
Doctoral Thesis 

Development of hyperspectral and RGB 

imaging systems for under-ice mapping of fine 

scale sea-ice biophysical properties 

Author:  

Emiliano Cimoli (BSc, MSc) 

Supervisors: 

Dr. Vanessa Lucieer, Dr. Klaus Meiners, Prof. Arko Lucieer, Prof. Andrew McMinn 

A thesis submitted in fulfilment of the requirements for the degree of Doctor of 

Philosophy 

In 

Physical and Natural Sciences 

Institute of Marine and Antarctic Studies, University of Tasmania  



2 | P a g e



3 | P a g e

“Nobody ever figures out what life is all about, and it doesn't matter. Explore the world [and 

beyond]. Nearly everything is really interesting if you go into it deeply enough” 

Richard P. Feynman 
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Abstract 

Polar sea ice is one of the largest biomes on Earth covering up to 6.1% of the area of the global ocean. 

Within this biome, sea-ice algae constitute a large, yet poorly quantified fraction of biomass 

contributing to polar marine productivity and large-scale biogeochemical cycles. Ice algae support 

the foundation of polar marine food webs by sustaining pelagic fauna, seeding planktonic blooms, 

and exporting organic material to the benthos. Advancing the capability to capture spatio-temporal 

dynamics of ice algae and its drivers is highly desirable.  

Modern understanding of ecology advocates that the analyses of large-scale ecological patterns 

require the acknowledgment and integration of small-scale processes and that complex interactions 

occur at multiple scales. In sea ice, traditional sampling methods have struggled to capture and 

quantify patterns in algal community distributions due to a lack of methods that do not destroy the 

community and address microscale patterns (<0.1 m). Compounded with the challenges of 

surveying in polar regions, datasets remain fragmentary and coarse, hampering a mechanistic 

understanding and an ability to extrapolate and predict responses to environmental change. This 

doctoral research thesis aims to fill this methodological gap. It deals with the development, 

application, and assessment of passive hyperspectral imaging (HI) and photogrammetric 

approaches for quantitative microscale mapping of key sea-ice biophysical properties. The research 

developed a novel in situ under-ice platform and a field-deployable ice-core scanner. Their 

integration allowed for the retrieval of bio-optical regression algorithms to map chlorophyll-a both 

on ice cores and in linear transects beneath Antarctic sea ice  

The thesis provides an under-ice close-range remote sensing perspective to the multidisciplinary 

problem of mapping biophysical properties in sea ice (Chapter 2). It starts by reviewing the current 

understanding of ice algal biomass variability, its environmental drivers, and highlights the missing 

links, thereby establishing the need for research development in this field. Radiative transfer in sea 

ice and the possibility to establish bio-optical relationships are the theoretical foundation of the 

proposed approaches and are therefore elucidated. A compilation of studies employing bio-optical 

models to retrieve biomass in sea ice is presented while discussing caveats and potentials for 

improvement. Technical and logistical trade-offs to be considered in under-ice radiation transfer 

mapping are discussed and illustrated, together with advances in emerging marine technologies 

that are changing the spatial scales of the surveys.  

Chapter 3 presents an initial assessment of pushbroom HI technology to capture the variability of 

ice algae at the microscale using an innovative inverted sea-ice simulation tank.  Through artificial 

illumination and controlled concentrations of algal consortia, HI was tested for a range of key HI 

parameters (e.g., different spectral resolutions). Exploratory image analysis revealed proxies of 

biomass matching inoculated abundances at unprecedented scales (a 0.8 x 0.8 m area at sub-mm 
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resolution). Considerations for sensor selection relevant to ice algal mapping were narrowed down 

through this assessment (e.g., ≤ 3.4 nm spectral resolution). The study laid out the fundamental 

steps for the deployment of in situ HI, whilst highlighting the suitability of artificial sea-ice tanks to 

mimic the under-ice light environment and for testing of key parameters to improve the 

methodology.  

Chapter 4 details the development of a novel underwater sled system for capturing referenced and 

overlapping HI and RGB imagery of the under-ice habitat. The chapter focuses on the technical, 

logistical, and theoretical considerations that are behind the system development and design. 

Tested under fast ice off Cape Evans, Antarctica, the system proved to be capable of capturing 

proxies of ice algal biomass and under-ice topography for the first time in situ at sub-mm spatial 

resolution. A transect 20.1 m long with a 0.61 m swath was presented, and data quality over a 0.7 

by 0.61 m subsample was assessed. Image acquisition parameters for meaningful data acquisition 

in a cold (-1.8 °C) and low-light (𝐸𝑑,   400−700 𝑛𝑚 = 0.35 ± 0.20 λ, W m-2) environment were assessed. 

Overall this study established the foundation of an adaptable solution that unlocks many research 

opportunities for marine under-ice mapping. Potential scientific applications for the system, its 

limitations and future developments are discussed.  

Chapter 5 describes a complementary, field-deployable, hyperspectral scanning set-up that enables 

spatially-explicit quantification of both the vertical and horizontal microspatial variability of 

chlorophyll-a proxies in sea-ice cores. It further enables the retrieval of bio-optical regression 

algorithms relating sampled chlorophyll-a to spectra. New spectral indices tailored to our test area 

were developed with this scanning system explaining up to 85% of variation in chlorophyll-a. The 

performance of novel indices is statistically validated and compared to traditional ones (e.g., NDIs). 

Chapter 5 presents a first attempt to apply the retrieved regression models applied to both the in 

situ and horizontal ice-core sections of hyperspectral images, yielding per-pixel chl-a in mg m2. The 

unique under-ice habitat patterns captured are discussed in a biophysical context.  

Underwater HI is a very novel technology and can be expected to revolutionise close-range 

underwater remote sensing of marine biogeochemical systems. This thesis pioneered HI coupled 

with photogrammetric approaches for the first time in extremely challenging polar marine waters 

beneath the ice. The trials of this technology and associated methodology have shed new light onto 

undocumented features of the under-ice habitat, which may permit the development of new 

research questions to understand this important biome.  
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List of figures 

Figure 1.1 Summary of objectives and data sources for each of the thesis chapters. UUVs stands for 
Unmanned Underwater Vehicles (UUVs). HI stands for Hyperspectral Imaging. 

Figure 2.1 Overview of scales in sea-ice algae biomass spatial variability. At millimeter scale, 

fluorescence yield provides a good proxy of their distribution horizontally and vertically. Over the 

centimeter to meter scale, ice coring is the main method to estimate ice algal biomass (using chl-a 

as proxy). Vertical variability is measured by dissection of the ice cores in multiple sections 

providing discrete samples of the vertical distribution. Sea ice algae display diverse distribution 

patterns and concentration ranges across different regional sea-ice zones as well as in different 

ecosystems (e.g. Arctic, Antarctic and sub-Arctic areas). 

Figure 2.2 Simplified schematic of drivers influencing the spatial distribution of biomass in sea ice. Green 

arrows imply the initial biomass input to the system and red arrows the system output. The grey arrow 

symbolizes the close correlation between sea-ice physical properties and the properties of the ice algae 

medium. Some sea-ice physical properties are also closely correlated with each other. Overall, all 

parameters are heavily influenced by temperature and by the meteorological and oceanographic conditions 

which in turn are dependent on the location and season of the year.  

Figure 2.3 Conceptual illustration of radiative transfer in sea ice (for shortwave radiation between 350 

and 700 nm) as described in text. The complex system features both absorbing and scattering elements 

that shape the geometric and spectral properties of the under-ice light field. The illustration provides a 

concept idea of typical under-ice light sensor settings employed for close-range remote sensing 

applications. Radiance sensors have a finite angle of view and are intended for finer mapping resolutions 

and deeper deployment modes (2-5 m). Irradiance sensors have to be deployed nearby the ice sub-surface 

due to their cosine field of view. Figure was partially adapted from Katlein et al., 2014. 

Figure 2.4 Traditional and emerging deployment modes for under-ice optical sensors. a), L-arms have 

been the starting point for acquiring under-ice spectral radiometric measurements due to their low-cost 

and relative ease of applicability; b), ROVs are emerging as a versatile tool to cover larger profiling 

transects compared to L-arms. The panel displays the Australian Antarctic Division’s ROV under Antarctic 

sea ice (photo credit: Ulrich Freier); c), Autonomous Underwater Vehicles (AUVs) have not yet been 

employed for such type of applications due to the challenges described in the text. However, they present 

the potential to become a powerful tool towards large-scale mapping of biomass and method automation. 

The panel displays the GAVIA AUV under algae-populated Antarctic fast ice (photo credit: Vanessa 

Lucieer). 

Figure 2.5 Schematic of the trade-offs between the typical remote sensing objectives (left), and the 

technical and environmental factors to consider in an under-ice surveying context. Red links indicate that 

there is an inverse relationship between the ideal objective and the factor whereas green links indicate a 
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positive relationship. Blue connectors refer to a variable relationship. The black line connectors indicate 

that the factors are highly correlated. More information can be found in the text. Overall, sensor 

specifications need to be set according to deployment mode and to the environmental constraints 

(symbolized by the black dotted line). The optical system efficiency includes optical throughput of the 

lenses, the dispersive element efficiency, and the detector quantum efficiency. The scheme is valid for 

both non-imaging radiometers and HI. Spatial resolution refers to the ground sample distance of an 

imaging spectrometer. The spatial footprint refers to the circular footprint of normal spectrally resolved 

radiometer. SNR refers to Signal to Noise Ratio. 

Figure 3.1 Illustration of the inverted sea-ice simulation tank and spectral signature of the LED artificial 

light source. The hyperspectral pushbroom scanner was mounted onto a motorized sliding rail at 1.2 m 

distance above the ice/water interface. The layered surfaces (glass, ice, water) cover an area of 0.85 m× 

0.85 m. The distance from the camera fore-optics to the ice layer is 1 m. The illustration is not to scale. 

 

Figure 3.2 a) Image of the inverted sea-ice simulation tank in the dark room setting with all external light 

sources off. b) Image of the inverted ice tank together with the motorized slider and the cylinder’s set-up. 

c) The SPECIM AISA Kestrel 10 hyperspectral imager. d) High (H) algae abundance cylinder after two 

days of algae inoculation. 

 

Figure 3.3 Results of PCA applied to the 1.7 nm spectral resolution frame of the ice surface. a) RGB 

composite of the hyperspectral image after algae inoculation displaying the performed biomass 

redistribution among cylinders. The RGB composite image is similar to what is observable by the human 

eye or normal imagery. b) First principal component (PC1) representing light intensity variability within 

the image. c) PCA loadings for each of the principal components. Algae absorption bands are clearly 

visible in PC2 at ∼450 and 680 nm. d) Second principal component (PC2) representing algae biomass 

abundance variability. The colour bar is unit-less as representing PC intensities. 

 

Figure 3.4 Principal component 2 (PC2) representing algae biomass variability for different spectral 

resolutions 1.7 nm a), 3.4 nm b), 6.8 nm c), respectively. The difference in biomass PC2 loadings between 

1.7 and 3.4 nm is minimal. The figure outlines the working spectral resolution range for hyperspectral 

imaging aimed to capture algae biomass abundance. The test suggests that sensors with spectral resolution 

above 6.8 nm cannot be used for the purpose and for example discards the use of snapshot hyperspectral 

sensors compared to pushbroom scanners. The colour bar is omitted. 

 

Figure 3.5 Comparison of radiance levels measured in the inverted ice tank with a series of Arctic under-

ice radiance transects measured in situ with a Remotely Operated Vehicle (ROV) for different sea-ice 

conditions. The ice tank radiance is obtained from the hyperspectral frames. Mean ICE TANK is the mean 

between all pixels in the frame whereas Min ICE TANK is the pixel with minimum intensity (taken in a 

non-shadowed area). ROV transects data are publicly available from the study performed by Nicolaus and 

Katlein (2013) in Arctic sea ice. Sea-ice conditions varied from snow to no snow cover (from 2 to 10 cm 
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thickness), from First Year Ice (FYI) to Multi Year Ice (MYI) (from 0.3 to 3.8 m thickness) and ROV 

water depth varied from 1 to 8 m. 

 

Figure 4.1 Concept design of the under-ice hyperspectral and RGB imaging system to capture fine-scale 

biophysical properties of sea ice. The system is designed to retrieve bio-optical relationship from 

downwelling sea-ice transmitted radiance. The sliding system aims to smoothly scan transects tenths of 

meters. It has a variable ski span of 0.82 to 1.2 m, a ski length of 1.48 m and a height of approximately 2 

m. Its modular buoyancy system allows adjustment of the upward push against the ice and stabilizes the 

structure under different payload set-ups. The figure also shows the payload attitude reference system 

relative to the sensors orientation (heading, roll, and pitch). HI refers to Hyperspectral Imaging and FOV 

to Field of View. 

 

Figure 4.2 Field deployment and operation concept for the under-ice hyperspectral imaging and RGB 

scanning system. Two worm gear winches provide highly controllable slow movement back and forth 

along predefined transect. Movement commands are provided via radio communication and manual 

winching. The support remotely operated vehicle (ROV) is used to establish a tow-line between the 

deployment hole and the opposite transect endpoint. The deployment and operation require at least 

three people. Figure is not to scale. 

Figure 4.3 An overview of the payload main internal components, their allocation within the enclosure 

and volume required to host the payload. AK10 stands for AISA Kestrel 10. The figure also includes the 

payload attitude reference system relative to the sensors orientation (heading, roll and pitch). 

 

Figure 4.4 Schematics of the electronic power and communication streams for the internal and the 

additional external under-ice payloads. 

 

Figure 4.5 Field pictures of the first deployment at Cape Evans, Antarctica. a) The system control station 

together with the removable payload tray. b) The system deployed in the water prior to under-ice 

immersion. Visible is the external payload composed of the TriOS Ramses ACC and a set of four Lumen 

Subsea LEDs, and the prop maneuvering cradles. c) The system scanning over the selected transect 

underneath the highly productive fast-ice of Cape Evans. d) One of the worm gear winches at the opposite 

side of the transect in speed-up mode using a drill adapter. 

 

Figure 4.6 Overview of the surveyed western transect produced with structure from motion (SfM) digital 

photogrammetry using the RGB imagery. Camera positions and Ramses ACC irradiance samples were 

synchronized to the same sampling frequency, so they match in space. Blocks A and B within the transect 

were selected for further image analysis. On top is a photograph of the transect direction viewed from 

above the surface. Displaying the typical survey conditions (little to zero snow) of the study area. 
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Figure 4.7 Display of the main data products of the developed under-ice payload. Block A and block B 

refer to two different subsections within the western transect that were selected for further analyses. a) 

Under-ice orthomosaic produced from the RGB imagery. b) Hillshade of the SfM derived digital elevation 

model (DEM) illustrating relief structure produced by the large cavities. c) Visual representation of the 

hyperspectral data cube for block A including block B as an RGB composite. Panel d) and e) display the 

high variability of radiance spectra for a selected variety of spots within block B (both unprocessed and 

smoothed with a Savitzky-Golay filter respectively). Panel f) display four of the darkest pixels within the 

image associated to extremely dense algal clumps. For all plots, spectrum shows a × 4 pixels spectral 

average which corresponds to approx. 1.2 mm pixel size. Native pixel size is 0.624 mm. A 0.14 m Kovacs 

ice core areal coverage is provided for scale reference only.  

 

Figure 4.8 Two upward looking RGB image samples taken from the Sony a6300 camera dataset shown 

at full resolution. Both images display some examples of spotted under-ice feeders (circled). Left image 

shows a ctenophore (comb jelly) and right image shows a couple of circled amphipods. a) Image taken 

nearby the visible deployment ice hole. The image zooms into a large brine channel and further on the 

highly detailed under-ice skeletal layer. b) Image taken midway on the transect displaying the high 

concentration of oxygen bubbles produced by the photosynthesizing ice algae. 

 

Figure 4.9 a) Mean ± one standard deviation of downwelling under-ice irradiance (Ed) spectra from 

the TriOS RAMESES ACC-VIS located near the ice water interface for the full 20.1 m transect. b) 

Mean ± one standard deviation of under-ice downwelling radiance spectra (Ld) from all the pixels of 

block B hyperspectral image subsample from the AK10. c) Mean ± one standard deviation of under-

ice irradiance and radiance spectra normalized by area under curve for the Ramses ACC-VIS over all 

the transect and for all pixels of block B AK10 hyperspectral image. d) Mean ± one standard deviation 

of under-ice downwelling radiance (Ld) normalized by the maximum radiance pixel of all block B 

and corresponding to one of the cavities or secondary brine channels seen in the image (Ld-cavity) . 

Figure 4.10 Results of principal component analysis (PCA, also known as EOF), applied to the spectral 

dimension of block B (hyperspectral image subsample of the western transect). Top images display the 

first three PC scores applied to every pixel of the image using corresponding loadings for each component. 

Bottom plots display the loadings for each wavelength for each principal component. Plot display as well 

the proportion of variance explained by each corresponding component. Light grey areas highlight the 

maximum chl-a absorption regions at 440 and 670 nm. Spatial resolution for PCA was maintained to a 

native 0.625 mm. 

 

Figure 4.11 Application of spectral indexes as proxies of chl-a distribution over block b HI subsample. a) 

Results from the application of a commonly used index in sea-ice bio-optical literature, the normalized 

difference index (NDI), applied for wavelengths 648:567 nm on block B hyperspectral image subsample. 

b) Application of a novel index to sea-ice bio-optical literature, the area under curve normalized to 

maximal band depth (ANMB) between wavelengths 650 to 700, applied to the same block B. c) Plot of 



26 | P a g e  

 

continuum removed spectrum of three random pixels within block B to help visualizing the ANMB650–700 

concept and its association with chl-a absorption. For the color bars, higher values (towards red) 

correspond to higher expected biomass. Spatial resolution for the indices was binned to 1.2 mm. 

 

Figure 5.1 An overview of the data acquisition workflow and hyperspectral imaging optical set-up. a) The 

ice core scanning set-up based on transmitted artificial illumination. b) and c) illustrate the mean ± 

standard deviation of radiance (L) emitted by the white and solar LED lamps entering the acrylic glass 

tray surface, respectively. d) 3D model reconstruction using Structure from Motion (SfM) digital 

photogrammetry on horizontal bottom-core sections. e) Ice core sample preparation for hyperspectral 

image acquisition along vertical and horizontal ice-core surfaces.  A total of 6 vertical scans and 54 

horizontal scans were acquired in this study. 

 

Figure 5.2 A flowchart of the data-processing procedure to yield per-pixel biomass (as chl-a) estimates 

from hyperspectral imagery of core sections and in situ. a) and b) display the mean ± standard deviation 

of directional transmittance at 668 nm through an example ice core (ice core 37) and the under-ice 

imagery, respectively. The under-ice HI procedure is detailed in Cimoli et al. (2019) or Chapter 4. L(λ) 

stands for spectral radiance and T(λ) and Td(λ) for spectral transmittance and downwelling spectral 

transmittance, respectively. DN stands for Digital Number of raw imagery data. 

 

Figure 5.3 a) The distinct under-ice habitat encountered at Cape Evans, Antarctica during Spring 2018, 

characterized by scattered large cavity features varying widely in diameter and depth. b) Block B under-

ice image location and acquisition using the under-ice HI sliding system described in Cimoli et al. (2019) 

or Chapter 4. c), d) and e) display an oblique view of the bottom-core surface 3D models (top) and the 

complex micro-spatial variability of the under-ice structural features (below). Skeletal layer characteristics 

of land-fast sea are visible along with scale of observable brine channels and cavities. 

 

Figure 5.4 Results of Principal Component Analysis (PCA) applied to three selected vertical ice-core 

scans (cores 22, 42 and 30). a) PCs loadings, PC1 accounts for >99.8 % of variation and loadings embody 

the spectral signature of the light source. PC1 scores map a proxy of light intensity. PC2 accounts for 

<0.05 % of variation and loadings are strongly associated with the chl-a absorption spectrum. PC2 scores 

map a proxy of biomass within the ice core vertical and horizontal dimensions. b) Horizontal scans and 

analysis of core 30 characterized by a large cavity feature (see Figure 3e). Panels c)-f) illustrate zoomed 

views of selected features of interest such as brine pockets and channels inhabited by ice algae. PCA was 

performed separately on vertical and horizontal section data. 

Figure 5.5 Linear regressions between log-transformed fluorometrically-derived chl-a values and derived 

spectral indices using index computation method (1). Panel a) shows the Pearson correlation surface 

between all NDI waveband combinations and chl-a values displaying the selected optimal wavelengths. 

a) and b) illustrate NDI(587:621) and NDI(517:449) tested against sampled chl-a. d), e) and f) display 

regression performance of newly developed integrative spectral indices when tested against sampled chl-

a. All regression plots differentiate samples coming from different light sources (e.g., white versus solar 
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LEDs) and vertical positioning (e.g., bottom, middle, or top). Regressions lines include 95% confidence 

interval of the coefficients (shadowed grey areas). 

Figure 5.6 Panels a-d) display the RGB composite of selected bottom-core sections (top) and the 

application of the best performing regression model to the respective preprocessed hyperspectral images 

(below). The best performing linear model was derived using the log(AUC650-700) index (see Table 1). 

Sampled fluorometrically-derived chl-a values of each core section are provided to indicate scale of 

magnitude of biomass to be compared with the mapped ln(chl-a[mg m-2]). High variability in biomass 

abundance can be observed within the 0.015 m2 core surfaces as well as across cores. 

Figure 5.7 Application of best performing regression model to the under-ice imagery. a) Framing of block 

B hyperspectral image subsample within the entire transect provides an idea of scale. b) Displays a GoPro 

HERO5 image taken post under-ice hyperspectral image acquisition and ice coring over block B. Panel c) 

shows the first attempt for quantitative mapping of chl-a by applying the log(AUC) index regression model 

on a per pixel basis to the preprocessed block B imagery. d) A high-resolution image of one of the large 

cavity features from block B and comprising an overlapping algal-web like structure. These algal-webs 

were common features on top of the cavities. 
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List of tables 

Table 2.1 Compilation of observational studies on sea-ice algal biomass spatial variability (as chl-a or 

other proxy) and associated environmental drivers. The table follows an increasing order of spatial 

sampling scale and resolution. FYI refers to First Year Ice, MYI to Multi-Year Ice. PAM refers to Pulse 

Amplitude Modulated (fluorometry). Statistical method used refers to the method employed (if any) to 

assess spatial variability or to estimate the correlations between biomass proxies and any of the analysed 

co-variates. ANOVA stands for analysis of variance. 

Table 2.2 Compilation of studies using measured under-ice spectra for estimating chl-a (in mg·m-2) in sea 

ice. All studies correlate optimal spectral bands with measured chl-a obtained through traditional ice 

coring techniques. Location, ice type and date of the survey are shown together with the method employed, 

produced relationships and the statistical strength of the correlations as R2. Sba refers to the scaled band 

area found in the respective studies. S refers to the EOF scores found in the respective studies. E(chl-aadj) 

indicates that a log-link function was applied for the formulation of the relationship. ln indicates that a 

natural logarithm was employed to formulate the relationship. Sensor mode refers to the FOV (radiance 

or irradiance) and if it was normalized to downwelling surface radiation (transflectance or transmittance). 

Table 2.3 A compilation of published studies employing UUVs or any other kind of underwater platform 

(e.g., under-ice sleds or under-ice trawls) for radiation transfer mapping under sea-ice. 

Table 4.1 Summary of all optical sensors utilized in the internal and external components of the developed 

system together with their specifications (top part). The table also includes specifications of other 

components required to run the system (bottom part). FOVh and FOVv stand for the vertical and 

horizontal field of view. Underwater FOV is only an ≤ estimate approximation based on simplified 

theoretical formulas. FWHM refers to Full Width to Half Maximun. 

Table 5.1 Results of analyses by the linear regressions models for estimating chl-a in sea ice based on 

traditional and newly adapted spectral indices for ice algal biomass mapping. α and β refer to the 

regression model intercept and slope respectively. R2 refers to the coefficient of determination. RMSE 

refers to Root Mean Square Error. 
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Chapter 1  

Introduction and thesis objectives 

 

The sea-ice biome is extensively vast, covering up to 4-5 % of the global ocean surface during its 

maximum extent (for both the Arctic and the Antarctic) (Meier, 2016; Stammerjohn and Maksym, 

2016). Sea ice algae, together with under-ice phytoplankton, constitute a large, yet poorly quantified 

fraction of polar primary production. Ice algal communities are typically dominated by diatoms, and 

estimates suggests that they are potentially highly productive amounting to 2-24 % of total primary 

production in -ice-covered marine areas (Arrigo, 2017; van Leeuwe et al., 2018). Beyond their role 

as primary producers, ice algae lay the foundation of key ecological interactions in polar marine 

environments. As ice algal growth occurs early in the season, ice algae provide a crucial food source 

for pelagic herbivores (Kohlbach et al., 2017, 2016; Meiners et al., 2018). As the season progresses, 

sea-ice declines, and the release of organic material from the ice can seed phytoplankton blooms or 

sink to the sea floor in support of benthic systems that have adapted to such seasonal cycles (Boetius 

et al., 2013; Gradinger, 2009; Leu et al., 2015; Wing et al., 2018). 

The description of ecological patterns includes the description of variation in abundance of 

populations and communities over space and time (Levin, 1992). To develop a predictive theory, 

and enhance predictive capabilities, we are required to examine the ecological patterns in nature 

and develop theories that help assimilate observations across different scales (Chave, 2013; Levin, 

1992). In particular, in order to understand large-scale patterns, we must integrate the effect of 

small-scale processes that operate within specific areas.  

As polar sea-ice environments face imminent perturbation due to environmental change (Massom 

and Stammerjohn, 2010; Parkinson, 2019; Tedesco et al., 2019), it is of paramount importance to 

be able to map and understand the processes that control the patterns of ice algal biomass 

distribution over the sea-ice biome. 

A characteristic feature of the ice algal habitat is that it features sharp physical and biological 

gradients that generate remarkably dynamic and variable spatio-temporal organizations at 

different spatial scales; from the micro- to the mesoscale. In this thesis, the tightly interlinked sea-

ice biological (e.g., algal biomass, community composition and physiology) and physical (e.g., sea-

ice and snow thickness and ice structure) properties are referred to sea-ice biophysical properties. 

Understanding biophysical patterns in sea ice and their underlying drivers must begin by capturing 

their spatial variability quantitively through time. Nonetheless, as will be detailed further on in this 
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thesis, current methodologies to sample biomass in sea ice have struggled to accomplish integration 

across scales, and often lack the spatial and temporal resolutions required to properly quantify 

scales of variability – particularly at the microscale. Lack of information is accentuated if we 

consider the remote and inaccessible nature of polar under-ice environments that has rendered our 

datasets fragmentary and coarse. 

At the macro- and geographical scales, we assume that the interplay of sea-ice biophysical 

properties is continuously varying as atmospheric and oceanographic conditions fluctuate and 

dictate ice formation and decline processes according to the region and time of the year 

(seasonality). Both ice formation and decline processes play important roles in the incorporation 

and release of organic content into the sea-ice matrix yet mechanistically little is known (Leu et al., 

2015; Olsen et al., 2017; Ryan et al., 2006). 

Concentrations of certain algal pigments in sea ice can be used as a proxy for the amount of biomass 

present or of other biological properties (e.g., photoacclimation) (Galindo et al., 2017; Meiners et 

al., 2018). This thesis focuses in particular on the variability and spectral retrieval of chlorophyll-a 

(chl-a) as the main pigment encompassing algal abundance and distribution (Cimoli et al., 2017c or 

Chapter 2). Estimates of chl-a in sea ice can be derived from fluorometric measurements of melted 

ice-core samples or from emerging under-ice radiation mapping using upward looking spectral 

radiance or irradiance sensors (e.g., Lange et al., 2016; Mundy et al., 2007). Spectral data retrieved 

from these sensors can be correlated to concentrations of chl-a through targeted spectral indices 

and linear regression (also referred in this thesis as bio-optical regression models) (e.g., Melbourne-

Thomas et al., 2015). Under-ice optical radiation methods have allowed to greatly extend the spatial 

extent of the surveys through sensor integration onto Remotely Operated Vehicles (ROVs) (e.g., 

Meiners et al., 2017). Their non-invasive nature further permits to track the temporal evolution of 

biomass, for example, over a single spatial point using radiometers equipped onto L-arms (further 

described in Chapter 2) (e.g., Campbell et al., 2015). 

At the mesoscale, both ice coring and under-ice radiation transfer mapping have been utilized to 

explore horizontal patterns of variability and its determinants for large >10s kms transects or for 

floe sized areas (e.g., Gosselin et al., 1986; Lange et al., 2016; Meiners et al., 2017; Swadling et al., 

1997). Patterns were governed mostly by variability in light transmission, which depends on the 

sea ice and the overlying snow properties (e.g., thickness and depth), but also on the algal 

photoadaptation conditions and history (Campbell et al., 2015; Lund-Hansen et al., 2014). More 

complex interactions have also been observed at this scale including the interplay between 

currents, tides, bathymetry, under-ice topography and nutrient exchange processes (e.g., Dalman et 

al., 2019; Katlein et al., 2015; Monti et al., 1996).  

The issue with pigment extraction approaches derived from melted ice core samples is that it entails 

destructive sampling of a single point in space and is also a highly laborious process. Under-ice 

spectral estimates remain rather coarse as the point samples integrate over relatively wide under-

ice footprints (Forrest et al., 2019; Lange et al., 2016a; Wongpan et al., 2018). This can greatly 
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impact ecological interpretations both spatially and temporally. It results in under-sampling and 

underestimation of biomass variability and distribution in sea ice at most scales observed, and 

particularly at the microscale. 

In fact, at the microscale, various physical, chemical and biological drivers interplay to shape the ice 

algal communities’ variability across the interstitial pore spaces and along brine channels of the sea-

ice matrix (Arrigo, 2017, 2014; Lund-Hansen et al., 2016). In addition, vertical dynamics of algal 

biomass are largely understudied, partially because it’s very challenging to capture the fine scale 

dynamics at which these processes evolve. The available methods consist of cutting discrete 

sections (1-3 cm) along the core length, followed by filtration and laboratory processing (e.g., 

Aumack et al., 2014; Fritsen et al., 2011).  

In response to these limitations, the essence of this research project is to assess the feasibility and 

potentials of close-range Hyperspectral Imaging (HI) to be adapted to map the microspatial 

variability of sea-ice algal biomass in situ and on sea-ice cores and develop the means to achieve 

this. A side-goal is to explore the potential of using underwater digital photogrammetry in-tandem 

with HI to retrieve fine-scale under-ice topography (a poorly understood biomass driver). The 

methodology is also termed Structure from Motion (SfM) and further supports in providing highly 

detailed visual information of the under-ice habitat from the RGB imagery. 

HI is more correctly referred to as imaging spectroscopy. HI as a term has gained increasing 

popularity in the remote sensing community and is thus here preferred (Bioucas-Dias et al., 2013). 

HI combines optical imaging and radiative spectroscopy at high spectral resolutions (hence the term 

“hyper”). The first deals with the visual representation of a target by capturing electromagnetic 

radiation on a sensor following transmission through its fore-optics, the latter deals with the 

acquisition and analysis of spectral signatures following light-matter interactions. 

Processing of hyperspectral images deals with the detection, classification or quantification of 

features of interest for each of the finely resolved spatial pixels (Aasen and Bolten, 2018; Amigo et 

al., 2015; Bioucas-Dias et al., 2013). Quantification is of particular interest in this thesis, and deals 

with the development of finely tuned relationships between the spectra and an ever-growing array 

of retrievable biochemical properties of a target (e.g., chl-a) that can then be applied on a per-pixel 

basis (Aasen and Bolten, 2018; Adão et al., 2017; Amigo et al., 2015). 

Terrestrial remote sensing of ecological systems is undergoing a real renaissance through the 

application of close-range HI and photogrammetric approaches ( e.g., Aasen and Bolten, 2018; Näsi 

et al., 2015). A great example is mapping of fine scale biochemical properties in situ from payloads 

being equipped onto Unmanned Aerial Systems (UASs) (e.g., Adão et al., 2017; Arroyo-Mora et al., 

2019; Fraser et al., 2016). Ex situ, under controlled illumination conditions, HI has been further 

employed to: a) better understand light interactions of the surveyed targets and their spectral 

imprints explicitly, b) to create baselines and calibrate spectral indices with benchmark laboratory 

measurements or c) to look at perspectives of the target that are non-retrievable or hidden from the 
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in situ perspective (e.g., vertical variability from cores) (e.g., Garzonio et al., 2018; Hobley et al., 

2018). 

Analogously to terrestrial HI applications, close-range and in situ underwater HI holds tremendous 

potential to create biogeochemical maps of seafloor properties (Johnsen et al., 2013). Proximity 

sensing using HI in marine science is an emerging methodology with only three other systems being 

documented in the literature that can be deployed underwater. These include a diver-operated 

system for coral mapping in shallow tropical waters (Chennu et al., 2017), a stationary rail system 

for repeat imaging microphytobenthic habitats (Chennu et al., 2013) and a commercial solution that 

can be mounted onto ROVs or Unmanned Surface Vehicles (USVs) (Dumke et al., 2018a; Foglini et 

al., 2019). Other advantageous applications of HI in a marine science context involve the analysis of 

organism samples ex situ (e.g., Barillé et al., 2017; Chennu et al., 2015; Letnes et al., 2019) or 

stationary set-ups located above the water surface for repeat monitoring of quadrats in shallow 

water (e.g., Caras and Karnieli, 2015). 

There have not been any studies that have explored the application of HI and digital 

photogrammetry to map biophysical properties of the productive under-ice environment before, 

nor has HI been tested in polar marine waters prior to the inception of this project. The sea ice acts 

as a shield to any aerial based optical remote sensing application that aims to monitor biophysical 

properties beneath the sea ice. We are therefore required to deploy underwater payloads that can 

navigate underneath it with upward looking sensors that measure light transmitted through the sea 

ice. Passive HI (in the absence of artificial illumination) of light transmitted through the sea ice is 

substantially different than applications dealing with light being reflected from the imaged target. 

Primarily, we need to deal with the technical and logistical complexities associated with HI 

technology being deployed under-ice. Light transmitted through the ice pack can be reduced from 

0.1 to 10% of the incoming solar radiation. Sensors measuring under such conditions are expected 

to be pushed to their sensitivity limits, with cascading implications for hyperspectral image 

acquisition parameters and system development. 

Secondarily, we need to understand the complex interactions of light being transmitted through a 

highly scattering and variable medium and how this influences the retrieved spectral imprints. In 

addition to system development and meaningful HI data acquisition, chl-a needs to be detectable in 

quantitative units (e.g., concentration per m2) through the development of bio-optical relationships 

linking retrieved spectra with chl-a.  

A variety of spectral indices and regression approaches have been applied to map chl- 

concentrations in situ through under ice radiation mapping with radiance or irradiance (cosine 

corrected) sensors mounted on L-arms, with varying degrees of success (Forrest et al., 2019; 

Melbourne-Thomas et al., 2015; Wongpan et al., 2018). Research from different biomes shows that 

developed bio-optical regression models still reserve considerable potential for improvement (e.g., 

Feng et al., 2017; Malenovský et al., 2013; Verrelst et al., 2019) and the large promise of 

hyperspectral data for habitat mapping is then to enhance the development of such relationships. 
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This doctoral thesis comprises a combination of technical and scientific objectives which are 

summarized in Figure 1.1. As with the development of any new methodology, it required to undergo 

gradual testing and exploratory phases. Indeed, the thesis starts with a thorough appraisal of the 

scientific research needs to develop such methodology, together with its theoretical and technical 

foundations (aims of Chapter 2). The research project then proceeds with the first laboratory trials 

during which HI was assessed for sea ice algal biomass mapping in an inverted sea-ice simulation 

tank with inoculated algal consortia (Chapter 3). Chapter 3 further aims to inquire about the 

capabilities of the ice tank to physically resemble the under-ice environment and wants to advertise 

its capabilities to further investigate key aspects of under-ice HI research.  

 

Figure 1.2 Summary of objectives and data sources for each of the thesis chapters. UUVs stands for 
Unmanned Underwater Vehicles (UUVs). HI stands for Hyperspectral Imaging. 
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The proof-of-concept work conducted in the laboratory led to critical insights for the development 

of payloads that are able to be deployed in situ. Chapters 4 and 5 provide a description of 

hyperspectral and RGB imaging systems and associated data processing workflows to retrieve 

quantitative chl-a in the field and 3D models of the under-ice surface using photogrammetry. Data 

for these two chapters were collected under the highly productive Antarctic fast ice of Cape Evans 

(McMurdo Sound), in the Ross Sea during the field season November-December 2018. 

Chapter 4 first describes the actual field-instrument for in situ HI of algal biomass mapping beneath 

the ice and focuses on the technical and logistical means undertaken for coherent hyperspectral and 

RGB image acquisition. In order to develop a methodology that exploits this technology to derive 

bio-optical regression models, Chapter 5 presents an ice-core imaging set-up that not only permits 

to baseline spectral data from HI with fluorometric chl-a estimates, but also allows to capture the 

microspatial variability of chl-a of sectioned ice-core surfaces and along the vertical dimension. For 

this purpose, traditional and novel indices were tested and compared with the aim to identify the 

optimal regression algorithm for the surveyed study site suitable for validation of HI data. 

While Chapters 4 and 5 are of methodological in nature, further objectives were to showcase the 

potential of the unprecedented empirical data gathered to understand the microscale variability of 

ice algal biomass and elucidate some of the underlying ecological processes that regulate its 

abundance and distribution. 

Chapter 6 concludes with a summary of the technical achievements of the thesis and provides an 

overview of the ecological insights gained during testing; insights that entail the significance of the 

proposed methodology in an under-ice context. Encountered difficulties, together with the way 

forward towards the standardization of HI and RGB photogrammetry for under-ice studies are also 

provided.  
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Chapter 2 

Spatial variability in sea-ice algal biomass: an under-ice remote 

sensing perspective 

 

2.1 Introduction 
 

Sea ice is a complex and dynamic three-phase medium consisting of an ice matrix permeated by 

brine pockets and channels, and containing air bubbles (Arrigo, 2014; Petrich and Eicken, 2009). It 

serves as a habitat for a variety of organisms such as viruses, bacteria, ice algae, heterotrophic 

protists as well as small metazoans (Arrigo, 2014; Thomas and Dieckmann, 2002). Sea ice algae 

assimilate carbon through photosynthesis and contribute to primary production of the polar oceans 

(Kohlbach et al., 2016; Lizotte, 2001; McMinn et al., 2007), influence large-scale biogeochemical 

cycles (Vancoppenolle et al., 2013), and determine rates of carbon export (Boetius et al., 2013). Ice 

algal communities form the base of the polar marine food web by providing a crucial food source 

for herbivore grazers during winter and spring, when pelagic food is very scarce (Flores et al., 2012; 

Kohlbach et al., 2017; Leu et al., 2015). Ice algae released into open waters during spring melt of the 

ice, can seed phytoplankton blooms (Mundy et al., 2014; Smith and Nelson, 1985; Søreide et al., 

2010), with flow-on ecological effects in the underlying water column, coastal benthic zones and 

the deep sea (Boetius et al., 2013; McMinn et al., 2012; Post et al., 2013). In addition, ice algae can 

affect sea-ice physical properties due to absorption and conversion of solar energy into heat, 

thereby enhancing the localized melting of the ice (Castellani et al., 2017; Zeebe et al., 1996).  

Sea-ice algae biomass is characterized by high spatio-temporal variability (Arrigo, 2017; Leu et al., 

2015) (Figure 2.1). Reported depth-integrated biomass values per unit area can range from 1 to 340 

mg chlorophyll-a (chl-a) m−2 in the Arctic and from <1 to 1090 mg chl-a m−2 in the Antarctic (Arrigo, 

2017), however, they are typically <100 mg chl-a m−2 and often <10 mg chl-a m−2 in Antarctic pack 

ice (Meiners et al., 2012). 

High ice algal horizontal patchiness has been observed across multiple spatial scales by different 

means (Figure 2.1). These include ice-coring studies using chl-a as a biomass proxy (Gradinger, 

2009; Meiners et al., 2012) as well as fluorometric measurements of the ice-water interface in situ 

(Rysgaard et al., 2001). 
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At the millimeter-scale, ice algae display poorly understood distribution patterns across the skeletal 

ice layer (Hawes et al., 2012; Lund-Hansen et al., 2016). At the decimeter scale, chl-a concentrations 

can vary by one order of magnitude within less than one meter (Spindler and Dieckmann, 1986; 

Steffens et al., 2006). At the meter to kilometer scale (mesoscale), considerable variations in chl-a 

concentrations between sampling stations have been observed and linked to different sea-ice types 

and environmental properties such as snow cover (Gradinger, 2009; Lange et al., 2016a; Meiners et 

al., 2017; Ryan et al., 2006) (Figure 2.1). 

Greater complexity of ice algal biomass variability is added if the vertical distribution (Arrigo et al., 

2014; Meiners et al., 2012) and the temporal evolution are considered (Leu et al., 2015). Ice algal 

biomass is typically concentrated in the bottom-ice layers (< 0.1 m) and at the ice-water interfaces 

with access to nutrient-rich under-ice water (Arrigo et al., 2014). However, high biomass can occur 

in surface and internal sea-ice layers directly depending on variations in the sea-ice physical 

properties influenced by snow-loading, melt and flushing, infiltration from seawater, as well as ice 

growth processes (Arrigo et al., 2014; Fritsen et al., 2011; Meiners et al., 2012).  

High ice algal biomass temporal variability has been observed on seasonal, monthly and weekly 

scales (Campbell et al., 2015; Leu et al., 2015; Sibert et al., 2010). Following a typically dormant 

winter season, biomass growth can encompass 3−4 orders of magnitude over the course of the 

spring bloom. Consequently, the differentiation between temporal and spatial variability blurs for 

measurements taken during the spring season with inevitable consequences for the comparison of 

observational studies from different areas (Leu et al., 2015).  

Furthermore, distinct regions and sea-ice types demonstrate different ice algal community 

structures and biomass ranges (Arrigo et al., 2014; Meiners et al., 2012). Algal species composition 

and biomass concentrations differ significantly between Arctic, Antarctic and non-polar ice-covered 

marine ecosystems (Arrigo, 2017; Horner et al., 1992; Kaartokallio et al., 2017). Differences in ice 

type (e.g., land-fast or pack ice) or ice age (e.g., multi-year or first-year ice) play key roles in the 

observed chl-a distributions (Kattner et al., 2004; Lange et al., 2017). 

Abiotic drivers of algal spatial variability are multiple and interrelated in various ways. Large-scale 

horizontal patchiness can be mostly attributed to the continually changing physical properties of 

the snow cover and of the sea ice (e.g., temperature, brine salinity and thickness), as well as 

nutrients and the overall light availability. These drivers are governed by latitude, season, ice 

dynamic and thermodynamic growth processes, seawater salinity and meteorological conditions 

that change on synoptic time scales (Arrigo, 2017; Arrigo et al., 2014; Mundy et al., 2005). Also, ice-

bottom roughness and sub-ice hydrography, both driving ocean-ice exchange processes, have been 

shown to control ice algal distribution on various scales ranging from millimeters to kilometers 

(Lund-Hansen et al., 2016; Sibert et al., 2010). Determining how sea ice algal biomass varies and 

fluctuates together with different physical and biogeochemical parameters is critical to enhancing 

knowledge of polar marine ecosystem function and its response to environmental changes (Leu et 

al., 2015; Massom and Stammerjohn, 2010). 
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Contrary to phytoplankton biomass and primary production which can be derived from satellite-

based ocean color data, sea-ice algae cannot be monitored with above surface sensors, and 

conventional sea-ice biomass sampling is conducted via ice-coring (Miller et al., 2015). This results 

in deficits in spatial and temporal observations which are primarily attributed to the coarse nature 

of ice-coring surveys. Other methods used to determine ice algal biomass include diver-operated 

fluorometers (Rysgaard et al., 2001) or simple imagery data (such as video or still 

photographs)(Ambrose et al., 2005; Gutt, 1995; Katlein et al., 2015b), but are also rather limited as 

they are either highly demanding, logistically expensive or don’t provide quantitative information.  

This becomes particularly critical when considering the vast areal coverage of sea ice which affects 

7 % of the surface of the Earth and about 12 % of the oceans. Any attempts to extrapolate point data 

to these vast areas are inaccurate if the investigated parameters exhibit the aforementioned 

variability and if the magnitude of such spatial variations is unknown. Assessing spatial variability 

is also critical to guide sampling efforts towards suitable scales (Swadling et al., 1997). The current 

lack of knowledge also impedes the formulation of quantitative relationships between ice algal 

patchiness and other sea ice physical parameters such as snow depth and ice thickness (Meiners et 

al., 2017).   

Together this prevents accurate estimation of ice algal biomass and ice-associated production 

through up-scaling and hampers improvements in parametrization and evaluation of 

biogeochemical sea ice models (Leu et al., 2015; Steiner et al., 2016; Vancoppenolle et al., 2013). 

In response to these sampling limitations, close-range under-ice optical remote sensing techniques 

are emerging as a non-invasive alternative method to quantify ice algal biomass from underneath 

the ice (Campbell et al., 2014; Meiners et al., 2017; Melbourne-Thomas et al., 2015; Mundy et al., 

2007). Based on measured light spectra transmitted through the sea ice, empirical biomass-spectra 

relationships can be retrieved and used to estimate chl-a biomass in sea ice. An example is the 

identification of optimal Normalized Difference Indexes (NDIs), technique that has gained 

popularity due to its relative simplicity and accuracy (Lange et al., 2016a; Melbourne-Thomas et al., 

2015). Once a relationship for a specific area is established, sensors can be mounted onto Unmanned 

Underwater Vehicles (UUVs) or ship-based under-ice trawl nets (Lange et al., 2016a; McDonald et 

al., 2015; Meiners et al., 2017), thereby significantly improving the spatial coverage of surveys. 

Further advances in the methodology are in the field of Hyperspectral Imaging (HI), which has 

strongly improved close-range surveying approaches in other disciplines (Amigo et al., 2015; Huang 

et al., 2014; Lu and Fei, 2014). Unlike normal radiometers, HI sensors can collect spatially 

continuous information from across the electromagnetic spectrum of the feature of interest, in this 

case, the ice-water interface. The first assessment of its application under controlled laboratory 

conditions has highlighted the potential of HI to provide an unprecedented view of ice algae spatial 

distribution through millimeter-scale resolution imagery of a square meter surface area (Cimoli et 

al., 2017a or Chapter 3). 
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While the application of under-ice optical hyperspectral technologies in situ is a desirable step-

forward, considerable research effort is required before its implementation as a standard field-

sampling technique. Aside from understanding the complex optical properties of the target, we also 

need to understand the complexity associated with both dynamic under-ice sensor deployments 

and associated data processing techniques.  

In this context, under-ice optical remote sensing methods display a highly multidisciplinary nature 

involving fields of marine optics, radiative transfer, photobiology and cold region engineering. 

Contrary to above-surface remote sensing which collects spectral data from downward looking 

sensors in reflection mode, upward-looking sensors under ice gather light in transmission mode. 

Along with optically active components within the sea-ice cover (e.g., algae, detritus, brine and air 

pockets, Chromophoric Dissolved Organic Matter (CDOM), and inorganic materials such as mineral 

particles), the light traverses an optical complex multi-phase scattering medium (the sea-ice layered 

matrix) and the water-column before reaching the sensor (Perovich, 1996). Therefore, a series of 

geometric and transmissive properties of the light field need to be considered when measuring and 

interpreting hyperspectral data from underneath the ice (Katlein et al., 2016). Also, the layered and 

vertically variable sea-ice structure provides diverse microhabitats for algae with concomitant 

implications for their photophysiological adaptations and bio-optical properties and thus 

influencing spectra-biomass relationships and their inter-regional validity (Lange et al., 2016a; 

Melbourne-Thomas et al., 2015; Wongpan et al., 2018).  

Considering the growing need of observational studies capturing the highly variable sea-ice 

environment (Miller et al., 2015; Steiner et al., 2016; Vancoppenolle et al., 2013), the aims of this 

review are to provide a comprehensive overview of under-ice optical remote sensing techniques to 

measure algal biomass, their limitations and research prospects. This includes a discussion of the 

potential opportunities to improve our understanding of variability in sea-ice algal biomass, as well 

as the complex interactions between the associated environmental drivers. 

The aims of this review can be summarized as follows: 

• Review observational studies treating sea-ice algae biomass spatial variability at multiple spatial 

scales, and briefly schematize its environmental drivers and outline some key relationships. 

• Provide a brief overview of sea-ice radiative transfer and bio-optical research relevant to sea-ice 

algae under-ice remote sensing methods.  

• Summarize current studies employing sea-ice biomass-spectra regression algorithms derived 

from under-ice optical remote sensing, chart identified relationships and outline the caveats and 

future research fronts of the methodology. 

• Explore the advances and future challenges associated with underwater camera mounting 

platforms such as UUVs and the implications for HI.  
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• Layout the research possibilities of the methodologies to improve our understanding of sea-ice 

algal spatial variability and identify the environmental drivers. 

It should be noted that this review provides a summary of the environmental parameters that drive 

ice algal variability, this is not an ecological review of the sea-ice environment. The focus here is 

given to observational studies involving measured spatial variation of biomass at multiple spatial 

scales, and the efforts towards its quantification using emerging techniques. We refer to other 

recent comprehensive studies treating sea-ice algal phenology (Castellani et al., 2017; Leu et al., 

2015) and ice-associated ecosystem function (Arrigo, 2017, 2014). 

2.2 The drivers of sea-ice algal spatial variability  
 

Table 2.1 lists relevant studies coupling biomass proxies (such as chl-a) with other sea-ice 

environmental parameters in a spatial analysis context. We refer to spatial variability as to any 

variation of the biomass proxy’s magnitude over space associated with changes in the sea-ice 

environment. It’s important to notice that the magnitude of variation is typically relative to the 

studied site. For instance, in Kangerlussuaq (Greenland), measured biomass varies around 0.5-1 mg 

chl-a m-2 (Lund-Hansen et al., 2016) and an increase by 0.5 mg chl-a m-2 is considered very high. In 

contrast, at Cape Evans (Antarctica), biomass abundance has been observed to vary spatially 

between 4.4 and 143 mg chl-a m-2 (Ryan et al., 2006). 

For each study, Table 2.1 includes location, ice type, date of the survey, sampling method employed, 

spatial scale examined, main environmental parameters measured or discussed, and the spatial 

analysis method applied (if any). Rows of Table 2.1 follow an increase of spatial sampling scale. The 

table emphasizes the high spatial variability observed at all the scales ranging from the millimeter 

to the mesoscale for both polar regions as well as temperate ice-covered areas. 

The most employed proxy for mapping ice-algae biomass distribution in sea ice is chl-a (Miller et 

al., 2015). Estimates of chl-a concentration are mainly derived from fluorometric analyses on melted 

sea-ice core samples (Miller et al., 2015). However, other techniques have been used to measure 

algal biological properties in situ such as the fluorescence-based Diving-PAM (Pulse Amplitude 

Modulated fluorometry) (McMinn and Hegseth, 2007) and on ice cores with the Imaging-PAM 

(Hawes et al., 2012). While these are mostly used to detect chl-a fluorescence kinetics, in these 

examples they have been used as proxies of biomass distribution. Other methods for qualitative 

mapping of algal distribution rely on standard RGB imagery (Gutt, 1995; Katlein et al., 2015b). At 

this stage, only a few studies employ under-ice light spectra to biomass conversion algorithms to 

monitor spatial variability. A limited number of emerging numerical models feature tests on drivers 

of biomass variability on large-scales (Castellani et al., 2017; Sibert et al., 2010; Tedesco and Vichi, 

2014), though numerical models are out of the scope of the review and will not be considered 

further.  
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Table 2. 1 Compilation of observational studies on sea-ice algal biomass spatial variability (as chl-a or other 

proxy) and associated environmental drivers. The table follows an increasing order of spatial sampling scale 

and resolution. FYI refers to First Year Ice, MYI to Multi-Year Ice. PAM refers to Pulse Amplitude Modulated 

(fluorometry). Statistical method used refers to the method employed (if any) to assess spatial variability or to 

estimate the correlations between biomass proxies and any of the analysed co-variates. ANOVA stands for 

analysis of variance. 

 

Study Region/Ice type/Date Methods 
Biomass variability scale 

observed 

Main biomass variability drivers 

assessed, and statistical method 

employed (if any) 

Hawes 

et al., 2012 

•  Kangerlussuaq, West 

Greenland 

•  FYI in a frozen fjord 

•  March-April 2011 

Ice coring and 

PAM 

fluorescence 

imaging 

Daily time series of sub-

millimeter resolution PAM 

imagery (30 × 23 mm). 

Visualization of brine channels, 

ice crystals and 

mm-scale distribution and 

accrual. 

Brine channel evolution, ice crystal 

development, and salinity. 

Lund-Hansen 

et al., 2014 

Snow-cover (through artificial 

removal) and photophysiology. 

Lund-Hansen 

et al., 2016 

Ice growth, surface roughness, water 

flow and nutrient availability. 

Inquires role of ice-water boundary 

layer and ice roughness. 

Krembs 

et al., 2002 

•  Experimental ice 

tanks with water flows 

and observable structure 

relief 

Ice tank samples 

and visual 

inspection 

cm scale variability observed 

along specific sections of 

experimental ice tank. 

Under-ice relief structure. Water 

flow altering pore water flux 

regimes and influencing nutrients 

exchange. 

Rysgaard 

et al., 2001 

•  Young Sound, 

Northeast Greenland 

•  FYI and MYI. 

•  June-July 1999 

Ice coring and 

diving PAM 

Incremental cm scale samples 

over L-shape 10 m transects. 

Process repeated for multiple 

sampling stations (100 s·m−1). 

High variability on 50―100 m 

patches. Low variability on 

0.025―5 m patches. 

Light availability, algae 

photosynthetic activity, influence of 

grazing and physical 

removal/inhibition of algae by 

salinity fluctuations. Differences in 

pack ice and fast ice. Employs spatial 

autocorrelation to analyse the 2-

dimensional distribution. 

Eicken 

et al., 1991 

•  North-western 

Weddell Sea 

•  MYI (2 years) ice 

floes 

•  October-November 

1988 and September- 

October 1989 

Ice coring 

Grids of gradual spacing (0.25 

m, 2 m, and 20-m). 

Process repeated at mesoscale 

(km) distance on different 

floes. Variations up to one 

order of magnitude on < 2 m. 

Variability found almost 

independent of scale. 

Ice texture, salinity, pore structure, 

and nutrient concentrations.  

Differences in second-year ice and 

first-year ice. 
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Continued 

Study Region/Ice type/Date Methods 
Biomass variability scale 

observed 

Main biomass variability drivers 

assessed, and statistical method 

employed (if any) 

Swadling 

et al., 1997 

•  Davis Station, East 

Antarctica 

•  Fast Ice 

•  April 1994 

Ice coring 

Hierarchical sampling at the 

mesoscale (m to km). 

High variability between 

locations at the km scale and 

high patchiness at 0.5―1 m 

apart. 

Salinity, chl-b, and metazoan 

abundance. Employs 3-factor nested 

analysis of variance (ANOVA) to 

assess variation. 

Ambrose 

et al., 2005 

•  Chukchi Sea 

•  FYI 

•  June 1998 

ROV algal cover 

imagery and ice 

coring 

Mesoscale transects of 20―85 

m for different stations which 

are tenths of km apart. 1 m 

deployment depth. 1 cm 

resolution of the images. 

Snow depth, ice thickness, ice 

structure, ice salinity, water 

pigments. Algae cover correlation 

with floe edge distance. Discuss 

transport over benthic systems. 

Employs Pearson correlation 

coefficients to examine 

relationships. 

Welch and 

Bergmann, 

1989 

•  Resolute, N.W-T, 

Canada 

•  FYI (congelation ice) 

•  1984-86 

Ice coring 

Long-term study of variability 

controls over different 

sampling stations at tenths of 

km distance. 

Grazer’s abundance, light 

availability, nutrients and habitable 

pore space. Differences in old and 

new ice. 

Arrigo 

et al., 2014 

•  Amundsen Sea. 

•  Diverse ice types. 

•  December 2010-

January 2011 

Ice coring 

Zonal transect surveys at 

multiple sampling stations 

distanced hundreds of km. 

Nutrients, salinity, temperature, ice 

thickness, snow depth, optical 

properties (including pigment 

composition) and surface flooding. 

Gutt, 1995 

•  Northeast Greenland 

•  FYI 

•  June 1993 

ROV imagery  

descriptive 

analysis 

One 150 m transect. 

Under-ice topography linked with 

different types of under-ice algal 

aggregations. 

Fritsen 

et al., 2011 

•  Bellingshausen Sea 

•  FYI 

•  September 2007 

Ice coring 

Different vertical distributions 

of chl-a within three sites 50―
75 m distant. 

Snow cover, ice thickness and 

optical properties on vertical 

variability. 

Lange 

et al., 2015 

•  Lincoln Sea 

•  FYI and MYI. 

•  Three consecutive 

spring seasons from 2010 

and 2012 

Ice coring 
m distance samples for various 

stations at km scale distance. 

Snow depth, ice thickness, ice texture, 

salinity and presence of hummock 

features. ANOVA for effect of ice 

age classes and texture. Logistic 

regression for influence of snow 

depth and derived optical properties. 

Li et al., 2016 

•  Weddell Sea 

•  Different types of sea 

ice 

•  August-October 2006 

Ice coring 

Samples at several stations 

separated by km distance and 

mainly looks at vertical 

distribution. 

Ice core texture, porosity, ice 

thickness, temperature, salinity and 

pigment content. 

Spindler and 

Dieckmann, 

1986 

•  Weddell Sea 

•  January-February 

1985 

•  One fast ice station 

and one Ice floe 

Ice coring 

Parallel sampling at 30 cm apart 

and transects of 3 km separated. 

Observed high variability at 30 

cm apart meanwhile at 3 km 

distances did not observe high 

variability. 

Foramiferal abundances and 

salinity. 

Steffens 

et al., 2006 

•  Gulf of Bothnia, 

Baltic Sea 

•  Different types of ice 

•  March 2004 

Ice coring 

Hierarchical sampling with 

spacings of 10 cm, 2.5 m, 25 m, 

250 m and 2.5 km.  Observed 

high variability for all the 

spatial scales. 

Ice salinity, pheophytin content, 

dissolved nitrate plus nitrite, 

dissolved organic carbon and 

nitrogen, snow depth, ice thickness 

and ice structure. Parameters analysed 
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with nested ANOVA. Pairwise 

relationships using Spearman 

correlation. Multivariate relationships 

using principal component analysis. 

 

Continued 

Study Region/Ice type/Date Methods 
Biomass variability scale 

observed 

Main biomass variability drivers 

assessed, and statistical method 

employed (if any) 

Meiners 

et al., 2017 

•  Weddell Sea 

•  Pack ice floe 

•  September 2017 

ROV based 

under-ice 

optical remote 

sensing 

100 m by 100 m area. Effective 

grid resolution of 1 m.  

Observed within floe scale 

patchiness of sea ice algae. 

Snow depth, ice thickness and sea 

ice freeboard.  Empirical 

variograms to explore scales of 

spatial variability. 

Relationships analysed with 

Generalized Additive Model 

approach. 

Granskog 

et al., 2005 

•  Gulf of Finland, 

Baltic Sea 

•  FYI, Landfast ice 

•  February, March and 

April 2003 

Ice coring 

Mesoscale transects from 40 

km to small <20 m scales. 

At small scales samples in 

arrays with core spacing of 0.2 

m, 2 m, and 20 m. No evidence 

patchiness at scales <20 m. 

Sampled over ice season for 

small-scale patchiness. 

Salinity (ice porosity), stable 

oxygen isotopes, nutrients and 

dissolved organic carbon. 

Relationships between parameters 

studied using non-parametric 

Spearman rank-order correlation. 

Robineau 

et al., 1997 

•  Saroma-ko Lagoon, 

Sea of Okhotsk 

•  March 1992 

Ice coring 

Three scales of variation were 

considered.  From the 

mesoscale (0.02―4 km) to 

small horizontal variability 

(0.2―10 m). 

Snow depth, ice thickness and ice-

bottom salinity. Assessment using 

linear correlations complemented by 

path analysis. 

Lange 

et al., 2016 

•  Central Arctic Ocean 

•  Different ice types 

from ponded ice, snow 

and ponds frozen, no 

snow and ponds, frozen 

surface (FYI, MYI) 

•  August-October 2011 

ROV and SUIT 

based under-ice 

optical remote 

sensing 

Various transects from 30 to 

210 m for the ROV. 

Two transects of 800 and 1500 

m respectively with under-ice 

trawl system. Finds high 

variability at the mesoscale. 

Focus on regression model 

performance. 

Garrison and 

Kurt, 1991 

•  Weddell Sea /Scotia 

Sea 

•  Pack ice both FYI 

and MYI floes 

•  Austral Spring 1983 

Ice coring 

Multiple sampling stations at 

km distance.  Investigates 

vertical variability, mainly 

surface layer assemblages. 

Higher biomass at the edge of 

the floes. 

Snow depth, floe thickness, floe 

size, salinity and other chemical 

measurements/nutrients. Infers on 

grazing influence. Correlation 

analysis among parameters. 

Fiala 

et al., 2006 

•  Pointe Géologie 

Archipelago, Terre Adelie 

•  Land-fast FYI 

•  April to December 

1998 

Ice coring 

Multiple seasonal and spatial 

samples at different stations at 

km scale distance.  

Investigates vertical variability 

and surface assemblages. 

Nutrients and ice formation and 

inclusion of available phytoplankton 

in underlying water column. 

Lange 

et al., 2017a 

•  Lincoln Sea 

•  MYI and FYI sites 

including land-fast and 

pack ice 

•  May 2010, 2011 and 

2012 

Ice coring 

A set of three ice cores for a 

total of 18 different sites at km 

distance. 

Ice types, differences in MYI- 

Hummock ice and FYI. ANOVA 

was performed to investigate 

correlations. 

Meiners 

et al., 2012 

•  Antarctic circum-

polar study 

•  25 years of data. 

Ice coring 

Data compilation analysing 

vertical variability over several 

regions in Antarctica. 

Ice thickness, vertical distribution 

and regional characteristics. 
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Table 2.1 gives qualitative insights into the main drivers of ice-algal variability, the survey locations 

and ice types and highlights the diversity among studies ranging from FYI and MYI to pack and fast 

ice. The observed spatial scales and seasons vary significantly across the tabulated investigations 

which are scattered from years 1982 to 2018. Consequently, a clear differentiation between inter-

annual, seasonal and the multiple scales of spatial variability remains problematic. Also, some 

studies only sample the bottom of the ice core, while others have integrated chl-a over the entire ice 

thickness, raising questions on the studies comparability and potential biases in the auxiliary 

parameters (Meiners et al., 2012).  

Here we differentiate drivers of ice-algal biomass spatial variability between sea-ice physical 

properties and the properties of the ice algae biological medium. While the first refers to sea-ice 

physical properties that can be measured in units of distance and space, the latter refers to 

properties of the medium (e.g., sea brine) which immediately surrounds the organisms. 

Sea-ice physical properties and properties of the ice algae medium are highly inter-correlated and 

are driven by continually varying temperature gradients at the ice-atmosphere interface (e.g., 

influenced by wind and precipitation) and at the ice-water interface (e.g., influenced by the 

properties of the underlying water column and overall hydrographic regime) (Meiners and Michel, 

2017). Figure 2.2 provides a schematic of this complex and closely coupled system. The physical 

properties of sea-ice include snow depth, ice thickness, under-ice topography, surface conditions 

and ice structure (including porosity, brine/gas volumes, and ice crystal type). The properties of the 

ice algae medium include nutrient concentrations, salinity and temperature among others. While 

the sea ice physical properties govern the light distribution and habitat conditions for ice algae, the 

medium properties, together with light, govern growth and physiological activity of the organisms.  

Overall, sea-ice physical properties and ice algae medium properties are strongly dependent on the 

particular geographic region as well as the time of the year (Fritsen et al., 2011; Gosselin et al., 1986; 

Rysgaard et al., 2001; Steffens et al., 2006). From Table 2.1, depending on the spatial scale and the 

time of the year considered, the primary drivers promoting ice algal spatial variability can differ 

and are briefly presented in the next section. 

2.2.1 Sea ice formation, decay and age 
 

Sea-ice physical processes play a significant role in the vertical and horizontal distribution of sea-

ice algal biomass (Arrigo et al., 2014; Meiners et al., 2012). They shape available space for the sea 

ice algae to inhabit and determine whether algal communities thrive at the bottom of the sea-ice 

cover, within the internal brine channel system or in surface layers (Arrigo, 2014). The initial inputs 

of algae to the sea-ice system occurs during the inclusion of biological material during ice formation 

and thereafter through accrual at the deformed ice sub-surface (Figure 2.2) (Arrigo, 2014; Janssens 

et al., 2016; Lange et al., 2015; Lund-Hansen et al., 2016). Algal growth rates and accumulation from 

the underlying water column are controlled by the interplay of sea-ice physical properties and 
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medium conditions. Biomass loss can be attributed to brine loss (flushing) from increased 

permeability, ablation at the ice underside (Li et al., 2016), and release into open waters during ice 

melt (Arrigo et al., 2014; Leu et al., 2015). Grazing losses may also occur but grazing on ice algae by 

heterotrophs remains poorly (Bluhm et al., 2017; Meiners and Michel, 2017). 

Depending on the surface ocean conditions, which can be either being calm or turbulent, sea ice can 

form as congelation or frazil ice, respectively (Arrigo, 2014; Petrich and Eicken, 2009). In calm 

conditions,  and once an initial ice cover has been established, congelation ice formation takes 

place as vertically parallel ice crystals forming a continuous sheet that propagates downward. The 

propagation margin is referred as the skeletal layer and gives origin to the sea ice 

columnar/lamellar structure (Petrich and Eicken, 2009). This type of ice is a common feature for 

coastal fast ice. Frazil ice is instead associated with turbulent conditions (more typical of open ocean 

conditions) and induces ice crystals to consolidate first into grease ice and later into pancake ice. 

Pancake ice is then merged to form a consolidated sheet which can then initiate vertical ice growth 

(e.g., with a skeletal layer margin at the bottom) (Arrigo, 2014; Petrich and Eicken, 2009). Frazil ice 

formation is more typical for open ocean conditions, and when sea ice is free-drifting, it is referred 

to as pack ice. 

High spatial variability of biomass has been observed for both land-fast and pack ice (Table 2.1), 

with similar factors influencing settlement and accumulation of algae in both ice types. However, 

there are fundamental differences between pack ice and land-fast ice formation (Gradinger and 

Ikävalko, 1998; Spindler, 1994). In the early stages of ice formation, the open ocean setting of pack 

ice is associated with the scavenging of suspended biological material by raising frazil crystals and 

higher initial seawater and salt content in the pre-dominant frazil ice type compared to newly 

formed congelation ice (Arrigo et al., 2014; Spindler, 1994). This facilitates the consequent 

development of so-called internal communities which are a common feature in Antarctic pack ice 

(Meiners et al., 2017; Arrigo, 2014). Internal communities are also associated with ridging and 

rafting of ice floes, as well as with melting and refreezing processes of multi-year sea ice (Welch and 

Bergmann, 1989). Pressure ridges, for example, can incorporate water pockets during formation, 

which are suspected to represent a nutrient reservoir for algae (Spindler, 1994). 

An additional type of ice originates from flooding and refreezing of seawater that has infiltrated into 

the overlying snow layer. Flooding can happen either via snow loading of sea ice or through 

deformation of ice floes. Seawater at the ice surface forms slush ice and snow ice if it refreezes 

(Arrigo, 2014; Petrich and Eicken, 2009). Surface flooding and the snow-ice formation are 

characteristic of Antarctic pack ice but have also been reported for other ice types (Petrich and 

Eicken, 2016). In the Antarctic pack-ice zone, mesoscale differences in these physical processes are 

often the main factors that drive the high biomass variability (both on horizontal and vertical 

dimensions) as a result from flooding and increased supply of nutrients and biological material 

(Fritsen et al., 2011; Garrison and Kurt, 1991; Meiners et al., 2012).  
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The influence of ice age on biomass still requires further research efforts. Some Arctic studies report 

no significant differences between FYI and MYI (Lange et al., 2015), while others suggest that 

repeated melting and re-freezing cycles favor ice algal accumulation, build up and inclusion in MYI 

(Eicken et al., 1991; Granskog et al., 2005; Welch and Bergmann, 1989). For Antarctica, Fiala et al., 

(2006) reported high biomass in FYI fast ice when compared to pack ice. Meiners et al., (2011) 

hypothesized that persistence of sea-ice into the late spring/early summer might increase biomass 

build-up in East Antarctic first-year pack ice. The role of ice age is also suspected to play a role in 

the seeding and distribution of algal populations in a phenomenon referred as the “multiyear ice 

seed repository hypothesis” (Olsen et al., 2017). The hypothesis suggests that cells trapped in 

surface layers of ice that survives a summer season function as a seed repository. They are released 

as temperatures increase in the spring season and seed the ice algal spring bloom in sea-ice bottom 

layers and adjacent ice floes. 

2.2.2 Sea-ice structure, temperature, nutrients and salinity 
 

Sea-ice is characterized by strong time-varying vertical gradients in temperature, brine salinity, 

pore space, and permeability that continuously shape the habitability of the sea-ice environment 

(Arrigo, 2014; Vancoppenolle et al., 2013; Petrich and Eicken, 2009). These gradients, together with 

other sea ice physical processes mentioned above, control nutrient availability and brine salinity in 

the interstitial channel system in which the ice algae thrive and play an important role in the small-

scale vertical distribution of algae communities within the ice (e.g., bottom, internal or surface) 

(Arrigo, 2014; Legendre and Gosselin, 1991). 

Sea-ice porosity is considered as a particular index in evaluating the relationship between sea-ice 

physical parameters and chl-a because porosity comprises the ice temperature, salinity, and density 

(Li et al., 2016). Ice algae prefer conditions that provide ready access to nutrients in the seawater, 

salinity levels that do not limit growth rates, and sufficient light for photosynthetic activity (Arrigo, 

2014). During spring, as a result of increasing ice temperatures, habitable pore space (porosity) at 

the bottom is higher than in other sea-ice layers (Tedesco and Vichi, 2014) and most of the biomass 

is usually found in the lowermost 0.05 – 0.1 m of the ice, due to the direct contact with sea water 

allowing the infiltration of nutrients and resulting in favourable brine salinities (Arrigo, 2017; F. 

Cota and Ralph E. H., 1991). Looking at these bottom communities, microscale studies using novel 

PAM fluorescence imaging approaches have provided different proxies (such as minimal 

fluorescence yield, Fo) for evaluating changes in algal biomass over time (Hawes et al., 2012; Lund-

Hansen et al., 2016). Hawes et al., (2012) highlighted how brine channel evolution and skeletal layer 

development triggered algae population growth. In fact, while sea ice algal cells can grow despite 

exposure to extremes in temperature and salinity, the high salinities found within the brine 

channels, reaching up to 100 or higher, can reduce growth rates of internal communities (Arrigo et 

al., 2014; Krembs et al., 2000). 
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Figure 2.2 Simplified schematic of drivers influencing the spatial distribution of biomass in sea ice. Green 

arrows imply the initial biomass input to the system and red arrows the system output. The grey arrow 

symbolizes the close correlation between sea-ice physical properties and the properties of the ice algae 

medium. Some sea-ice physical properties are also closely correlated with each other. Overall, all 

parameters are heavily influenced by temperature and by the meteorological and oceanographic conditions 

which in turn are dependent on the location and season of the year. 

The influence of sea-ice physical properties such as the ice texture, crystal type and brine volume, 

on sea ice biological properties, has been highlighted by Li et al., (2016) and Spindler, (1994) to 

mention a few. The more recent study by Li et al., (2016) showed a strong statistical relationship 

between chl-a and brine volume (porosity). Quantitative relationships such as this are rare due to 

the great effort involved in acquiring extensive ice coring datasets. They are, however, extremely 

useful for augmenting our understanding ice algae variability drivers towards improved modeling 

results (Steiner et al., 2016). More studies are required coupling proxies of porosity, such as 

temperature and bulk salinity, with chl-a for diverse types of ice covers and over time for a better 

parametrization of these drivers. 

Ice salinity and temperature can also vary horizontally from the sub-meter to regional scales 

(Eicken et al., 1991; Tucker et al., 1984). As habitable pore space co-varies with the salinity and 

temperature of the ice (Cox and Weeks, 1983), they also consequently influence the horizontal 

distribution of ice algae. It’s important to consider that ice-bottom salinity (and nutrients) are not 
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only correlated to the sea-ice structure but are also directly influenced by properties of the 

underlying waters. Observational studies at the mesoscale have consequentially observed biomass 

variability along with variations in seawater salinity (Gosselin et al., 1986), nutrients (F. Cota and 

Ralph E. H., 1991; Maestrini et al., 1986) and under-ice currents (Monti et al., 1996) 

2.2.3 Under-ice topography 
 

There are very few qualitative studies and no quantitative studies treating under-ice roughness and 

topography as a parameter influencing ice algal biomass distribution. However, it is suspected that 

under-ice topography plays an influential role in shaping hydrographic regimes at the ice-water 

boundary layer, partially explaining the high natural variability of the sea-ice organisms. A 

pioneering study investigated this aspect in experimental set-ups and monitored brine channel 

evolution, drainage and surface roughness (topography) together with biomass (Krembs et al., 

2001, 2000). The study suggested that water flow under varying under-ice topographies alters pore 

water flux regimes and nutrient exchange promoting differential algal biomass accumulation.  

At the millimeter scale, in a PAM imaging study, biomass distribution was compared to ice growth, 

surface roughness, water flow, and nutrient availability among other factors in the Arctic (Lund-

Hansen et al., 2016). The study identified ice roughness as the most relevant factor in the accrual of 

diatoms at the water-ice interface. The relative importance of advection and accrual of biomass from 

the underlying ocean was emphasized rather than in situ growth from biomass initially 

incorporated into the sea ice. Physical accumulation of biomass through advection remains a poorly 

understood aspect of ice algae bloom dynamics. 

In the Arctic, at the sea-ice floe scale, the topography and hydrographic regime under the ice have 

been found to influence algae distribution through trapping of ice algal aggregates (e.g., Katlein et 

al., 2015). During late summer ice algal aggregates accumulate in dome-shaped structures and at 

the edges of pressure ridges. Overall, more investigations are required to better understand 

processes at the water ice boundary layer regarding nutrient exchange and algal aggregation at both 

small and large spatial scales, and at different times of the year. 

2.2.4 Snow, light and surface properties 
 

Together with nutrient availability, light is the most critical factor influencing ice algal 

photosynthesis and growth (F. Cota and Ralph E. H., 1991) and several studies have recognized light 

as the main limiting factor controlling bloom initiation during the winter-spring season (Gosselin et 

al., 1986; Leu et al., 2015; Rysgaard et al., 2001). While at small scales the ice microstructure 

influences algae distribution patterns (Lund-Hansen et al., 2016), boosts growth by allowing 

nutrients to permeate (Li et al., 2016) and fosters accrual of biologic material (Krembs et al., 2002), 

at the mesoscale level, ice algae patchiness is mostly associated with the spatial variability in 
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physical sea-ice properties governing light transmittance (Gosselin et al., 1986; Palmisano, 1987) 

(Figure 2.2). Indeed, light availability in a given under-ice environment is not only a function of the 

location (latitude) and incoming Photosynthetic Active Radiation (PAR) (Ehn and Mundy, 2013) but 

also of the meteorological conditions (e.g. cloud cover) (Raymond et al., 2009), sea ice surface 

conditions and ice thickness (Perovich, 1996). Light available for photosynthesis of sea-ice algae is 

mostly influenced by the snow cover (depth and age) due to its high attenuation coefficients and the 

high albedo rather than the ice itself (Palmisano, 1987; Perovich, 2017).  

Ice thickness and related variations in ice morphology, being compounded by deformational 

processes, also contribute to variability in light intensities. As an example, a recent Arctic study 

highlighted that chl-a concentrations in thick MYI are unusually high due to the presence of surface 

hummocks which have a relatively thin overlying snowpack, thereby fostering algal accumulation 

due to increased light levels (Lange et al., 2017, 2015). Surface properties such as melt-pond 

coverage or surface flooding due to snow loading also play a role in the amount of light available for 

ice algae beneath the snow and ice pack (e.g., Arndt et al., 2017; Katlein et al., 2015a). Increasingly 

frequent leads in Arctic sea ice are also capable of re-defining the ice structure and optical 

properties and have a significant impact on light transmittance and availability for under-ice 

communities (Kauko et al., 2017).   

Although increased light intensities are typically associated with favorable growth conditions, the 

relationship is not straightforward in sea ice and varies depending on the season, and ice algae light 

exposure history. For example, while Arctic land-fast sea-ice algae biomass is inversely correlated 

with snow depth early in the season due to less light availability (Mundy et al., 2005), multiple 

studies have observed that higher snow depth is linked to higher biomass later in the season 

(Campbell et al., 2015; Fritsen et al., 2011; Melbourne-Thomas et al., 2015). 

Late-season positive snow depth-biomass relationship in the Arctic have been attributed to 

photoacclimation and photo-inhibition due to excess of light following dark adaptation by the ice 

algae. Ice algae experience a significant increase in irradiance between late winter and spring. They 

are initially light limited by the snow cover (characterised by a negative relationship), but as snow 

cover is removed, biomass for shade adapted communities have been observed to decline due to 

increases in light transmission (inducing strong photoinhibition) (Galindo et al., 2017; Lund-

Hansen et al., 2014), and due to heat fluxes triggering under-ice ablation loss (Campbell et al., 2015; 

Juhl and Krembs, 2010). Ablation loss can also happen as a result of lowered thermal insulation 

under a thin snow cover. This results in stronger desalination and increased warming of the ice and 

eventually flushing and ice melt at the bottom. Algal stocks then get sloughed off, a process that has 

been proposed in various studies (Campbell et al., 2014; Mundy et al., 2005; Welch and Bergmann, 

1989). 

Using fluorescence imaging, the effect of snow cover removal on algae was also assessed at the 

millimeter scale (Lund-Hansen et al., 2014). This study further confirmed a decrease in biomass in 

areas with no snow due to possible increased UV light exposure and discussed the possible role of 
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algae behavioral changes such as emigration under potentially photo-damaging conditions rather 

than ablation loss.   

In the Antarctic, wind-driven snow re-distribution has been suggested as an important factor 

masking snow depth-biomass relationships (Melbourne-Thomas et al., 2015). In fact, the snow 

cover present on the ice at the time of sampling does not necessarily reflect the conditions during 

the earlier stages of ice development. This is particularly true for Antarctic sea ice where snow is a 

prominent feature, and continuous drift provides a rapidly changing snow cover and under-ice light 

conditions (Massom et al., 2001). Compared to the Arctic, studies emphasizing snow-biomass 

relationship in the Antarctic are less frequent, and the complex response of ice algal growth, photo-

physiology, and distribution under changing snow and light fields requires further research efforts 

through higher spatial and temporal resolution monitoring and on both land-fast and pack ice. 

Finally, is worth noting that since ice algae are commonly distributed in distinct layers that can 

reach several centimeters in thickness, and can exhibit diverse vertical distributions over the ice 

thickness, they can further influence light availability to the nearby and underlying communities in 

the ice column through a phenomenon known as self-shading (F. Cota and Ralph E. H., 1991; Johnsen 

and Hegseth, 1991; Kirk, 2011). Self-shading can limit algal growth, influencing patchiness, induce 

packaging effects (SooHoo et al., 1987; Wongpan et al., 2018) and is represented in Figure 2.2 as an 

internal loop within biomass variability.   

2.2.5 Grazing 
 

A challenging loss-term to account for in biomass variability is grazing by under-ice fauna and 

zooplankton (Werner, 1997; Welch and Bergmann, 1989, Figure 2.2). It is speculated that feeding 

dynamics of the under-ice realm might, however, contribute to the mesoscale variability of 

measured ice algal abundance (Gradinger and Bluhm, 2004; Michel et al., 2002; Werner, 1997). 

More investigation over different seasons and on different types of ice covers are required to 

enhance our understanding of grazing impacts on ice algal biomass distribution. Furthermore, 

physical properties of different ice types such as ice texture and porosity are also suspected to 

impact on predator-prey interactions in the sea-ice brine channel system (Krembs et al., 2000). For 

example, larger predators can be excluded from brine channels depending on the architecture of 

the channel network. Smaller channels may provide refuge space but may be unfavorable for algal 

growth due to limitations in diffusive transport of nutrients (Krembs et al., 2000). 

2.2.6 Regional characteristics 
 

As schematized in Figure 2.2, all the parameters described above are highly dependent on the 

season, meteorological conditions and in particular on the geographic region that shapes the sea-

ice physical environment (Eicken et al., 1991; Petrich and Eicken, 2009). Indeed, not only is the 
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horizontal distribution of sea-ice algae naturally related to latitudinal gradients in solar irradiance 

(F. Cota and Ralph E. H., 1991; Raymond et al., 2009), but other unique regional features will also 

affect the distribution of ice algae. For example, freshwater drainage from melt ponds and nearby 

river discharges can both remove or inhibit the algae growth at the sea-ice-water interface through 

physical disturbance and exposure to freshwater (Rysgaard et al., 2001). In areas affected by warm 

Atlantic water inflow, bottom ice ablation, which deteriorates the ice algal habitat, is suggested to 

be a limiting factor for Arctic ice algal biomass build-up (Leu et al., 2015). In the Antarctic, loss of 

algae from underneath the ice has been linked to the effect of underwater currents at specific 

locations (Ryan et al., 2006). Another example are the hemispheric differences between Arctic and 

Antarctic sea ice, as these display very different vertical distribution patterns and total biomass 

values (Arrigo, 2017; Arrigo et al., 2014; Spindler, 1994). For instance, surface flooding and snow-

ice formation is a characteristic feature of Antarctic pack ice (Kattner et al., 2004), whereas melt 

ponds are a predominant feature of Arctic sea ice. 

The two polar regions can exhibit very different types of ice algae communities (Leeuwe et al., 

2018). A feature of the Antarctic is the occurrence of platelet ice which hosts very high ice algal 

biomass (Arrigo, 2017). Platelet ice consists of thin ice plates in the water column below the sea ice 

which largely increases the surface area for the ice algae to colonize, and with direct access to 

nutrients in the water (Arrigo, 2014). Ice platelets accumulate loosely under, or occur frozen into, 

the bottom of sea ice resulting in a highly porous and productive ice algae (Arrigo et al., 1995). 

Platelet ice is associated with supercooled Ice Shelf Water, and its occurrence is generally limited to 

specific areas across the Antarctic continent (Langhorne et al., 2015). Nonetheless, platelet ice 

communities are considered of high importance, as any change in the highly productive platelet ice 

habitat in a warming ocean can have consequential effects across the rest of the Southern Ocean 

ecosystem (Langhorne et al., 2015). A feature more common to the Arctic, is the colonial diatom, 

Melsosira arctica which can form strands attached to the ice and suspended into the water column. 

By living suspended into the upper ocean, they can consume nutrients directly from the water 

column (Arrigo, 2014). 

Non-polar sea ice such as found in the Baltic Sea or Saroma-ko lagoon (Northern Japan) also 

presents particular characteristics in algal biomass spatial variability with reported observations of 

variability to be negligible at scales < 20 m despite evident variations in snow depth (Granskog et 

al., 2005; Robineau et al., 1997). For more detailed information on differences in ice algal 

communities from Arctic, Antarctic and sub-Arctic areas we refer to recent reviews by Arrigo, 

(2017) and Kaartokallio et al., (2017). 

2.3 Concepts of bio-optics and radiative transfer in sea ice 
 

The layered sea-ice matrix, here comprising snow and ice (and the water below) is characterized by 

the inclusion of brine and air pockets, precipitated salts, dust and sediments, algae, heterotrophic 
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organisms, dead organic particulate material (detritus) and CDOM (Figure 2.3). As in any remote 

sensing application, the medium between the sensor and the light-interacting object will have an 

impact on the measured signal. A brief overview of the path that light traverses before reaching 

hypothetical sensors placed underneath the ice is essential for adequately applying and developing 

close-range under-ice optical remote sensing methods. A comprehensive introduction to 

radiometry and hydrologic optics can be found in (Kirk, 2011) and to the optical properties of sea 

ice and snow in Perovich, (2017, 1996) and Warren, (1982). 

2.3.1 Basic elements of close-range under-ice optical remote sensing of algal 

biomass 
 

Recent studies have reported empirical correlations between traditional ice-core chl-a 

measurements and under-ice spectral signatures for both the Arctic (Campbell et al., 2015, 2014; 

Mundy et al., 2007) and Antarctic (Wongpan et al., 2018; Meiners et al., 2017; Melbourne-Thomas 

et al., 2015). The most basic application of the technique involves the deployment of upward-

looking hyperspectral radiometers under the ice at close distances (0.15-0.6 m) using L-shaped 

deployment arms (Lange et al., 2016; Melbourne-Thomas et al., 2015) (Figure 2.4a). To correlate 

the transmitted spectra with chl-a, traditional ice cores are then collected just above the radiometer 

measurements, and fluorometric estimates of chl-a are performed in the laboratory from the melted 

cores using standard methods (Holm-Hansen and Riemann, 1978) (Figure 2.4a). The technique 

takes advantage of the wavelength specific absorption of chl-a, with peaks at around 480 and 665 

nm, and being the dominant absorbing pigment in ice algae. Measured transmitted spectra at 

multiple points are then calibrated against the sampled chl-a values through the use of derived 

spectral indexes or other regression models. Additional measurements of under-ice spectra can 

then be used to estimate chl-a concentrations using the radiometer data alone (Lange et al., 2016; 

Melbourne-Thomas et al., 2015). The spatial coverage of the survey can then be considerably 

increased by using Remotely Operate Vehicles (ROVs) or ship-based under-ice trawls equipped with 

the radiometric sensors (Meiners et al., 2017; Lange et al., 2016). Hyperspectral radiometers 

employed under sea-ice typically collect light in either irradiance or radiance mode (Figure 2.3). 

Irradiance sensors have a cosine-corrected receptor which gathers light with a 180° field of view 

(FOV). Radiance sensors have a narrow (finite) FOV (usually around 9° to 25°). While irradiance 

sensors provide a coarser footprint and are more frequently used for energy budget purposes, 

radiance sensors are used to infer optical properties at finer scales due to their narrow FOV (Lange 

et al., 2016). Figure 2.3 displays the hypothetical FOV coverage of both types of sensors. The 

transmitted under-ice light can be normalized with data from upward-looking irradiance sensors 

placed at the ice surface (Figure 2.3) (Nicolaus et al., 2010). Under-ice irradiance relative to 

incoming solar irradiance at the surface is termed transmittance whereas under-ice radiance 

normalized to incoming solar irradiance is termed transflectance (Nicolaus et al., 2013). 
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Figure 2.3 Conceptual illustration of radiative transfer in sea ice (for shortwave radiation between 350 

and 700 nm) as described in text. The complex system features both absorbing and scattering (elements 

that shape the geometric and spectral properties of the under-ice light field. The illustration provides a 

concept idea of typical under-ice light sensor settings employed for close-range remote sensing 

applications. Radiance sensors have a finite angle of view and are intended for finer mapping resolutions 

and deeper deployment modes (2-5 m). Irradiance sensors have to be deployed nearby the ice sub-surface 

due to their cosine field of view. Figure was partially adapted from Katlein et al., 2014. 

2.3.2 Scattering and absorption in sea ice 
 

The attenuation through the ice, comprising both absorption and scattering, is typically expressed 

by the diffuse attenuation coefficient Kd (PAR) or spectrally resolved Kd (λ) (Lund-Hansen et al., 

2015; Perovich, 1989). Both scattering and absorption govern the magnitude of the attenuation, but 

only the latter is considered wavelength dependent (Arrigo et al., 1991; Perovich, 1996). Scattering 

in sea ice depends on the scattering volume function, which is dominant compared to absorption, 

and is mostly attributed to the refraction of photons traveling between the different media such as 

ice, gas or brine inclusions and precipitated salts (Light et al., 2004; Perovich, 1996). Through 

continuously varying temperature gradients, the volume fractions of these optical media are far 

from being constant. Indeed, as a consequence of a dynamic physical environment, light attenuation 
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and optical properties in sea-ice are continuously varying over space and time (Light et al., 2004; 

Perovich, 1996). 

If we describe the light path starting from the surface, snow has a high albedo in the PAR range and 

the amount of light reflected is dependent on the conditions of the overlying snow cover (type, age, 

and temperature) (Perovich, 2007; Warren, 1982). Snow cover conditions are critically important 

as the overall amount of light transmitted/attenuated through the sea-ice matrix is mostly 

dependent on the thickness of the snowpack, rather than the ice, as snow attenuates light 

approximately 10-fold higher (Perovich, 2007). 

If no snow is present, light transmission is mostly influenced by the surface properties of the sea-

ice environment such as on the presence of melt-ponds or bare ice (Katlein et al., 2015a; Mundy et 

al., 2005). In Antarctica, thicker snow packs can induce surface flooding (Wadhams et al., 1987) 

which has been shown to slightly increase attenuation compared to non-flooded sea ice (Arndt et 

al., 2017). The authors hypothesized that although the different geometry of the slush layer allows 

more light to be transmitted, the higher snow loads and the promotion of infiltration waters 

(fostering algal communities living at the surface) resulted in the increased attenuation (Arndt et 

al., 2017). 

Continuing downwards through the ice cover, absorption in sea-ice is often dominated by ice algae 

(Fritsen et al., 2011, 1992) and is enhanced by the highly scattering sea-ice environment they are 

embedded in (Ehn and Mundy, 2013). Here we focus on the 400 – 700 nm wavelength band termed 

the Photosynthetically Active Radiation (PAR), which is the spectral range relevant for under-ice 

optical remote sensing of biomass. Below 570 nm, absorption of snow and ice is low, and therefore 

ice algae dominate the spectral signature of transmitted light which is shaped by algae absorption 

features (Fritsen et al., 2011). This is what makes under-ice optical remote sensing methods 

possible. The spectral signature measured underneath the ice is dominated by effects associated 

with variability in algae absorption over certain bands of the PAR spectrum, rather than variability 

in snow and ice properties.  

The irradiance that reaches the ice-water interface can be reduced to 0.1%-1% of the surface 

irradiance (Perovich, 2017), and thus the under-ice realm can be thought of as a low light 

environment. Nevertheless, ice algae can shade-adapt efficiently to these circumstances, and a 

recent Arctic study showed that active photosynthesis can occur at extremely low irradiances (0.17 

μmol m−2 s−1) equal to 0.02% of surface irradiance (Hancke et al., 2018). 

Overall, the quantification of the effects of algal biomass on the optical properties of sea-ice is non-

trivial. The quality of the light is influenced by the amount of chl-a, but it also varies as a function of 

algal photosynthetic and accessory pigment composition within the algal cells, as well as with the 

effect of photosynthetic discreteness which combines the influence of size and of pigment 

concentration in the cells (e.g., packaging effect) (Kirk, 2011; Morel and Bricaud, 1981; SooHoo et 

al., 1987). For example, the specific absorption of the ice algal community varies as a function of the 
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diverse photoacclimation strategies of ice algae adapted to different light levels. These can induce 

the production of diverse cellular pigment compositions (Galindo et al., 2017), which can lead to 

distinct spectral absorption profiles (Johnsen and Sakshaug, 2007). 

Although spectrally resolved visible light signals measured below the ice are mostly shaped by 

absorption of organic matter (algae and detritus) within the ice, the signal also comprises the 

absorption effect of other optically active components, and thus the discrimination of chl-a is not 

always straightforward. Chl-a has absorption peaks at around 480 and 665 nm, whereas CDOM 

absorption is strongest in the blue part of the spectrum (400-450 nm), but low in the red. In the red 

part snow absorption starts to increase (over 550 nm). The concentration and distribution of other 

optically active components are dependent on the study region. Analyses of CDOM and its optical 

properties remain sparse but are available for both Arctic (Lund-Hansen et al., 2015; Xie et al., 2014) 

Antarctic (Norman et al., 2011) sea ice. 

2.3.3 Geometrical considerations of the under-ice light field 
 

Considering the high scattering coefficients of snow, with only a few centimeters of snow cover, 

light that reaches the surface-ice layer is mostly present in a diffuse (highly scattered) form 

rendering the sun-angle induced directional component of light negligible (Petrich et al., 2012). A 

similar effect is achieved by the granular ice surface layers characteristics of melt (or flooding) and 

refreezing processes at the snow-ice interface (Arndt et al., 2017; Petrich et al., 2012) or by overcast 

conditions. 

Therefore, for most of the cases, light that reaches the ice sub-surface can be considered diffuse, and 

it follows an exponential decrease through the ice and thereafter through the water column (Lund-

Hansen et al., 2015). Exceptions are made for non-homogenous ice in pond covered areas typical of 

the Arctic (Frey et al., 2011) or near ice floes with cracks and ridges which can include an azimuthal 

directional component in the under-ice light field measured nearby, and different depth profiles 

(Katlein et al., 2016, 2015a).  

While light that has traversed the initial sea-ice surface layers results considerably scattered and 

diffuse, radiative transfer within sea ice is subject to a degree of substantial anisotropy and multiple 

scattering (Katlein et al., 2015a; Petrich et al., 2012). This means that the scattering coefficient is 

dependent on the direction in which light is traveling, which in turn is dependent on a volume 

scattering function (Hamre et al., 2004). The lamellar crystal structure of sea ice is responsible for 

such particular geometric and radiometric light field properties (Katlein et al., 2016; Perovich, 

1989). More specifically, the sea ice vertical lamellar crystal structure, and brine and gas inclusions 

funnel the light downwards changing the shape of the radiance distribution under-ice to a 

downward-peaked shape along the zenith angular component (Figure 2.3) (Katlein et al., 2014; 

Light et al., 2004). This reduced lateral deflection within sea ice is further enhanced by absorbing 

particulates such as algae, detritus, dust and sediment (Petrich et al., 2012). The overall 
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consequence of this phenomena is an anisotropic under-ice light field characterized by a narrowed 

spread of flux (Figure 2.3), which remains constant over time through various sea ice temperature 

regimes (Light et al., 2004).  

In terrestrial remote sensing, an anisotropic light field is typically characterized by the bidirectional 

reflectance distribution function (BRDF) which defines the geometric radiance distribution (Palmer 

and Grant, 2010). The BRDF effect can hinder the retrieval of accurate information from remotely 

sensed data (Buchhorn et al., 2016). Measurements obtained by an under-ice sensor are inevitably 

subject to such considerations as well (e.g., Matthes et al., 2019). The impact of an anisotropic 

under-ice light field should be subject of further investigation towards the development of accurate 

under-ice light measurements that aim to be flexible regarding sensor characteristics and 

deployment mode (e.g., from underwater vehicles, using wide FOVs or HI comprising sensor 

inclination and multiple viewing angles). In addition, more studies analyzing the effect of different 

ice types and sea-ice surface properties on the under-ice lights field geometrical properties (e.g., 

surface flooding), are of interest for further extending under-ice chl-a remote sensing under a wide 

range of survey scenarios. 

2.4 Advances in under-ice optical remote sensing of biomass 
 

2.4.1 Regression algorithms 
 

The first studies describing correlations between transmitted under-ice irradiance spectra and sea-

ice chl-a were performed by Legendre and Gosselin (1991) and Maykut and Grenfell (1975). The 

studies employed ratios between selected spectral bands (671 nm : 540 nm) and produced a 

relationship accounting for up to 55% of total variation in ice algal biomass. Subsequent studies 

have employed Normalized Difference Indexes (NDIs) as a method to correlate under-ice spectra 

with sea ice algal biomass estimates in Resolute Passage, Canada (e.g., Mundy et al., 2007). The study 

pointed out the negligible effect of snow on biomass estimations if NDIs were calculated with 

wavebands where snow had reduced influence (<570 nm). The authors provide a single-best NDI 

wavelength combination (485 nm : 472 nm) accounting for 89% in the total variation of ice algal 

biomass. This study was complemented by two more Arctic studies (Campbell et al., 2015, 2014) 

also conducted in Resolute Passage. Taking advantage of the non-invasive nature of the method, the 

studies were able to infer algae environmental drivers (such as snow depth) and found the best NDI 

wavelength combination (478 nm : 490 nm) to account for 81% of sea ice chl-a biomass variability.  

The same method was also applied in Antarctic pack ice, explaining 81% of algae biomass variability 

using the ratio of wavelengths (555 nm : 472 nm) (Fritsen et al., 1992). This was followed by the 

first study comparing data from different locations on a regional scale (Melbourne- Thomas et al., 

2015). The later tested different types of spectral feature models (NDIs, ratios of spectral irradiance, 
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scaled band area, and Empirical Orthogonal Functions, EOFs) and highlighted NDIs to be the most 

effective index accounting for biomass variation (Melbourne-Thomas et al., 2015). Different optimal 

NDI wavelengths were identified for East Antarctic sea ice (422 nm : 418 nm) and the Weddell sea 

ice (479 nm : 468 nm) (Melbourne-Thomas et al., 2015). Generally, best NDIs are selected by 

plotting Pearson correlation surfaces which display correlation strengths among all combinations 

of spectral wavebands (each combination produces an NDI) (e.g., Melbourne- Thomas et al., 2015). 

NDIs should, however, be composed of wavebands that are separated by at least 15 nm to avoid 

artificial correlations of neighboring wavebands and, for chl-a, preferably wavelengths between 405 

and 550 nm to avoid both edge effects and the influence of snow on transmitted radiance spectra 

beyond 550 nm. 

It is important to note that all these tests have only used irradiance sensors at a very close distance 

to the ice subsurface (0.15-0.6 m), providing scattered point samples over limited areal extents. The 

first comparison of algorithms to include long-range transects using radiance sensors was 

conducted by Lange et al. (2016) for Arctic sea ice.  

Table 2.2 Compilation of studies using measured under-ice spectra for estimating chl-a (in mg·m-2) in sea 

ice. All studies correlate optimal spectral bands with measured chl-a obtained through traditional ice 

coring techniques. Location, ice type and date of the survey are shown together with the method employed, 

produced relationships and the statistical strength of the correlations as R2. Sba refers to the scaled band 

area found in the respective studies. S refers to the EOF scores found in the respective studies. E(chl-aadj) 

indicates that a log-link function was applied for the formulation of the relationship. ln indicates that a 

natural logarithm was employed to formulate the relationship. Sensor mode refers to the FOV (radiance 

or irradiance) and if it was normalized to downwelling surface radiation (transflectance or transmittance). 

Study Region/Ice type/Date 
Method used/Optimal bands 

(if any)/Sensor mode 
Relationship R2 

Legendre and 

Gosselin, 1991 

•  South-eastern Hudson Bay, 

Canadian Arctic 

•  FYI 

•  May 1986 

Ratios 

671:540 

Irradiance 

chl-a = 100 × ratio + 49 0.55 

Mundy 

et al., 2007 

 

NDIs 

415:400 

Transmittance 

chl-a = 80.2 − 588 × NDI 0.81 

•  Resolute Passage, Canada 

•  Land-fast FYI 

•  May 2003 

NDIs 

485:472 

Transmittance 

chl-a = −8.3 + 1000 × NDI 0.89 

 

NDIs 

663:655 

Transmittance 

chl-a = −26.72 + 344 × NDI 0.85 

 

NDIs 

685:675 

Transmittance 

chl-a = 43.87 + 204 × NDI 0.81 

 

 

 

 

 

Continued 
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Study Region/Ice type/Date 
Method used/Optimal bands 

(if any)/Sensor mode 
Relationship R2 

Campbell et 

al., 2015, 2014 

•  Allen bay. Northwest of 

Resolute Bay, Nunavut, Canada 

•  Land-fast FYI 

•  May―June 2011 

NDIs 

478:490 

Transmittance 

chl-a = −497.2 × NDI + 15.2 0.81 

Fritsen 

et al., 2011 

•  Bellingshausen Sea 

•  FYI 

•  September 2007 

NDIs 

555:442 

Irradiance and transmittance 

n/a 

0.71(for 

irradiance) 

0.81(for 

transmittance) 

Melbourne-

Thomas et al., 

2015 

 

NDIs 

422:418 

Irradiance 

ln(chl-a) = −4.27 – 351 × NDI 

 (for East Antarctica) 

0.64 

 

 

NDIs 

479:468 

Irradiance 

ln(chl-a) = 0.39 + 31.7 × NDI 

 (for Weddell sea, updated with 

corrigendum) 

0.79 

 

Ratios 

(555:443) 

Irradiance 

ln(chl-a) = −1103 + 1948 × 

Ed(555)/Ed(443) − 859 × 

[Ed(555)/Ed(443)]2 
 (for East Antarctica) 

0.56 

•  Antarctic sea ice. Weddell Sea 

and East Antarctica 

•  Pack-ice (Ice floes) 

•  September―October 

2007―2012 

Ratios 

(555:443) 

Irradiance 

ln(chl-a) = − 33.9 + 31.0 × 

Ed(555)/Ed(443) 

 (for Weddell sea) 

0.67 

 
Scale band area 

Irradiance 

ln(chl-a) = −16.36 + 9.52 × sba 

− 1.34 × sba2 

 (for East Antarctica) 

0.64 

 
Scale band area 

Irradiance 

ln(chl-a) = −2.40 + 1.64 × sba 

− 0.13 × sba2 

 (for Weddell sea) 

0.60 

 
EOFs 

Irradiance 

ln(chl-a) = 0.36 + 6.41 × S1 − 

143.5 × S2 − 20970 × S2
2 + 

393.3 × S3 − 512.6 × S4 

 (for East Antarctica) 

0.52 

 
EOFs 

Irradiance 

ln(chl-a) = 1.55 + 43.0 × S1 + 

112.5 × S2 − 243.7 × S3 

 (for Weddell sea) 

0.67 

Nicolaus and 

Katlein, 2013 

•  Barrow, Alaska, Arctic sea ice 

•  Land-fast sea ice, snow covered 

•  March, May, and June 2010 

No correlation could be applied. n/a n/a 

Lange 

et al., 2016 

 

NDIs 

669:683 

Irradiance 

ln[E(chl-aadj)] = 2.2 + 10.8 × 

NDI 
0.73 

•  Central Arctic Ocean 

•  Different ice types from 

ponded ice, snow, and ponds 

frozen, no snow and ponds, frozen 

surface (FYI, MYI) 

•  August―October 2011 

NDIs 

678:684 

Transmittance 

ln[E(chl-aadj)] = 1.2 − 11.1 × 

NDI 
0.70 

 
EOFs 

Transflectance 

ln[E(chl-aadj)] = 0.3 + 1.5S2 − 

1.7S4 − 2.0S7 + 3.2S9 + 8.6S2
9 

0.74 

 
EOFs 

Transmittance 

ln[E(chl-aadj)] = 0.7 − 3.0S2 + 

1.1S4 + 2.4S6 − 6.5S2
7  + 3.9S2

9 
0.90 

 
EOFs 

Radiance 

ln[E(chl-aadj)] = 2.0 + 2.7S4 – 

1.7S5 – 1.0S6 − 2.3S2
2 − 10.0S2

8 
0.95 
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Continued 

Study Region/Ice type/Date 
Method used/Optimal bands 

(if any)/Sensor mode 
Relationship R2 

Meiners 

et al., 2017 

•  The Weddell Sea 

•  Pack ice floe 

•  September 2017 

NDIs 

479:468 

Irradiance 

ln(chl-a) = 0.39 + 31.7 × NDI 

(from Melbourne-Thomas et 

al., 2015) 

0.79 

Wongpan 

et al., 2018 

•  Antarctic sea-ice, McMurdo 

Sound and Davis Station. 

•  Fast ice (First-year) 

•  Austral spring 2015 

NDIs 

471: 416 

Transmittance 

log10(chl-a) = 1.27 + 3.763 × 

NDI 

(for McMurdo Sound) 

0.70 

NDIs 

439: 424 

Transmittance 

log10(chl-a) = 2.07 – 18.163 × 

NDI 

(for Davis Station) 

0.79 

NDIs 

441: 426 

Transmittance 

log10(chl-a) = 2.58 – 16.85 × 

NDI 

(for both sampling sites) 

0.70 

 

The study examined different regression models (EOFs, NDIs, and Multi-NDI) and observed a better 

performance for the EOFs-based approach to represent increased areal coverages (therefore 

representing a more extensive range of sea-ice conditions). Also, this study outlined that a better 

model performance can be achieved by using transmittance or transflectance data as spectral model 

inputs rather than only under-ice irradiance or radiance data. Studies testing and comparing 

different models under different conditions are useful for progressing more generalized 

relationships and robust regression models. The latest study investigating under-ice spectra- 

biomass relationships was done in Antarctic fast ice, and it showed that NDI wavelength pairs near 

the first chl-a absorption peak (440 nm) explain up to 70% of the total variability in high ice algal 

standing stocks (Wongpan et al., 2018). The authors also pointed out the importance and difficulty 

of sampling on one of their study areas, McMurdo Sound, characterized by the presence of platelet 

ice. The sub-ice platelet layer is characterized by one of the highest biomass concentrations. 

However, the produced relationships in the study were hampered by a low overall variability in the 

sampled algal biomass and the potential biases in sampling the fragile unconsolidated sub-ice 

platelet layer. The authors highlighted that further work is required to advance quantitatively 

robust sampling techniques for platelet ice and to develop optical methods to understand 

phenology and spatial variability of platelet ice algal communities. 

Table 2.2 provides a summary of the studies producing spectra-biomass relationships retrieved 

from the close-range deployment of radiometers. The differences in optimal spectral indices and 

produced relationships suggest that it is challenging to develop cross-regional relationships 

between transmitted spectra and chl-a (Wongpan et al., 2018; Melbourne-Thomas et al., 2015). The 

differences in sea-ice physical properties, in algal community composition and photophysiological 

adaption strategies, together with the spatio-temporal variability impedes the formulation of a 

universal relationship. This is particularly true if relationships are derived from univariate 

statistical models. In fact, Lange et al. (2016) pointed out that the EOF approach provided better 
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correlations because it accounted for a broader range of spectral variability by including multiple 

regions of the spectra. 

Different types of sea-ice cover at different locations over different seasons control algal community 

composition, biomass accumulation and ice algal bio-optical characteristics (Galindo et al., 2017; 

AlouFont et al., 2013). As an example, low light availability may trigger shade acclimation leading 

to an increase in the chl-a per cell ratio and increased production of accessory pigments, thereby 

boosting the ice algal package effect (decreased absorption efficiency per chl-a) (Wongpan et al., 

2018; Melbourne- Thomas et al., 2015; Kirk, 2011). Theoretically, the effect induces a flattening of 

the absorption spectrum of the bulk algae composite (Morel and Bricaud, 1981) and could 

consequentially result in an underestimation of chl-a due to the presence of other ice algal pigments 

such as fucoxanthin and diadinoxanthin, affecting absorption but not chl-a concentration. 

Also, it has been shown that the absorption spectra of algal communities change vertically over the 

sea-ice cover (Fritsen et al., 2011). Due to different light levels, ice physical properties, and nutrient 

availability along the vertical gradient in the sea ice, algae communities at different depth layers 

will adopt distinct acclimation strategies which have an impact on their pigment composition which 

can affect absorption spectra (AlouFont et al., 2013). Even though populations are generally found 

at the bottom of the ice, the effect of different vertical distributions and diverse species composition 

on the optical method has not been assessed and requires further investigation. 

In this context, future studies should include pigment determination using High-Performance 

Liquid Chromatography (HPLC) to measure the entire suite of photosynthetic and photoprotective 

algal pigments (Miller et al., 2015), and measurements of particulate and algal absorption spectra 

using spectrophotometers equipped with integrating spheres (Wongpan et al., 2018; Lund-Hansen 

et al., 2014).  

Another limitation of the described optical method is related to the minimum amount of chl-a in the 

ice that can be detected by under-ice remote sensing (Lange et al., 2016; Nicolaus et al., 2013). 

Studies have attempted to correlate fluorometric chl-a estimates with under-ice spectra without 

success. This has been attributed either to low algal biomass or the high concentrations of other 

substances in the few cores sampled for cross-calibration (Katlein et al., 2016; Nicolaus et al., 2013). 

With low chl-a concentrations in the ice, the correlations are dominated by effects of other optically 

active components and hinder the development and establishment of accurate models. 

Nevertheless, whilst the strength of correlation within the models is noticeably variable (Table 2.2), 

opportunities for improvement for model robustness exists. From a remote sensing perspective, the 

goal is to provide more accurate correlations able to determine chl-a from spectral data and other 

remotely sensed physical parameters without the need to calibrate with local chl-a measurements 

for every single survey. So far, mostly univariate models have been tested, and further research 

could be conducted in this area with regression models attempting to take advantage of multiple 

spectral bands or additional parameters as shown in studies on other targets (Liu et al., 2011). 
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There is an extensive library of algorithms available that could be tested for developing improved 

relationships between measured spectra and sampled chl-a (e.g., in the field of machine learning). 

Adequate algorithms can be selected based on the amount of data available and characteristics of 

the algorithm with references from comparable studies applied in remote sensing of other 

environments. For example, studies have successfully estimated biomass in wheat employing 

multiple univariate indexes as input parameters for different machine learning models such as 

random forest or artificial neural networks (Wang et al., 2016). In the case of sea-ice algae, different 

statistical indexes such as NDI, ratios, scaled band area, and EOFs can be tested together as model 

parameters potentially providing more robust regression models. The reasoning behind this is that 

the different properties of some indexes are more capable of accounting for specific differences in 

the sea-ice environment, resulting in overall more robust models (Lange et al., 2016; Melbourne-

Thomas et al., 2015). 

To overcome regional dependence, predictive statistical models could be trained over the acquired 

high spectral and spatial resolution datasets for developing regressions models using diverse input 

parameters such as the hyperspectral data, ice thickness, snow depth, sub-surface roughness, 

geographical location and proxies of algal photoadaptation among others. The scheme of 

environmental drivers in Figure 2.2 suggests some possible parameters, representative of fine and 

large-scale processes, which could be used in the parametrization of new predictive models. 

The problem for sea ice training datasets is that they are generally scarce due to the remoteness of 

the study areas and the difficulty of sampling sea ice. New, more robust algorithms will require 

considerable amounts of data and variables to develop accurate predictions. Producing datasets 

coupling physical and biological parameters would not only assist in a better understanding of the 

natural process governing algae distribution but could also provide indicators useful for modeling 

the relationships. In this context, future chl-a sampling campaigns should be, when possible, paired 

with under ice spectral measurements, proxies of algae photophysiological adaptations and other 

parameters to create an extensive cumulative dataset over time and for multiple ice types.  

2.4.2 Possibilities beyond biomass regression models 
 

Outside the range of statistical regression models, hyperspectral data may also improve our 

understanding of sea-ice algae beyond simple biomass distribution estimates. This might include 

the possibility of discretely distinguishing algae physiological conditions (e.g., Perkins et al., 2016) 

and detection of community compositions from the under-ice signals as analogously done in 

phytoplankton and vegetation studies (Moisan et al., 2011; Zhang et al., 2015). This could be 

achieved through hyperspectral signal decomposition and analyses aimed to resolve relative 

amounts of different types of algae pigments, CDOM or other detritus presence. Hyperspectral and 

multispectral airborne data have been used to estimate pigment composition of terrestrial plants 

for example (Blackburn, 2006). The differentiation between algae species in sea ice is important for 
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improving the understanding of ice algal primary productivity, phenology and in support of 

predictive modelling efforts (Leu et al., 2015; Lizotte, 2001). For this purpose, different spectral 

decomposition techniques could be tested a priori through laboratory approaches with known algae 

species and concentrations in controlled environments (e.g., Mehrubeoglu et al., 2013; Moberg et 

al., 2002). 

2.4.3 Under-ice platforms for sea-ice radiation transfer mapping 
 

Accurately mapping spectrally-resolved under-ice shortwave radiation with high-frequency point 

sampling is paramount for the development of under-ice optical remote sensing methods aimed to 

improve biomass spatial variability estimates in sea ice. In this context, UUVs and trawl based 

system are showing high capabilities to survey under-ice areas in a spatially and temporally efficient 

manner where usually difficult access is the norm (e.g., Lange et al., 2016). UUVs include both ROVs 

(Figure 2.4b) and AUVs (Figure 2.4c). A general overview on UUVs describing each platform type, 

potentials and limitations is given in Wynn et al., (2014), and a description of their differences and 

complimentary use for scientific operations by Ludvigsen et al., (2013). 

Radiance and irradiance hyperspectral radiometers mounted on ROVs have recently been deployed 

for mapping under-ice radiation transfer under both Arctic land-fast and a pack ice (Lund-Hansen 

et al., 2018; Katlein et al., 2015a; Nicolaus et al., 2013; Nicolaus and Katlein, 2013), and under 

Antarctic pack ice (Arndt et al., 2017; Meiners et al., 2017). Table 2.3 provides a compilation of all 

studies employing UUVs for under-ice radiation transfer mapping. Surveying transects up to 150 m 

long and areal point sample grids up to 100×100 m have been measured. For sea ice, the use of 

remotely operated platforms also solves issues related to the bias of sampling towards stable ice 

floes due to the practical and safety requirements associated with deploying personnel for ice 

coring. Sampling with remotely operated platforms allows researchers to efficiently survey various 

types of sea ice, such as newly formed ice, ponded ice as well as snow-covered sea ice and pressure 

ridges within the same survey. For these first approaches, vehicle depths have ranged from 1 m to 

a maximum of 10 m from the ice sub-surface (Table 2.3). However, data are typically filtered so that 

only spectral measurements within 2 m from the ice bottom are accounted for. An exception is for 

Lund-Hansen et al. (2018) which successfully developed and deployed and ROV for measuring 

under-ice irradiance fields, sliding at a fixed distance of 0.25 m between the ice bottom and sensor 

head, using spacer poles. 

Compared to under-ice L-arm measurements, UUVs introduce a higher degree of complexity in 

terms of sensor settings, specifications, and deployment. Particularly if these are to be operated at 

increasing water depths and in a dynamic setting. Figure 2.5 summarizes all components that 

require consideration when performing under-ice studies employing UUVs and spectral 

radiometers. There are trade-offs between the typical remote sensing ambitions and the technical 

and environmental constraints of the survey.  
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Figure 2.4 Traditional and emerging deployment modes for under-ice optical sensors. a, L-arms have 

been the starting point for acquiring under-ice spectral radiometric measurements due to their low-cost 

and relative ease of applicability; b, ROVs are emerging as a versatile tool to cover larger profiling 

transects compared to L-arms. The panel displays the Australian Antarctic Division’s ROV under 

Antarctic sea ice (photo credit: Ulrich Freier); c, Autonomous Underwater Vehicles (AUVs) are still being 

assessed for the particular application of mapping under-ice associated biomass due to the challenges 

described in the text. However, they present the potential to become a powerful tool towards large-scale 

mapping of biomass and method automation. The panel displays the GAVIA AUV under algae-populated 

Antarctic fast ice (photo credit: Vanessa Lucieer). 

For example, signal to noise ratio (SNR) is a primary parameter for evaluating hyperspectral data 

quality (Adão et al., 2017). As underwater platforms are constantly in motion, they require shorter 

integration times to avoid blurred/displaced sensor footprints (e.g., Lange et al., 2016), with 

concomitant implications for the SNR (less light gathered per sample) (Figure 2.5). Also, as vehicle 

distance from the ice increases, the sensor footprint widens, and the resolution of the survey data 

will decrease (e.g., will become coarser). Constantly moving vehicles deployed at specific depths 

will by necessity make a trade-off between spatial footprint resolutions, integration times and 

quality of the signal (Figure 2.5). While some of these underwater vehicles allow for longer 

integration times by moving at very slow speeds or hovering/parking in a relatively fixed position 

(e.g., ROVs), other approaches such as the ship trawls or modern AUVs are limited in this aspect. 

Furthermore, sensor integration times need be set according to the continuously varying 

environmental conditions such as daylight availability, the sea-ice physical properties (e.g., ice and 

snow thickness controlling total under-ice irradiance levels) and the water column properties (e.g., 

destabilizing currents or other optically active materials in the water) (Figure 2.5). While there 

would be no “best” setting for every surveying scenario, as this will depend on the sea-ice 

conditions, desired spatial-sampling resolutions and equipment availability, surveys benefit from 

stable ocean current conditions, clear waters and constant-upward looking sensor attitude. 
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Table 2.3 A compilation of published studies employing UUVs or any other kind of underwater platform 

(e.g., under-ice sleds or under-ice trawls) for radiation transfer mapping under sea-ice. 

Study Region/Ice type/Date Platform and sensor Survey information 

Lange et al., 2016; 

Nicolaus and Katlein, 

2013 

•  Central Arctic Ocean 

•  Different ice types from ponded ice, 

snow and ponds frozen, no snow and 

ponds, frozen surface (FYI, MYI) 

•  August―October 2011 

ROV. Radiance and irradiance sensors 

(TriOS, RAMSES-ACC/ARC) 

Various transects of 30 to 210 m. 

Depths from 1 to 10 m. Filtered to 

<1.5 m for biomass estimates. 

 

Under-ice trawls. 

Radiance and irradiance sensors 

(TriOS, RAMSES-ACC/ARC) 

Two transects of 800 and 1500 m 

respectively. Depths from 0 to 200 m. 

Filtered to <1.5 m for biomass estimates. 

Nicolaus 

et al., 2013 

•  Barrow, Alaska, Arctic Ocean 

•  Land-fast sea ice, snow covered 

•  March, May, and June 2010 

Under ice sled. Irradiance (TriOS, 

RAMSES ACC) 

Three transects of 20, 40 and 80 m. 

No depth. Spectroradiometer at 2±1 

cm from the ice subsurface. 

Katlein 

et al., 2015a 

•  Arctic Ocean 

•  Ice floe with melt ponds 

•  July 2014 

Nereid Under Ice (NUI) (hybrid 

ROV). Radiance and Irradiance 

(TriOS, RAMSES-ACC/ARC) 

100 m transects at approx. Depths of 

5 m. 

Arndt et al., 2017; 

Meiners et al., 2017 

•  Weddell Sea 

•  Ice floe of flooded pack-ice 

•  September 2013 

ROV, Irradiance 

(TriOS, RAMSES-ACC) 

100 m-by-100 m grid. Depths filtered 

to < 2 m. 

Lund-Hansen 

et al., 2018 

•  Kangerlussuaq, West Greenland  

•  Landfast first-year ice 

•  March 2016 

Low-cost portable ROV. Irradiance 

(TriOS RAMSES ACC-UV/VIS) 

15 m transects. Sensor fixed depth of 

0.25 m. 

Matthes et al., 2019 

•  Qikiqtarjuaq, Southern Baffin 

Island 

•  Landfast sea ice 

•  May–June 2015 and June–July 

2016. 

ROV, Irradiance 

(TriOS, RAMSES-ACC) 

Multiple transects of several tenths’ 

meters in length. Sensor depth at 

around 2 m. 

 

Compared to ROVs, AUVs are underwater drones that are capable of executing pre-programmed 

routes to cover significant distances (10’s of kilometers). Although there are no published studies 

employing AUVs for biomass estimates in sea ice except for a study by Forrest et al. (2016), AUVs 

are increasingly being used for sea-ice research and are showing great potential (Lucieer et al., 

2016; Norgren and Skjetne, 2014; Singh et al., 2017; Williams et al., 2014). However, all the 

aforementioned problems would be accentuated when mounting sensors on AUVs due to the 

mechanisms for AUV operation. These include deeper operating depths to avoid collision hazards, 

constant but relatively fast traveling speeds, and geo-referencing the motion of the vehicle to the 

finely tuned sensors. When using irradiance sensors, increased distance to the ice sub-surface will 

lead to a strong areal averaging of light levels and a loss of spatial resolution (Figure 2.3). Therefore, 

surveys would require radiance sensors to be deployed according to the desired mapping footprint 

by regulating vehicle depth based on the FOV of the sensor and vehicle capabilities. Radiance 

sensors with a narrow FOV are therefore fundamental if the sensor is to be deployed at increasing 

depths while still aiming to achieve specific mapping resolutions and to avoid the light influence of 

the surrounding water column (Nicolaus and Katlein, 2013). The trade-off with radiance sensors 

(and HI sensors) is that they can less sensitive compared to irradiance sensors since reduced 

collection angle inevitably results in a reduced amount of light collected per a defined integration 

time (Figure 2.5). 
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Furthermore, considering the anisotropic nature of the under-ice light field, sampling radiance 

distribution would not be accurate if the light field varies considerably across the field of view of 

the sensor as previously mentioned. This is because radiance sensors collect light from a finite solid 

angle (Figure 2.3), but radiance is mathematically defined for an infinitely small solid angle. Sensor 

settings and deployment mode would, therefore, need to be regulated for the desired outcome, 

considering the constraints outlined in Figure 2.5 as well as the under-ice geometric light field. 

Katlein et al. (2016) used a geometric light field model to investigate this aspect and suggested that 

radiance measurements (with a 10° FOV sensor) conducted more than 4 m away from the ice 

underside would need to be converted to under-ice irradiance using a conversion method based on 

the C value outlined in Katlein et al. (2014). The C value depends on the angular distribution of 

radiance underneath the ice and can be obtained from a direct measurement of the radiance 

distribution under the ice, or either from sea-ice physical properties. Considerable work is required 

to standardize the application of finite FOV sensors in under-ice remote sensing studies. 

2.4.4 Hyperspectral imaging 
 

Hyperspectral imaging (HI) aims to obtain the spectrum for each pixel in the image of a scene, with 

the purpose of finding objects, identifying materials, or detecting and quantifying processes 

(Bioucas-Dias et al., 2013). As the technology becomes more portable and accessible, it has found 

an immense range of applications ranging from environmental monitoring (Adão et al., 2017), 

chemometrics (Amigo et al., 2015), precision agriculture (Mäkynen et al., 2012) forensic analyses 

(Edelman et al., 2012) and medicine (Lu and Fei, 2014) to mention a few. Depending on the desired 

aims and settings, these sensors can capture features at different scales ranging from millimeter 

close-range imagery to continuous swaths of data at the mesoscale depending on the sensor 

distance from the target and the mounting platform.  

The hyperspectral images consist of a three- dimensional (x, y, λ) data cube where x and y represent 

the spatial dimension (with pixel sizes that can vary depending on the survey type), and λ the 

spectral dimension. The modality in which the frame is acquired can be in either push-broom or 

snap-shot mode ( e.g., Huang et al., 2014). Each type of sensor presents both advantages and 

disadvantages with the choice purely based on user preferences. HI data processing involves pre-

processing of raw data cubes, compression, exploration, regression, and segmentation to finally 

providing abundance estimates or classification of the desired features (e.g., Amigo et al., 2015; 

Bioucas-Dias et al., 2013).  

Application of HI in the underwater domain is relatively new and presents several optical and 

technical challenges that still require considerable research effort. However, pioneering studies are 

highlighting the potential for creating high resolution, georeferenced, optically corrected digital 

underwater maps of different habitats, minerals, substrates, and organisms (Dumke et al., 2018; 

Chennu et al., 2017, 2013; Johnsen et al., 2013).  
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A recent study assessed the use of HI for mapping sea-ice algae biomass variability at the ice-water 

interface in an experimental sea-ice simulation tank (Cimoli et al., 2017a or Chapter 3). Using a 

pushbroom hyperspectral camera at 1 m distance over a 0.72 m2 ice surface, variability in ice algal 

biomass was captured in images at very high spatial resolutions (0.9 mm square pixels). The sensor 

acquired radiometric data over the PAR range (400-700 nm) and following repeated tests at 

multiple spectral resolutions the study concluded that spectral resolutions > 6 nm could not be 

suitable for ice algal habitat mapping. For an under-ice algal mapping context, the high spatial 

variability at the microscale, the varying photophysiological adaptations of ice algae (modifying 

absorption spectra), and the highly variable under-ice light environment need to be considered 

when selecting an HI sensor. Snapshot HI sensors are easier to use (more portable and not 

constantly requiring a set of six orientation parameters) than pushbroom sensors which require a 

relatively constant and accurate forward motion across the imaged target and are drift sensitive. 

Pushbroom sensors require the integration time (or frames per second) to be set according to the 

moving speed for reconstructing the images (Figure 2.5). The aim is to attain adequate SNR, and due 

to the finite number of pixels on a focal plane array, snapshot HI sensors make a trade-off in the 

resolution of the various dimensions of data of the data cube sacrificing either spatial or spectral 

resolution. This can be limiting depending on the surveyed target, the desired mapping resolution 

and in particular under low light conditions. 

Analogously to standard point sampling radiometers, Figure 2.5 outlines for HI the relevant under-

ice tradeoffs between the typical optical remote sensing ambitions that need to be balanced with 

both technical and environmental factors. For HI cameras, finer spectral resolution can be offset by 

a lower SNR when compared to multispectral sensors because of the fewer number of photons 

captured by each detector due to the narrower width of the spectral channels (Figure 2.5). 

Furthermore, SNR associated with this type of sensor are accentuated compared to standard 

radiometers due to the light redistribution across spatial pixels along the sensor. Such systems 

necessarily need to involve a more sensitive instrument set-up by considering deployment depth, 

integration times (or frames per second) and moving speeds (for pushbroom sensors) (Figure 2.5).  

There is also a series of other technical considerations in HI sensor and settings selection. To 

mention a few, the fore-optics need to match the light collection capability of the diffracting element 

(Figure 2.5). If the lens’ F-number is too low, the slit can overfill causing increased stray light 

(reduced SNR); if the F-number is too high, it will limit the throughput of the system (thus the SNR). 

On the other hand, the slit size of the instrument is inversely proportional to the spectral resolution 

of the system, but positively correlated with the amount of light reaching the sensor and thus also 

affect the SNR (Figure 2.5). Other technical sensor specific capabilities include pixel binning, which 

merges pixels to increase SNR at the expense of either spatial or spectral resolution, or the overall 

optical system efficiency and quality (Figure 2.5).  

From a remote sensing perspective, the goal is to deploy sensors deeper (to increase the spatial 

footprint and areal coverage), to make them move faster (to reduce operational times and increase 



67 | P a g e  

 

efficiency) and to capture as much light as the conditions allow. Eventually, HI technology could be 

routinely mounted onto UUVs as proposed for underwater benthic mapping (Johnsen et al., 2013) 

or deep-sea classification of features of interest (Dumke et al., 2018). However, there is a complex 

trade-off between all the aforementioned parameters that will need to be assessed for each case 

(Figure 2.5). Deployment of wide FOV sensors might be constrained due to under-ice anisotropic 

and surface dependent light fields (Katlein et al., 2016, 2014; Petrich et al., 2012). SNR and dynamic 

range performance under dim and dynamic light conditions are also key considerations that could 

potentially be limiting the technology. 

Application limits of the technology need therefore to be thoroughly investigated. These include 

delimiting light levels where the technology is not applicable and other environmental or logistical 

deployment constraints impeding target detection, underwater georeferencing and image 

composition (Dumke et al., 2018). For example, image composition and quality might be limited for 

a scanning pushbroom sensor under a turbulent underwater regime (Figure 2.5). In addition, as HI 

can be expensive and prohibitive, we need to work towards identifying the most cost-effective 

solutions for each specific situation and target (e.g., testing band specific imaging cameras). 

Simulation sea-ice tanks with controlled algae cultures and light levels will be useful platforms for 

further testing of key parameters for the development of this methodology (Cimoli et al., 2017a or 

Chapter 3).  

From a data processing perspective, the amount of HI data can be overwhelming and is not 

straightforward to identify relevant information with such a vast array of data. Multivariate and 

other statistical approaches have led to several powerful tools in support of hyperspectral remote 

sensing data analysis (Amigo et al., 2015; Chang and Chang, 2013). However, there are fundamental 

differences between applications of the technology in typical, above surface, remote sensing 

applications. Hyperspectral frames from hypothetical upward looking under-ice sensors would 

acquire images in transmission mode rather than reflection mode, and there are challenges 

associated with transmission HI compared to reflected light HI which would need to be considered 

and further investigated for an in situ application (Cimoli et al., 2017a or Chapter 3). 

2.4.5 Water column correction and immersion effect 
 

In marine optical remote sensing, the water column can have a considerable impact in the traversing 

electromagnetic radiation depending on its composition and presence of optically active elements 

such as phytoplankton, suspended particles and CDOM (Morel and Maritorena, 2001). Except for 

some cases of very high and concentrated algal blooms below the ice (Arrigo et al., 2012), polar 

under-ice waters are generally characterised by low concentrations of biomass in the water column 

compared to those observed in the ice (albeit this is depending on the season and region) (Arrigo et 

al., 2014; Gradinger, 2009; Spindler, 1994). Assuming no phytoplankton blooms, for sensors 

deployed near the ice sub-surface, the effect of the water column can be considered negligible at  
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Figure 2.2 Schematic of the trade-offs between the typical remote sensing objectives (left), and the 

technical and environmental factors to consider in an under-ice surveying context. Red links indicate that 

there is an inverse relationship between the ideal objective and the factor whereas green links indicate a 

positive relationship. Blue connectors refer to a variable relationship. The black line connectors (inside 

contour boxes) indicate that the factors are highly correlated. More information can be found in the text. 

Overall, sensor specifications need to be set according to deployment mode and to the environmental 

constraints (symbolized by the black dotted line on the right side of figure). The optical system efficiency 

includes optical throughput of the lenses, the dispersive element efficiency, and the detector quantum 

efficiency. The scheme is valid for both non-imaging radiometers and HI. Spatial resolution refers to the 

ground sample distance of an imaging spectrometer. The spatial footprint refers to the circular footprint 

of normal spectrally resolved radiometer. SNR refers to Signal to Noise Ratio. 
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low distances < 0.5 m (Campbell et al., 2015; Melbourne-Thomas et al., 2015). However, increasing 

the distance between the ice subsurface and the sensor would increase the amount of matter in the 

optical path and thus disqualifying the previous assumption, e.g., in cases where UUVs are required 

to be deployed at increased water depth. Increased water depths would result not only in a 

reduction of light availability and changed spectral and geometrical properties of the measured light 

field but could result in the overestimation of biomass in the ice due to the interference of 

phytoplankton and thus chl-a in the overlying water column (Figure 2.5) (Matthes et al., 2019). 

Overall, it is not possible to define locations or periods of the year where the water column effect 

could be considered negligible, and this should be verified at every survey when possible. 

To correct for water-column effects, the most straightforward method is to estimate the water 

column spectral attenuation coefficient Kd (λ) by means of irradiance profiles (Morel and 

Maritorena, 2001). This yields the extinction characteristics of the local seawater and can be applied 

to the optical data collected at depth by UUVs (Nicolaus and Katlein, 2013).  

If larger distances are to be covered (e.g., through UUVs), it is important to account for any 

variability of the water column optical properties under-ice (Frey et al., 2011). Spatial variability in 

water column optical properties could be assessed by performing multiple vertical irradiance 

profiles to assess spatial variability of such properties.  

For hypothetical long-range UUVs transects, water column correction methods would open a 

challenging research front involving the acquisition of optical properties of the water column 

simultaneously with the hyperspectral data collection. Measured absorption and scattering 

properties can then be input into radiative transfer equations to calculate the influence of the water 

column over the composed imagery (Johnsen et al., 2013). Nevertheless, methods usually applied 

in marine remote sensing such as modeling of the water column trough radiative transfer will 

remain challenging in under-ice waters due to the high horizontal variations in structure producing 

highly variable under-ice light fields (Katlein et al., 2015a).  

In case of small-scale HI of the ice-water interface, water column effects can be corrected using 

standard techniques such as the empirical line method with known reflectance targets (Chennu et 

al., 2013; Smith and Milton, 1999) or through localized, depth-integrated, irradiance measurements 

and estimations of inherent and apparent optical properties (Johnsen et al., 2013).  

Finally, for radiometers or hyperspectral imagers alike to be immersed in water, specifically 

designed enclosures are required to safeguard the instrument integrity and efficiency (Zibordi, 

2006). Usually, calibration files are provided for off-the-shelf sensors that are designed for 

underwater deployment. However, HI cameras or other desirable radiometric instruments that 

have not been designed for in water use would require customized sealed enclosures. These 

enclosures can introduce spectral and geometrical aberrations whose description is out of the scope 

of this review. Due to the significant influence on any optical calibrations, and compounding 

uncertainties associated with different lens materials and geometries, it suffices to say that 
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calibration might be necessary for any additional medium between the sensor and the target under 

investigation. Particularly if high accuracy radiometric and geometric data are required (Zibordi 

and Voss, 2014). 
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Chapter 3 

Towards improved estimates of sea-ice algal biomass: 

experimental assessment of hyperspectral imaging cameras for 

under-ice studies 

 

3.1 Introduction 
 

Sea-ice algae are important contributors to primary production in the polar oceans (Arrigo et al., 

2014; Kohlbach et al., 2016; McMinn et al., 2012), and play an active role in large-scale 

biogeochemical cycles determining rates of carbon export (Boetius et al., 2013) and ocean-

atmosphere exchange (Vancoppenolle et al., 2013). During winter and spring, sea-ice algae are vital 

for polar marine ecosystems as they provide an essential food source for pelagic herbivores (Arrigo 

et al., 2014; Flores et al., 2012). During the melt season, ice algae can seed the spring phytoplankton 

bloom following ice ablation (Brugel et al., 2009; Mundy et al., 2014; Søreide et al., 2010). 

Chlorophyll a (chl-a) concentrations in sea ice are considered a useful proxy for algal biomass 

abundance (Gradinger, 2009; Meiners et al., 2012). The highest algal standing stocks are usually 

found at the bottom of the ice cover near the ice-water interface (Arrigo et al., 2010). Using chl-a as 

proxy, several studies have reported high spatial variability in ice algal biomass, e.g. changes across 

multiple orders of magnitude on spatial scales ranging from millimetre (Hawes et al., 2012) to the 

mesoscale (metres to kilometres) (Gradinger, 2009; Steffens et al., 2006).  

Unlike phytoplankton and ocean colour, chl-a concentrations in sea ice cannot be monitored with 

aerial or satellite remote sensing techniques.  Current sea-ice chl-a sampling methods include ice-

core sampling (Miller et al., 2015), diver operated fluorometers (Rysgaard et al., 2001) or simple 

imagery data (such as video or still photographs) (Gutt, 1995; Katlein et al., 2015b). These 

established methodologies are labour intensive, invasive or have a coarse resolution and are not 

appropriate for capturing the high spatial and temporal variability of ice-algae biomass. This has 

consequences for our understanding of ice algal dynamics, with associated implications for 

estimating their overall contribution to marine production and how they respond to environmental 

changes (Meiners et al., 2012). Due to the high logistical costs involved in monitoring in the harsh 

polar environments, there is a need to develop new and efficient methodologies that can efficiently 

track ice-algal biomass across multiple spatial scales. 
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Recent studies have explored methods for quantifying chl-a (as proxy for biomass) within sea ice 

by measuring the spectral composition of downward transmitted visible light that is measured 

beneath the ice-water interface (Campbell et al., 2014; Melbourne-Thomas et al., 2015; Mundy et 

al., 2007). Transmitted light measurements at the ice bottom can provide information on algal 

biomass due to the light absorption by algal pigments such as chl-a (Maykut and Grenfell, 1975; 

Perovich, 1996). Quantitative methods are usually performed by deploying upward looking spectral 

irradiance sensors below the ice (at 15-50 cm distance) using an L-arm. The measured spectrum of 

transmitted irradiance can then be statistically correlated to the amount of measured chl-a 

(determined from ice core samples) using empirical correlations methods and univariate models 

such as Normalized Difference Indices (NDI) or Empirical Orthogonal Functions (EOFs) (Lange et 

al., 2016b; Melbourne-Thomas et al., 2015; Mundy et al., 2007). These novel methods are providing 

new opportunities for monitoring ice-algal biomass at an increased sampling rate in a non-invasive 

manner. For example, irradiance sensors can be mounted on Remotely Operated Vehicles (ROVs) 

for further enhancing the spatial extent of these surveys (Lange et al., 2016b). The use of 

transmitted irradiance spectra, however, only determines the integrated (over the entire ice 

thickness) ice-algal biomass.   

We are taking advantage of such considerations and for the first time we experimentally assess the 

possibility of employing hyperspectral imaging (HI) cameras in transmission mode (measuring 

transmitted instead of reflected light) to map sea-ice algae biomass distribution at the ice-water 

interface. In contrast to the wide and disconnected footprint of radiance and irradiance sensors, HI 

cameras are able to map spectral signatures across a target area at high spatial resolutions (Amigo 

et al., 2015; Johnsen et al., 2013). HI is usually employed in reflectance mode and these systems are 

gaining considerable momentum in the natural sciences and close-range remote sensing domain as 

the technology becomes more accessible and portable (e.g. Holzinger et al., 2016; Lucieer et al., 

2014; Malenovský et al., 2015). Recent applications in related disciplines include mapping of 

benthic algae distributions and biomass (Chennu et al., 2013), coral physiology (Perkins et al., 2016), 

and algae pigment composition (Nogami et al., 2014). Sea ice is an optically complex medium and 

there are many challenges in measuring transmitted radiance through the ice that need to be 

overcome through gradual testing and evaluation both in laboratory and in situ studies. Aside from 

understanding the target spectral signature, we also need to understand the complexity associated 

with both under-ice HI deployment and data processing. 

In the present study, a HI camera was used to image an inverted sea-ice simulation tank specifically 

designed for growing and monitoring sea-ice microbial consortia at the ice-water interface. The 

tank is termed ‘inverted’ due to its “upside down” representation of the sea-ice environment, i.e. the 

light source is beneath the ice and a water layer is above it (Figure 3.1). This configuration provides 

an ideal environment for testing different hyperspectral imaging scenarios in a controlled 

environment. 
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This first test is a proof of concept, aimed to developing a near remote sensing method that can 

identify ice-algae patchiness at different spatial scales in a non-invasive manner. For this purpose, 

we inoculated the tank with ice-algal communities to establish six spatially variable algal patches at 

the tank’s ice-water interface. This study starts by outlining our novel experimental set-up and the 

data acquisition methodologies. We then employ exploratory image analysis to assess the feasibility 

of HI to resolve ice-algal spatial variability. The study concludes by comparing our sea ice tank to an 

in situ scenario and discussing future possibilities and limitations of the method. 

3.2 Data and Methodology 
 

All experiments were conducted at the Algal Laboratories of the Institute of Marine and Antarctic 

Studies in Hobart, at the University of Tasmania, Australia. The experiment was divided into five 

sequential phases; 1) ice tank preparation, 2) algae culturing, 3) hyperspectral imaging, 4) chl-a 

sampling and 5) data processing.  

3.2.1 Inverted ice-tank design and preparation 
 

The inverted ice tank was built as an “upside down” representation of the sea ice environment 

comprising, from the bottom to the top, a light source, air, glass, ice and water interfaces (Figure 

3.1). The tank’s area of frozen ice is 0.85 m x 0.85 m and ice growth is initiated using 30 litres of 

filtered deionized water frozen overnight (at -20 °C) followed by the addition of 70 litres of pre-

chilled (-1.7 °C) 0.2 µm filtered seawater. The initial addition of fresh water is necessary to ensure 

that the freezing seawater adhered to the base of the tank and didn’t float to the surface by expulsion 

of the hypersaline brine. The filtered seawater layer (36 ppt) was left to freeze for two days followed 

by the removal of excess hypersaline brine resulting in an ice thickness of approximately 70 mm. 

Additional pre-chilled seawater (-1.7 °C, 36 ppt) was then added to achieve a 20 – 30 mm water 

layer above the ice which remained unfrozen at a temperature of approximately -1.8 °C. Images of 

the ice surface before algae inoculation are shown in Figure 3.2a, b. 

The upward directed light source is a Cree Xlamp XP-E High-Efficiency white LED and has a typical 

double bell spectral curve characteristic of white LED light sources (Figure 3.1). It covers the 

Photosyntetically Active Radiation (PAR) (from 400 to 700 nm) range and provides moderate 

intensities in the regions of interest where ice algae show their main absorption peaks (e.g. Fritsen 

et al., 2011). The lighting system was deliberately installed to be consistent with measured under-

ice PAR irradiance intensities. For example, using a Li-COR PAR sensor to measure light flux at the 

ice-water interface of the inverted ice tank, we measured light levels ranging from 31.4 to 58.6 µmol 

photon m-2 s-1 from the dark areas to bright areas. This is comparable to in situ measurements 

beneath Arctic (e.g. Lund-Hansen et al., 2014) or Antarctic sea-ice (e.g. SooHoo et al., 1987). The 

glass sheet between the light source, the ice, and water layers is optically clear allowing 
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transmission of >90% of light and having minimal influence on the optical properties of the 

transmitted light.  

       

Figure 3.1 Illustration of the inverted sea-ice simulation tank and spectral signature of the LED artificial 

light source. The hyperspectral pushbroom scanner was mounted onto a motorized sliding rail at 1.2 m 

distance above the ice/water interface. The layered surfaces (glass, ice, water) cover an area of 0.85 m× 

0.85 m. The distance from the camera fore-optics to the ice layer is 1 m. The illustration is not to scale. 

3.2.2 Ice algae culturing and inoculation 
 

Algal cultures consisting of Fragilariopsis cylindrus, Nitzschia stellata and Navicula glaciei were 

extracted from Antarctic sea ice in 2015, and maintained semi-continuously in L10 media (Guillard 

and Ryther, 1962) under cool white fluorescent light (60 µmol photon m-2 s-1, 12:12 light/dark 

cycle) at 2°C ± 1°C. Each algal species was grown separately in a continuous batch system, bubbled 

with 0.2 um filtered air and amended with L1 nutrients (Guillard and Ryther, 1962). Before 

inoculation, cells were acclimated to -1°C over a 12-hour period to limit any cold induced shock 

from the ice-tank environment. Once ready for inoculation, varying volumes were extracted from 

the parent cultures and added to a set of eight cylinders to spatially distribute algal biomass at 
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increasing concentrations. This provided an increasing scale of biomass abundance intensities 

among the eight cylinders.  

The cylinders were 80 mm in diameter and 50 - 60 mm high and were placed 20 - 30 mm deep in 

the ice layer and left emerging above the water surface layer (Figure 3.2d). Two types of material 

were chosen for the cylinders; opaque PVC tubes and optically clear acrylic tubes. Based on the 

expected concentrations, the biomass abundance intensities inoculated in the eight cylinders were 

denominated as follows: two empty controls (C1 and C2) in PVC and acrylic, respectively; a Very 

Low (VL) in PVC; a Low (L) in acrylic; a Medium (M) in acrylic; a Medium High (MH) in PVC; a High 

(H) in acrylic; and a Very High (VH) in PVC. Figure 3.2d shows the VH PVC cylinder after inoculation. 

3.2.3 Hyperspectral imaging 
 

A pushbroom SPECIM AISA KESTREL 10 (AK10) hyperspectral line scanner was employed for 

imaging the algal distributions at the ice-water interface (Figure 3.2b and Figure 3.2c). Imaging with 

the pushbroom sensor required a scan to be conducted in a forward motion across the target of 

interest in order to create the image (Figure 3.1). Thus, the AK10 was integrated into a motorized 

slider with precise adjustable speeds for this purpose (Figure 3.2b). The AK10 has a 40 degrees 

Field of View (FOV) and comprises a total of 2048 pixels that can be binned into 1020 to improve 

the Signal to Noise Ratio (SNR) per pixel. The sensor’s spectral range goes from 400 to 1000 nm and 

allows for customized spectral resolution and integration times (frequency) to be set according to 

the survey scenario. The motorized slider was placed 1.2 meter above the ice-water interface (1 

meter considering the camera fore-optics) allowing the camera to achieve a spatial across-track 

resolution of 0.9 mm which covered a scan line width of 728 mm. The imaging frequency was set to 

5 Hz and the sliding rail speed around 8 to 10 mm s-1 providing along-track resolution of 0.8 to 0.9 

mm (thus 0.9 mm square pixels in the composed image). Hereafter, a spatial resolution of 0.9 mm 

will refer to the 0.9 x 0.9 mm squared nature of the image pixel size. We selected the slider speed 

and frequency to maximize the intensity of the acquired signal, or SNR. For this experiment, we 

repeated the scanning process at three different spectral resolutions of 1.7 nm, 3.4 nm and 6.8 nm 

in order to assess the effect of spectral resolution. All three frames were binned to 1020 pixels. The 

hyperspectral imaging was performed in the dark with no influence from any other external light 

source except the tank’s LED light source (Figure 3.2a). HI on the tank was performed three days 

after inoculation of algae. 

3.2.4 Chl-a sampling 
 

In order to provide a semi-quantitative validation of the six cylinders’ chl-a concentrations, the 

cylinders were sampled using a 10 mL lab-pipette by scratching the ice whilst simultaneously 

sucking up any content at the ice-water interface in 5 different 1 cm2 random spots within each 
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cylinder. 1 cm2 sample sub-areas were roughly measured with a mm-scale ruler resting above the 

cylinders while operating the pipette. The 50 mL samples for each cylinder were immediately 

filtered onto Whatman GF/F filters, extracted for 24 h in ethanol, and analyzed for chl-a content 

according to Holm-Hansen and Riemann (1978) using a Turner 10AU fluorometer. 

 

Figure 3.2 a) Image of the inverted sea-ice simulation tank in the dark room setting with all external light 

sources off. b) Image of the inverted ice tank together with the motorized slider and the cylinder’s set-up. 

c) The SPECIM AISA Kestrel 10 hyperspectral imager. d) High (H) algae abundance cylinder after two 

days of algae inoculation. 

3.2.5 Data processing 
 

The images were composed from the acquired line-scans using SPECIM Lumo Recorder software. 

All hyperspectral images were converted to radiance values (W m-2 sr-1 nm-1) per pixel from the raw 

digital numbers (DN) using ENVI software and the provided calibration files. The images are then 

pre-processed using MATLAB. Pre-processing involved selecting a region of interest (ROI) and 

spectral filtering. Selecting an ROI was done manually, and this process discarded the extra imaged 

areas that are not the ice water interface such as the steel borders of the ice tank (Figure 3.2b). Even 

though the images resulted in high SNR by measuring just below the saturation level, we performed 

a Savitzky-Golay filter with a third polynomial order and a filter width of five (Tsai and Philpot, 

1998; Vidal and Amigo, 2012). The filter aimed to smooth out the high-frequency noise whilst 

preserving the relevant spectral features at low intensity wavelengths. In order to capture the 

differences between different algae abundances from light transmitted through the artificial sea ice, 

Principal Component Analysis (PCA) was performed on the three images taken at the three different 

spectral resolutions. The hyperspectral images consist of a three-dimensional (x, y, λ) data cubes 

where x and y represent the spatial dimension and λ the spectral dimension. PCA exploration 
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method was applied in this case to track the most variable features across the spectral dimension 

of the hyperspectral images and to outline relevant spectral bands carrying the relevant information 

on ice-algal biomass (Amigo et al., 2015; Rodarmel and Shan, 2002). 

Transmitted radiance measured with the AK10 was compared to publicly available data from a 

series of Remotely Operated Vehicle (ROV) transects performed in the Arctic by Nicolaus and 

Katlein, (2013) to provide a comparison with spectral data collected under in situ conditions. 

Radiance along these transects, was measured using an ROV instrumented with a TriOS RAMSES 

radiance sensor (of 3 nm spectral resolution). Operating depths ranged from 1 to 8 m, for different 

sea-ice types which varied from snow-free to variable snow cover (from 2 to 10 cm thickness), from 

First Year Ice (FYI) to Multi Year Ice (MYI) (from 0.3 m to 3.8 m thickness). Detailed information 

about each transect can be found in Nicolaus and Katlein, (2013). The ROV data set is available 

online under doi:10.1594/PANGAEA.78671. 

3.3 Results 
 

The arrangement of the algal cylinders in the ice tank is shown in Figure 3.3a as an RGB composite 

image. The figure also displays the ice-algal biomass range from VL to VH as inoculated across the 

cylinders. The results of the PCA for the HI frame taken at 1.7 nm are shown in Figure 3.3b, c, d. The 

first principal component (PC1) accounts for 99.8 % of the spectral variability (Figure 3.3b) and 

represents variations in light intensity across the ice tank. This is confirmed by the loadings of PC1 

that clearly match the spectral intensity of the LED light source (Figure 3.3c and Figure 3.1). The 

light intensity is higher at the centre and decreases towards the edges of the ice tank. This difference 

in light intensity across the tank is mostly attributed to the non-diffuse (directional) light field 

emitted by the light source and the shadow structures in the image caused by the circulation fans 

and the presence of their sustaining structure between the light source and the ice. Another factor 

influencing light intensity variability was the different ice thickness observed from 7-9 cm at the 

centre to 5 cm at the edges (due to physical complications of achieving freezing conditions in those 

locations). PC1 does not contain any information regarding biomass variability but indicatively 

maps the light intensity distribution over the ice surface.  

The second Principal Component (PC2) accounts for 0.09 % of the spectral variation in the 

hyperspectral image but displays a coherent relationship to the algal cylinder densities. High and 

low PC2 intensity areas match with low and high biomass values, respectively. Control cylinders (C1 

and C2) stand out as high intensity areas opposing to H and VH cylinders (Figure 3.3d). Results from 

the chl-a sampling are in agreement with the visual observations for VL (0.036 mg m-2), L (0.164 mg 

m-2), M (0.366 mg m-2), MH (0.636 mg m-2). Chl a sampling in cylinders H (2.712 mg m-2) and VH 

(1.804 mg m-2) did not match with the increasing inoculation scale with H cylinder having a higher 

chl-a concentration than VH. Loadings of PC2 in Figure 3c indicate that low PC2 intensity in Figure 

3d is associated with increasing loading values at the peaks at approximately 450 and 680 nm 
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(Figure 3.3c). These peaks closely match with ice algae absorption bands (Fritsen et al., 2011; 

Legendre and Gosselin, 1991) suggesting a strong association between PC2 and ice-algal biomass. 

Within cylinder patchiness is also observed as darker spots of low PC2 intensity, particularly for 

cylinders MH, H and VH (Figure 3.3d).  

      

Figure 3.3 Results of PCA applied to the 1.7 nm spectral resolution frame of the ice surface. a) RGB 

composite of the hyperspectral image after algae inoculation displaying the performed biomass 

redistribution among cylinders. The RGB composite image is similar to what is observable by the human 

eye or normal imagery. b) First principal component (PC1) representing light intensity variability within 

the image. c) PCA loadings for each of the principal components. Algae absorption bands are clearly 

visible in PC2 at ∼450 and 680 nm. d) Second principal component (PC2) representing algae biomass 

abundance variability. The colour bar is unit-less as representing PC intensities. 

Loadings of PC2 are not purely representative of ice algae. Figure 3.3c shows that PC2 is also 

influenced by another element of variability affecting the spectral range between 500 and 650 nm. 

Opposite to ice algae, loadings on this component are low while algae related loading peaks (450 

and 680 nm) are high. This high contrast can be observed at the edges of the PVC cylinders in Figure 

3.3d thus suggesting that PC2 is influenced by variation caused by such cylinders and therefore 

slightly influencing the rest of the PC2 intensities across the image. This enhances PC2 intensity 

image features such as the shading of the circulation fans and the PVC cylinders themselves (Figure 
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3.3d). Variability on the third principal component was also explored but did not show any relevant 

information. 

The large disagreement between chl-a sampling in cylinder H and VH is attributed to leakage of 

algal-cells from cylinder VH to the surroundings as can be observed in Figure 3.3d at the top left. 

This leakage might have occurred during the hyperspectral image acquisition or later during chl-a 

sampling due to ice melting. Another cause might be the relatively poor efficacy of the chl-a 

sampling method compared to the within-cylinder variability for H and VH observed as dark spots 

spread across the 80 cm2 cylinder area (Figure 3.2c). 

The analysis performed for the three different spectral resolutions (1.7, 3.4, 6.8 nm respectively) 

demonstrates that while a spectral resolution of 3.4 nm is capable of performing the same 

differentiation as 1.7 nm, resolutions of > 6 nm are not able to capture fine scale variability of 

biomass according to this first method exploration (Figure 3.4). This is most likely related to the 

fine range of ice algal spectral absorption features.  

 

Figure 3.4 Principal component 2 (PC2) representing algae biomass variability for different spectral 

resolutions 1.7 nm a), 3.4 nm b), 6.8 nm c), respectively. The difference in biomass PC2 loadings between 

1.7 and 3.4 nm is minimal. The figure outlines the working spectral resolution range for hyperspectral 

imaging aimed to capture algae biomass abundance. The test suggests that sensors with spectral resolution 

above 6.8 nm cannot be used for the purpose and for example discards the use of snapshot hyperspectral 

sensors compared to pushbroom scanners. The colour bar is omitted. 
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The AK10 measured radiance per pixel across the tank. It is observed that radiance intensities 

measured in the tank are in the same spectral radiance range compared to the measurements by 

Nicolaus and Katlein (2013) across different types of sea ice conditions and ROV depths (Figure 

3.5). The ROV transects numbers are chosen as indexed in the original dataset (Nicolaus and 

Katlein,2013). 

3.4 Discussion 
 

In this study, we present the first results of a laboratory experiment employing an HI camera for 

differentiating ice algae biomass distribution at the ice-water interface. Employing a sliding 

pushbroom hyperspectral sensor over an inverted sea-ice tank allows to test the ability of 

hyperspectral imaging for capturing the detailed spatial distribution of sea-ice algae and test a range 

of hyperspectral sensor configurations, such as spectral resolution and integration time. 

Sea ice is a three phase medium (principally consisting of ice, brine and air bubbles) with high 

scattering properties and contains optically active substances in the PAR range such as Colored 

Dissolved Organic Matter (CDOM) but in particular microalgae (Grenfell et al., 2006; Perovich, 1996; 

Xie et al., 2014). Light reaching the ice sub-surface can be reduced to less than 1% of the incoming 

solar radiation depending on surface and ice properties (e.g. due to snow, presence of melt-ponds, 

ice thickness, ice structure, etc.) resulting in very low under-ice light levels (Petrich et al., 2012). Sea 

ice also affects the geometric proprieties of the light field exiting the medium due to its lamellar 

structure funneling light in a downward direction and generating a forward peaked light field 

(Katlein et al., 2014). 

We have presented a proof of concept study conducted under controlled laboratory conditions to 

test HI technology as a new remote sensing technique to map ice algal distribution at the bottom of 

the sea ice. The hyperspectral frames acquired with a 0.9 mm square pixel spatial resolution and 

spectral resolutions of 1.7 nm and 3.4 nm were able to provide spectral differentiation between 

different algal concentrations at the ice-water interface in our experimental set-up. The results were 

validated by the pre-determined cylinder inoculation scale and chl-a sampling within the cylinders. 

It is noted that our chl-a measurements do not provide an exact determination of chl-a within the 

cylinders but serves as a semi-quantitative measure of the algal biomass to allow for between 

cylinder comparison. 

Spectral resolutions > 6 nm were not able to provide such discrimination due to the finer spectral 

scale of algae absorption features compared to the coarser transmitted light curve measured. This 

result has further importance in selecting appropriate sensors for this detection of ice algae. For 

example, snapshot hyperspectral sensors are easier to use (more portable and not constantly 

requiring six orientation parameters) than pushbroom sensors which require constant and 

accurate forward motion and are sensitive to drift. However, to attain adequate SNR, and due to the 

finite number of pixels on a focal plane array, snapshot HI sensors necessarily make a trade-off in 
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the resolution of the various dimensions of data of the hypercube sacrificing either spatial or 

spectral resolution. Considering the low-light of the under-ice environment, the high micro-scale 

spatial variability of ice algae and its fine-scale spectral features, snapshot HI would be very limited 

in this type of application. 

3.4.1 Comparison of the experimental set-up with an in situ scenario 
 

It might be argued that light intensity measured in the ice tank is different from the typically low 

intensity transmitted solar radiation found under sea ice. Thus, the capability of a HI sensor to 

perform in low light conditions in a dynamic setting would be put into question. The effect of 

increasing distances from the sensor to the sea-ice bottom (water-column thickness) would further 

accentuate this issue. Our study compared measured radiance intensity levels with the AK10 to 

multiple in situ situations showing consistent light levels even for the worst-case scenarios around 

algae absorption bands (690 nm) (Figure 3.5). Additionally, the measurements maximized the SNR 

by reaching near saturation light levels. We expect that with the same settings, lower light levels 

would affect SNR but would still yield accurate information on algae spatial distribution. 

The different spectral signature of the LED light source compared to sunlight radiation is not 

expected to influence PCA results in an in situ scenario. The spectral bands representing algae 

variability are quite narrow (as seen in PC2 loadings in Figure 3.3c), and PCA was capable of 

decomposing between the spectral composition of the light source (with variability due to changes 

in overall intensity, as PC1) and algae related absorption bands (as PC2). Lange et al., (2016) 

observed a similar behavior in situ when employing Empirical Orthogonal Functions (EOFs) 

(analogous to PCA) outlining how secondary modes (or PCs) are free of the dominant signal spectral 

variability and better represent chl-a absorption. 

A similar ice structure to that found in the field, with lamellar ice crystals, brine and air pockets, was 

also observed within the ice tank (using macro photography). This caused the light to be in a diffuse 

and scattered form similar to in situ observations (Petrich et al., 2012). The spatial variability of 

light intensity caused by the lamp and variations in the ice thickness is not considered 

disadvantageous. Snow is the most common and greatest attenuator of light in the snow – sea-ice 

layered matrix and produces a similar effect creating high variability in light intensities within very 

short distances (e.g. Nicolaus et al., 2013). Indeed, our experimental results suggest the method’s 

indifference to light intensity variability (e.g. induced by spatially variable snow and ice thickness). 

This observation would need to be further investigated for a real sea-ice sampling scenario that 

comprises additional optically active elements. However, our results outline the potential of the 

technique to focus only on relevant spectral features associated to sea-ice algae presence and 

biomass variability. From an optical HI perspective, the experimental set-up therefore properly 

represented the four components of the layered structure of real sea ice (air, ice, water, algae). 
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Whether it will be possible to control and mimic natural ice features including the skeletal layer, 

and quantify columnar ice growth, are considerations for future experiments.  

            

Figure 3.5 Comparison of radiance levels measured in the inverted ice tank with a series of Arctic under-

ice radiance transects measured in situ with a Remotely Operated Vehicle (ROV) for different sea-ice 

conditions. The ice tank radiance is obtained from the hyperspectral frames. Mean ICE TANK is the mean 

between all pixels in the frame whereas Min ICE TANK is the pixel with minimum intensity (taken in a 

non-shadowed area). ROV transects data are publicly available from the study performed by Nicolaus and 

Katlein (2013) in Arctic sea ice. Sea-ice conditions varied from snow to no snow cover (from 2 to 10 cm 

thickness), from First Year Ice (FYI) to Multi Year Ice (MYI) (from 0.3 to 3.8 m thickness) and ROV 

water depth varied from 1 to 8 m. 

 

Ice algae were inoculated 3 days prior to the imaging in the ice tank and resided at the ice-water 

interface only (approximately 5 mm deep in the ice structure). While measured chl-a concentrations 

are proportional to in situ observations both in the Arctic (Arrigo et al., 2010) and the Antarctic 

(Meiners et al., 2012), depending on the region, in situ ice algae concentrations might be vertically 

variable (Arrigo, 2014; Meiners et al., 2012). Notwithstanding, higher concentrations of sea -ice 

algae are most frequently found in the bottom <10 cm of the ice, and can also be found exclusively 

attached at the ice water-interface (Arrigo, 2014; Lund-Hansen et al., 2016). Another consideration 

in interpreting the spectral data is the physiological status of the algal cultures. All three cultures 

were in an exponential growth phase prior to inoculation and acclimated to 60 µmol photon m-2 s-

1, which was a comparable irradiance to that provided by the ice tank. In natural conditions, sea-ice 

algae can be exposed to different levels of irradiance and can respond physiologically to these 

changes. For example, shade-adaptation requires that intracellular chlorophyll a is upregulated to 
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maximise the capacity for growth and different compounds of accessory pigments can be produced 

under different irradiance conditions (Fritsen et al., 2011; SooHoo et al., 1987). In an in situ scenario, 

this and other biological components of the within-ice community (dead algae cells, and 

detritus) are likely to influence the spectral signatures observed with HI sensors by slightly shifting 

the spectral bands better representing algae variability in PCA analysis. 

3.4.2 A new type of vision under the ice: possibilities, limitations and future 

work 
 

The main advantage of the proposed application of HI is the ability to capture light at high spectral 

and spatial resolutions (in this case mm scales) in a non-invasive manner with great potential for 

studies aimed at investigating ice-algal spatial distribution, variability and environmental controls 

(Campbell et al., 2015; Lange et al., 2016b; Lund-Hansen et al., 2016). Studies employing 

hyperspectral imaging for different types of underwater biomes have been performed on 

mycrophytobenthos (Chennu et al., 2013) and coral reef biota (Caras and Karnieli, 2015). 

By establishing local in situ correlations between chl-a and spectral indices such as NDIs 

(Melbourne-Thomas et al., 2015) or EOFs (Lange et al., 2016b) the hyperspectral image processing 

workflow can then be theoretically extended to regression analysis and quantification of chl-a per 

pixel unit. Planned future work will investigate the possibility of applying different statistical 

approaches to the acquired imagery.  

In the present tests, HI frames captured radiance at mm resolution but biomass differences were 

only validated among the cylinders. Variability in PC2 intensity was observed across the rest of the 

entire ice tank (outside of the cylinders) probably due to the random inoculation. Nevertheless, we 

can’t prove that these fine-scale intensity variations are associated to fine-scale (sub-millimetre) 

patterns in algal spatial distribution. Even though we visually observed a leakage pattern in PC2 at 

sub-millimetre resolution from a cylinder (Figure 3.3d), at this stage we are not able to 

quantitatively validate this due to the difficulty of sampling chl-a at such small scales.  

Different scanning distances from the ice surface can yield different HI spatial resolutions ranging 

from sub-millimetre to the meter scale. Employing the sensor at increased distances from the ice 

sub-surface would allow to scan and map higher spatial extents at the cost of spatial resolution. 

However, influences caused by the anisotropic properties of the under-ice light field need to be 

carefully taken into consideration when measuring radiance from multiple angular directions such 

as the ones obtained from a large FOV HI sensor (Katlein et al., 2016, 2014). Water column 

correction would also need to be considered and corrected for, if greater surveying depths are to be 

considered (Johnsen et al., 2013). 

The use of close-range hyperspectral imaging is an emerging area of study with technical challenges 

to overcome for marine applications. In the marine environment, technical challenges are often 
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accentuated for spectral analysis and sensor deployment. In the under-ice environment, we are 

faced with further limitations such as selecting an appropriate material for the camera housing that 

maintains its optical integrity and can operate under very low temperatures. To the authors 

knowledge, only a few published studies are currently available on deploying hyperspectral imaging 

cameras under water, but the technology certainly presents great potential from a marine remote 

sensing perspective (Chennu et al., 2013; Johnsen et al., 2013).    

HI systems could theoretically be deployed on Autonomous Underwater Vehicles (AUVs) or 

Remotely Operated Vehicles (ROVs) (Johnsen et al., 2013). In the present test, we employed a stable 

and relatively accurate motorized slider moving at slow speeds (8 to 10 mm s-1) and relatively low 

frequency (5 Hz). Much more investigation is required for assessing HI systems performance on an 

underwater vehicle of any kind. 
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Chapter 4 

An under-ice hyperspectral and RGB imaging system to capture 

fine-scale biophysical properties of sea ice 

 

4.1 Introduction 
 

Sea-ice biophysical properties play a central role in controlling primary production and ecosystem 

function within the polar oceans (Arrigo, 2017; Kohlbach et al., 2018; Leeuwe et al., 2018). Primary 

physical properties of the sea-ice environment include snow depth, ice thickness, sea-ice 

texture/structure, and under-ice topography. Biological properties often refer to ice algal biomass 

and include ice algal community composition and physiological condition. Ice algal biomass is 

strongly dependent on sea-ice physical properties, and both show variability at multiple spatial and 

temporal scales (Cimoli et al., 2017c or Chapter 2; Lange et al., 2016a; Miller et al., 2015).  

Ice algal biomass has been observed to display patchiness ranging from the mesoscale to the 

millimetre-scale and can undergo changes on a daily, weekly and monthly basis (Cimoli et al., 2017c 

or Chapter 2; Lange et al., 2017; Meiners et al., 2017). The spatio-temporal variability of ice 

biological properties is determined by some of the sea ice physical properties such as snow depth 

and ice thickness, governing light availability for the organisms. In addition, ice algal biomass has 

been linked to sea-ice structure, under-ice roughness and their complex interplay with the 

biogeochemical properties of the water column controlled by currents and boundary layer 

exchange processes (Fernández-Méndez et al., 2018; Krembs et al., 2002; Lund-Hansen et al., 2016; 

Monti et al., 1996; Ryan et al., 2006).  

A standard proxy for algal biomass in land-fast sea-ice is bottom chlorophyll-a (chl-a) (mg m-2). 

This has traditionally been derived from melted ice core bottom sections. Typically bottom ice is 

sampled in 0.03 to 0.1 m long sections, i.e. where most of the biomass is typically found (Meiners et 

al., 2018). Capturing and quantifying variability in algal biomass together with some of its 

associated physical drivers over the full range of spatial scales, is extremely challenging.  Data for 

both polar oceans remain sparse in space and time (Leu et al., 2015; Meiners et al., 2018, 2012). 

Challenges are in part attributed to the difficulties in conducting fieldwork in polar regions, but also 

to the spatially limited and invasive nature of traditional point sampling methods such as ice coring. 

Due to ice algae residing on the underside of sea ice, satellite or airborne remote sensing techniques 

cannot be used, thereby limiting data collection to field sampling. This has had implications on our 
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capability to properly estimate polar marine primary production, to identify complex under-ice 

food web dynamics, and assess sea-ice ecosystem responses to environmental change (Leu et al., 

2015; Miller et al., 2015). 

In response to this limitation in sampling methods, under-ice bio-optical methods have emerged as 

a non-invasive alternative to capture ice algal biomass variability at different spatial scales. These 

methods are based on the formulation of relationships between spectral radiance or irradiance 

measurements in the Photosynthetically Active Radiation (PAR, from 400 to 700 nm) range from 

underneath the ice, and the amount of integrated ice-core chl-a (e.g., see Mundy et al., (2007) or 

Cimoli et al., (2017c) or Chapter 2 for a thorough review). Upward looking hyperspectral 

radiometers mounted on L-shaped deployment arms (or L-arms) have provided means to produce 

spectra-chl-a relationships by sampling over different spots within an area or non-invasive 

monitoring of change through time (Campbell et al., 2014; Melbourne-Thomas et al., 2015; Mundy 

et al., 2007). Derived bio-optical relationships can then be applied to datasets obtained from 

mapping platforms such as Remotely Operated Vehicles (ROVs) (Lund-Hansen et al., 2018; Meiners 

et al., 2017) or instrumented under-ice trawls (Lange et al., 2017; van Franeker et al., 2009). ROVs 

permit to sample at the floe-scale area of hundreds of square meters while under-ice trawls are able 

to cover transects up to 2 kilometers in length (Lange et al., 2016a). While these approaches have 

pushed the spatial boundaries of the surveying, their ability to capture the fine-scale variability of 

sea bio-physical properties remains limited due to their point sampling nature (Forrest et al., 2019). 

Wide solid angles or cosine corrected sensors necessarily integrate over wide surface footprints, 

particularly when vehicle movements exceed sensor integration times. Large footprints also hinder 

the effective coupling with the high spatial resolutions achieved by acoustic methods to capture 

under-ice topography (Lucieer et al., 2016), or with photogrammetric methods to capture fine-scale 

snow depth variability, and sea-ice surface properties (Cimoli et al., 2017b or Chapter ; Irvine-Fynn 

et al., 2014; Li et al., 2019). Importantly, the obtained resolutions are not always compatible with 

some of the scales of spatial variability observed for under-ice habitats. 

Hyperspectral imaging (HI) has been experimentally tested and proposed as an additional method 

to look at under-ice biomass variability from cm to sub-mm pixel scales over square-meter areas 

(Cimoli et al., 2017a). Preliminary results suggest that there is potential for HI to be extended to 

survey tenths of meters transects swaths although until now no in situ application has been trialed. 

From a biogeoscience perspective, HI aims to identify, quantify (measure) and map - chemical, 

physical, and biological properties - in each of the highly spectrally resolved pixels of the target 

image. As the technology becomes more portable and accessible, it has found a wide range of 

applications. A relevant analogous example is HI cameras equipped onto Unmanned Aerial Systems 

(UAS) which are filling an essential gap between classical ground, full-size aircraft, and satellite 

sensing systems allowing more mapping at increased resolutions with ease of repeatability (Aasen 

et al., 2018; Adão et al., 2017; Jaud et al., 2018; Lucieer et al., 2014).  
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Underwater applications of HI are still in a development phase but are presenting opportunities to 

monitor and map shallow benthic habitats (Chennu et al., 2017; Mogstad et al., 2019) and intertidal 

microphytobenthic environments (Chennu et al., 2013). HI cameras have also been mounted onto 

deep-sea ROVs  and shown to be a useful taxonomic tool for macrofauna (Dumke et al., 2018b) 

and mapping of manganese nodules (Dumke et al., 2018a).  

Using HI to investigate processes at the sea ice-water interface presents a new level of technical and 

logistical challenges. The low temperatures and the difficulty of deploying instruments (and divers) 

under polar sea-ice are the most obvious. Measuring transmitted light rather than reflected light, 

however, poses the most constraints. Also, pushbroom HI sensors need to be carefully configured 

so that the integration time and imaging frequency match the required spatial resolution (Aasen et 

al., 2018). Acquired images then typically require a series of radiometric and geometric corrections 

which are far from trivial for dynamic under-water platforms. Challenges are accentuated in an 

environment where low, yet variable, downwelling transmitted light availability pushes sensors to 

their limits. The translucent nature of sea ice would also render the utilization of active light sources, 

commonly employed in underwater HI applications, a highly arguable approach. The under-ice 

realm can be a highly dynamic environment, and where the utilization of common geo-positioning 

and communication methods employed in typical aerial HI surveys is much more challenging due 

to the ice cover and viewing geometry (Aasen et al., 2018; Yeh and Tsai, 2015). 

This study aims to develop and test the feasibility of the first version of an under-ice sliding 

hyperspectral imaging (HI) system developed to produce in situ transects several meters long at 

sub-millimeter spatial resolution. Along with the HI camera, a professional consumer-grade RGB 

camera was included in the payload for Structure from Motion (SfM) digital photogrammetry. SfM 

digital photogrammetry has revolutionized surface topographic mapping by providing a relatively 

low-cost solution that can provide accurate, high-resolution 3D structures of surfaces of interest 

through a set of highly overlapping pictures. Particularly relevant is the example of consumer-grade 

cameras being equipped on UAS to considerably increase the spatial extent of these surveys. For 

underwater applications, the methodology presents additional challenges which are still subject of 

research, but present an equal amount of opportunities (Friedman et al., 2012; Maas, 2015; 

McCarthy and Benjamin, 2014; Raoult et al., 2016). Under-ice, few studies have presented the 

potential of orthomosaic composition from RGB imagery retrieved from underwater vehicles (e.g., 

(Johnsen et al., 2018)), although SfM potential to generate quantitative topography has not been 

explored before. 

Our HI system was tested between November-December 2018 under land fast-sea ice off Cape 

Evans, Antarctica. The relatively smooth and accessible under-ice surface of land-fast sea ice makes 

it an appealing first target for testing the technology. The site allows deployment the system which 

can slide at a fixed distance underneath the ice. Fast ice also hosts some of the most productive (per 

volume) microalgal habitats in marine systems (Arrigo, 2017; Arrigo et al., 2014), making it a highly 

relevant first test target. To the author's knowledge, no published study has applied HI or 
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photogrammetry to the under-ice environment before, nor have HI technologies been tested in 

polar ice-covered marine waters. 

Overall our study has the following four objectives:  

1) To develop and present a novel system capable of capturing fine-scale under-ice biophysical 

properties based on underwater HI and RGB imagery and photogrammetry.  

2) To illustrate the logistical and technical approaches taken for this first in situ trial. 

3) To provide a sample of the primary data outputs of the system and an exploration of the potential 

data processing workflows aimed to estimate biomass variability and under-ice 3D structure. 

4) To present an outlook for the potential of the method, address future system development needs 

and highlight the method caveats that require further research. 

4.2 Materials and procedures 
 

4.2.1 System design considerations 
 

A detailed discussion on the theoretical principles for underwater HI applications can be found in 

(Johnsen et al., 2013) and an extension of such theory from an under-ice perspective can be found 

in (Cimoli et al., 2017c or Chapter 2). Here we only discuss the aspects that have driven the design 

of the under-ice system.  

Depending on the camera settings and the desired aims, HI sensors can capture features at different 

scales ranging from millimeter close-range imagery to continuous swaths of data at the mesoscale. 

The mapping scale is determined by the sensor distance from the target and the mounting platform. 

Hyperspectral images require to be orthorectified to enable extraction of meaningful and accurate 

metric information of the feature of interest (e.g., distances, shapes, and areas). This is ultimately 

necessary to compute the biochemical properties of the target (Aasen et al., 2018), and to allow for 

accurate repeat surveys and co-registration with other datasets. 

The modality in which the frame is acquired can be in either push-broom or as 2D snap-shot 

imagers. Pushbroom HI line scanners are optimal when it comes to cover large surfaces under 

dynamic conditions as spectral and spatial information are acquired at the same instance. 

Pushbroom HI also comes at the best compromise with respect to fundamental sensor properties 

such as image quality, sensitivity, spectral coverage and spectral, spatial and radiometric 

resolutions (Aasen et al., 2018; Huang et al., 2014). However, in order to compose a rectified 

pushbroom orthoimage, sensors are required to be moving relative to the imaged surface at 

precisely matched speeds, imaging frequencies (or frame rates), all whilst acquiring a highly stable 

attitude (pitch, roll, and heading) and distance from the target (Aasen et al., 2018; Ramirez-Paredes 
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et al., 2016; Yeh and Tsai, 2015). Consequently, pushbroom HI is particularly sensitive when 

integrated onto dynamic platforms surveying under real environmental conditions and requires the 

full set of six-position (X, Y, Z) and orientation (pitch, roll and heading) parameters (pose) assigned 

for every scan-line. An additional suite of sensors is therefore required to be integrated, and/or 

additional data products need to be included post-processing for robust HI geometric correction. 

These include highly precise Global Navigation Satellite Systems (GNSS) / Inertial Measurements 

Units (IMUs), Digital Elevation Models (DEMs) and orthomosaics of the imaged surface and/or a 

series of Ground Control Points (GCPs) (Aasen et al., 2018). 

Considering that light levels beneath sea-ice are typically very low, ranging from 0.1 to 10% of the 

incoming solar radiation, HI scans are forced to move at reasonably low speeds so that the Signal to 

Noise Ratio (SNR) is maximized, requiring integration times and imaging frequency to be optimized 

(resulting in relatively long integration times and slow imaging frequency required for low-light 

levels). This makes HI imaging of transmitted under-ice radiance challenging for dynamic 

underwater conditions and future deployment onto platforms (e.g., ROVs) that are susceptible to 

continuous buoyancy, speed, drag, and currents adjustments. Also, under-ice navigation and 

positioning is far from trivial and/or comes at high costs.  

The developed approach here aims instead to scan relatively smooth under-ice surfaces by sliding 

or “skiing” at a predefined fixed distance from the ice at precisely controllable speeds (Figure 4.1).  

This enables the scanning movement to remain considerably stable, reducing some of the 

requirements aforementioned. The transect is prepared to be a pre-defined straight-line between 

10 to 40 meters in length, limited in this prototype by the length of tether (Figure 4.2). Ideally, the 

set-up is expected to permit stable scanning speeds matched to the low-light levels experienced and 

the need of pushbroom HI orthorectification suppressed (or minimized). To achieve a steady, slow, 

and controllable movement, two WG1500 manual worm gear winches (Dutton Lainson, NE, USA) 

were established at each end-point of the surveyed transects (Figure 4.2). Stainless steel wires are 

attached from each winch to the respective end of the aluminum frame legs of the payload rig, which 

allowed the system to precisely slide back and forth through controlled winch rotations (Figure 

4.2).   

Such a sliding concept is only possible on under-ice surfaces which are relatively flat - a common 

feature of land-fast sea ice in both the Arctic (Lund-Hansen et al., 2018, 2014) and in Antarctica 

(Wongpan et al., 2018). Fast-ice not only is a relevant target for first tests of the technology but also 

provides a relatively simpler optical set-up where algae are mostly residing at the bottom of the ice 

– at least during spring (Meiners et al., 2018). Under rougher under-ice surfaces (e.g., pack ice, 

platelet ice, ice fissures and cracks caused by pressure ridges or medium to large brinicles) the 

scanning advancement of the system could result impeded with such a skies-based concept. 

Figure 4.3 displays the core components of the internal payload that were fitted in the system 

enclosure. An overview of all sensors, equipment specifications, and their purpose for this first test 

can be found in Table 4.1.  

https://www.dutton-lainson.com/proddetail.php?prod=10950
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Figure 4.1 Concept design of the under-ice hyperspectral and RGB imaging system to capture fine-scale 

biophysical properties of sea ice. The system is designed to retrieve bio-optical relationship from 

downwelling sea-ice transmitted radiance. The sliding system aims to smoothly scan transects tenths of 

meters. It has a variable ski span of 0.82 to 1.2 m, a ski length of 1.48 m and a height of approximately 2 

m. Its modular buoyancy system allows adjustment of the upward push against the ice and stabilizes the 

structure under different payload set-ups. The figure also shows the payload attitude reference system 

relative to the sensors orientation (heading, roll, and pitch). HI refers to Hyperspectral Imaging and FOV 

to Field of View. 

 

To select an appropriate distance between the imaging sensors and the ice, we considered the trade-

off between HI and RGB imaging specifications together with a series of environmental and 

logistical constraints (see Cimoli et al., (2017c) or Chapter 2 for a trade-offs overview). For example, 

spatial resolution and image footprint are inversely correlated since increased distances from the 

ice yields a larger footprint at the cost of pixel size. Increasing the distance from the ice also enlarges 
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the Depth of Field (DOF), which is an important factor to consider for close-range optical HI and 

RGB imaging applications. The DOF should be large enough to cover at least the sea-ice skeletal layer 

where most of the algal biomass is concentrated. Nonetheless, while gaining distance from the ice 

seems appealing to increase survey area, it increases logistical and technical problems which are 

relevant to the deployment of a large sliding platform beneath thick ice cover. Such problematics 

add up to the known effects of the water column on measured light intensity and spectral 

composition in the visible range (Morel and Maritorena, 2001). Overall, the increased costs of 

deploying optical sensors underwater need to be considered together with the additional challenges 

of geometric and chromatic correction of underwater images associated to the diverse refractive 

indices across the seawater-glass-air interface (Bryson et al., 2012; Menna et al., 2016; Telem and 

Filin, 2010). Such aberrations are not trivial to correct and depend on multiple factors such as the 

sensors optical parameters and settings, deployment mode (e.g., distance from the ice and FOV 

inclinations), water optical properties and the underwater housing lens design (e.g., flat vs dome) 

and material (e.g., thickness of the acrylic window). 

 

Figure 4.2 Field deployment and operation concept for the under-ice hyperspectral imaging and RGB 

scanning system. Two worm gear winches provide highly controllable slow movement back and forth 

along predefined transect. Movement commands are provided via radio communication and manual 

winching. The support remotely operated vehicle (ROV) is used to establish a tow-line between the 

deployment hole and the opposite transect endpoint. The deployment and operation require at least three 

people. Figure is not to scale. 
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For this prototype test, we found that an enclosure with a flat-port fitted with sensors separated 

approximately one meter from the ice would be a good compromise considering our equipment, 

deployment capabilities and the spatial variability of the target (sea-ice algae) that we were 

surveying (Figure 4.3). The custom-built and low-cost aluminum frame that set the distance from 

the sensor to the ice was approximately 1.20 ± 0.10 m in length (variable by changing the angle of 

the legs and steel clamps position). It also allowed the legs to be modified to any desired length if 

required (Figure 4.1 and Figure 4.2). The span between the 1.48-m-long skies ranged from 0.82 to 

1.2 meters. It was confirmed that no components of the frame or skis interfered with the sensors 

FOVs and that FOVs of both sensors largely overlapped for coherent HI and 3D data interpretation. 

Since the system travels at a fixed distance from the target, the horizontal and vertical footprint of 

the sensors can be estimated for the entire transect using standard imaging formulas (e.g., see 

Appendix B in Cimoli et al., 2017b). Nonetheless, a flat-port causes magnification of images due to 

the multiple refractions at the air-acrylic-water interfaces, thus reducing the apparent FOV (Menna 

et al., 2016). The amount of magnification is generally ≤ 1.33 and can be theoretically obtained 

using Snell's law. However, such calculations are not straightforward and require a series of sensor 

optical parameters and sensor specifications, not always easily retrievable. Some include entrance 

pupil distance relative to the port and imaging object, underwater focus distance and port thickness, 

among others. To precisely calculate the sensor footprint on the ice, a simpler way is to image 

objects of known length from which we can retrieve pixel size and derive horizontal and vertical 

footprint thereafter. 

Finally, it is important to consider that miniaturization of remote sensing payloads is always 

preferable but is inevitably associated with increased cost and/or complexity (Aasen et al., 2018; 

Adão et al., 2017). We must then consider logistical and technical constraints as significant factors 

that could impede the deployment of a cost-effective solution. It was also preferable to use 

commercially available and off-the-shelf components when possible, to foster ease of replicability. 

For example, it was considered mandatory for the system to be surface powered and to be able to 

stream data to operator and change sensors acquisition parameters based on observed 

circumstances in real-time. The latter is not straightforward, considering a large amount of data is 

generated over the multiple high-frequency imaging processes. Costly underwater fiber optic 

connectors and tethers were avoided by allocating an internal Digital Processing Unit (DPU) within 

the enclosure, which directly interfaced with the multiple sensors and allowed for on-board data 

storage (Figure 4.3). Power and communication with the surface were enabled through an 

Ethernet/power cable permitting for Virtual Network Computing (VNC). Altogether, these design 

features come at the cost of payload volume, and the entire payload was fitted into a cylindrical 

enclosure with an internal diameter of 0.23 m and a length of 0.6 m (Figure 4.3).  

The overall height of the system (including the frame legs and skis - Figure 4.1) was approximately 

2 m which required a well-regulated buoyancy to keep the system vertical and pushing against the 

ice with moderate upward pressure to allow for smooth scanning. This was achieved through 

https://www.camerasunderwater.co.uk/index.php?option=com_content&view=article&id=653&Itemid=706
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modular buoyancy and ballast units that regulated the system’s vertical buoyancy and stability 

based on local conditions as displayed in Figure 4.1.  

            

Figure 4.3 An overview of the payload main internal components, their allocation within the enclosure 

and volume required to host the payload. AK10 stands for AISA Kestrel 10. The figure also includes the 

payload attitude reference system relative to the sensors orientation (heading, roll and pitch). 

One benefit of the system’s frame size is that it allows the incorporation of external sensors in the 

future. For example, for our first tests, we included a upward-looking TriOS Ramses ACC-VIS 

spectrally resolved irradiance sensor near the ice-water interface to measure light directly exiting 

the sea-ice matrix (seen in Figure 4.2 and specified in Table 4.1). 

4.2.2 Technical design and specifications 
 

The core equipment of the developed system is summarized in Table 4.1 and consisted of an AISA 

Kestrel 10 pushbroom HI camera (AK10) (Specim Spectral Imaging Ltd., Oulu, Finland), a DPU 

(Specim Spectral Imaging Ltd., Oulu, Finland) and a Sony a6300 mirrorless digital camera together 

with a Samyang 35 mm prime lens. Accessories include a Low-Light HD USB camera (Blue Robotics 
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Inc., California, USA) a VN-100 Inertial Measurement Unit (IMU) (VectorNav Technologies, LLC, 

Dallas, USA) and a Garmin 18x LVC GPS (Garmin, USA). In our independent external payload, we 

included a TriOS Ramses ACC hyperspectral cosine corrected spectroradiometer (TriOS Mess- und 

Datentechnik GmbH, Rastede, Germany) and a set of four daisy-chained Subsea Lumen Lights (Blue 

Robotics Inc., California, USA). 

Figure 4.4 illustrates the power supply and data transmission paths from the surface elements to 

the enclosure interior and the external payloads. The internal payload is fitted inside an off-the-

shelf black anodized cylindrical aluminum enclosure manufactured by PREVCO (PREVCO Subsea, 

Fountain Hills, USA) that seals via two nitrile O-rings for each end plate and is rated to a depth of 

100 m (Figure 4.3). The end-cap is fitted with a single underwater connector and a pressure 

release/vacuum hole. The connector used for external communication and power supply with the 

surface was a 13-contacts circular SubConn power/Ethernet. 

 

      

Figure 4.4 Schematics of the electronic power and communication streams for the internal and the 

additional external under-ice payloads. 

All components of the payload were mounted around a custom-made vertical aluminum tray (20.32 

by 60.96 cm) that hangs from the enclosure end cap for full swift removal and insertion of the 



95 | P a g e  

 

payload (Figure 4.3 and Figure 4.5a). The umbilical used is a 13 contacts SubConn power/ethernet 

(Type: D-P-P4TP24#/4C18#, 50 m long) and is received on the surface by another Circular 13 

contacts connector. Data and power streams were then divided within the enclosure and above the 

surface from the connectors by unregulated breakout PCBs (Figure 4.4). The Ethernet stream within 

the enclosure connects directly to the DPU, allowing for VNC from the above surface PC. In our set-

up, we used the freely available TightVNC software (https://www.tightvnc.com/) for this purpose. 

Most sensors were interfaced and powered through the DPU using their respective data/power 

cables, as shown in Figure 4.4 and operated through their own software. Only the Sony a6300 was 

powered using a different route. The power stream within the enclosure went through a power 

regulator PCB that fed the DPU directly and the Sony a6300 camera via Tether Tools Case Relay 

(Tether Tools, Phoenix, USA), and a Relay camera coupler for the Sony a6300. 

An alternative low-cost solution was designed to synchronize and time stamp pushbroom frames 

with attitude (roll, pitch, and heading) data from the IMU. The IMU PCB in Figure 4.4 collected NMEA 

strings from the GPS and sent them through USB serial connection to the DPU for local time 

synchronization. The VN-100 IMU uses a 1 PPS sync input from the GPS as a trigger and reference 

to start its internal timer and to synchronize it to the GPS clock. This means that for each packet of 

data that the IMU outputs, it stamps the packet with an accurate GPS timestamp. Within the DPU 

the data is recorded using a Python script (run through Eclipse IDE and PyDev). The script takes the 

IMU packet producing a file with the IMU data (heading, pitch, and roll) and the NMEA string 

(position and GPS time) from the GPS and then correlates the IMU’s internal “stopwatch time” to 

GPS time. The script also adds local PC time for reference with other sensors. GPS lock was 

performed before deployment (above the surface). Once underwater, the Garmin 18x LVC  

transmitted NMEA and 1PPS signals even when it could not see satellites. The NMEA times 

continued to update, but according to the internal real-time clock on the GPS. This, however, means 

that a short drift may happen in the GPS clock reference time over long iterations.  

The AK10, DPU, IMU, and GPS together have a power consumption of <42 W. The Sony a6300 power 

consumption was estimated to be <7.5 W. The Low-Light USB camera was only used as additional 

visual support and was run through iSPY open-source software (https://www.ispyconnect.com/) 

for live-stream footage and video recording and had a power consumption of < 1 W. The total power 

requirement of the internal payload is estimated to be <50 W which can be easily powered by 

conventional generators. The total VNC data rate oscillates well below 1 Gbit/s (up to 75 m) 

supported by the SubConn cable, which leaves enough space for additional sensor streaming and 

data transfer. 

The external payload components were operated separately using their respective cables by 

standard means. The TriOS Ramses ACC VIS was set-up with a connecting cable (50 m) and a TriOS 

PS101 power supply operated through the TriOS MSDA_XE software. The four Lumen Lights LEDs 

location were powered and dimmed through their separate 50 m lumen cables. 
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Table 4.1 Summary of all optical sensors utilized in the internal and external components of the developed 

system together with their specifications (top part). The table also includes specifications of other 

components required to run the system (bottom part). FOVh and FOVv stand for the vertical and 

horizontal field of view. Underwater FOV is only an ≤ estimate  approximation based on simplified 

theoretical formulas. FWHM refers to Full Width to Half Maximun 

Sensor Fore-optics/lens 
Field of View 

(FOVh/FOVv) 

Number of 

spatial pixels  

Spectral 

range 

Spectral resolution and 

FWHM 

Specim AISA 

Kestrel 10 

pushbroom sensor 

aperture: F/2.4 
40°/0.0388° 

in air 
2048x1 or 

1024x1 

(binned) 

400-1000 nm 
1.75 / 3.5 / 7 nm/pixel  

(depending on binning) 

focal length: 35.375 
∼29.88°/0.029° 

underwater 

Sony a6300 

with Samyang AF 

35 mm FE 

 

max aperture F/2.8 37.2°/25.12° in air 

6000x4000 Visible RGB 

focal length: 35 mm 
∼27.5°/18.7° 

underwater 

Low Light USB 

HD cam 
focal length: 2.97 mm 

80°/64° 

in air 
1920x1080 Visible RGB 

∼57.3°/46.6° 

underwater 

TriOS 

Ramses ACC 

cosine corrected 

diffuser 
Cosine response Point sampling 320-950 nm 3.3 nm/pixel 

STS-VIS 
CC-3-DA cosine 

corrected diffuser 
Cosine response Point sampling 350-800 nm 

• 3.0 nm/pixel (50 µm slit 

version) 

 

Other components 

Digital Processing 

Unit (DPU) 

Used to interface and operate all internal sensors/cameras with the surface PC using VNC and has custom 

electronics from Specim. Specifications are: Windows 7 Pro, Intel Core i5, 64 bit, 8GB RAM, PIXCI EB1 frame 

grabber, CameraLink converter, 500 GB HyperX SATA SSD. 

VN-100 IMU  

Measures system attitude used for future geo-rectification of HI imagery (see Appendix A). Operated through the 

DPU via a Python script. Specifications: 0.5° Static Pitch/Roll, 1.0° Dynamic Pitch/Roll, 5°/hr Gyro In-Run Bias 

(typ.), 800 Hz IMU Data, ±16 g Accelerometer Range, ±2000˚/sec Gyroscope Range, no GPS unit is included in 

this model. 

Garmin GPS 18x 

LVC 

Used for above surface GPS lock and time-stamp synchronization (see Appendix A).  Specifications: 12-channel 

GPS receiver tracks, up to 12 satellites, one-pulse-per-second logic-level output with a rising edge aligned to 

within 1 microsecond of UTC. 1 Hz, output data in NMEA 0183 format. 

Lumen Subsea 

Lights (LEDs) 

Four units attached as external payload. Intensity manipulated from above surface using a custom build-control. 

Specifications: max brightness of 1,500 lumens dimmable, beam angle of 135 deg. in water and colour 

temperature of 6,200 Kelvin. 
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4.2.3 Field site and transect preparation 
 

First trials of the system occurred during November-December 2018 under highly productive 

Antarctic land-fast sea ice off Cape Evans (77.6371733 ° S, 166.4018691° E) (Meiners et al., 2018; 

Ryan et al., 2006; Wongpan et al., 2018). As seen in Figure 4.4c, we did not experience any platelet 

ice during the period of our surveys, contrary to what was experienced over the same site during 

other studies (Lucieer et al., 2016; Wongpan et al., 2018). The area was characterized by a relatively 

homogenous sea-ice thickness of approximately 1.8 ± 0.01 m, except for ridged or cracked areas, 

and this was confirmed by our sampling. The area was also largely snow-free due to wind-induced 

snowdrift and displacement. An ice hole site was selected from which three transects with variable 

surface conditions could be surveyed. Transect directions pointed towards Northwest (NW), West 

(W) and Southwest (SW). In this study, we provide only a data sample from the western transect as 

this paper aims to describe the technical performance of the payload and its potential for research 

applications (see objectives). The analysis of the remaining transects and biophysical investigation 

of the under-ice habitat at Cape Evans will be presented in a later study. 

The 2 m x 1.8 m ice-hole was made through a combination of 6” Jiffy auger holes and hot-water 

drilling. A polar haven tent was erected on top of the hole to maintain a safe and constant-

temperature working environment for the equipment. To create a tow-line for the winch system, a 

6” Jiffy auger hole was drilled at the end-side of each targeted transect. From this hole, a rope with 

a deadweight was immersed and rendered visible from the under-ice. A Seabotix LBV-300 ROV 

(Teledyne Marine, Seabotix, California, USA) equipped with a grabber arm was deployed from the 

central hole to grab and retrieve the tow-line from the smaller hole at the end of the transect (Figure 

4.2). Following the installation of the winches, the rope was replaced with the winch wire and this 

was attached to the under-ice sled. 

4.2.4 Deployment and data acquisition 
 

The AK10 only allows for manual focus, and the system does not currently have the capability for 

remote focusing. The focus distance is required to be set to the predefined scanning distance of the 

system of approximately 1.2 m. Nonetheless, we need to consider that the focal distance and DOF 

have the potential to change underwater under a flat port set-up to ultimately affect image 

sharpness. We, therefore, used an underwater focusing target immerged in the ice hole together 

with a dummy acrylic glass port to focus the camera under dry conditions while mimicking the 

underwater optical set-up. The Sony a6300 interface allowed for remote autofocus.  

We selected sunny and completely cloud-free days for our deployments to maximize under-ice 

transmitted light (and thus HI SNR). Before deployment, the enclosure was vacuumed using a 

standard vacuum pump and PREVCO vacuum kit manifold assembly to an internal pressure of -15 

in.-Hg in gauge for leak testing and to reduce internal condensation risks. Although the air in 

https://prevco.com/shop/accessories/vacuum-leak-test/vacuum-kit-manifold-assy
https://prevco.com/shop/accessories/vacuum-leak-test/vacuum-kit-manifold-assy
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Antarctica is typically very dry, this process is important to avoid any condensation within the 

enclosure due to the considerable heat produced by sensors and equipment compared to the 

exterior temperature.  

Due to its voluminous shape and weight, the system required 2-3 persons to be manually deployed 

into the ice hole. The system was then manually pushed below the 1.8 m thick sea ice by two people 

using rods inserted into the incorporated cradles (see Figure 4.1 and Figure 4.5 b). The system can 

then be rotated into the desired transect direction (e.g., western). 

         

Figure 4.5 Field pictures of the first deployment at Cape Evans, Antarctica. a) The system control station 

together with the removable payload tray. b) The system deployed in the water prior to under-ice 

immersion. Visible is the external payload composed of the TriOS Ramses ACC and a set of four Lumen 

Subsea LEDs, and the prop maneuvering cradles. c) The system scanning over the selected transect 

underneath the highly productive fast-ice of Cape Evans. d) One of the worm gear winches at the opposite 

side of the transect in speed-up mode using a drill adapter. 
 

Once under-ice, the system was winched 3-4 meters away from the hole and the tent to avoid 

interference in the light conditions beneath the ice. We were able to speed up the worm gear 

winches (designed to be slow for data acquisition) using a winch adapted electric drill as seen in 

Figure 4.5d to move the system into the right position for data collection. An initial assessment of 
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the HI signal intensity from directly under-ice was then performed. The optimal traveling speed and 

HI and RGB imaging settings were then maximized for both SNR and image quality.  

The AK10 data storing and imaging settings, including integration time, imaging frequency, spatial 

and spectral binning were controlled in real-time using the Lumo Recorder software (Specim 

Spectral Imaging, Oulu Finland). For HI, the spatial and spectral dimensions were binned to 1024 

spatial pixels across track, and a spectral resolution of 3.5 nm (178 bands), respectively. Whilst the 

spectral dimension could have been further binned to 7.5 nm for increasing the signal; this was 

avoided as too coarse spectral resolutions are known to hamper the application of some of the HI 

processing methods for ice algae (Cimoli et al., 2017a or Chapter 3). The HI frequency was set to 10 

Hz and an exposure time of 99 ms (maximum setting available). The ideal sled system speed for 

these settings was found to be around 0.008 ms-1 corresponding roughly to 1 rotation of our worm 

gear winch per second. The read-out frequency of the IMU was also set to 10 Hz aiming for HI and 

IMU data time-stamp synchronization at the decisecond (ds) level. The survey distance of 1.18 m 

between the HI sensor and the ice resulted in a HI footprint width on the ice of approximately 0.61 

m and a pixel size of 0.00625 m. The Lumo Recorder software was programmed to acquire 100 

samples of a dark frame image with the shutter closed at the end of each acquired hyperspectral 

image. Dark frame images were taken for the subsequent radiometric correction of the imagery 

through the removal of dark current noise.  

The Sony a6300 is operated through the Sony Imaging Edge software “Remote” feature. The 

software allows live streaming the camera view and permits exposure control, ISO, time-lapse 

shooting interval, and AF settings to be modified. We found that at the selected winch speed, an 

imaging interval of 0.1 Hz was sufficient to guarantee abundant forward overlap (>90 %). This 

relatively large sampling interval, together with the slow movement allowed the camera to be set 

to AF, which resulted in sharp and focused images. The ISO was set to 250; aperture maximized to 

f/2.8 and shutter speed set to 1/250 sec for most of the circumstances. The altitude of the camera 

was around 1.2 m, which yielded an estimated footprint width of 0.586 m in water and a resolution 

of 0.0001 m. All images were captured in the Sony RAW format (.ARW) to allow for any eventual 

image pre-processing approaches (e.g., see appendix in (Cimoli et al., 2017b)). 

The radiometrically calibrated Ramses ACC-VIS was synchronized to acquire an under-ice 

irradiance sample at the same time as each Sony a6300 RGB image (0.1 Hz) was taken. In this way, 

it is possible to link every image to a Ramses ACC-VIS radiometric irradiance sample and locate 

images spatially across the transect through the retrieved camera positions following SfM digital 

photogrammetry.  

The STS-VIS radiometer was set-up to acquire a measurement of incoming downwelling solar 

irradiance every minute considering the highly stable conditions during the surveys and the 

relatively low variability in sun angle.  
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Following system retrieval, HI, RGB imagery and IMU navigation data files were downloaded 

directly from the SATA SSD within the DPU. VNC allows for direct data transfer from the payload to 

the surface, but the operation is time-consuming for large files such as the HI imagery data files.   

4.2.5 Data processing  
 

Both hyperspectral image analysis and SfM photogrammetry are active research topics for many 

land-based applications. The adaptation of established terrestrial procedures to novel under-ice 

applications requires targeted studies aiming to identify, test, and evaluate their performance in an 

under-ice context. Here we present only preliminary data outputs of the developed system and 

assess their quality and potentials from a biophysical perspective. We do this by looking exclusively 

at the western transect and selecting a successful subsample for hyperspectral image analysis and 

processing (Figure 4.6), namely block B. For the RGB imagery and photogrammetry, we retrieve for 

the first time a high-resolution orthomosaic and DEM of the under-ice using commercially available 

software. For HI, we adapt some of the known methods in under-ice bio-optical literature to the 

hyperspectral images and illustrate potential new ones.  

4.2.5.1 RGB imagery and SfM digital photogrammetry 

 

It is well known that image quality and poor camera network geometries can considerably affect 

SfM model’s reconstruction and the extraction of accurate metric information. Image quality in non-

metric cameras is influenced by the camera sensor, lens quality, mechanical stability, and the overall 

image acquisition process under dynamic conditions. Poor camera network geometry refers to the 

lack of forward or side overlap in the imagery and/or lack of oblique imagery. Underwater, SfM 

photogrammetry is further challenged when using flat-ports due to the multiple refraction 

processes that magnify FOV, affect the focal length and produce a series of geometrical (e.g., radial 

distortion) and chromatic aberrations in the images directly affecting camera calibration algorithms 

in SfM, which ultimately affect the reconstructed model.   

While image quality per se was not considered problematic in our transect dataset, the flat port did 

cause non-negligible effects on the imagery (e.g., noticeable pincushion distortion). To solve such 

aberrations and obtain an accurate camera calibration one can formulate the complex mathematical 

models of the imaging process in water (Łuczyński et al., 2017; Treibitz et al., 2012) or perform a 

rigorous camera calibration using underwater targets with precisely known geometry (Shortis, 

2015). Another option is to rely on camera self-calibration, which refers to the calibration process 

using only image point correspondences for large and well-composed datasets (Oniga et al., 2018; 

Piazza et al., 2018). However, self-calibration is challenging in our dataset as camera network 

geometry is particularly weak when dealing with elongated strips with only nadir images and no 

side overlap and/or oblique imagery (Piazza et al., 2018). Systematic errors produced in such 

datasets can cause bending and non-linear deformations in the photogrammetric models as 
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confirmed by our tests (Menna et al., 2017; Piazza et al., 2018). Here we apply a simple preliminary 

solution to the camera calibration problem using a constrained self-calibration approach by taking 

advantage of the flat under-ice surface, the known transect lengths and a series of identifiable 

reference points that were also measured from above the surface.  

 

Figure 4.6 Overview of the surveyed western transect produced with structure from motion (SfM) digital 

photogrammetry using the RGB imagery. Camera positions and Ramses ACC irradiance samples were 

synchronized to the same sampling frequency, so they match in space. Blocks A and B within the transect 

were selected for further image analysis. On top is a photograph of the transect direction viewed from 

above the surface. Displaying the typical survey conditions (little to zero snow) of the study area. 

Prior to photogrammetric processing, 733 Sony RAW images acquired for the western transect 

were first imported into Adobe Lightroom where an initial lens correction and manual batch 

compensation for pincushion distortion was performed. Lightroom considers camera lens profiles 

into its corrections, and this empirical “trial-and-error” approach is simply to partially reduce 

bending of the model to a near straight level. Duplicate images were discarded as labeled repetitions 

during sled idle times, and the remaining images were exported from Lightroom as .JPG files for 

further SfM processing. 

The 3D reconstruction of the under-ice surface was created using Agisoft Metashape (Agisoft 

Metashape User Manual - Professional Edition, Version 1.5, n.d.). Metashape (previously 

Photoscan), is a software package which has been extensively used for 3D modeling and 
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photogrammetry over a wide range of geoscience applications (Fonstad et al., 2013). The workflows 

for under-ice DEM and orthomosaic generation are described here. Photo alignment accuracy is 

selected as medium (for computational reasons) and provided a first estimate of camera calibration 

parameters and the reconstructed scene. The produced sparse point cloud model at this stage was 

noticeably bent and deformed. We proceeded to filter outlier’s and low accuracy points using the 

gradual selection tools. Due to the smooth nature of the surface (Figure 4.5c), we assumed that all 

the surface areas with little algal cover were level with a reference height of 0.0 m, and created a 

dense and well-distributed network of reference level markers with a Z position (altitude) 0.0 m. 

We also added the known transect length as a scale bar length reference together with a series of 

points that were identifiable and could be referenced to above surface positions whose relative 

position could be measured with a measuring tape. For our entire western transect, we allocated 32 

of these reference points, termed Ground Control Points (GCPs) (Tonkin and Midgley, 2016; 

Westoby et al., 2012). 

All these level reference GCPs are assigned with a high marker accuracy of 0.002 m in Metashape 

reference settings options. The model is then processed using the Optimization of camera alignment 

feature where non-linear deformations can be removed by optimizing the estimated point cloud 

and camera calibration parameters based on these known reference marker coordinates (“Agisoft 

Metashape User Manual - Professional Edition, Version 1.5,” n.d.). During this optimization, 

Metashape adjusts estimated point coordinates and camera parameters minimizing the sum of 

reprojection error and reference coordinate misalignment error. 

The Metashape workflow is then followed by Dense Cloud reconstruction (medium quality and 

aggressive depth filtering), 3D mesh from the dense cloud (Arbitrary surface type, medium quality, 

enabled interpolation and aggressive depth filtering), Texture mapping (orthophoto mapping mode 

and mosaic blending mode) and finally DEM and Orthophoto production. The scaled orthomosaic 

and DEM were exported in .TIF format to QGIS and the DEM was processed with a hillshade function 

for visualization purposes.  

4.2.5.2 Hyperspectral imaging and radiometer data 

 

The retrieved HI images of block A and B consisted of a three-dimensional (x, y, λ) data cube where 

x and y represent the spatial dimensions, and λ the spectral dimension. The first two steps of the HI 

processing workflow include radiance conversion of digital numbers (DN) and pushbroom image 

rectification. The system was designed so that little to no geometric rectification and IMU data 

integration is required. This was the case for block A and B of the analyzed transect (Figure 4.6). 

Per-pixel radiance conversion was done using Specim Caligeo PRO software (Spectral Imaging, 

Specim Ltd., Finland) which addresses noise and geometric aberrations inherent to the sensor and 

performs the conversion of DN into downwelling spectral radiance Ld (λ, mW m2 sr−1 nm−1) using 

the in situ acquired dark current frames and the associated calibration files. For the present study, 
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spectral bands <400 nm and >700 nm were considerably noisy and outside the range of interest, 

therefore spectral subsetting was applied reducing the data to a total of 89 bands. 

The block B HI subsamples are then smoothed using a Savitzky-Golay low-pass filter with a 

polynomial order of 3 and frame length of 9 aiming to reduce noise in the transmitted signals 

without hindering the retrieval of fine spectral features (Savitzky and Golay, 1964; Schafer, 2011). 

Following this procedure, we adapted methodologies previously applied to track biomass 

variability from under-ice spectra such as Normalized Difference Indices (NDIs) and Principal 

Component Analysis (PCA) (also known as EOF) (Cimoli et al., 2017a or Chapter 3; Lange et al., 

2016a; Melbourne-Thomas et al., 2015; Mundy et al., 2007). Every pixel within the HI subsample 

was integral-normalized to reduce the amplitude component of spectral variability and to focus on 

differences in spectral shape, a pre-processing standardization method previously applied in sea-

ice bio-optical literature (Meiners et al., 2017; Melbourne-Thomas et al., 2015; Wongpan et al., 

2018). 

PCA for hyperspectral remote sensing is typically employed for dimensionality reduction, to reveal 

complex relationships among spectral features or for the identification of prevalent spectral 

characteristics. PCA has been widely used in optical oceanography for extracting information about 

seawater constituents from spectral data (e.g., [64], [65]). In our case, PCA was applied to the 

spectral dimension of block B data cube to explore and highlight the most variable features and 

relationships across all pixels in the block B image (Amigo et al., 2015; Cimoli et al., 2017a or Chapter 

3).  

Spectral indices, such as NDIs, have been linearly correlated to the logarithm of sampled chl-a in 

multiple sea-ice studies (Lange et al., 2016a; Melbourne-Thomas et al., 2015; Wongpan et al., 2018). 

Since we have not developed a specific spectra-biomass relationship for our site that applies to the 

developed HI payload yet, a couple of identified optimal NDIs from the land-fast sea-ice of Davis 

Station and McMurdo Sound, Antarctica by (Wongpan et al., 2018) were selected and utilized as a 

proxy of biomass. Before index implementation, block B was spatially binned to 2x2 pixels, reducing 

the spatial resolution from 0.624 mm to 1.2 mm, but boosting per pixel signal. The following NDI 

equation was then applied to every pixel in the image: 

 

                               NDI(λ1,λ2)=
Ld(λ1)- Ld(λ2)

Ld(λ1)+Ld(λ2)
       (1) 

 
Where λ1 and λ2 are wavelength bands selected across the sensor spectral range and Ld (λ, mW m2 

sr−1 nm−1) is the solar downwelling radiance transmitted through the ice. From (Wongpan et al., 

2018), we selected 441:426 nm and 648:567 nm as two different NDIs in different areas of the 

spectrum and applied the NDI equation to every pixel in the block B image. In this study, we used 

radiance to compute the indexes rather than under-ice radiance normalized to surface irradiance 
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(or transflectance, (Nicolaus et al., 2013)). Changes in above surface illumination conditions (e.g., 

solar geometry and atmospheric effects) within the block A and B image subsample were 

considered negligible.  

In addition to adapting PCA and NDIs to under-ice HI, we also tested for the use of an index called 

Area under curve Normalised to Maximal Band depth between 650-700 nm (ANMB650-700) of the 

continuum removed spectrum (Malenovský et al., 2006). ANMB650-700 has been successfully applied 

for chl-a and chl-b mapping using HI of Norwegian spruce trees (Malenovský et al., 2006), and 

Antarctic moss beds (Malenovský et al., 2017), and here we use it as a proxy of chl-a or ice algal 

biomass. 

For this index, we applied the same Savitzky-Golay low-pass filter and the 2x2 spatial binning factor, 

but no integral normalization is performed. Instead, the entire image is normalized by the highest 

spectrum intensity within the block, which corresponds to an algal free cavity in the ice visible in 

the image (shown later in the results section). This provides a proxy of light transmittance over 

roughly the last 5 to 15 cm of ice bottom and enhances visibility of the absorption peak of chl-a at 

670 nm of each pixel spectrum. The continuum removal transformation on the spectrum is a 

fundamental pre-processing step to enhance and standardize the specific absorption features of 

biochemical constituents (Kokaly and Clark, 1999). It allows for the normalization of the 

transmittance spectra so that individual absorption features can be compared from a common 

baseline. Following a localized continuum removal, we can calculate the Area Under Curve in the 

range between 650 and 695 nm where chl-a attains one of its absorption peaks: 

 

                   AUC650-700=
1

2
∑ (λj+1-λj)

n-1

j=1
(ρ

j+1
+ρ

j
)    (2) 

 

Where 𝜌𝑗  and 𝜌𝑗+1 are values of the continuum-removed transmitted spectra at the j and j+1 

bands, 𝜆𝑗  and 𝜆𝑗+1  are wavelengths of the j and j+1 bands, and n is the number of the used 

spectral bands. We can then calculate the ANMB650-700 index as: 

 

                     𝐴𝑁𝑀𝐵650−700 =
𝐴𝑈𝐶650−700

𝑀𝐵𝐷650−700
        (3) 

 

Where MBD650-700 is a maximal band depth of the continuum-removed reflectance, generally at one 

of the spectrally stable wavelengths of strongest chl-a absorption around 670-680 nm. 

Normalization of AUC650-700 by MBD650-700 is a crucial step for strengthening the relationship 

between ANMB650-700 and the chl-a content for higher chl-a concentrations. The logic behind this 
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spectral index is exploiting well-known changes of the transmittance signature shapes produced 

within these wavelengths mainly by the changes in algal chl-a content.  

In order to validate the robustness of the HI data compared to traditional means of acquiring under-

ice spectra, hyperspectral irradiance variability measured with the Ramses ACC-VIS across the 

entire transect (samples shown as black dots in Figure 4.6) was computed and compared with 

spectra of every pixel in block B. The Ramses ACC-VIS data further allow us to gain an estimate of 

downwelling irradiance intensity exiting the ice-water interface and was used to gain an insight of 

the light levels experienced under-ice. These can then be used to baseline the signal quality of the 

data achieved using our HI system under those specific conditions. The TriOS Ramses ACC-VIS was 

radiometrically calibrated using the factory provided calibration files (traceable within 

international standards) during the data acquisition process. 

4.3 Results 
 

4.3.1 Deployment and operation performance 
 

The system was successfully deployed and retrieved for the three targeted transects (NW, W, and 

SW). For the western transect analyzed here, a total of 736 RGB images and Ramses ACC-VIS 

irradiance samples were acquired, in both forward and backward directions (Figure 4.6). The 

overall scanning operation lasted approximately 2.5 hours, not including system set-up. 

Considering the air (-5 to 5 ° C) and water (-1.8° C) temperatures experienced, the electronics in the 

housing functioned well under the challenging environmental conditions and were kept above 

freezing point by heat produced from the multiple electronics. HI-sensor temperature sensors 

indicated that temperature was maintained at around 17°C over the entire western transect. 

As shown in Figure 4.7, the system was able to produce natively well-composed pushbroom 

hyperspectral images without the need for any rectification methods and/or supplementary 

attitude and navigation data (e.g., see block A in Figure 4.7c).  

However, occasional lagging instances in the sled-motion during scanning of some sections of the 

transect hampered smooth pushbroom HI data acquisition. Sometimes these lags were long enough 

(0.5-3 seconds instances) that data collection had to be interrupted and the sled system to be 

forwarded until the movement was smooth again. In other cases, they were acceptable and could 

eventually be corrected through the integration of the IMU data algorithms and image correction 

filters (e.g., Figure 4.7 lagging instance). Transect blocks requiring rigorous geometric rectification 

and post-processing are out of the scope of this study and will be investigated in the future through 

the development of targeted geometric HI correction algorithms.  
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Transects also did not always followed a straight line, but instead, the trajectory displayed a slight 

bend as can be seen from Figure 4.6. This means that the system showed changes in heading 

according to its attitude reference system (heading, roll, pitch) shown in Figure 4.1 and Figure 4.3. 

Transect bending is only noticeable when considering long distances rather than over the shorter 

accomplished HI scans. However, this track deviation did have an impact on the imaged transect as 

forward, and backward travels did not perfectly overlap in some instances producing unnatural 

invasive marks such as the visible ski tracks in Figure 4.5.  

4.3.2 RGB imagery and photogrammetry 
 

For the western transect, 615 camera positions were aligned successfully, and optimization 

produced an overall flat 3D model of the under-ice surface (Figure 4.5 and Figure 4.7a).  Dense 

reconstruction of the model resulted in a rich and well-composed dense point cloud (100,199,561 

points). The first estimation of the total area covered was 13 m2 for the western transect. The final 

resolution of the displayed orthomosaic was 0.0994 mm/pixel and for the DEM 0.821 mm/pixel 

with a point density of 1.48 points mm-2. The total RMSE of the Euclidean distance between the 

generated reference level markers and the corresponding estimated points in the reconstructed 3D 

model was 0.0762 m (0.0623 m X error, 0.0322 m Y error, and 0.0297 m Z error). While this error 

does not reflect a rigorous accuracy assessment of the absolute geometric accuracy of the model, 

our interest in these first trials was in the ability to retrieve complex topographic features. The 

relative (within model) accuracy and point density are sufficiently high for this purpose. 

The RGB orthomosaic illustrates the high level of algal biomass under the land-fast sea ice of Cape 

Evans. This encompasses both gentle changes in illumination and also different shades of brown 

and green coloration over the full 20.1 m transect (Figure 4.6). Zooming into block A, Figure 4.7a 

displays complex networks of ice algal aggregations and patches together with the presence of large 

bright cavities embodying large secondary brine channels (Petrich and Eicken, 2016). The DEM 

hillshade in Figure 4.7 b shows that while at first sight, the under-ice at Cape Evans seems like a 

featureless surface, it has high levels of relief complexity attributed mainly to an extensive network 

of secondary pore spaces (Petrich and Eicken, 2016). Looking at Figure 4.6, they appear to occur in 

specific areas of the western transect. These pore cavities range widely in size and depth and are 

believed to be a result of a series of sea ice thermodynamic processes of brine flushing and merging 

of channels during the advancement of the summer season (e.g., Polashenski et al., (2012)).  
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Figure 4.7 Display of the main data products of the developed under-ice payload. Block A and block B 

refer to two different subsections within the western transect that were selected for further analyses. a) 

Under-ice orthomosaic produced from the RGB imagery. b) Hillshade of the SfM derived digital elevation 

model (DEM) illustrating relief structure produced by the large cavities. c) Visual representation of the 

hyperspectral data cube for block A including block B as an RGB composite. Panel d) and e) display the 

high variability of radiance spectra for a selected variety of spots (continued to the next page…) 
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within block B (both unprocessed and smoothed with a Savitzky-Golay filter respectively). Panel f) 

display four of the darkest pixels within the image associated to extremely dense algal clumps. For all 

plots, spectrum shows a × 4 pixels spectral average which corresponds to approx. 1.2 mm pixel size. 

Native pixel size is 0.624 mm. A 0.14 m Kovacs ice core areal coverage is provided for scale reference 

only. 

An ice core footprint of 0.14 m in diameter is provided as a reference scale for these large brine 

pores in Figure 4.7a and c. However, the total depth of the cavities is difficult to capture with digital 

photogrammetry, and we could only image and reconstruct up to a certain depth depending on their 

width. Smaller subtle relief and undulations of the under-ice surface are also observable from the 

DEM hillshade (Figure 4.7b). Since these are not recognizable as white spots from the imagery itself, 

they are perhaps not strictly related to brine release processes but rather ice undulations of yet 

unknown origin. The DEM hillshade also captures micro-rugosity in the 3D model attributed to 

protrusion of dense algal clumps mostly formed by the diatom species Berkeleya adeliensis (F. 

Kennedy pers. communication). The hillshade map also displays a specific orientation pattern 

assumed to be driven by the underlying water currents. Berkeleya adeliensis was found to be the 

predominant species together with the interstitial diatom Nitzschia stellata from microscopic 

observations. 

Current-driven orientation of algae strands and the biophysical complexity of the under-ice habitat 

were also observed in the high-resolution Sony a6300 RGB images shown in Figure 4.8. These 

images not only display the native quality of the RGB imagery but also show additional important 

biophysical properties of the under-ice habitat such as the sea-ice skeletal layer and its crystal 

orientation (Figure 4.8a) (Petrich and Eicken, 2016; Weeks and Gow, 1978). Figure 4.8a was taken 

nearby the ice hole, and the difference between what appears to be the hanging Berkeleya adeliensis 

and interstitial diatom species is clearly visible. Later into the transect in Figure 4.8b, a certain 

degree of algal orientation can also be observed together with some of the large secondary brine 

channels. Zooming in on Figure 4.8b, we also observed high concentrations of oxygen bubbles 

produced by the photosynthesizing algae. Also, several types of under-ice fauna were visible along 

the high-resolution imagery dataset such as ctenophores (Figure 4.8a) and amphipods (Figure 

4.8b). 

4.3.3 Hyperspectral imaging and radiometric data 
 

A visual representation of the block A hyperspectral data cube within the western transect is shown 

in Figure 4.7c. The quality of the image composition shows minimal geometric noise and a robust 

geometrical resemblance with the RGB orthomosaic for the entire block A subsample. The cube also 

shows an example of one of the lagging instances in the sliding sled system as previously noted. 

The right-hand plots in Figure 4.7 display the quality of the measured spectral signatures in terms 

of overall intensity for the under-ice downwelling radiance Ld (λ, mW m2 sr−1 nm−1 ) unprocessed 
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(Figure 4.7d) and smoothed (Figure 4.7e). It is clear that high variability of light intensity and 

spectral shape can be found across a series of features within the < 1 m2 area of block B. Such 

variability can change up to one order of magnitude and is mostly ruled by the presence of the 

secondary brine channels together with the drastic differences in algal concentrations and 

aggregations, but also due to the different algal species/morphotypes (e.g., hanging vs. interstitial) 

among other factors. Despite the highly contrasting under-ice light regime induced by the large 

brine features, the camera dynamic range allowed to optimize settings to the lower light areas (e.g., 

algal patches) without saturating the pixels over the secondary brine pores. 

     

Figure 4.8 Two upward looking RGB image samples taken from the Sony a6300 camera dataset shown 

at full resolution. Both images display some examples of spotted under-ice feeders (circled). Left image 

shows a ctenophore (comb jelly) and right image shows a couple of circled amphipods. a) Image taken 

nearby the visible deployment ice hole. The image zooms into a large brine channel and further on the 

highly detailed under-ice skeletal layer. b) Image taken midway on the transect displaying the high 

concentration of oxygen bubbles produced by the photosynthesizing ice algae. 
 

Absorption by algal associated chl-a is easily observable over almost all pixels in the image as a 

reduction in intensity over the 440 ± 20 nm and 680 ± 10 nm bands. Higher ice algal biomass 

reduces transmitted radiance in the blue part of the spectrum and produces a compressed curve in 

the green part of the spectrum (Legendre and Gosselin, 1991). Absorption features by ice algae tend 
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to drastically decrease nearby and within the secondary brine channels (e.g., red spectrum in Figure 

4.7d-e) except in circumstances where we find dense algal webs hanging in the middle of these 

cavities (e.g., celeste spectrum in Figure 4.7d) or highly concentrated algal clumps scattered around 

these cavities. From the entire block A image, we also selected some of the lowest light pixels we 

could find, and their spectrum can be seen in Figure 4.7f. The SNR noticeably decreases for such 

targets, and the blue region (400 to 500 nm) seems to be noise dominated. Nonetheless, the 

spectrum still displays strong chl-a signatures in the 680 ± 10 nm band curve and an overall 

meaningful signal. 

      

Figure 4.9 a) Mean ± one standard deviation of downwelling under-ice irradiance (Ed) spectra from the 

TriOS RAMESES ACC-VIS located near the ice water interface for the full 20.1 m transect. b) Mean ± 

one standard deviation of under-ice downwelling radiance spectra (Ld) from all the pixels of block B 

hyperspectral image subsample from the AK10. c) Mean ± one standard deviation of under-ice irradiance 

and radiance spectra normalized by area under curve for the Ramses ACC-VIS over all the transect and 

for all pixels of block B AK10 hyperspectral image. d) Mean ± one standard deviation of under-ice 

downwelling radiance (Ld) normalized by the maximum radiance pixel of all block B and corresponding 

to one of the cavities or secondary brine channels seen in the image (Ld-cavity) . 

The mean irradiance spectrum ± standard deviation (sd) measured with the Ramses ACC-VIS for 

the length of the whole 20.1 meters transect is shown in Figure 4.9a. The total irradiance energy 

integrated over the PAR range (400-700 nm), Ed,PAR (λ, W m2) averaged 0.35 (λ, W m2), with a 0.20 

sd, and a total range of 0.07 - 1.5 (λ, W m2). Figure 4.9a also helps to characterize the spectrum 

variability across the entire transect. Interestingly, a similar degree of variability (although in terms 
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of radiance) is experienced within the < 1 m2 block B subsample as seen in Figure 4.9b showing the 

mean spectrum ± sd of all pixels of block B. Figure 4.9c displays the integral-normalized mean 

spectrum of all the pixels of the block B hyperspectral data cube overlaid by  the integral-

normalized mean spectrum of the entire western transect using the Ramses-ACC-VIS. Figure 4.9d 

displays all pixels of the block B image normalized by the highest light intensity pixel in the images 

which is attributed to the light exiting one of the secondary large brine channels or cavities (seen 

Figure 4.7). This plot indicates properties of the transmitted light over the bottom layer of the ice 

where >98% of the biomass thrives. The normalized spectra were used to compute the ANMB650-700 

index. The normalization greatly accentuates the absorption features of chl-a in the blue area 

centered at 450 nm and the red peak centered around 670 nm. 

PCA results are shown in Figure 4.10. The loadings of the first nine principal components explaining 

> 99.54 % of spectral variability within the image are shown for completeness. Figure 4.9 also 

displays the loading scores applied to each pixel of block B for the first three principal components 

(PC1, PC2 and PC3) together with an RGB composite of block B. PCA results show well resolved and 

coherent principal components similar to what was reported previously in the literature employing 

PCA (or EOF) using under-ice radiance and irradiance sensors in situ (Lange et al., 2016a; 

Melbourne-Thomas et al., 2015), or for HI in artificial sea-ice simulation tanks (Cimoli et al., 2017a 

or Chapter 3). The PC1 loadings account mainly for variability in light intensity attributed to a 

mixture of factors and embody the general trend of the under-ice light spectrum. PC2 seems to be 

more influenced by the two contrasting dip areas around 440 ± 20 nm and 680 ± 10 nm suggesting 

a possible correlation with algal chl-a pigments. Nonetheless, PCA at this stage serves as an 

exploratory tool and it remains difficult to assess the nature of PC3 and the remaining PCs without 

further analyses of pigment composition e.g., through High-Performance Liquid Chromatography 

(HPLC) (e.g., (Arrigo et al., 2014; Wongpan et al., 2018)). The PCA score images also evidence some 

subtle line artifact features across the scanning direction of the hyperspectral image (Figure 4.10). 

These are attributed to small vibrations or micro-lagging instances whose visibility is enhanced 

following integral-normalization and PCA processing.  

The results of the NDI (648:567 nm) and ANMB650-700 indices applied as relative proxies of biomass 

variability to block B are presented in Figure 4.11a and b, respectively. Interestingly, Figure 4.11 

suggests that both indices provide a similar result in terms of biomass distribution patterns and 

capture spatial scales previously unprecedented. However, NDIs seems to produce nosier images 

compared to ANMB650-700. It might be argued that the ANMB650-700 is based on the curve shape 

information of the light transmitted through the algal layer and such normalization was not applied 

to compute NDIs. However, both methods were tested and showed that using quantitative changes 

of transmitted radiance intensity produced less noisy images in case of NDIs. 
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Figure 4.10 Results of principal component analysis (PCA, also known as EOF), applied to the spectral 

dimension of block B (hyperspectral image subsample of the western transect). Top images display the 

first three PC scores applied to every pixel of the image using corresponding loadings for each component. 

Bottom plots display the loadings for each wavelength for each principal component. Plot display as well 

the proportion of variance explained by each corresponding component. (continued to the next page…) 
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Light grey areas highlight the maximum chl-a absorption regions at 440 and 670 nm. Spatial resolution 

for PCA was maintained to a native 0.625 mm. 

NDIs applied to block B over the blue/violet area (441:426 nm) were also tested and provided 

similar results although with slightly noisier imagery (not shown). A final interesting observation 

is the anisotropic noise pattern observed in both NDIs (648:567 nm) (Figure 4.11 a) and PCA across 

the scanning direction of the image (Figure 4.10). This is observable as noisier zones at the top and 

bottom of the image.  

4.4 Discussion 
 

4.4.1 Under-ice hyperspectral imaging data quality and processing 
 

The present study outlines a novel platform incorporating two emerging underwater optical 

methods for capturing fine-scale biophysical properties of the under-ice habitat non-invasively. 

Passive HI and digital photogrammetry were tested for the first time to observe the ice-water 

interface and were deployed using a relatively simple under-ice sled. The sliding concept took 

advantage of the fixed and smooth surface of land-fast sea ice to minimize costly set-ups and yielded 

geometrically coherent hyperspectral imagery without the need of georectification. To the authors 

knowledge, only three underwater HI payload designs have been documented before. The Ecotone 

UHI (Ecotone, Trondheim, Norway) is a commercial solution designed for deep or shallow ROV-

based seafloor observations and utilizes active light sources (Dumke et al., 2018a; Foglini et al., 

2019). The Ecotone UHI has also been equipped onto Unmanned Seafloor Vehicles (USV) for shallow 

seafloor mapping (Mogstad et al., 2019). The other two are documented in (Chennu et al., 2017, 

2013) and comprise a stationary time-lapse observations and a diver- operated set-up.  

In terms of data processing, the aim was to provide a preliminary outlook of the system’s data 

outputs and its potentials. The preliminary results presented here indicate that it is possible to 

apply simple, yet effective, algorithms to retrieve chl-a per surface area on a sub-mm per pixel basis 

over tenths-of-meters-long transects. Figure 4.9 shows that the under-ice spectral signatures of 

traditional and novel sensors are comparable. They are also comparable with studies over similar 

Antarctic land-fast sea-ice areas (e.g., (Wongpan et al., 2018)). Established under-ice bio-optical 

methods for retrieving sea-ice biomass proxies in situ (e.g., NDIs or PCA models) were also 

successfully adapted to the acquired hyperspectral imagery (Figure 4.10 and Figure 4.11). NDIs 

values outputted are observed to match the range of values over the same or similar sea-ice areas 

(Wongpan et al., 2018) and PCA loadings shown strong similarities in shape if compared with 

results from other studies both in real sea ice and in artificial ice tanks (Cimoli et al., 2017a or 

Chapter 3; Lange et al., 2017); the difference being that in this study they were retrieved on a sub-

mm per-pixel basis. 



114 | P a g e  

 

PCA results retrieved chl-a signatures over its PC2 component and reaffirm the utility of PCA for 

explorative analyses. For example, the pronounced “shoulder” deviation towards 470 nm in PC2 

loadings is likely associated with a higher concentration of accessory algal pigments such as 

fucoxanthin (Kirk, 2011; Lund-Hansen et al., 2015).  PCA analyses also suggest the possibility to 

retrieve PC/EOF based regression models to develop chl-a-spectra relationships, algorithms that 

have been proven successful for a wide range of sea-ice conditions (Cimoli et al., 2017a or Chapter 

3; Lange et al., 2016a; Melbourne-Thomas et al., 2015).  

 

Figure 4.11 Application of spectral indexes as proxies of chl-a distribution over block b HI subsample. a) 

Results from the application of a commonly used index in sea-ice bio-optical literature, the normalized 

difference index (NDI), applied for wavelengths 648:567 nm on block B hyperspectral image subsample. 

b) Application of a novel index to sea-ice bio-optical literature, the area under curve normalized to 

maximal band depth (ANMB) between wavelengths 650 to 700, applied to the same block B. c) Plot of 

continuum removed spectrum of three random pixels within block B to help visualizing the ANMB650–700 

concept and its association with chl-a absorption. For the color bars, higher values (towards red) 

correspond to higher expected biomass. Spatial resolution for the indices was binned to 1.2 mm. 
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The use of the NDIs positioned at wavelengths 648:567 and 441:426 nm was also tested with 

meaningful per-pixel biomass proxy representations although images were characterized by 

consistent pixel noise, particularly for the blue region of the spectrum (Figure 4.11).  This is 

probably attributed to the lower SNR inherent to mm-scale hyperspectral resolution image pixels 

compared to wide-footprint radiometric sensors. SNR changes due to variations in intensity and 

shape of the retrieved spectra, which varies as the target constituent concentrations change and as 

the noise changes depending on sensor settings and specifications. The high ice algal biomass 

typically found at Cape Evans (see Arrigo, (2017) for biomass ranges), favours algal associated 

spectral shapes, but heavily reduced light availability and consequently per pixel SNR on the overall 

spectrum, particularly in the blue region where chl-a attains one of its major absorption ranges (e.g. 

for the NDI 441:426, see Figure 4.9b and d). In fact, from Figure 4.11a, we can observe how noise is 

drastically reduced over the high light intensity brine channel areas. (Wongpan et al., 2018) and 

(Forrest et al., 2019) also highlighted how in general NDIs were producing poor relationships at the 

Cape Evans site. However, this might be because of different reasons such as the presence of platelet 

ice (which we did not experience during our study), the consequent poor spatial variability in 

biomass at the measured scale, or perhaps the difficulty in ice-coring and sampling chl-a from 

sloughing platelet ice (Forrest et al., 2019).  

The ANMB650-700 index explored here is directly linked to the absorption properties of chl-a in the 

red region of the spectrum. It takes the advantage of hyperspectral data to finely integrate over the 

narrow absorption peak of chl-a in the 650 to 700 nm range. While it is not guaranteed that a 

meaningful quantitative relationship with sampled chl-a will be retrieved, the index performed 

better than NDIs for our case by providing less noisy and coherent images (Figure 4.11b and c). 

Increases in chl-a concentration (with absorption maximum around 665 to 680 nm) causes chl-a 

absorption feature to deepen at the 680 ± 10 nm dip. While the spectrum of the transmitted radiance 

in this range can show signs of saturation, the adjacent wavebands at longer wavelengths remain 

sensible to changes as the peak broadens and thus extending the area under curve (Figure 4.11c) 

(Malenovský et al., 2006). The index was also designed to reduce the impact of other confounding 

factors of the imaged target within its complex 3D environment (Malenovský et al., 2006), and this 

might also supported the index performance in our case. A continuum-removed integrative index 

could also have worked better than a band ratio (e.g. NDIs) under this high biomass case (and 

therefore less light and SNR) as it integrates a larger area (AUC) hence providing a stronger signal 

per-pixel (Figure 4.11c). In fact, the performance of ANMB and similar indices is expected to 

deteriorate under low chlorophylls (chl-a and chl-b) amounts (Malenovský et al., 2013, 2006).  

Future work in this area will explore the performance and comparison of these indices for the Cape 

Evans site, and to work on the retrieval of quantitative correlations tailored to our encountered sea-

ice conditions that are suitable to be applied to HI data. It was also noticed how different pre-

processing, normalization and standardization techniques (not all shown here) affected the 

visualization of indexes applied to the images and the performance of exploration methods such as 
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PCA. Such observations prompt for the investigation of optimal workflows to process and analyze 

under-ice HI data. 

4.4.2 System performance and future developments 
 

While most of the transect could be scanned as planned, some issues were experienced during the 

scanning process such as invasive ski marks and occasional lagging which hampered pushbroom 

image composition (Figure 4.6 and 8). Nonetheless, the low gear winch system was capable of 

delivering extremely slow speeds in a stable manner as observed in the imagery. The observed 

angular deviations are comparable to data for professional gimbal stabilization systems for UAV 

applications (Arroyo-Mora et al., 2019). They had negligible effects on the HI image composition 

and RGB imagery in our case due to the close-range set-up and the extremely slow speeds. The only 

trade-off of the system is that the winches had to be manually rotated which is a time-consuming 

and personnel demanding process. For future deployments, we plan to automate and motorize the 

winch system. The changes in transect heading are likely attributed to a combination of small-scale 

ice irregularities, inhomogeneous surface drag and/or the effect of intermittent currents observed 

from our underwater footage. There is also the possibility of a loosened ski frame support which 

went unnoticed. The cause of the lagging could be attributed to these roll changes but could not be 

precisely identified either. Investigation of the RGB imagery did not point to a particular ice 

condition that could have induced the lagging. A too strong buoyancy force against the ice (-9 kg in 

water, Figure 4.1) might have increased surface drag to a counterproductive level.  

These aspects can firstly be improved by developing an improved sliding system and refining its 

technical design. However, greater advantage is envisaged in exploring manual or automatic 

pushbroom HI rectification techniques through the incorporation of overlapping RGB orthomosaics, 

also known as co-registration (Fang et al., 2018; Habib et al., 2016; Turner et al., 2014). This 

approach co-registers the hyperspectral imagery based on a reference RGB orthomosaic through 

image matching procedures (e.g., feature matching, and transformation based on matching points 

(Aasen et al., 2018)). The only requirements for co-registration are spatially similar and overlapping 

HI and RGB imagery and good accuracy for the RGB orthomosaic reference. Advances in camera 

calibration and triangulation procedures permit the generation of RGB orthomosaics with high 

geometric fidelity using a limited amount of GCPs and/or consumer-grade navigation data (Fonstad 

et al., 2013; Marcer et al., 2017; Tonkin and Midgley, 2016). Although a more accurate assessment 

is still required, the western transect RGB orthomosaic resulted in a highly resolved and metrically 

scaled photogrammetric model which could be used for co-registration for example (Figure 4.6 and 

Figure 4.7a and b). This was possible as our camera calibration and model reconstruction heavily 

benefitted from a constant sea-ice thickness and imaging altitude which allowed to impose an 

artificial network of GCPs of precisely known positions in the 3D space. The same approach would 

not be possible under highly heterogeneous topographies or would not be as effective for highly 

dynamic imaging conditions. Under these sub-optimal circumstances, the options could be to 
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retrieve an accurate camera model using underwater calibration targets (Maas, 2015; Shortis, 

2015), to estimate it through its mathematical formulation and/or to implement the use of dome 

ports (Menna et al., 2016). Another option remains the addition of physical GCPs. Compared to the 

seafloor, the sea-ice can be used as an opportunistic reference surface where Ground Control Points 

(GCPs) visible below and above the ice can be allocated (e.g., Nicolaus and Katlein, 2013). GCP 

positioning can then be accomplished using conventional GNSS devices and manual measuring or 

by referencing them in a local reference system. This is advantageous as positioning underwater 

typically requires the acquisition of acoustic data, which may depend on information from the 

under-ice vehicle/platform to a research vessel through a network of deployed transponders 

(Cazenave et al., 2011; Meiners et al., 2017; Williams et al., 2014). This process requires 

considerably more effort and resources and would arguably suit the precision required by line 

scanning orthorectification methods. 

By taking advantage of the referenceable sea-ice surface and co-registration methods we could then 

theoretically develop algorithms analogous to aerial HI algorithms based on the scaled RGB 

orthomosaics, the partially rectified HI scans and the acquired consumer-grade IMU data (Fang et 

al., 2018; Habib et al., 2016; Yeh and Tsai, 2015). These future developments will aim to support the 

geometric correction of distortions caused by the dynamics of the HI frame, such as the lagging 

instances (Figure 4.7c). In addition, robust geometric correction will pave the way for a more 

independent system that can operate under rougher under-ice topographies and at increased 

distances from the ice. The system needs to strive towards increased distance from the ice, and ease 

of operability under diverse under-ice conditions. As the technology develops, there is also potential 

to drastically reduce the weight and volume of the payload. Eventually, this may allow the 

development of HI payloads for Remotely Operated Vehicles (ROVs) or AUVs to drastically increase 

the spatial extent of the surveys, although there are physical and technical challenges associated 

which are briefly discussed in the last sub-section. 

4.4.3 Potential applications of under-ice hyperspectral and RGB imaging 

payloads 
 

Compared to standard imagery or multispectral imagery, HI provides narrow spectral resolutions, 

high bit depths, and actual radiometric and referenceable units. Higher spectral fidelity sensors with 

reasonable spectral resolution would not only be beneficial to produce quantitative estimates of 

fine scale sea-ice biophysical properties, but also to develop tailored relationships for each study 

area and move towards more universal approaches and algorithms (Cimoli et al., 2017a or  

Chapter 3). The complex under-ice perspective will undoubtedly pose new challenges and 

constraints. However, several additional indices or machine learning approaches coupled with 

radiative transfer modelling efforts could be tested and adapted to produce more robust and 

universal relationships to retrieve diverse biophysical properties. Some examples can be found in 

forestry and agriculture (Adão et al., 2017; Malenovský et al., 2013; Wang et al., 2016), ocean colour 
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(Blondeau-Patissier et al., 2014; Matus-Hernández et al., 2018), chemometrics (Amigo et al., 2015) 

and other environments (Chennu et al., 2013; Malenovský et al., 2015).  

Low-cost imagery sensors—such as RGB, near-infrared (NIR) or multispectral— have also served 

well in multiple close-range remote sensing applications to retrieve qualitative and quantitative 

information from biological targets (Näsi et al., 2018; Shen et al., 2019; Taghizadeh et al., 2011). For 

the under-ice environment, RGB imagery has been used to qualitatively assess the spatial 

distribution of algae (Ambrose et al., 2005; Fernández-Méndez et al., 2018; Katlein et al., 2015b). 

Therefore, RGB or multispectral imagery should be considered from a cost-benefit analysis 

perspective based on desired research aims and available resources. 

In theory, hyperspectral resolution data has the potential to resolve beyond pure biomass estimates 

towards more sophisticated biological traits such as ice algal photophysiology (Jesus et al., 2008; 

Malenovský et al., 2015; Perkins et al., 2016), species composition (Jesus et al., 2008; Mehrubeoglu 

et al., 2013; Xi et al., 2015), pigment detection (Blackburn, 2007; Pettersen et al., 2014; Taylor et al., 

2013) and feature classification and mapping (Caras and Karnieli, 2015; Dumke et al., 2018b; Foglini 

et al., 2019). An interesting field is also being explored in the retrieval of primary production 

estimates from spectral data in combination with in-vitro photosynthetic parameters for ice algae 

(Lange et al., 2017; Müller et al., 2016) or with PAM fluorometry for microphytobenthic 

communities (Méléder et al., 2018).  

Compared to point sampling radiometers, the main advantage of imaging payloads is the possibility 

to capture the information at ultra-high spatial resolutions (in this case sub-mm scales) in a non-

invasive manner (e.g., Chennu et al., (2013)). Under sea ice, this will allow future studies to 

investigate multi-scale ice-algal dynamics and how they covary with environmental drivers over 

space and time (Campbell et al., 2015; Cimoli et al., 2017c or Chapter 2; Lund-Hansen et al., 2016, 

2014). With little additional effort, the RGB imagery and close-range digital photogrammetry 

provided an accessible tool to producing ultra-high resolution orthomosaic and 3D models of the 

under-ice surface. 

Surface topography is a well-known factor driving spatial distributions in many marine ecosystems 

(e.g., Dustan et al., (2013)). Under-ice, the potential of high-resolution HI and 3D data fusion could 

contribute to new opportunities to monitor some of the sea-ice biophysical interactions which were 

previously difficult to capture. The effects of under-ice topography on sea-ice algal biomass 

distributions has long been queried and investigated (Gutt, 1995; Krembs et al., 2002, 2001). Recent 

studies have further observed and inquired about the role of under-ice topography and underlying 

currents on algal biomass distribution at multiple spatial scales (Katlein et al., 2015b; Lange et al., 

2015; Lund-Hansen et al., 2016). Hydrodynamic shadows can foster the accumulation of diatoms, 

algal aggregates, and may also provide shelter for under-ice fauna (Fernández-Méndez et al., 2018; 

Hop and Pavlova, 2008; Werner, 1997). The RGB imagery not only can provide under-ice roughness 

but it could also serve to gain further insight into grazing dynamics by sympagic fauna (Figure 4.8). 



119 | P a g e  

 

The effects of sea-ice structure and physical properties also go beyond effects on biomass 

distribution and are known to influence algal photophysiology, species composition and production 

(Arrigo et al., 1995; Arrigo, 2017; Fernández-Méndez et al., 2018; Leeuwe et al., 2018). Although 

intrinsically different from some of the Arctic examples cited above, the dataset presented here 

clearly illustrates a complex biophysical scene for Antarctic land-fast sea ice even within a square 

meter area (Figure 4.9 and 10). For example, we found large secondary brine channels to 

characterize specific areas of the scanned transect (Figure 4.6). These augmented transmitted light 

conditions that showed localized maxima of up to one order of magnitude (Figure 4.7). The question 

arises whether these under-ice features have an impact on algal distribution, species composition, 

and/or photophysiology, or if they play any role in hydrodynamic regimes and under-ice grazing 

dynamics. The presented methodology may contribute to a better understanding of some of these 

complex biophysical interactions. 

4.4.4 Caveats and future challenges 
 

Our sliding system has been designed for deployments over relatively smooth under-ice bottoms. 

Nonetheless, the principles of operation of HI and digital photogrammetry remain applicable to any 

ice type, provided that under-ice light levels are sufficient. In cases where the sliding concept is not 

applicable (e.g., rough pack ice), platforms will need to be equipped with sensors to accurately trace 

HI sensor attitude and dynamics. 

In this study, the HI payload was operated under thick (1.8 m) and almost snow free fast ice (Figure 

4.6). To account for low under-ice irradiance levels (0.35± 0.20 W m-2) the system was operated at 

extremely slow scanning speeds (0.008 ms-1). These irradiance values are comparable to under-ice 

light levels and variability for Arctic fast-ice during spring (Nicolaus et al., 2013), and help to provide 

a baseline for the range of under-ice irradiances intensities for which our payload could acquire 

meaningful HI signals. However, many other sea-ice conditions remain to be explored (e.g., with 

deep snow packs) and which may pose significant technical challenges. Low light levels will push 

sensors to their sensitivity limits, necessarily affect SNR and hinder the integration of pushbroom 

HI payloads onto more efficient and dynamic underwater platforms, such as ROV and AUVs. A series 

of studies have already employed pushbroom HI sensors for seafloor mapping using ROVs (Dumke 

et al., 2018b, 2018a; Foglini et al., 2019), diver operated systems (Chennu et al., 2017) or unmanned 

surface systems (Mogstad et al., 2019). A first study has also discussed HI feasibility onto Unmanned 

Underwater Vehicles (AUVs) (Sture et al., 2017). However, these applications positively benefitted 

from artificial light sources that illuminate the imaged scan line, or were performed in shallow, clear 

tropical waters. For mapping under-ice environments, there is a trade-off between sensor 

integrations times, imaging frequencies, and platform dynamicity under low light conditions that 

will need further investigation (Cimoli et al., 2017c or Chapter 2).  
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The inclusion of underwater IMUs, relative positioning systems, and implementation of targeted 

under-ice pushbroom HI orthorectification methods will open up new avenues for this type of 

research. While active lights sources could be eventually considered for under-ice mapping, the 

resulting mixture between reflected and transmitted light through a complex and translucent 

medium would render data processing and interpretation extremely challenging. In fact, our system 

features a set of artificial light sources as shown in Figure 4.5b and schematized in Figure 4.4. Using 

a custom-built control (Figure 4.4), the LEDs were tested and observed to provide a slight increase 

in the measured signal. However, it was preferred for the scans here presented to avoid their use to 

avoid complicated data interpretations. The effect of strong LEDs on relatively low-light adapted 

algal communities could also question the invasiveness of the methodology.  

Additional challenges arise due to the complex nature of sea-ice optical properties and the resulting 

anisotropic under-ice light field (Katlein et al., 2016, 2014). The anisotropic light field is shaped by 

the lamellar sea-ice features funneling light in the downwards direction creating a forward peaked 

light field. Lamellar structures associated with columnar ice were clearly observed in our site (e.g., 

Figure 4.8). Analogous above surface HI applications (e.g., equipped onto UASs) have acknowledged 

the impact of an anisotropic leaving reflectance on the retrieval of biochemical parameters using 

spectral data (Aasen and Bolten, 2018; Buchhorn et al., 2016; Zhao et al., 2015). In this study, we 

experienced noise artefacts over block B sample processed images as an increase in noise patterns 

at the upper and bottom edges of the image. This is most likely inherent to camera optical design 

and sensitivity heterogeneity across the spatial dimension, but it could also be in part attributed to 

light-field anisotropy. A forward peaked light field could mean a stronger signal at the center of the 

line scan and a decreasing signal towards the edges of our ~30 FOV. However, other possible causes 

should be taken into consideration (e.g., data processing artifacts) or the dense oxygen bubble layer 

causing multiple refraction effects (Figure 4.8). Eventually, the impact of an anisotropic under-ice 

light field, or other particular environmental conditions (e.g., oxygen bubbles), on HI data will need 

to be further assessed, and corrections developed towards improved estimates and interpretations.  

We did not apply any corrections for the water column effects to either the RGB imagery or to the 

HI data processing workflow. This is acceptable as the water column in between the ice and the 

enclosure was < 1.1 m and our site was characterized by exceptionally clear waters (see Figure 

4.5c). Antarctic surface waters are generally considered to have low particle loads with low 

backscattering (e.g., [121]). Nonetheless, as we increase sensor distance from the target, or in case 

of consistent under-ice phytoplankton abundance (e.g., [122]), the impact of the water column 

should be addressed with standard color correction approaches for RGB imagery (Åhlén et al., 2007; 

Bryson et al., 2015; Johnsen et al., 2013) and for the water column correction of hyperspectral 

radiometric data if possible (Johnsen et al., 2013; Yang et al., 2010). 

Our sea-ice site also benefitted from optically “favorable” conditions where biomass was high and 

resided mostly in the bottom 3 cm of the ice. Due to the scattering properties of sea ice, the bottom 

3 cm algal layer can be considered as an evenly illuminated “thin” sheet that was scanned with our 
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payload. While ice algal biomass is known to be generally concentrated at the ice bottom, where 

organisms enjoy more favorable living conditions (Arrigo, 2017; Meiners et al., 2012), there are 

many circumstances of vertically variable distributions (Meiners et al., 2012). Future applications 

of HI for sea ice with a certain degree of vertical biomass variability (e.g., in Antarctic pack ice) will 

need to consider these effects. Due to the scattering nature of sea ice, biomass in the sea-ice interior 

will probably have a negative impact on discernible spatial resolutions and image interpretation. 

Larger protruding algal filaments that are only loosely attached to the subsurface of the ice could 

also be a problem under dynamic currents for both HI and RGB imagery. In our case, filaments did 

not represent a significant problem as they were relatively short and under-ice currents during 

scanning seemed monodirectional, thus providing a relatively still scene (Figure 4.8). Finally, the 

feasibility and performance of HI to capture biomass variability under the extremely different 

biomass ranges found in the sea ice need to be assessed. A compilation of biomass ranges found in 

sea ice can be found in Arrigo (2017). A previous experimental study has shown HI to be able to 

discern biomass ranges as low as 0.036-2.72 mg m-2 (Cimoli et al., 2017a or Chapter 3), but much 

more work is required to investigate the impact of different concentrations on per-pixel SNR and 

regression algorithms performance.  
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Chapter 5 

Hyperspectral imaging of sea ice cores to map microspatial 

variability of ice algal biomass 

 

5.1 Introduction 
 

Sea ice is a porous multiphase medium whose interstitial environment is inhabited by diverse 

phototrophic algal and heterotrophic communities (Arrigo, 2014). Sea-ice algae generally dominate 

ice-associated biomass and form the foundation of the polar marine foodwebs (Arrigo, 2017; 

Meiners et al., 2018; Tedesco et al., 2019). The dynamic and multiphase nature of sea ice imposes 

strong horizontal and vertical gradients of its physical properties, such as temperature, salinity, 

porosity and light availability (Petrich and Eicken, 2016; Sturm and Massom, 2016). These gradients 

continuously vary over time, fundamentally driving variations of ice algal biological properties (e.g., 

abundance, physiology, and community composition) (Arrigo, 2017; Meiners et al., 2012).  

Ice algal biological properties are known to be extremely variable over space and time at spatial 

scales from kilometers down to millimeters (e.g., Cimoli et al., 2017c or Chapter 2; Meiners et al., 

2012). Whilst most of the ice algae biomass generally resides at the ice-ocean interface, ice algae 

can also be found in interior and surface sea-ice layers (Arrigo, 2017; Meiners et al., 2012).  

A mechanistic understanding of the sub-mm spatio-temporal organization of algal biomass in sea 

ice is lacking, thereby limiting our ability to quantitively predict and thus extrapolate its evolution. 

One reason perhaps is the lack of methods capable of non-invasively tracking algal biomass across 

different scales, both vertically and horizontally, concurrently with its physical drivers.  

Biophysical properties refer to the dynamically coupled sea-ice physical and biological attributes. 

There is evidence that dominant scales of variation for under-ice biophysical properties can range 

from the micro-scale- (0.001 m2) to the mesoscale (10 m2) (Ambrose et al., 2005; Lund-Hansen et 

al., 2016; Rysgaard et al., 2001), which cannot be practically be resolved using point-based sampling 

methods (e.g., Forrest et al., 2019; Lange et al., 2017). Traditional sea-ice field sampling methods 

include ice coring (Miller et al., 2015), under-ice bio-optical sensing techniques via L-arms (e.g., 

Campbell et al., 2014; Melbourne-Thomas et al., 2015; Mundy et al., 2007; Wongpan et al., 2018) or  

unmanned underwater vehicles (UUVs) (Cimoli et al., 2017c or Chapter 2; Lange et al., 2016a; 

Meiners et al., 2017). The use of under-ice optical sensing from UUVs has extended the spatial 
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coverage of algal surveys (e.g., covering meso- to floe-scale areas), although resolutions still remain 

coarse as a result of single-point sampling of underwater radiance (or irradiance) sensors (Forrest 

et al., 2019; Lange et al., 2016a; Meiners et al., 2017).  

There is a clear gap in field-sampling methods that permit the quantification of fine-scale horizontal 

and vertical distributions or dynamics of ice algae biomass. Accurate, quantitative hyperspectral 

imaging is one method that can help to identify both a) the drivers of the sea-ice biomass structure, 

and b) assessing the spatial the variability that is relevant to larger scale analyses.  

Hyperspectral Imaging (HI) can be used to quantify biogeochemical properties of a target in each 

spectrally-resolved pixel within an image (e.g., Aasen et al., 2018; Aasen and Bolten, 2018; Johnsen 

et al., 2013). In situ HI is revolutionizing the scales of observation of both terrestrial (e.g., Anderson 

and Gaston, 2013; Mitchell et al., 2012; Turner et al., 2018) and marine (e.g., Chennu et al., 2017, 

2013; Mogstad et al., 2019) ecosystems. HI can also be used under controlled laboratory conditions 

to scan specific samples from the target so we can better understand its spectral behavior and 

baseline it measurements taken in situ. This permits us to gain detailed understating of any 

particular subject interaction with light but also allows to capture dimensions and dynamics that 

are not visible from the in situ surface perspective (e.g., vertical variability). 

Some examples include scanning of glacial ice cores to detect chemical impurities (Garzonio et al., 

2018), scanning of soil cores to map fine-scale organic carbon hotspots (Hobley et al., 2018), and 

scanning of sediments to determine pigment concentrations in microbial phototrophs (Butz et al., 

2015; Chennu et al., 2015).  

We have recently demonstrated how HI can qualitatively capture biomass variability at sub-mm 

spatial resolution in artificial laboratory ice (Cimoli et al., 2017a or Chapter 3) and in situ under 

Antarctic fast ice (Cimoli et al., 2019 or Chapter 4). Cimoli et al., (2019) describes an under-ice 

mobile payload capable of delivering rectified sub-mm resolution hyperspectral swaths of the ice-

water interface. 

However, these previous studies of HI in sea ice lack a quantitative estimation of chl-a abundance 

resolving only relative abundance estimates using explorative methods such as Principal 

Component Analysis (PCA) loadings as proxies. In this research we extend the HI method to map 

the fine-scale vertical distribution of sea-ice algae through optical quantification of chl-a. Spectral 

indices, based on transmittance measurements of ice-core sections are tested through regression 

models against extracted chlorophyll-a values. The retrieved regression models can then be applied 

to the hyperspectral imagery acquired both in situ, and to the ice cores itself to retrieve quantitative 

chl-a concentrations for each pixel in the images, thus extending our capabilities for scalable 

observation of under-ice habitats. 
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5.2 Materials and methods 
 

5.2.1 Hyperspectral imaging 
 

The method proposed here employs light (e.g. from an artificial LED light source) transmitted 

through the vertical axis (longitudinal) and horizontal (lateral) sections of an ice core (Figure 5.1a). 

Sea-ice in an optically complex and translucent, medium that allows us to conceptualize retrieval of 

bio-optical properties from measurements in transmittance mode (Perovich, 2017, 2003) from 

across section of the ice core. Sensing of transmitted radiance, rather than reflected, aims to emulate 

under-ice close-range bio-optical remote sensing approaches to estimate chl-a quantities in sea ice 

(Cimoli et al., 2017c or Chapter 2; Mundy et al., 2007).  

The proposes ex situ HI set-up consists of a push-broom hyperspectral imaging scanner (AISA 

Kestrel, Specim Ltd) mounted onto a motorized rail (Revolve Camera, USA) with the optics (F/2.8, 

40° wide) focused on a sample holder beneath the scanner (Figure 5.1a). The scanner moves at a 

constant speed whilst capturing spectral data within frames of approximately 0.45 mm resolution 

with a spectral range of 400-1000 nm at 1.7 nm resolution. Depending on the sea-ice characteristics 

and study objectives, one can select the thickness and shape of the ice core samples to scan and 

sections are placed within a black box to reduce influence of external light (Figure 5.1a). Considering 

the ice sample thickness and shape, the AK10 camera settings and motorized slider speed can  be 

precisely tuned to maximize transmitted signal to produce natively rectified imagery with pixels of 

standard geometry (i.e., square and not distorted).   

The right distance from the camera entrance lens to the imaged target is required to keep most of 

the core volume in focus. A test pattern/grid was used to keep most of the sample’s target thickness 

within the focal depth of the optics (Figure 5.1e). 

Two different LEDs were employed as artificial light sources to illuminate the cores. These included 

a white LED, constituting the typical dual peaked spectrum shape (Figure 5.1b) and a solar LED, 

designed to resemble the solar spectrum (Figure 5.1c). Using two different LEDs gave us the ability 

to test the robustness of the method independent of the light source in order to be able to assess 

how scans using different lights might be combined or compared. The LEDs were set to emit at 

relatively low intensity, yielding Ed, PAR of < 30 mol s-1 to avoid potentially harmful effects of 

excessive light exposure to algal communities which are typically dark adapted. Reducing the light 

intensity  comes at the expense of signal to noise ratio (SNR), however it does provide us with 

comparable SNR to in situ under-ice hyperspectral scanning environments which are acquired using 

only passive light transmitted through the sea ice to support transferability of retrieved relationship 

to in situ imagery (Cimoli et al., 2019 or Chapter 4). 
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Figure 5.1 An overview of the data acquisition workflow and hyperspectral imaging optical set-up. (a) 

The ice core scanning set-up based on transmitted artificial illumination. (b) and (c) illustrate the mean ± 

standard deviation of radiance (L) emitted by the white and solar LED lamps entering the acrylic glass 

tray surface, respectively. d) 3D model reconstruction using Structure from Motion (SfM) digital 

photogrammetry on horizontal bottom-core sections. e) Ice core sample preparation for hyperspectral 

image acquisition along vertical and horizontal ice-core surfaces. A total of 6 vertical scans and 54 

horizontal scans were acquired in this study. 

The optical set-up illuminates the entire sections of the core with a diffuse and homogenous light. 

Figure 5.1b and c present the radiance mean ± standard deviation (sd) of all pixels across the imaged 

acrylic surface area. This homogenous light field was established by selecting the appropriate 

distance between the ice core and the LED (approx. 20 cm in this example) and including a semi-

opaque white glass substrate diffuser (Figure 5.1a). The core sections were placed on top of a 15 x 

15 cm acrylic glass tray inside a black box to reduce external light contamination(Figure 5.1a). 
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Field measurements in were conducted inside a dark and generator powered shipping container 

used as laboratory. Nevertheless, measurements could also be performed on a dark tent, with the 

system being powered using an appropriate battery supply system. The measurement set-up is 

flexible and easy executed by a single operator. 

5.2.2 Study area and ice coring 
 

A field camp was established at Cape Evans, Antarctica (77.637 ° S, 166.401° E), from the 14th of 

November to the 5th of December 2018. The sea-ice across the study area was characterized by a 

homogenous thickness of 180 ± 1 cm, except for occasional ridged or crack areas. The distinct 

under-ice biophysical environment was visually explored using a Seabotix LBV-300 Remotely 

operated Vehicle (ROV) (Teledyne Marine, Seabotix, California, USA) which is further described in 

the results section 4.1. 

Sea-ice surface conditions in the area were typically snow-free due to wind-induced drift and 

displacement. Few snow patches were present and were categorized as with a 0.5-1 cm hard old 

snow layer or 1 to 5 cm compacted snow relief. These conditions remained consistent during the 

21-day study period.  

Forty-two ice cores were extracted using a Kovacs Mark V ice corer (14 cm internal diameter).  

Cores were extracted between the 19th of November to the 2nd of December and are sequentially 

numbered as per extraction. Of the 42 cores extracted, 22 were taken from bare ice (snow free) 

areas, 12 from the area with 0.5-1 cm thin snow covering , and 7 cores on the 1-5 cm snow drifts, 

and 1 on a 10 cm snow patch. After retrieval, the bottom ~60 cm of each core was immediately cut 

off using an ice saw and sealed into a black food-grade plastic bag to protect them from sunlight and 

promptly taken into the dark field laboratory for HI analysis and further processing.  

Structure from Motion (SfM) digital photogrammetry was tested on the bottom surface of selected 

sea ice cores to capture the microtopography of the 0.015 m2 horizontal sections of the ice core 

(starting at the ice-water interface) (Figure 5.1d). SfM is simple way to obtain highly resolved and 

scaled 3D models of objects or surfaces of interest using a set-of overlapping pictures and a 

photogrammetric software. Bottom cores images were collected with a Nikon D500 digital camera 

and Tamron SP 90mm F/2.8 Di MACRO 1:1 VC USD macro lens. We used Agisoft Metashape software 

for processing, and followed standard workflows as outlined in the software (Agisoft Metashape 

User Manual - Professional Edition, Version 1.5, n.d.). Models were scaled using known lengths and 

distances within the ice cores. 

5.2.3 Hyperspectral image acquisition 
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5.2.1.1 Vertical ice core sections 

 

For this study, vertical scans of 6 of the 42 ice cores were acquired with a length of 9 cm (Figure 

5.1e). The solar LED lights were only used for the vertical scans. HI imaging frequency was set to 10 

Hz with an integration time ranging from 90-99 ms in combination with a sliding rail speed of ∼0.4-

0.5 cm s−1. We did not apply any in-camera spectral binning and this resulted in a native spectral 

resolution of 1.7 nm (356 bands). Spatial binning was applied to reduce the image to 1024 pixels 

across the scanning direction (seen in Figure 5. 1) in order to boost SNR and gain additional depth 

of field (DoF).   

The entrance pupil of the camera was located approximately 55 cm from the center line of the core 

(Figure 5.1e). Across-track scan lines were around 40 cm with a spatial resolution of 0.039 cm and 

vertical cores width covered 360 pixels over the across-track scan line.  

5.2.1.2 Horizontal ice core sections 

 

Horizontal ice-core sections were prepared by cutting off the lower-most 3 cm (Figure 5.1e) section 

from the core. This sampling was done for all 42 cores. Six selected cores from the 42 were 

additionally processed by sectioning the core at 3 cm intervals starting at the ice water interface at 

0 to 3 cm, 3 to 6 cm, and 6 to 9 cm (Figure 5.1e). Such procedure provided additional twelve 

horizontal core sections for scanning, yielding a total of 54 horizontal core samples and allowed to 

explore horizontal variation of biomass deeper into the ice column, and to increase our sample size 

and range. The sections are placed with the bottommost part looking upwards (Figure 5.1e). All 

bottom 0-3 cm sections were imaged.  

No in-camera spectral binning was applied, yielding a native spectral resolution of 1.7 nm (356 

bands). Spatial binning was applied to reduce to 1024 pixels across the scanning direction in order 

to boost SNR and gain additional DoF. Both LEDs were used intermittently for imaging, and different 

settings were used as per different light intensities. Eighteen sections scans were taken using the 

white LED. Imaging frequency was set to 15-20 Hz with 60-75 ms integration time and the sliding 

rail speed ∼0.8-1.1 cm s−1. Thirty-six section scans were taken using the solar LED. Imaging 

frequency was set to 10 Hz with integration time ranging from 90-99 ms and sliding rail speed to 

∼0.4-0.5 cm s−1. The entrance pupil to core surface distance was around 62 cm achieving an across-

track scan line of around 45.6 cm and a spatial of resolution of 0.044 cm which resulted in around 

80500 pixels per horizontal core surface area of 0.015 m2. 

5.2.1.3 Under-ice in situ 

 

In situ hyperspectral images were taken beneath the sea ice from the same locations from which the 

ice cores were extracted using an underwater HI and photogrammetric payload fully described in 
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(Cimoli et al., 2019 or Chapter 4). This tethered under-ice sled utilized the same AK10 camera as 

the ice-core scanning set-up. The system was designed to capture both hyperspectral imagery and 

fine scale topography along 20-40 m transects at sub-mm spatial resolution. To fulfil the purpose of 

this study, we selected a small 60 x 70 cm hyperspectral image subsample, namely block B, from a 

transect which was presented previously in Cimoli et al., (2019) and Chapter 4. This image region 

exhibited highly variable biomass distribution as well as interesting cavities and reliefs in the 

under-ice topography. For block B image acquisition, both spatial and spectral dimensions were 

binned at-sensor. This yielded a native spatial resolution of 0.0624 cm, and a spectral resolution of 

3.5 nm (178 bands), respectively.  

5.2.4 Hyperspectral image preprocessing and exploration 
 

The image preprocessing and exploration workflow is illustrated in Figure 5.2. All of the acquired 

raw imagery was converted from Digital Numbers (DN) to radiometric values of upwelling 

transmitted radiance 𝐿𝑡 (λ, mW m2 sr−1 nm−1) (Figure 5.2) as per standard procedures (e.g., Aasen 

et al., 2018) and as previously described for this environment in Cimoli et al., (2019) and Chapter 4. 

All horizontal and vertical imagery of cores were manually masked to ensure that only pixels within 

the ice-core surface were analysed. Spectral sub-setting was applied to keep only Photosynthetically 

Active Radiation (PAR) between 400 and 700 nm. This allowed us to focus on chl-a absorption 

features, which boosted processing time and reduced noise interference outside of this range. This 

resulted in 89 spectral bands for the in situ imagery and 179 for the core imagery. 

For HI studies of sea ice, Principle Component Analysis (PCA) has been used to capture per-pixel 

fine-scale spatial variability of the first two principal components (PCs) scores embodying light 

intensity variability and biomass proxies in both laboratory artificial sea-ice (Cimoli et al., 2017a or 

Chapter 3) and in situ (Cimoli et al., 2019 or Chapter 4). Mean-centered PCA was employed here on 

the pre-processed imagery of both vertical and horizontal ice core sections (Figure 5.2). Each pixel 

of the image adds up as a sample into the PCA algorithm. In order for PC scores to be comparable 

among different images of different cores, all vertical cores are pooled into a common PCA pixel 

sample pool and all horizontal cores sections were pooled together into a separate pixel sample 

pool. Pixels from vertical and horizontal core sections are not pooled into the same PCA due to their 

different optical setting. No PCA was applied to the in situ imagery of block B as this was explored 

previously in Cimoli et al., (2019) or Chapter 4. 

Transmitted radiance, 𝐿𝑡(𝜆), of each pixel of the horizontal core sections, is normalized by the 

corresponding averaged LEDs radiance 𝐿 𝐿𝐸𝐷(𝜆) as shown in Figure 5.1a and b using the following 

formula: 

                                                                                       

                         𝑇(𝜆) =
𝐿𝑡(𝜆) 

𝐿 𝐿𝐸𝐷(𝜆)
     (4) 
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This provides spectrally resolved per-pixel directional transmittance over the entire core surface 

area (Figure 5.2a). The in situ block B image is also normalized to directional transmittance using 

the same formula but instead per-pixel 𝐿𝑑,𝑡(𝜆) is divided by the average of the highest intensity 

pixels within the image block, corresponding to an algal free cavity in the ice present 𝐿𝑑,𝑐𝑎𝑣𝑖𝑡𝑦(𝜆) 

(seen in Figure 5.2 as bright white spot): 

                                                                                

                        𝑇𝑑(𝜆) =
𝐿𝑑,𝑡(𝜆) 

𝐿𝑑,𝑐𝑎𝑣𝑖𝑡𝑦(𝜆)
    (5) 

 

This provides a proxy of light transmittance over roughly the last 5 to 10 cm of ice bottom (Figure 

5.2b). To reduce processing times and increase SNR, the Block B image was binned spatially in a  

2x2 array resulting in a resolution of 0.12 mm pixels. Per-pixel smoothing of all the core spectra 

(thicker, thus noisier) is done using a Savitzky-Golay low-pass filter (Savitzky and Golay, 1964; 

Schafer, 2011) with a polynomial order of 3 and frame length of 9 (Figure 5.2). The aim was to 

reduce noise in the transmitted signals without impacting on the shapes of spectral features 

associated with chl-a. The same filter is applied per-pixel to the block B image. 

5.2.5 Pigment quantification 
 

After scanning the ice-core sections with the hyperspectral imager, the samples were left to thaw in 

dark containers at 4°C . After thawing, the final melt volume was vigorously mixed to break up cell 

aggregates and 50 mL sub-samples samples were taken from agitated sample and were filtered onto 

Whatman GF/F filters using a diaphragm vacuum pump. The filters were then placed in ethanol for 

24 h extraction of chl-a. The extracted Chl a was measured according to methods described by Holm-

Hansen and Riemann, (1978) and as suggested in standard protocols (Miller et al., 2015) using a 

fluorometer (10AU, Turner design). Fluorometric chl-a estimates were in volumetric 

concentrations (ug L-1). In order to convert to areal concentrations (mg m-2), we multiplied the 

volumetric concentration by the total melt volume of the ice-core sections and divided this by the 

surface area of the 14 cm diameter core (0.015 m2). 

While a more complete suite of pigments could be retrieved through the processing and analysis of 

HPLC samples, in this thesis, the focus its given only to the application for the method for detection 

of biomass distribution in the form of chl-a only. Processing of HPLC data and the exploration of bio-

optical approaches for the discrimination of algal pigment compositions and photo acclimation 

strategies will be the subject of future studies (e.g., Johnsen et al., 1994). 
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Figure 5.2 A flowchart of the data-processing procedure to yield per-pixel biomass (as chl-a) estimates 

from hyperspectral imagery of core sections and in situ. a) and b) display the mean ± standard deviation 

of directional transmittance at 668 nm through an example ice core (ice core 37) and the under-ice 

imagery, respectively. The under-ice HI procedure is detailed in Cimoli et al., (2019) (Chapter 4). L(λ) 

stands for spectral radiance and T(λ) and Td(λ) for spectral transmittance and downwelling spectral 

transmittance, respectively. DN stands for Digital Number of raw imagery data. 
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5.2.6 Spectral indices 
 

Traditional and alternative spectral indices representing proxies of biomass abundance were 

regressed against fluorometric chl-a estimates. The aim was to retrieve a model that could be 

applied on a per pixel basis on the preprocessed imagery. In order to retrieve an index value for 

each core section, two approaches are available: (1) apply the index algorithm to the mean spectrum 

of all pixels of the core image, index(mean(spectra)) or (2) apply the index to each pixel spectrum 

of the image and then perform a mean of the index, mean(index(spectra)) (Figure 5.2). These will 

not be identical as the index formulae that use multiple wavelengths in algebraic structures will 

generally not be commutative. In addition, one aim of the regression is to apply it to a per pixel basis 

hyperspectral imagery retrieved in situ under low-light conditions (e.g., Cimoli et al., 2019 or 

Chapter 4). Thus, computing indexes based on an averaged and smoothed spectrum may not be 

adequate for application over individual pixel spectra in the images. Here we limit our analyses to 

apply and assess the model’s performance based on method (1) only, and we leave the comparison 

and assessment to a later stage.  

The mean of the spectra of all pixels within each preprocessed core surface is then performed 

according to method (1) (Figure 5.2). The mean directional transmittance spectrum ± standard 

deviation (sd) of an example horizontal core section (core 37) is shown in Figure 5.2a. For 

comparison, the mean spectrum ± sd of all preprocessed pixels within block B (which includes the 

ice core 37 sample location) is shown in Figure 5.2b.  

Sea-ice bio-optical studies have mostly relied on Normalized Difference Indices (NDIs) to relate 

under-ice transmitted spectra to chl-a (e.g., Lange et al., 2016; Melbourne-Thomas et al., 2015; 

Mundy et al., 2007). Here we calculate an NDI for each horizontal ice core section using the following 

equation: 

                                                     

                       𝑁𝐷𝐼(𝜆1, 𝜆2) =
𝑇𝑢(𝜆1)− 𝑇𝑢(𝜆2)

𝑇𝑢(𝜆1)+𝑇𝑢(𝜆2)
     (6) 

 

Where Tu (λ1-2) is transmittance at two selected wavelengths λ1 and λ2. Optimal NDI wavelength 

selection was done by calculating NDIs for all possible wavelength combinations, correlated with 

chl-a values and plotted them onto a Pearson correlation surface (Mundy et al., 2007). Two of the 

best NDI wavelength combinations were selected based on the following criteria: a good Pearson 

correlation coefficient (p), a wide separation across bands to avoid autocorrelation, and different 

areas including chl-a absorption features (e.g., 430-460 nm vs 650-700 nm area). 

This was followed by testing two additional integrative spectral indexes targeted to our study area 

and sensor set-up. The first one is the Area Under Curve (AUC650-700) calculated between 650-700 
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nm of the localized continuum removed spectrum (Malenovský et al., 2006; Melbourne-Thomas et 

al., 2015). And the second is the Area under curve Normalised to Constant Band depth (ANCB650-

700), also followed by localized continuum removal between 650 and 700 nm (Malenovský et al., 

2013). The localized continuum removal transformation on the spectrum is fundamental to enhance 

and standardize the specific absorption features of biochemical constituents (Kokaly and Clark, 

1999). It allows for the normalization of the transmittance spectra so that individual absorption 

features can be compared from a common baseline. Following continuum removal, we can calculate 

the AUC in the range between 650 and 700 nm with the following equation: 

 

               𝐴𝑈𝐶650−700 =
1

2
∑ (𝜆𝑗+1 − 𝜆𝑗)

𝑛−1

𝑗=1
(𝜌𝑗+1 + 𝜌𝑗)      (7) 

 

where 𝜌𝑗  and 𝜌𝑗+1 are values of the continuum-removed transmittance at the j and j+1 bands, 𝜆𝑗  

and 𝜆𝑗+1 are wavelengths of the j and j+1 bands, and n is the number of the used spectral bands. 

We can then calculate the ANCB650-700 index as: 

 

                     𝐴𝑁𝐶𝐵650−700 =
𝐴𝑈𝐶650−700

𝐶𝐵𝐷677
           (8) 

 

Where CBD677 is a constant band depth of the continuum-removed reflectance, generally at one of 

the spectrally stable wavelengths of strong chlorophyll absorption, 677 nm selected in this case.  

The range 650-700 nm was chosen to include the most sensitive area of chl-a absorption for our 

study area as seen from the transmittance plots (Figure 5.2a and b).  

5.2.7 Regression model development, evaluation and application 
 

Simple linear regression was employed to derive bio-optical relationships between integrated chl-

a from the horizontal core section scans and the spectral indices described above. Natural logarithm 

transformation was applied to chl-a (ln(chl-a [mg m-2])) to deal with the high range of values 

measured and with the high variance at high chl-a values (heteroscedasticity). This is a common 

approach in sea-ice bio-optical model development and allows for direct comparison across 

different studies developing indexes for under-ice biomass mapping (Lange et al., 2016a; 

Melbourne-Thomas et al., 2015; Wongpan et al., 2018). The constructed log-linear model takes then 

the following form: 
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                      ln(𝑐ℎ𝑙𝑎) =  𝛼 +  𝛽 (𝐼𝑁𝐷𝐸𝑋)     (9) 

 

In addition, as suggested in Chennu et al., (2013), we consider the incorporation of logarithmic 

transformation of an index into the model construction. In this way we can account for 

exponentially decreasing light intensity being transmitted through a scattering and absorbing 

medium, such as the bottom of the ice. Thus, we construct a log-log regression model taking the 

following form: 

                                                                             

                    ln(𝑐ℎ𝑙𝑎) =  𝛼 +  𝛽 (ln(𝐼𝑁𝐷𝐸𝑋))    (10) 

 

In order to evaluate the performance of each model, we consider the model calibration Root Mean 

Square Error (RMSE) and coefficient of determination (R2) for each model. To account for 

underestimation of the prediction power of the model by the calibration (or training) error, we 

include adjusted criteria such as the adjusted R2 and the Akaike Information Criterion (AIC) (James 

et al., 2013; Zhao et al., 2016). 

In addition, we perform a 10-fold cross-validation (CV) to determine how the learning procedure 

performs on independent data (James et al., 2013; Lange et al., 2016a). The data are subset into 10 

different random folds. The fitting of the model and the error calculations are then repeated 10 

times, one for each subset. Each time, nine folds (or subsets) of the data are combined to train/fit 

the model, and then tested to the 10th remaining fold (i.e., holdout data). 

Based on the results of the statistical analyses, we select the best performing model and apply it on 

a per pixel basis to a set of selected preprocessed horizontal ice-core surfaces (process seen in 

Figure 5.2). The same model was also applied to the preprocessed in situ imagery of block B (Figure 

5.2). Since the footprint of ice core 37 could be located within the block B under ice image using 

post-coring ROV imagery, it is utilized as validation point for a rough assessment of prediction 

accuracy in a completely unseen environment. No model was applied to the vertical core sections 

as we considered the relationship to be non-applicable due to the diverse optical setting. 

5.3 Results 
 

5.3.1 Under-ice habitat and ice core samples 
 

The under-ice habitat was characterized by a spotted pattern of large cavities and brine channel 

openings ranging in diameter roughly from 7 to 15 cm as seen in Figure 5.3a. This pattern of cavities 
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was visible up to 200 m from the ice hole in all directions, although there were visible occasional 

patches that portrayed little to none of these features. No platelet ice was observed during the 

survey period as previously experienced  at this site during other study periods (Lucieer et al., 

2016; Wongpan et al., 2018) (Figure 5.3a). Figure 5.3b illustrates the location of the block B image 

within the transect of the sliding under-ice HI system (Cimoli et al., 2019 or Chapter 4). SfM digital 

photogrammetry applied to the bottom of the ice cores surfaces successfully produced highly 

resolved and scaled 3D models of the under-ice bottom topography with unprecedented detail 

(Figure 5.3c-e). The broad-scale landscape seemingly portrayed the under ice sub-surface as 

relatively flat (also visible in Cimoli et al., 2019 or Chapter 4), whereas the SfM of the ice cores 

revealed the fine scale of some of the sea-ice biophysical properties (Figure 5.3c-e). These features 

included the sea-ice skeletal layer (characteristic of fast-ice), together with sub-cm sized brine 

channels (Figure 5.3c and 3d). Figure 5.3d illustrates a large-scale brine channel of 2.5 cm in 

diameter together with complex microscale reliefs associated with algal clumps, and other reliefs 

perhaps associated with localized refreezing events. Figure 5.3e captures one of the large brine 

cavity features, which is 12 cm in diameter and with a depth of 9 cm.  

Overall, for the 42 horizontal bottom core sections (0 to 3 cm), we observed a mean chl-a of 18.74 

mg m-2 (± 18.04), with a minimum of 1.1 mg m-2 and a maximum of 117.5 mg m-2. The six horizontal 

middle core sections (3 to 6 cm) yielded a mean chl-a of 0.61 mg m-2 (± 0.4), a minimum of 0.13 mg 

m-2 and a maximum of 1.2 mg m-2. Finally, for the six horizontal top core sections (6 to 9 cm), the 

mean chl-a was 0.64 mg m-2 (± 0.48) with a minimum of 0.14 mg m-2 and a maximum of 1.35 mg m-

2. 

Figure 5.3c-e shows the oblique view of the cores and highlights small-scale differences in biomass 

density within and across cores. For this study area, these differences seemed to be driven by 

species composition (e.g., algal strands vs interstitial, see Cimoli et al., (2019) or Chapter 4) and 

some of the ice physical features such as the presence of the cavity features. Immediately visible is 

the difference in overall biomass from the large cavity core 30 (3.37 mg m-2) and cores 17 (29.5 mg 

m-2) and 14 (27.7 mg m-2) in Figure 5.3. The ice algae community at the site was dominated by two 

diatom species, Nitzschia stellata, an interstitial species, and Berkeleya adeliensis, which forms short 

strands into the water column. Berkelya adeliensis is associated with dark spots or clumps visible 

across the oblique images of the ice-core 3D models (Figure 5.3c-d), while Nitzschia stellata 

dominates the interstitial lamellar structure of the ice (also visible in Figure 5.2a-b).  
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Figure 5.3 a) The distinct under-ice habitat encountered at Cape Evans, Antarctica during Spring 2018, 

characterized by scattered large cavity features varying widely in diameter and depth. b) Block B under-

ice image location and acquisition using the under-ice HI sliding system described in Cimoli et al. (2019) 

(Chapter 4). c), d) and e) display an oblique view of the bottom-core surface 3D models (top) and the 

complex micro-spatial variability of the under-ice structural features (below). Skeletal layer characteristics 

of land-fast sea are visible along with scale of observable brine channels and cavities. 
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5.3.2 Ice cores image exploration using PCA 
 

The results of the PCA applied to both vertical and horizontal sections of the ice cores are shown in 

Figure 5.4. PC loadings derived separately from the vertical and horizontal ice cores scans matched 

almost exactly with differences of <0.001% and were thus combined (Figure 5.4a). PC1 accounted 

for >99.8 % of variability and loadings clearly represented the shape of the LED spectrum used for 

image acquisition of the displayed sections (seen in Figure 5.1c). Per-pixel PC1 scores evidently 

mapped variability in light intensity transmitted through the core, consistent with what has been 

found in other studies (Cimoli et al., 2017a), and provide a proxy of ice transparency. PC2 loadings 

explained <0.05% of variability and remarkably resembled the chl-a absorption spectrum with 

absorption peaks in the 440 and 670 nm areas (Arrigo et al., 2014; Morel and Bricaud, 1981; 

Wongpan et al., 2018). PCs orthogonality dampened the influence of variability in light intensity, 

bypassing the need of normalization, and allowed PC2 to portray a good proxy of chl-a over the 

vertical and horizontal sections of the ice cores (Figure 5.4b). The impact of the core’s circular 

geometry, which induces inhomogeneity in light intensity being transmitted across the core width, 

is also reduced with this procedure. Additional PCs did not display any differentiable spectral 

characteristics at this stage and were therefore not investigated further. Figure 5.4 displays PCA 

results over three example vertical ice-core sections (cores 22, 42 and 30). Core 30 fully comprises 

one of the peculiar large cavity features and was further explored through its horizontal core scans 

(bottom, middle and top as per Figure 5.1a).  

5.3.3 Regression of spectral indices with chl-a and model selection 
 

The NDI Pearson’s correlation surface with chl-a is shown in Figure 5.5a and resembles patterns 

mapped using traditional L-arm surveys (e.g., Mundy et al., 2007). The selected optimal NDI 

wavelength combinations based on the described criteria’s resulted in NDI (587:621) and NDI 

(517:449) (Figure 5.5a). The relationships between tested spectral indices and ln(chl-a [mg m-2] are 

shown in Figure 5.5b-f together with corresponding regression lines and 95 % confidence intervals. 

Point sample origin (e.g., bottom, middle, top) and the utilized light source (white or solar LED) is 

also highlighted in the regression plots to assess any eventual influences on the derived bio-optical 

relationships. 

While all indices resulted in significant correlations (R2 > 0.5), ANCB650-700 and log(AUC650-700) 

indices performed considerably better than both NDIs and AUC650-700 for our study case (Figure 5.5). 

Table 5.1 further summarizes calibration and cross-validation performance of tested spectral 

indices linearly regressed against measured chl-a values and includes the retrieved model 

coefficients (α intercept and β slope). Based on both calibration and CV statistics, log(AUC650-700) 

functioned best, explaining up to 85% of variation. Log-transformation for the rest of the indices  
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Figure 5.4 Results of Principal Component Analysis (PCA) applied to three selected vertical ice-core 

scans (cores 22, 42 and 30). a) PCs loadings, PC1 accounts for >99.8 % of variation and loadings embody 

the spectral signature of the light source. PC1 scores map a proxy of light intensity. PC2 accounts for 

<0.05 % of variation and loadings are strongly associated with the chl-a absorption spectrum. PC2 scores 

map a proxy of biomass within the ice core vertical and horizontal dimensions. b) Horizontal scans and 

analysis of core 30 characterized by a large cavity feature (see Figure 5.3).Panels c)-f) illustrate zoomed 

views of selected features of interest such as brine pockets and channels inhabited by ice algae. PCA was 

performed separately on vertical and horizontal section data. 
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(e.g., log(NDI) and log(ANCB)) only contributed to downgrade the relationship performance and the 

display and analyses of such relationships was therefore omitted. We note that a similar index to 

the ANCB was previously suggested as a relative proxy of biomass in Cimoli et al., (2019) or Chapter 

4, namely the Area under curve Normalised to Maximal Band depth between 650-700 nm (ANMB650-

700) of the continuum removed spectrum (Malenovský et al., 2006). The only difference was that 

AUC was normalized by a constant wavelength across all spectrums rather the variable maximal 

(Yanez-Rausell et al., 2015). The difference between both was insignificant, with ANMB performing 

slightly worse and was therefore also omitted.  

 

Figure 5.5 Linear regressions between log-transformed fluorometrically-derived chl-a values and derived 

spectral indices using index computation method (1). Panel a) shows the Pearson correlation surface 

between all NDI waveband combinations and chl-a values displaying the selected optimal wavelengths. 

a) and b) illustrate NDI(587:621) and NDI(517:449) tested against sampled chl-a. d), e) and f) display 

regression performance of newly developed integrative spectral indices when tested against sampled chl-

a. All regression plots differentiate samples coming from different light sources (e.g., white versus solar 

LEDs) and vertical positioning (e.g., bottom, middle, or top). Regressions lines include 95% confidence 

interval of the coefficients (shadowed grey areas). 

 



139 | P a g e  

 

5.3.4 Mapping the microspatial variability of chl-a   
 

The predictive linear model built on log(AUC650-700) was applied to the preprocessed imagery of four 

selected ice core bottom sections on a per-pixel basis (see workflow in Figure 5.2). Coefficients of 

the selected model regressed using the log(AUC650-700) algorithm can be found in Table 5.1. 

Results from the algorithm application to the bottom sections of cores 18, 27, 30 and 42 are shown 

in Figure 5.6 along with their respective RGB composites. Sampled chl-a values of each ice core in 

both linear and log space are included in the figure for comparison. The average of all pixels within 

each of the four core samples are consistent with their respective sampled values and differences 

are <25%.  

This approach resulted in a quantitative map showing the variability within single ice core surfaces 

and the ability to compare results between different samples. Figure 5.6 emphasizes the extent of 

total biomass variability between cores that were extracted along a 30 m transect and shows how 

biomass variability patterns can drastically differ across cores. 

Results from applying the same model to the preprocessed in situ imagery of block B are shown in 

Figure 5.7. Figure 5.7a provides an idea of the scale of block B and depicts its location within the 

scanned Western transect that was described previously (Cimoli et al., 2019 or Chapter 4). An ice 

core footprint overlapping block B was also mapped with RGB imagery taken with a GoPro HERO5 

mounted onto the ROV following the under-ice HI surveys (Figure 5.7b). This single validation point 

is used to compare sampled vs. estimated chl-a in block B (Figure 5.7c). The mean of all pixels within 

the footprint visible in Figure 5.7c provide a value of 5.3 mg m-2 chl-a whereas ice core 37 yielded a 

value of 7.5 mg m-2 (2.2 mg m-2 difference) of chl-a. Figure 5.7c exemplifies a quantitative map of 

chl-a with a spatial resolution of 1.2 mm. 

5.4 Discussion 
 

During the period of our study at Cape Evans in 2018 the sea ice was characterized by a distinct 

under-ice setting featuring particular fine-scale biological and topographical pattern of brine 

channel openings. It was outside the scope of this study to explain the complex biophysical 

interactions driving these patterns, as the main aim was to highlight the capabilities of new 

methodologies to capture both physical and biological properties of this ice habitat. The wide range 

of topographical features (e.g., brine channel openings and large cavities) found in this area, 

together with two different types of algae patchily distributed over the under-ice surface made for 

an interesting first case study to showcase the potential of this methodology.  

PCA is commonly employed in hyperspectral image processing to detect features of interest or for 

reducing the dimensionality of an image data set. Here, PCA provided a straight-forward approach 
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to retrieve proxies of chl-a distribution in vertical and horizontal ice core sections (as PC2 maps) 

without the need of any complementary pigment data. 

Table 5.1 Results of analyses by the linear regressions models for estimating chl-a in sea ice based on 

traditional and newly adapted spectral indices for ice algal biomass mapping.  α and β refer to the 

regression model intercept and slope respectively. R2 refers to the coefficient of determination. RMSE 

refers to Root Mean Square Error. 

Spectral index α β Calibration Cross-validation (CV) 

R2 RMSE R2
adj AIC MSEcv RMSEcv 

NDI (587:621) 0.181 120.294 0.622 1.013 0.615 156.646 1.071 1.035 

NDI (517:449) -0.294 34.053 0.639 0.990 0.632 154.162 1.064 1.031 

AUC650-700 0.301 0.219 0.542 1.115 0.533 167.054 1.291 1.136 

ANCB650-700 -10.21 0.457 0.802 0.733 0.798 121.709 0.552 0.742 

log (AUC650-700) 0.537 1.01 0.857 0.623 0.854 104.224 0.394 0.628 

 

PCA results from the vertical core scans (Figure 5.4) showed that PC1 provided a finely resolved 

proxy of the ice core transparency, which is likely associated to its textural classification and brine 

volume (e.g. fluid content) but also in part to the amount of biomass (with also influences overall 

transmitted light intensity). For example, as we approach the very bottom of the core (at the ice 

water interface) the skeletal layer separates into individual ice lamellae and as a result the ice is 

more porous and coarser. The permeability of the skeletal layer results in considerable brine loss 

following retrieval of the ice core from the water. As the brine leaves the permeable layer, the 

difference between the ice-air refractive indices increases compared to ice-brine/seawater one, 

thus an increase in scattering occurs, resulting in less light being transmitted. The horizontal PC1 

perspective in Figure 5.4b and d shows how light transmission seems to decrease (from yellow to 

blue) as we move down to the bottom of the core (from 9 to 0 cm) consistent with a decrease in 

lamellar texture and as the skeletal layer establishes. 

PC2 score plots of the vertical core scans allowed us for the first time to visualize snapshots of fine-

scale vertical distribution of ice algal biomass (Figure 5.4). As expected, highest densities were 

observed in a very thin biofilm at the bottom edge of the skeletal layer. However, different 

microscale patterns can be observed further up into the 9 cm vertical sections; particularly within 

the first 0-3 cm of more permeable ice of the skeletal layer. PC2 maps for the large cavity core (ice 

core 30 in Figure 5.4) displayed a higher biomass through the center width and within the cavity, 

relative to the rest of the core. Looking at core 30 horizontal sections in Figure 5.4b, a decreasing 

biomass trend is then observable as the cavity narrows. This can possibly be attributed to the extra 

habitable ice surface that is exposed to the nutrient rich seawater. Nonetheless, the sampled 

biomass of core 30 was on the lower-end of the biomass scale, compared to the rest of bottom cores 

samples, which maybe a result of localized brine flushing and raises interesting questions about  

possible cavity-biomass interactions.    

PC2 loadings of both vertical and horizontal ice core scans further illustrated the widespread 

occurrence of brine pockets, channel openings and other brine-channel related structures (zoomed 
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for detail Figure 5.4c, e and f). Ice algae are known to thrive within these complex permeable 

networks (Arrigo, 2017, 2014) and their presence is highly correlated with sea-ice porosity and 

habitable pore space (e.g., Krembs et al., 2000; Li et al., 2016). Although no complimentary physical 

data are available for this study for validation, PC2 was able to illustrate these physical features  

and the associated ice algal biomass associated with them. 

 

Figure 5.6 Panels a-d) display the RGB composite of selected bottom-core sections (top) and the 

application of the best performing regression model to the respective preprocessed hyperspectral images 

(below). The best performing linear model was derived using the log(AUC650-700) index (see Table 1). 

Sampled fluorometrically-derived chl-a values of each core section are provided to indicate scale of 

magnitude of biomass to be compared with the mapped ln(chl-a[mg m-2]). High variability in biomass 

abundance can be observed within the 0.015 m2 core surfaces as well as across cores. 

We did not apply the regression model to the vertical ice-core scan as these were acquired in a set-

up that was deemed optically diverse and inhomogeneous in light intensity. There are practical and 

theoretical trade-offs associated with scanning the entire thickness of the core. However, the 

potential exists to address these limitations, through adequate image acquisition or targeted 

preprocessing workflows (e.g., spatially dependent transmittance normalization). Furthermore, 

while only the 9 cm of the entire core circular thickness were here scanned, the hyperspectral 

scanning concept is applicable for any desired core length or section morphology (e.g., slabs) with 
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adequate set-up modifications. Nonetheless, we note that our study area was characterized by a 

relatively simple composition of organic material, mostly algal derived, and simpler translucent 

lamellar texture common in fast-ice areas. PCA was therefore able to separate the variability in the 

light source spectrum from the variability of chl-a. This separation might not be as straightforward 

in areas of diverse sea-ice biogeochemical compositions (e.g., high detritus and CDOM 

concentrations) or for highly scattering and more granular sea-ice core sections, but for the fast ice 

bottom core sections sampled here the method was satisfactory. 

Thorough either explorative (PCA), or quantitative approaches (regression models), this method 

opens up the potential for investigating and parameterizing complex vertical bio-physical dynamics. 

For example, understanding how algae migrate through the ice whilst it is being formed and 

growing (Kauko et al., 2018; Meiners et al., 2012) and how established bottom ice algae respond to 

bottom ice ablation. This data, when combined with high resolution spatial and temporal data of 

temperature and salinity will allow for habitable space to be examined alongside nutrient fluxes, in 

order to understand how they impact on the vertical variability of algae distribution throughout the 

sea-ice season (Fritsen et al., 2011; Krembs et al., 2001; Li et al., 2016). In addition, this methodology 

could be applied to explore how ice algae directly respond to changes in their environment through 

vertical migration following either self-shading or unfavorable light conditions (Aumack et al., 

2014) or how they respond to unfavorable ice temperatures decreasing brine volumes (Lund-

Hansen et al., 2014). Capturing such fine scale dynamics using this HI approach is a more efficient 

and quantitatively accurate method than cutting ice cores using conventional methods, e.g. sawing. 

It also allows to extend imaging to larger areas compared to PAM fluorescence imaging techniques 

(e.g., Hawes et al., 2012; Lund-Hansen et al., 2016). 

Beyond the capability to qualitatively capture variability in chl-a proxies, the proposed 

methodology provided an alternative baseline for the retrieval of bio-optical relationships in sea 

ice. Previous HI studies in sea ice have focused on assessing HI suitability for ice algal habitat 

mapping, and lacked the availability of relationships applicable to the particular study environment 

(Cimoli et al., 2019, 2017a or Chapter 4 and 3 respectively). Indeed, bio-optical algorithms capable 

of mapping biomass in sea ice are usually derived from L-arms techniques (e.g., Melbourne-Thomas 

et al., 2015). L-arms equipped with radiometers measure relatively wide under-ice footprints of 

transmitted irradiance (or radiance) followed by the extraction of overlapping core samples to 

produce series of regression points (e.g., Cimoli et al., 2017c or Chapter 2 ; Lange et al., 2016). In 

general, derived relationships are limited in their transferability between study sites and between 

seasons, as differences in sea-ice and snow physical properties can considerably change the optical 

pathway of measured light along with ice algae photophysiological conditions (e.g., pigments 

composition and packing). This fundamentally determines the retrieved model coefficients, with 

considerable effects on the robustness of model to be applied to new datasets (Cimoli et al., 2017c 

or Chapter 2; Lange et al., 2016a; Melbourne-Thomas et al., 2015). Existing relationships retrieved 

from different sensors, which integrate radiance over large solid angles and greatly differing in 
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Signal to Noise Ratios (SNR), are arguably not compatible to the per-pixel radiance signals from fine 

scale HI pixels (e.g., Forrest et al., 2019).  

Here we employed our new ice-core scanning concept to compensate for some of the 

aforementioned caveats, but also for elaborating relationships that are suitable for HI sensors in an 

efficient manner.  

Using radiometer-equipped L-arms, several studies have produced significant linear relationships 

between ln(chl-a[mg m-2]) and spectral NDIs as a simple, yet effective, algorithm that yields 

relatively good correlation performance under various circumstances (e.g., Campbell et al., 2014; 

Lange et al., 2016; Melbourne-Thomas et al., 2015; Mundy et al., 2007). However, NDIs have not 

always have struggled to produce meaningful relationships, in particular, previous research within 

our study area and ice type (high algal biomass fast ice off Cape Evans) have struggled to formulate 

reliable bio-optical regression models (Forrest et al., 2019; Wongpan et al., 2018). This was 

attributed mostly to the presence of platelet ice, which during sampling, results in considerable 

biomass losses but also to the narrow biomass variability range experienced or perhaps sampled as 

a consequence of sloughing. Another reason could be attributed to the particularly high biomass 

concentrations found in the area (e.g., Wongpan et al., 2018) whereas high biomass concentrations 

are known to negatively affect linear relationships through the saturation of various vegetation 

indices (e.g., Malenovský et al., 2013; Tan et al., 2018; VESCOVO et al., 2012). In response, we further 

explored the performance of alternative spectral indices that could better suit the encountered sea-

ice biophysical conditions at Cape Evans, and that take full advantage of the HI potential (high 

spectral resolution). 

Using our ice core scanning set-up, we found that the two optimal NDIs selected for our study at 

wavelengths combinations, 587:621 and 517:449, performed relatively well in explaining up to 

62% and 63% in biomass variability respectively. Results are not be compared with previous 

studies in the same area using L-arms, as sea-ice conditions were drastically different (Forrest et 

al., 2019; Wongpan et al., 2018). This HI scanning method poses an advantage in that what is 

spectrally measured is then sampled in full, with no biomass loss through the coring and 

measurement procedure that is caused by brine drainage or platelet slough off. Another advantage 

is that we are able to precisely contour relevant per-pixel radiance and operate within the exact 

surface area that is being sampled for chl-a.  

Despite being able to produce significant correlations with biomass, both NDIs and AUC650-700 

seemed to suffer considerably from index saturation at the medium to high biomass values dataset 

(> 1 ln[chl-a mg m-2]), as seen Figure 5.5b-c. These values relate mainly y to the bottom cores which 

dominated most of the dataset samples.  

An alternative integrative index, ANCB650-700 was tested in this research and performed very well 

(Figure 5.5e). The spectral index exploits changes in the transmittance signature shapes produced 
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within 650-700 nm range. These wavelengths are expected to be related to changes in algal 

chlorophyll content.  

The high chl-a absorption associated with biomass abundance was more pronounced around the 

650-700 nm area, compared to the 440-450 nm one, where noise was dominant (Figure 5.2b). This 

was attributed to the highly concentrated bottom algal layer that following a 1.8 m thick ice cover, 

reduced light levels considerably to 𝐸𝑑,400−700 𝑛𝑚= 0.35 ± 0.20 (λ, W m-2), particularly in the 400 to 

500 nm visible range of the spectrum (Figure 5.2b). It is believed that the performance of the 

ANCB650-700 benefitted from the lack of snow cover (or its minimal presence). Snow is a strong 

absorber following the 600 nm mark (e.g., Perovich, 2007) and its presence is expected to have a 

negative influence on the retrieval of relationships for the 650-700 range of the spectrum. In fact, a 

limitation of the ANCB index seems to be the ability to retrieve chlorophylls below a certain 

threshold as the spectral influence of background features predominates (Malenovský et al., 2013).  

Log-transformation of the integrative index log(AUC650-700) outperformed ANCB and responded 

even better for biomass saturation by accounting for the exponential decrease in light being 

transmitted through the core sections as suggested by (Chennu et al., 2013) (Figure 5.5f). It also 

produced a more evenly distributed spread of the data points.  

Bottom chl-a concentrations in sea ice can range widely in both Arctic and Antarctic sea-ice (Arrigo, 

2017). Integrated values reported for Antarctic fast-ice range between <0.1 up to 219 mg m-2 

(Meiners et al., 2018). Considering the strong variability in biomass observed within single core 

surfaces (Figure 5.6) and in situ (Figure 5.7), sampling and averaging over smaller areas would help 

to increase the range of chl-a values available to produce regression models. This variability is 

suppressed if averaged through the entire ice 14 cm-diameter core surface. By including the 

horizontal core sections, sampled from 3 to 9 cm up in the ice core we were able to quantify ice algal 

biomass over a wider range of concentrations that fall within the range of patchiness visible from 

the under-ice perspective (e.g., areas surrounding large cavities) (Figure 5.3). Nonetheless, 

sampling chl-a over smaller surface areas that are referenceable in the HI products should be 

further pursued to support this aspect (e.g., reducing ice core diameters, or sub sectioning of 

horizontal cores slices).  

It was also found that the use of different artificial light sources with different spectra and 

intensities (Figure 5.1b and 1c), did not affect the retrieval of coherent correlations following 

normalization to transmittance. This indicates that it is possible to derive relationships by pooling 

data together from analogous scanning set-ups. Simple linear regressions based on spectral indices 

as the ones developed here are highly interpretable and perform well. However, as sea ice science 

continues to create ever-growing datasets, integrating samples from multiple seasons and areas will 

help to increase the value of this method. Only in time will we truly profit from the high 

dimensionality of hyperspectral data through the implementation of new statistical learning models 

that will increase the robustness of this method to understand the range of sea-ice biophysical 

conditions. 
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The log(AUC) model was applied to the preprocessed imagery and we were able to produce time 

highly resolved quantitative maps of chl-a (mg m-2) at mm scale resolution; both of extracted core 

sections and in situ under-ice (Figure 5.6 and 7). So far, surveys of ice algal biomass variability have 

been rather discrete in sampling resolution (e.g., 0.5-2 meters apart). Apart from ice coring surveys, 

broader footprints derived from different sensor types necessarily integrate in signal variance and 

therefore in biomass variability; variability which might be important to capture to understand 

processes that happen at the microspatial scale.  

 

Figure 5.7 Application of best performing regression model to the under-ice imagery. a) Framing of block 

B hyperspectral image subsample within the entire transect provides an idea of scale. b) Displays a GoPro 

HERO5 image taken post under-ice hyperspectral image acquisition and ice coring over block B. Panel c) 

shows the first attempt for quantitative mapping of chl-a by applying the log(AUC) index regression model 

on a per pixel basis to the preprocessed block B imagery. d) A high-resolution image of one of the large 

cavity features from block B and comprising an overlapping algal-web like structure. These algal-webs 

were common features on top of the cavities. 
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The chosen study site provided remarkable evidence of sea ice algae patchiness at multiple spatial 

scales, particularly at the microscale. For example, spatial variability within single ice-core surfaces 

(Figure 5.6) portrayed more heterogenous patterns compared to the <1 m2 image of block B (Figure 

5.7c). At the same time, chl-a variability measured across cores taken less than 30 m apart (for 

example, cores 18, 27 30 and 42 shown in Figure 5.6), was observed to be capable of varying of one 

order of magnitude and two orders of magnitude if we consider all cores taken across the entire 

area (e.g., max observed 117 mg m-2).  

Sampled vs predicted single estimates of chl-a on block B image pose an issue for the presented 

maps. It remains challenging to validate HI products at such fine-scales (mm size pixels) as 

comparative methodologies are lacking. Common ice coring devices can only sample up to a certain 

diameter size. PAM fluorescence imaging could offer some ground truthing although it can only 

provide biomass proxies for considerably smaller frames sizes (30 x 23 mm) and only on extracted 

cores (Hawes et al., 2012). Therefore, traditional sampling of chl-a over smaller surface areas that 

are referenceable within the HI products should be pursued to support this challenge. It will also 

help to increase the range of chl-a values available to produce regression models.  

Another aspect that has to be considered in future research, is that the applied relationships are 

derived by scanning the 3 cm thick layers only, and the remaining ~177 cm of the ice core was 

omitted from the analyses. This is was suitable approach for our study area as >98% of the biomass 

was concentrated within the bottom 3 cm of the ice ; a common feature for the fast ice off Cape 

Evans (McMinn et al., 2012; Ryan et al., 2006). In situ imagery were preprocessed accordingly by 

converting to transmittance through the last bottom centimeters of the ice thickness. This was 

achieved by normalizing by the transmitted radiance coming from the large cavity openings (Figure 

5.2). There are however different sea-ice types with more pronounced variations in vertical biomass 

variability (Arrigo, 2017; Meiners et al., 2012) and also sea ice that does not exhibit cavity features  

which were used for normalization in this study. The workflow presented here will therefore 

require modification for different ice environments. These modifications might include the 

integration of scans from core sections higher into the ice core, artificially coring cavity-like 

features, or normalizing irradiances using simple radiative transfer models to account for the 

unsampled ice (e.g., Arrigo et al., 1991; Forrest et al., 2019; Hamre et al., 2004). 

Overall, while there is still considerable methodological research to be done before HI becomes a 

standard operating procedure for sea-ice algal biomass mapping, we have here shown successfully 

how the combination of data from of sea-ice cores and in situ HI can be used to map and explore this 

crucial polar habitat. When combined with SfM digital photogrammetry, fine scale biomass mapping 

can support an improved understanding of the effect of under-ice topography, crystal orientation 

and roughness on sea ice algae biomass patchiness (Cimoli et al., 2019 or Chapter 4; Krembs et al., 

2002, 2000; Lund-Hansen et al., 2016). At medium to large scales, studies have already correlated 

the effect of water currents coupled with topographical features to induce particular biomass 

distributions (Dalman et al., 2019; Katlein et al., 2015b; Monti et al., 1996). At the boundary layer, 
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effects of shear stress from underlying currents and nutrient exchange processes on biomass 

variability at the microscale remain understudied.  

It was observed at our study site how biological properties of a community, such as species 

composition, can further contribute to the complexity of spatial variability patterns. Different 

species can conglomerate into biomass clumps held together by extracellular polymeric substances 

(EPS). These strand communities are then interspersed among the more diffusely distributed 

interstitial communities, leading to strong small-scale biomass gradients (Figure 5.7c). The role of 

the large cavities and their interactions with algal communities is yet to be assessed. While they can 

provide additional surface area for the algae to colonize, these cavities encompass radiance levels 

that are orders of magnitude higher than the average conditions, with unknown effects on 

surrounding microorganisms (Cimoli et al., 2019 or Chapter 4). The processes responsible for the 

formation of these large cavities remain unknown at this stage, as per lack of complementary sea-

ice physical data. From the retrieved imagery, algal strands are often visible covering  these 

cavities in web-like formations (Figure 5.7d), thus raising questions on the biophysical interactions 

taking place on such features. Fine scale sea-ice biophysical dynamics can further complicate the 

causation effects if we consider that ice algal growth can potentially create a feedback to changes in 

sea-ice physical properties through heat absorption and melting (Zeebe et al., 1996) or through EPS 

production affecting ice microstructure (Krembs et al., 2011).   

Finally, the influence of grazing from pelagic feeders can also play a role on patchiness and 

distribution although little is known about their quantitative influence at any scale. Time-lapse 

approaches coupling under-ice HI and RGB systems (Cimoli et al., 2019 or Chapter 4), integrated 

with ice core scanning, could further help assessing grazer-biomass interactions at relevant spatial 

scales. 

This method of transmittance HI under sea ice is still in its infancy and there are still considerable 

technical challenges to be overcome (Cimoli et al., 2019 or Chapter 4). This preliminary study 

highlights the potential for HI to be mounted onto either Remotely Operated Vehicles (ROVs) or 

Unmanned Underwater Vehicles (UUVs) to drastically increase the spatial and temporal mapping 

capability of under-ice environments (e.g., Johnsen et al., 2013; Mogstad et al., 2019; Sture et al., 

2017).  
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Chapter 6 

Conclusion and outlook 

 

Capturing the spatio-temporal variability of ice algal biomass concomitantly with its drivers 

remains crucial to advancing our mechanistic understanding of sea-ice ecosystems. Classical 

approaches have struggled to quantify patterns of biomass variability non-invasively at most scales 

of observation; particularly at the microscale (< 0.1 m). The lack of understanding of small-scale 

processes is detrimental for our extrapolation and predictive capabilities at larger scales. As a 

consequence, predictions of the future state of the sea-ice ecosystems remains associated with high 

uncertainties, with flow on implications to assess the future of polar marine food webs and high 

latitude biogeochemical cycling.  

Sea ice is known for its optically complex, yet translucent nature and this prompted the  

investigation to test the use of Hyperspectral Imaging (HI) technologies in transmittance mode to 

capture the fine scale variability of some of its biophysical properties. Through the development of 

an under-ice HI platform, and an ice-core scanner, this thesis paved the way for new ways to capture 

the microspatial variability of biomass proxies on both in situ and on extracted ice cores A workflow 

was developed to integrate the two approaches which allowed for the retrieval of bio-optical 

relationships linking spectra to sea ice core chlorophyll-a data. In addition, Structure from Motion 

(SfM) digital photogrammetry was analogously explored as part of the under-ice HI payload and on 

ice cores (using macro photography) to retrieve microscale under-ice bottom topographies with 

minimum additional effort. 

HI in transmittance mode applied to an optically complex medium such as sea ice was previously 

unexplored and involved a thorough assessment through gradual testing stages. This thesis covered 

the assessment of the methodology starting from pioneering laboratory simulations which 

informed the first in situ data acquisitions.  

In Chapter 2 the thesis provides a comprehensive literature review that covered both the 

motivations for decisions made in developing the methodology and the theoretical background 

under pinning its development. 

The environmental drivers of ice algal biomass spatial variability were reviewed and illustrated in 

a multi-scale spatial context. These were grouped into six categories; (i) sea ice formation, decay 

and age, (ii) sea ice structure, temperature, nutrients and salinity, (iii) under-ice topography, (iv) 

snow, light and surface properties, (v) grazing and (vi) regional characteristics. 
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Through systematically progressing through each of these studies, treating ice algal biomass spatial 

variability and its drivers, gaps in the understanding of how such drivers influence patchiness were 

identified. The review then emphasized the necessity to improve our sampling techniques to bridge 

some of these gaps. Compared to traditional ice-coring surveys, under-ice close-range remote 

sensing methods have emerged as a potential game-changing approach for mapping biomass in sea 

ice concomitantly with some of its drivers. Radiative transfer in sea ice, and the development of bio-

optical relationships that link measured spectra with chl-a, stand at the theoretical foundation of 

these techniques. Therefore, fundamental concepts of these two fields needed to be briefly 

examined, and previous studies developing chl-a-spectra relationships tabulated and reviewed. The 

great advantage of this close-range remote sensing technique is that it is non-invasive. This allows 

for change detection studies of biomass abundance together with other sea-ice properties in the 

same location, avoiding destructive analyses such as ice coring. 

A second advantage of the methodology is that sensors can be installed on Unmanned Underwater 

Vehicles (UUVs), thus paving the way to sea-ice biomass mapping at unprecedented spatial 

resolutions over the mesoscale (e.g., Meiners et al., 2017). Prior to this research project, only single 

point cosine corrected (irradiance), or finite angle (radiance) sensors have been employed to map 

light transmission through sea ice and to derive biomass (chl-a as best proxy) estimates. In 

comparison to standard point sampling radiometers, HI was presented in this review as a novel 

under-ice methodology that could augment capabilities of emerging under-ice bio-optical surveys 

to capture data in a spatially continuous dimension. This is extremely relevant if we consider the 

high variability of both ice algal biomass and sea-ice physical properties at multiple spatial scales. 

HI potential was thoroughly discussed from an under-ice remote sensing perspective. Distinct 

limitations and challenges arise for passive HI under-ice if compared to more established HI 

applications in terrestrial remote sensing. Some of these include the low-light availability beneath 

sea ice, imaging in transmission mode, anisotropic light fields and the general challenges of 

deploying optical instruments underwater. The trade-offs between typical remote sensing 

ambitions (e.g., high SNR, spatial and spectral resolutions and spatial coverage) and the particular 

technical (e.g., sensor specifications and deployment) and environmental constraints of the under-

ice environment (e.g., ice and snow conditions and water currents) were assessed and schematized. 

Indeed, as the developed survey-methodologies are to be conducted in technically limiting and 

logistically challenging conditions, it was important to assess whether adapting such technologies 

to polar under-ice environments was feasible in the first place.  

In Chapter 3, an experimental set-up consisting of an ‘inverted’ sea-ice simulation tank was 

presented and utilized to provide a first proof-of-concept of HI for ice algal habitat mapping. These 

first trials of HI technology captured transmitted light through an algal-colonized artificial sea-ice 

layer at unprecedented spectral (1.7, 3.4 and 6.8 nm) and spatial resolutions (0.9 mm square pixel 

size). Decomposition of the hyperspectral data through Principal Component Analysis (PCA) 

outlined two main components of variability in the images; the first (PC1) representing the intensity 

of the transmitted light and the second (PC2) representing a proxy of algal biomass across the ice 
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tank. The optical set-up provided by the sea-ice tank was compared to real in situ conditions. Light 

reaching the artificial ice-water interface was spatially variable (due to an inhomogeneous light field 

emitted by the light source) and diffuse. Integrated PAR values were compared to in situ 

observations to establish if the inverted sea-ice simulation tank presented an adequate optical set-

up for investigating the application of HI cameras for ice-algal studies.   

It was concluded that the conditions established generally resembled scenarios found in situ where 

the light field transmitted through the ice is highly diffuse (due to multiple scattering) and where 

intensity variations reaching the ice-water interface mimic variability in snow or ice thickness. In 

situ ice algal biomass is mostly concentrated at the ice-water interface with algae presenting 

multiple degrees of ‘patchiness’. This was also the case for the simulated ice tank due to the way in 

which the tank’s ice surface was inoculated.  

In this preliminary experiment, HI was able to differentiate between low and high biomass 

abundances and was validated over a discrete scale of six-cylinder units with increasing 

concentrations. Further observations, such as within-cylinder patchiness and algae leakage from a 

cylinder observed in the PCA analysis plots, suggested that HI can be used to discriminate algae 

variability at cm- to mm-scales. Our assessment of three different spectral resolutions indicated that 

while bandwidths of 1.7 nm and 3.6 nm successfully captured algae biomass spatial variability, 

bandwidths over 6 nm struggled to yield such differentiation. This suggested that a sensible sensor 

configuration is important for ice algal habitat mapping. 

Following laboratory trials, Chapter 4 introduced a novel modular, low-speed sliding system based 

on HI and digital photogrammetry for in situ under-ice habitat mapping. The particular “inverted” 

under-ice perspective posed new challenges and limitations to HI technology and these were 

thoroughly discussed in this technical study. It was demonstrated that the new system was able to 

map a ~20 m-long transects with geometrically consistent pushbroom hyperspectral imagery, 

together with overlapping Digital Elevation Models of the under-ice surface, at sub-mm spatial 

resolution. Despite the low irradiance levels experienced (𝐸𝑑,𝑃𝐴𝑅 = 0.35 ± 0.20  (λ, W m-2)), the 

developed HI payload attained suitable per-pixel under-ice signals for employing established bio-

optical approaches without the need of active light sources. Minor issues with the sliding system 

where experienced (e.g., occasional lagging and ski marks) that affected data acquisition along 

sections of the transect, but these seemed to be mitigated with system modifications and/or data 

processing techniques. Indeed, future work on this aspect will address the rectification and 

compilation of the remaining transect data. In particular, considerable potential is foreseen for the 

investigation of pushbroom image rectification approaches taken advantage of the generated RGB 

orthomosaics (e.g., co-registration).   

Chapter 5 describes a field-deployable sea-ice core hyperspectral scanning set-up. It is based on 

measuring artificial illumination transmitted through vertical (longitudinal) and horizontal 

(lateral) sections of the translucent ice cores. Through its integration with data retrieved under-ice, 

this chapter aimed to conceptualize new workflows to quantitively map biomass microspatial 
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variability both on cores and in situ. Using multidimensional exploration methods (e.g., PCA) on the 

acquired core imagery, it was shown that this approach can capture vertical and horizontal ‘snap-

shots’ of the microspatial distribution of chl-a proxies (PC2 , explaining <0.05 % variability). 

Advantageously, this method does not require any complementary pigment data input and shows 

considerable potential for investigating ice algal vertical dynamics. Coupled with mapping of light 

transmission proxies (as PC1 scores, explaining > 99.8 % variability), exploration methods further 

hinted at the possibility to relate principal components with some sea-ice physical properties (e.g., 

ice texture, porosity and brine channel structure). Nonetheless, without any detailed auxiliary 

physical data available, physical observations remained speculative.   

Following the assessment of targeted image preprocessing workflows, the set-up was further 

utilized as a benchmark station to test the regression of traditional spectral indices (NDIs) and 

alternative ones (continuum removed AUC650-700, ANCB650-700 and log(AUC650-700)) against chl-a 

values measured in melted ice core sections. The performance of the derived bio-optical regression 

models was statistically assessed and compared. It was found that log(AUC), an integrative spectral 

index that accounts for the exponentially decreasing light intensity being transmitted through the 

ice, performed best, explaining up to 85 % of variation in chl-a. The hyperspectral resolution 

potential to finely integrate over a predefined spectral range seemed to underscore the limitations 

of simpler normalized difference indices in our results.  

The best performing index was then applied to horizontal core scans and in situ imagery retrieved 

using the under-ice system. This constituted the first attempt to yield quantitative estimates of chl-

a (mg m-2) on a per-pixel basis. While preliminary observations show agreement between predicted 

estimates and sampled values, further validation efforts are required to assess the reliability of the 

approach both on cores and in situ. Sampling chl-a over smaller surface areas that are referenceable 

in the HI products should be pursued to support this aspect, and to increase the range of chl-a values 

available to produce regression models. 

Following normalization of spectra to relative transmittance, the adaptability of the ice core 

scanning system to merge data from different set-ups was also investigated (e.g., using different 

light sources). The positive results encourage the adaptation of similar systems to expand datasets 

derived from different sea-ice areas and seasons. In this way we can work towards the development 

of statistical learning models that go beyond linearity and increase robustness under diverse sea-

ice bio-optical settings.  

An aspect worth mentioning is that the fast ice explored in this study is comprised of a relatively 

simple optical set-up, whereby a highly diffusive light field homogenously illuminated a densely 

concentrated biofilm located at the ice-water interface (with at least >98% of the biomass occurring 

within the lowermost 3 cm from the ice bottom). Different vertical gradients in biomass are 

however possible, with sea-ice algae being able to migrate or grow further up into the first 0.1 m of 

ice, but can also thrive as interior or surface communities (Meiners et al., 2012). The effects of 

different vertical biomass gradients embedded into a highly scattering medium will need to be 
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assessed and is expected to have an impact on discernible spatial resolutions of the biomass proxies 

captured with HI (as can be expected when imaging an object within a translucent medium). Chl-a 

estimates retrieved using the under-ice normalization approach explored here might be affected by 

the vertical distribution of ice algal biomass within the sea ice. In particular, the cavity 

normalization approach presented in Chapters 4 and 5 consider only the lowermost 3 cm, and it 

will need to be put into question in future studies where biomass varies considerably over the 

vertical scale.  

6.1 Unravelling under-ice biophysical processes at Cape Evans 
 

Following on from Chapters 4 and 5, the techniques developed in this thesis have the potential to 

fill a niche gap in the investigation of some of the complex under-ice biophysical interactions and 

allow the development of intriguing new research questions. Considerable future work remains to 

be done with the under-ice data acquired during the 2018 campaign. The next steps will be crucial 

to exemplify the full potential of the developed systems to characterize patterns of biomass 

variability at unprecedented scales and to gain a better understanding of coupled physical-

biological under-ice habitat processes.  

The full set of transect data acquired at Cape Evans in 2018 will first be geometrically corrected, 

rectified and merged into a common coordinate system while exploring new means of co-

registering the RGB orthomosaics and HI data along with sensors attitude data (from the custom 

made IMU and GPS custom integration) in an underwater context. Once transects results are 

rectified and processed, the best-performing bio-optical regression models will be applied and 

validated to the full set of corrected transect imagery to yield quantitative maps of ice algal biomass 

across different scales. Upcoming work in this aspect will aim to increase the sample size of sea-ice 

core data acquired using the hyperspectral core-scanning approach in order to enhance the 

performance of biomass-spectra regression models (e.g., using machine learning with algorithms 

such as regression trees or Support Vector Machines). Focus will be initially given to models that 

are more suitable to HI sensor data while attaining increased prediction capability for the highly 

productive fast ice of Cape Evans. Ideally, model predictor variables of the learning models will aim 

for the inclusion of the highly resolved spectral and spatial information provided by HI or of other 

sea-ice biophysical variables that define the sea-ice optical properties (e.g., inclusion of sea-ice 

physical properties such ice thickness and snow depth, or other algal photophysiological proxies).   

Means to normalize downwelling radiance data to account for changes induced by different 

illuminations (e.g., differences in sun angle, light intensity and atmospheric effects) and sea-ice 

conditions (e.g., thin snow cover against bare ice) along the transect will need to be devised and 

assessed at this stage.  

Transect chl-a maps will allow the quantification of ice algal biomass horizontal spatial variation 

over previously unexplored spatial scales and will permit application of improved geostatistical 
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analyses such as variograms (Oliver and Webster, 2014). Secondarily, it would further help to 

identify and parametrize key environmental drivers of ice algal biomass for the explored study site 

(e.g., Meiners et al., 2017; Katlein et al., 2015a). 3D relief and HI data fusion techniques could further 

support a better assessment of environmental controls by employing statistical tools like analysis 

of variance (Steffens et al., 2006) or spatial autocorrelation (Rysgaard et al., 2001) as historically 

applied for ice-coring surveys. 

The acquired RGB imagery and digital photogrammetry provided ultra-high-resolution DEMs and 

orthomosaics of the under-ice habitat. RGB imagery presents diverse opportunities to qualitatively 

and quantitatively map and investigate under-ice features of interest (e.g., under-ice fauna or crystal 

orientation and texture) along with highly detailed under-ice roughness and relief. For example, 

coupling under-ice HI with rugosity parameters derived from the under-ice DEMs, as a measure of 

surface roughness, might improve our understanding of algal aggregation in complex under-ice 

topographies such as the cavity features observed, analogous to existing coral or benthic mapping 

studies (e.g., Dustan et al., 2013; Friedman et al., 2012). Standard upward looking RGB cameras as 

additional payloads not only help to confirm the status of the under-ice physical environment and 

in assisting data interpretation (Fritsen et al., 2011), but can provide further support to assess 

grazer presence and dynamics in relation to ice types and conditions (Brown et al., 2017; 

Melbourne-Thomas et al., 2016). 

6.2 Towards payload integration onto UUVs for under-ice 

mapping 
 

The developed under-ice payload was tested only in fast-ice conditions providing relatively flat and 

smooth bottom ice surfaces. This allowed the deployment of a simple, yet effective, sliding platform 

that produced coherent HI mosaics without the need of complicated image correction algorithms or 

sophisticated underwater positioning equipment. While the relatively flat Antarctic fast ice is highly 

productive and a crucial feature of Antarctic coastal marine ecosystems, means to deploy our 

method under different conditions should be further investigated. There is a need to investigate 

alternative acquisition methods to map the under-ice habitat of rugose ice surfaces and, at greater 

distances from the ice and at higher speeds in order to increase the spatial extent of the surveys. 

The general challenges remain rather technical and are basically associated with the low under-ice 

light levels that restrict passive optical remote sensing. Low light has cascading impacts on the 

Signal to Noise Ratio (SNR), pushbroom scanning velocities and sensor stability required to acquire 

meaningful HI data. It ultimately negatively affects surveying time and areal coverage of any passive 

optical sensor 

In Chapter 4, challenges associated with mounting pushbroom HI payloads onto more dynamic and 

less precisely controllable platforms were outlined. Despite these challenges, the pathway forward 
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includes the integration of HI payloads onto UUVs that can stably navigate at pre-defined distances 

from the ice and the development of autonomous stationary solutions. Autonomous and remote 

platforms (e.g., ROVs, AUVs, landers, tripods and USVs) designed for optical monitoring of polar 

marine ecosystems are undergoing continuous technological advances allowing to carry an even 

wider array of sensors and push exploration boundaries to new surveying targets (e.g., Dumke et 

al., 2019; Johnsen et al., 2018; Ludvigsen et al., 2013; Mogstad et al., 2020; Mogstad and Johnsen, 

2017; Sture et al., 2017).  

In particular, the tethered and highly controllable nature of several new Remotely Operated Vehicle 

(ROV) models makes them among the most preferable options to begin tackling some of the 

challenges found for under-ice algal habitat mapping with HI. Continuous technological advances in 

camera sensitivity and optical efficiency, together with an increasing accessibility to efficient 

underwater marine geo-positioning and attitude tracking technology is expected to help overcome 

some of these limitations. Unmanned Aerial Systems (UASs) provide an analogy whereby the 

scientific literature offers a plethora of data processing approaches that can be applied in an under-

ice context (Aasen and Bolten, 2018; Turner et al., 2017). Another option to consider is the 

exploration of upward looking active light sources that homogenously illuminate the HI sensor 

footprint during image acquisition. Active HI studies of the deep seafloor have benefitted from the 

utilization of active light sources mounted onto ROVs to acquire meaningful HI data under complete 

absence of light at depths of approximately 4200 m (Dumke et al., 2018a, 2018b). However, when 

imaging the seafloor, we are dealing with the processes of absorption and reflection of exclusively 

downwelling light (either artificial, solar or both), for a semi-opaque medium. The integration of 

active light sources for under-ice habitat mapping will arguably involve a more complex data 

processing and interpretation procedure. Upwelling artificial light sources that are spectrally 

different from the downwelling sunlight, would interact with a transmissive, absorbing and highly 

scattering and variable medium. Characterizing radiative transfer under such a setting is non-trivial 

and the retrieval of bio-optical regression models using the proposed core scanning method would 

be put into question. 

In addition, mapping photoactive pigments with strong artificial light sources needs to account for 

the tradeoff between the amount of light being utilized to boost SNR, against its impacts on algal 

communities that are typically adapted to low light. Such considerations would need to be evaluated 

based on the desired study aims and the algal light-adaption history for the specific area and time 

of the year. 

Tests could be performed both in situ or on sea-ice simulation tanks and would allow the 

investigation of these approaches along with key technical parameters of the methodology. For 

example, HI data quality could be evaluated with and without additional upwelling light sources and 

under different circumstances from the ones here presented, e.g. by changing imaging heights (thus 

varying spatial resolutions), light intensity levels and imaging parameter settings (such as 

movement speed and imaging frequency).  
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6.3 A science outlook 
 

To take advantage of studies that can be conducted within fully controlled environments, such as 

within a laboratory ice tank, it would be pertinent to explore capabilities of HI beyond pure biomass 

variability detection. Indeed, this thesis focused only on using HI data to estimate biomass 

distribution (with chl-a as proxy), it appears feasible that HI data can resolve more sophisticated 

biological properties such as pigment assemblages and species composition. Changes in the 

composition of light absorbing pigments can reflect different sea-ice algal photophysiological 

conditions (Galindo et al., 2017; Johnsen and Hegseth, 1991).  

Mapping the temporal and spatial evolution of ice algae photophysiological conditions along with 

community composition would be extremely useful for improving the understanding of ice algal 

primary productivity, phenology and will support biogeochemical modelling to predict future 

conditions (Arrigo et al., 2014; Leu et al., 2015; Lizotte, 2001).   

Techniques for growth rate, photo acclimation and health status with respect to biomass 

estimations can be explored an adapted from phytoplankton oriented studies and will be crucial for 

elucidating this aspect in and under-ice remote sensing context (e.g., Babin et al., 2008; Brunet et 

al., 2011; Johnsen et al., 2011, 2009). Close-range hyperspectral remote sensing in terrestrial plants 

is a rapidly advancing means to discretely measure and map environmental stress from targeted 

spectral indices and machine learning approaches (e.g., Behmann et al., 2014; Malenovský et al., 

2015). Hyperspectral and multispectral data have also been used to estimate pigment content of 

these higher order plants from airborne surveys (Blackburn, 2007, 2006), and pigment content of 

other biochemical targets under laboratory conditions (Ling et al., 2019; Zhao et al., 2016). Similar 

approaches could be applied to ice algal communities and tested both in situ, or by ice-core scanning 

(both vertically or horizontally). Differentiation of pigment content could be achieved through 

hyperspectral signal decomposition and analyses aimed to resolve relative amounts of different 

types of pigments, or through the development of novel spectral indices adapted to the under-ice 

algal habitat. For marine algae, several studies have already discussed the possibility of discretely 

distinguishing algae photophysiological conditions from close-range imaging spectroscopy ( e.g., 

Jesus et al., 2008; Perkins et al., 2016). 

Research prospects are also envisaged in the optical taxonomy and detection of community 

compositions from the under-ice signals as analogously done in phytoplankton and vegetation 

studies (Moisan et al., 2011; Volent et al., 2009; Zhang et al., 2015). For this purpose, different 

spectral decomposition techniques could be tested a priori through isolated laboratory approaches 

with known algae species and concentrations (e.g., Mehrubeoglu et al., 2013; Moberg et al., 2002).  

An interesting field is also being explored in the retrieval of primary production estimates from 

spectral data in combination with either in-vitro photosynthetic parameters for ice algae (Lange et 

al., 2017; Müller et al., 2016) or with PAM fluorometry for microphytobenthic communities 
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(Méléder et al., 2018).  Analogously, indices derived from spectral data could be combined with 

Eddy Covariance (EC) methods to retrieve carbon fluxes outside the footprint of the EC system, as 

studied, e.g., in terrestrial environments (Huemmrich et al., 2019; Noumonvi et al., 2019; Zarco-

Tejada et al., 2013). EC methods have been developed for marine (Butterworth and Miller, 2016) 

and under-ice (Else et al., 2015) environments alluding to exciting possibilities to combine both 

under-ice HI and EC methodologies to estimate ice algal production on larger scales.  

Altogether various aspects remain to be investigated prior to method standardization. But as 

technological barriers are overcome and data processing workflows are being further explored and 

established, the outcomes of this thesis suggest that HI combined with photogrammetric techniques 

will offer a methodological turning-point for mapping fine-scale sea-ice biophysical dynamics in 

retrieved ice cores and in situ. 

It will be of interest to map and quantify patterns of biomass variability with the developed under-

ice payload across different regions, seasons and ice types in order to recognize and parametrize its 

respective scales of variation and the underlying physical drivers. It will then be of paramount 

importance to link such patterns with sea-ice physical properties that are retrievable from other 

aerial remote sensing products, at larger scales, allowing the extrapolation of estimates to regional 

scales. 
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