of this thesis were 1) to explore the 

spatiotemporal features of the dominant modes of variability in the South Pacific Ocean, 

2) to identify the key atmospheric drivers in generating and maintaining South Pacific 

Ocean decadal variability, 3) to understand the source of predictability and identify key 

locations where the predictable signal is amplified to enable climate monitoring, and 4) 

to evaluate the extent to which the low-frequency variability is predictable. Thus, this 

thesis examines and identifies the spatiotemporal characteristics of the dominant modes 

of climate variability and dynamical processes underpinning the leading mode of SST 

variability in the South Pacific Ocean. This is fundamentally important when attempting 

to understand the local and remote sources of predictability of the South Pacific decadal 

oscillation (SPDO), which can lead to more skilful predictions of both extratropical 

Pacific decadal variability (PDV) and El Niño–Southern Oscillation (ENSO) centred in 

the tropical Pacific. 

The mechanisms previously proposed to explain PDV fall into three main categories. The 

first of these postulates that PDV is not self-sustained but rather forced by atmospheric 
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variability (e.g., Trenberth and Hurrell 1994; Pierce 2001; Di Lorenzo and Ohman 2013). 

The second category argues that PDV is not an independent dynamical mode but instead 

a direct product of background amplitude modulation of interannual ENSO variability 

(Jin 2001) or a spectral reddening of ENSO (Newman 2003; Power and Colman 2006; 

Shakun and Shaman 2009), which highlights the role of tropical processes. The third 

category stresses that intrinsic oceanic processes (e.g., mid-latitude oceanic Rossby wave 

propagation) (e.g., Schneider and Miller 2001) contribute to the largest fraction of the 

low-frequency variability. To some extent it is highly likely that all three proposed 

mechanisms, which operate across a wide range of spatiotemporal scales, contribute to 

the overall observed PDV at some level. However, there is no clear consensus on their 

relative importance in explaining the observed PDV.  

Recently, a growing number of studies (Newman et al. 2016; Liu and Di Lorenzo 2018) 

consider PDV as a combination of multiple dynamical processes, which include 

atmospheric forcing, ENSO teleconnections, and intrinsic ocean processes. We have, for 

the first time, endeavoured to systematically reveal how the overall SPDO variability 

arises, through a systematic examination of the individual and combined roles of the 

various atmospheric and oceanic processes operating on distinct time scales. This has 

been undertaken using a linear inverse model (LIM) framework applied to the generation 

of South Pacific Ocean variability and validated against observed spatiotemporal features. 

The precise dynamics underpinning PDV is used to inform the level of predictability we 

might expect. By better understanding the underlying mechanisms of the SPDO, we have 

sought to identify deterministic PDV dynamics that might be used as a predictable signal 

beyond ENSO and interannual time scales. An earlier study by Power and Colman (2006) 

suggested that enhanced multiyear predictability of PDV and ENSO should mainly arise 

via the extratropical subsurface ocean whose dynamics have long damping time scales 
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and strong persistence. With this in mind, the role of extratropical upper ocean variability 

is of particular interest in this thesis. Specifically, we have sought to identify the source 

of predictability of PDV, and to what extent the combined effects of tropical SST, South 

Pacific SST and subsurface ocean temperature variability may increase the predictive 

skill of linear stochastic models of PDV and ENSO. 

 

6.2 Key findings and implications 

 

To address the key aims and objectives of this thesis, we conducted a series of diagnostic 

analyses and made use of a family of different hierarchical stochastically forced reduced-

order models to investigate the deterministic dynamics and the role of stochastic forcing 

with specific focus on the South Pacific Ocean and its coupling to the tropical Pacific. 

Motivated by previous studies (e.g., Liu 2002; Power and Colman 2006), which show for 

climate variability of timescales longer than interannual that the contribution mainly 

arises from the intrinsic oceanic dynamics that come from outside the Tropics, we 

included the extratropical upper ocean temperature variability in each chapter to better 

understand how the extratropical upper ocean interacts with the surface temperature 

variability and potentially contributes to the predictability.   

In a re-examination of the Pacific decadal oscillation (PDO), Newman et al. (2016) 

systematically discussed the dynamics, impacts and predictability of the PDO in the North 

Pacific. Although Newman et al. (2016) broadly referred to the SPDO as the South Pacific 

centre of action of the Pacific-wide interdecadal Pacific oscillation (IPO) in comparing 

temporal relationships between the PDO and the IPO, further detailed examination of the 

dynamics of the SPDO remain unexplored. In a recent paper, Liu and Di Lorenzo (2018) 
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reviewed progress in understanding the mechanisms and predictability of PDV in both 

the North Pacific and South Pacific. However, relative to well-documented PDO studies, 

the South Pacific contribution from the SPDO is simply treated as a mirror of its North 

Pacific counterpart, without further detailed dynamics discussed. This is insufficient to 

explain the asymmetric and asynchronous differences between the North Pacific and 

South Pacific interactions with the Tropics (Johnson and McPhaden 1999; Yang et al. 

2005; McGregor et al. 2012; Liguori and Di Lorenzo 2019), responses to external forcing 

(Rathore et al. 2020) and intrinsic atmospheric variability (Ding et al. 2014; McGee et al. 

2018). Therefore, it is of particular interest to systematically understand the mechanisms 

by which the SPDO variability arises in the South Pacific and is the subject of this thesis. 

In order to understand the evolution and predictability of a geophysical system that 

exhibits complex variations over a wide range of spatial and temporal scales, a typical 

statistical perspective is to decompose the complex system into a simpler analog system 

that includes less degrees of freedom but nevertheless succeeds in representing the 

majority of the important dynamical processes of the entire system. In this thesis, various 

eigen-decomposition-based techniques have been applied to reduce the order of the 

system. For example, empirical orthogonal function/principal component (EOF/PC) 

analysis has been widely used in climate studies to reduce the degrees of freedom and to 

investigate the dominant modes of variability that maximize the explained variance of the 

system. However, classical EOF/PC analysis can only represent standing 

features/patterns over time, and is unable to detect propagating features (e.g., Penland 

1989) and to reveal the internal dynamics of the system (e.g., Hasselmann 1988). 

Therefore, EOF/PC analysis by itself is not optimized for constructing reduced-order 

dynamical models. Instead, principal oscillation pattern (POP)/linear inverse model (LIM) 

approaches by construction are designed to satisfy the first-order Markov processes. The 
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solution is based on eigen-decomposition of the deterministic feedback matrix, resulting 

from the multiplication of the time-lag covariance and concurrent covariance of the data, 

or, put in a perspective of prediction, resulting from minimizing the errors from the 

transformed predictor and predictand field. Unlike EOF analysis, the POP/LIM approach 

can either be used as a diagnostic tool to reveal the propagating features of the system 

and identify the characteristic time scales (i.e., damping time scales and/or oscillatory 

periods) of different processes or as a predictive tool to conduct time-evolving forecasts. 

In Chapter 2, the role of extratropical oceanic processes and atmospheric forcing in 

contributing to the SPDO has been examined by using a series of diagnostic statistics and 

a doubly integrated autoregressive-1 (AR1) model. The potential predictability of PDV 

in the North and South Pacific has been investigated and compared in terms of both the 

variance ratio between the decadal component and the total variance, and in terms of the 

doubly integrated AR1 model. Although the former does not necessarily represent the 

actual upper bound of predictability, it nevertheless provides a simple and convenient 

metric to quantify the importance of the low-frequency variability that may be potentially 

predictable on timescales beyond interannual and ENSO (Boer 2000, 2004; Kirtman et al. 

2013; Liu and Di Lorenzo 2018).  

We examined the spatiotemporal details of the leading surface and subsurface 

temperature variability based on the EOF/PC analysis. The dynamical interactions 

between the atmosphere, surface and subsurface ocean in the South Pacific has been 

illustrated using univariate AR1 models, in which the slowly varying oceanic temperature 

variability is explained as the integral response to continuous ‘random’ atmospheric 

variability. The main purpose of such univariate AR1 models has been to explain the 

fundamental dynamics from a zero-order approximation (von Storch and Zwiers 1999). 

The connection between the stochastically forced reduced-order models and physical 
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reality is described by the earlier work of Hasselmann (1976) who considered “slow” 

processes that constitute the deterministic system and “fast” processes that constitute the 

forcing noise. That is, the climate system is approximated as a continuous Markov (or 

AR1) process that has been discretely sampled. Our findings show the close relationship 

between the integrated Pacific-South American (PSA) variability and SPDO, supporting 

the general concepts of the autoregressive processes that fast atmospheric variations are 

critical to the excitation of the low frequency ocean variability – albeit that the actual 

dynamics are more complicated. 

The simple univariate AR1 models introduced in Chapter 2 were generalized to a high-

dimensional multivariate field in Chapter 3. There we developed the POP/LIM technique 

linking the tropical Pacific with the South Pacific to investigate the dynamics and 

predictability of the dominant modes of SST variability. The predictive skills of three 

LIM configurations were further evaluated based on the combination of modes, variables, 

and regions. As the South Pacific has received considerably less attention in comparison 

to numerous studies of North Pacific ocean variability, this chapter makes an important 

contribution to our understanding of the mechanisms underlying the SPDO and its 

predictability. It is worth noting that we have exclusively focused on the deterministic 

dynamics (i.e., the slow processes) in Chapter 3, which were decoupled from the 

stochastic forcing.  

One of the advantages of the POP/LIM techniques is their built-in forecast capability. The 

skill of the POP/LIM forecast scheme has been extensively explored in the literature as 

cited earlier. However, it is worth noting that the POP/LIM, as a predictive tool, cannot 

seriously compete with operational ensemble general circulation model (GCM) 

approaches in the long term. Rather LIMs (or POPs) provide a computationally cheap and 

convenient benchmark for GCM predictions and assessments of skill in predicting, for 
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example, SPDO evolution. To date, our study, along with many other studies of tropical 

SST, show the comparable predictive skill of the POP/LIM relative to those made by 

state-of-the-art GCMs.  

Given the close relationship between ENSO and PDV, the predictive skill of the SPDO 

on seasonal to (inter-)annual timescales largely depends on ENSO forecast skill (e.g., 

Alexander et al. 2008; Wen et al. 2012; Saurral et al. 2020). For longer forecast leads, 

ENSO events turn out to be inaccurate and act mostly as high-amplitude noise for climate 

predictions (Newman 2013; Wittenberg et al. 2014). We found that, although the 

oscillatory periods of ENSO and the SPDO are distinct, they have close damping time 

scales. This may help explain why ENSO and SPDO forecast skill from LIM approaches 

are comparable. Nevertheless, we show that predictability beyond ENSO forecast skill 

originates in the dynamics of the subsurface South Pacific Ocean. 

Chapter 4 continues the work presented in Chapter 3 by utilizing the same POP/LIM 

framework, but with a specific focus on the identification of optimal perturbations for 

maximizing the linear growth of the SPDO and ENSO and the role of atmospheric 

stochastic forcing associated with the variability in the PSA sector. In this Chapter, the 

contribution from the deterministic dynamics and the unpredictable noise-forced SST 

evolutions has been separated. 

The assumption that the reduced-order system is driven by uncorrelated Gaussian white 

noise implies that the eigenmodes must all have exponentially decaying amplitudes and 

that any initial optimal perturbations to the system will eventually decay in the absence 

of noise forcing. If the linear growth of the reduced-order system only occurs as a result 

of stochastic forcing, it is within our expectation that the predictability of the system is 

limited since the white-noise forcing is not predictable. For example, as indicated in the 
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univariate AR1 models shown in Chapter 2, the system monotonically decays in the 

absence of stochastic forcing, suggesting the predictability of the system cannot extend 

beyond the damped persistence time scales. If on the other hand, the system turns out to 

be linear with predictable growth, then there must be alternative mechanisms for such 

growth that does not solely arise from the stochastic forcing. Such mechanisms are found 

to be associated with the constructive non-modal interference of the non-orthogonal 

eigenmodes (Penland and Sardeshmukh 1995). That is, non-modal growth involving 

transient amplifications of anomalies are caused by interference of the non-orthogonal 

eigenmodes that dominate the evolution of the linear stable system. Linear optimal non-

modal growth is found to be critically important in enhancing the variances and 

persistence of the deterministic system (e.g., Penland and Sardeshmukh 1995; Rashid and 

Simmonds 2005; Vimont et al. 2014; Capotondi and Sardeshmukh 2015), therefore 

providing an important perspective from which to understand linear sources of 

predictability. 

It is common practice to restrict stochastic forcing in the POP/LIM to Gaussian white 

noise that is, by definition, state independent. This assumption is valid and useful only 

when the system is stable and can be adequately described by linear (or weakly non-linear) 

deterministic dynamics. Nevertheless, we have shown that the stochastic forcing is 

fundamentally important in, for example, maintaining the evolution of the internal 

dynamical behaviour of the deterministic system of interest (i.e., the ocean system in this 

thesis), generating teleconnections, and affecting the predictability.  

Informed by the systematic development and utilisation of the aforementioned hierarchy 

of stochastically forced linear reduced-order models (i.e., univariate AR1 models and 

multivariate LIM), the thesis culminates with an overarching framework linking the 

atmosphere to the surface ocean and to the subsurface ocean across a range of time scales 
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from (intra-)seasonal to (inter-)decadal. This provides a mechanistic framework enabling 

an integrated understanding of the drivers of large-scale South Pacific climate variability. 

We have shown that the leading two South Pacific SST modes can be viewed as the 

integrations of the atmospheric PSA patterns (i.e., PSA1 and PSA2), via which multiple 

time scales are connected. The oceanic response to PSA spatiotemporal variability can be 

either via a reddening process from which the main potentially predictable signal is 

generated or via (coherence) resonances between surface ocean anomalies and synoptic 

scale atmospheric variability whereby the preferred noise is produced. It is found that an 

extratropical quadrupole SST pattern can optimally determine how the system evolves 9 

months later into the peak phases of the leading SST modes in the tropical and South 

Pacific oceans. 

  

6.3 Conclusions 

 

The key conclusions with respect to the aim and objectives (see Chapter 6.1) are 

summarized as follows: 

1. The SPDO associated with the leading SST mode of variability in the South 

Pacific Ocean can be viewed as a collection of multiple processes operating on 

distinct time scales.  

2. The PSA1 is the dominant atmospheric driver or stochastic forcing of the SPDO. 

The large fraction of the subsurface counterpart of the SPDO can be viewed as 

cumulative integrations of the atmospheric PSA1 variability exciting internal 

ocean processes. The PSA2 explains the large fraction of the second leading SST 
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mode in the South Pacific Ocean, which is referred to as the South Pacific SST 

quadrupole pattern. 

3. The extratropical subsurface upper ocean is the main source of decadal variability. 

Topographically trapped oceanic Rossby waves east of New Zealand in the 

southwest Pacific may be the key oceanic mechanism that enhances observed 

decadal variability of the SPDO and may potentially be a critical area for future 

predictability studies.  

4. Although ENSO and the SPDO have distinct oscillatory periods – primarily, the 

former oscillates on interannual timescales and the latter on decadal timescales – 

they have very close damping time scales, indicating the predictive skills of ENSO 

and the SPDO are comparable.  

With respect to practical predictability within the LIM framework and the identification 

of optimal precursors for forecast initialisation we find the following additional five key 

conclusions:  

5. Reduced-order LIM predictions of ENSO and the SPDO are comparable with 

state-of-the-art GCMs. The ENSO boreal spring predictability barrier (MAM) is 

similarly apparent in LIM predictions.  

6. Predictability longer than ENSO skill resides in the extratropical upper ocean. 

With the inclusion of subsurface processes in the South Pacific Ocean, the 

predictability of ENSO and the SPDO was found to increase. 

7. A specific set of initial conditions can optimally determine how the system will 

evolve along its deterministic (linear) trajectory. The South Pacific SST 

quadrupole pattern is found to be an optimal SST precursor for the development 

of the SPDO and ENSO. The subsurface SST variability associated with oceanic 
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Rossby wave propagation sets a background state to modify and guide the SST 

evolutions. 

8. The atmospheric propagating PSA patterns (i.e., PSA1 and PSA2) are associated 

with higher-order noise-forced SST variability and contribute not only to excite 

the optimal initial perturbations that maximize ENSO and SPDO development, 

but in general to activate the stochastic SST forcing.  

9. The PSA2 is the key forcing required to excite the SP SST quadrupole pattern 

which optimally determines the evolution of SST anomalies along its 

deterministic (linear) trajectory leading to the SPDO and ENSO peak phases nine 

months hence, and from which the linear predictability intrinsic to the SST system 

can be inferred. 

 

 

6.4 Future research directions 

 

An important outcome of this thesis is the identification of a physical framework for the 

large-scale South Pacific climate dynamics that links the air-sea coupled system, from the 

atmosphere to SST variability and in turn with the upper oceanic processes, across 

multiple time scales from (intra-)seasonal to (inter-)decadal. The relative importance of 

stochastic forcing, ENSO teleconnections and oceanic processes in contributing to the 

overall SPDO variability has not been quantified. Although Newman et al. (2016) suggest 

that each of those mechanisms play equivalent roles (approximately one-third) in the PDO 

variance for the North Pacific, it remains unclear if this is the case for the SPDO in the 

South Pacific. Future research is necessary to quantify the relative importance of those 

mechanisms by conducting some idealized experiments. In addition, those proposed 
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physical drivers might vary in each SPDO phase. The extent to which the SPDO is 

predictable requires further case studies of how the relevant physical drivers and 

processes interact.    

The reduced order stochastically forced AR1 model and POP/LIM have shown their 

capabilities in diagnosing the dynamics of the SPDO and in making predictions. However, 

due to the built-in limitations of such stochastically forced models, they are not able to 

conduct ensemble forecasts. Further research using other approaches and/or numerical 

tools are required to answer how different initial conditions might affect the SPDO 

evolution and predictability. In particular, beyond optimal perturbations identified using 

the relatively simple LIM framework, which cannot account for nonlinearity or red noise 

forcing, more advanced nonlinear ensemble prediction methods employing nonlinear 

generalizations of the leading Lyapunov or backwards Lyapunov vector are now being 

employed in climate prediction. We anticipate that, with better understanding of physical 

dynamics, predictions made by the state-of-the-art GCMs will eventually outperform 

reduced-order statistical models. Nevertheless, stochastically forced models are likely to 

remain very valuable tools for convenient and computationally cheap benchmarks for the 

validation of GCM outputs in the future.
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A List of Acronyms 
 

 

ACCESS-O Australian Community Climate and Earth System Simulator Ocean 

Model 

AL Aleutian Low 

AR1 Autoregressive of order 1 

ARC Australian Research Council 

ARCCSS The ARC Centre of Excellence for Climate System Science 

ARIMA Autoregressive Integrated Moving Average 

AMS American Meteorological Society 

CLEX The ARC Centre of Excellence for Climate extremes 

CMIP5 The 5th phase of Coupled Model Intercomparison Project 

CMS Computational Modelling Systems 

CORE Coordinated Ocean-Ice Reference Experiments 

CSIRO Commonwealth Scientific and Industrial Research Organisation 

EAC East Australian Current 

ENSO El Niño–Southern Oscillation 

EOF Empirical Orthogonal Function 

ESCC Earth Systems and Climate Change 

GCM General Circulation Model 

GFDL Geophysical Fluid Dynamics Laboratory  

HadISST The Hadley Centre Global Sea Ice and Sea Surface Temperature 

IMAS Institute for Marine and Antarctic Studies 

IPO Interdecadal Pacific Oscillation 

KOE Kuroshio and the Oyashio Extensions 

LIM Linear Inverse Model 

MJO Madden-Julian Oscillation 

MOM4p1 Modular Ocean Model version 4.1 

NAO North Atlantic Oscillation 

NCAR National Center for Atmospheric Research 
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NCEP National Centers for Environmental Prediction 

NCI National Computational Infrastructure 

NMME National Multi-Model Ensemble 

NESP National Environmental Science Project 

NP North Pacific 

NPI North Pacific Index 

NPMM North Pacific Meridional Mode 

OGCM Ocean General Circulation Model 

OT Ocean Temperature 

PC Principal Component 

PDO Pacific Decadal Oscillation 

PDV Pacific Decadal Variability 

PMM Pacific Meridional Mode 

POP Principal Oscillation Pattern 

PSA Pacific-South American Pattern 

SLP Sea Level Pressure 

SP South Pacific 

SPDO South Pacific Decadal Oscillation 

SPMM South Pacific Meridional Mode 

SSH Sea Surface Height 

SST Sea Surface Temperature 

STCC Subtropical Countercurrent 

TP Tropical Pacific 

TPI Tripole Index 

UTAS University of Tasmania 

VAT Vertically averaged temperature 

WES Wind-Evaporation-Sea surface temperature feedback 

WKB Ray tracing 

Z500 500-hPa Geopotential Height 
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