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ABSTRACT

Regime shifts are persistent changes in ecosystem structure and function that can result in

loss of ecosystem services upon which people depend. Thus, there is a clear need for methods

capable of assessing ecosystems for vulnerability to, and occurrence of, regime shifts. Meth-

ods available for predicting and detecting ecological regime shifts generally require extensive

data and understanding of ecosystem processes. However, for many ecosystems data avail-

ability is patchy, limiting the application of available methods to assess for regime shifts.

This thesis uses qualitative and quantitative methods to improve capability for assessing

ecosystems for vulnerability to regime shifts, predicting the nature of future regime shifts,

and detecting regime shifts after they have occurred.

I first undertake a review of the prediction, characterisation, and detection of regime shifts

and in doing so, develop a framework for assessing ecosystems for regime shifts. This frame-

work outlines ecosystem attributes that are linked to stability (and loss of stability), and

describes methods that ecosystem practitioners can use to assess and incorporate understand-

ing of these attributes for improved ecosystem management. The framework also explores a

broader set of questions that ecosystem practitioners may want to answer about the nature

and timing of regime shifts. A key question in this context relates to the consequences of not

acting – i.e. the likely future state of a given system – and how urgently action must be taken

– i.e. how imminent a regime shift is, or when it is likely to occur. Suggested approaches for

answering each question are provided by the framework. Finally, in this chapter I provide an

overview of methods available for ascertaining whether a regime shift has occurred. Southern

Ocean ecosystems are used as a case study to illustrate how this framework can help identify

current capacity to assess for regime shifts, and to guide future targeted data collection where

gaps in capacity exist.

A key finding from the review is that ecosystems prone to regime shifts are often char-

acterised by the presence of destabilising positive feedbacks. However, identifying positive

feedbacks is particularly challenging for pelagic or remote ecosystems, because such feed-

backs often involve non-trophic interactions which are difficult to observe (and quantify). An

interesting case study is the presence of potentially important positive feedbacks in Southern

Ocean ecosystems, which involve the release of a chemical cue (dimethyl sulfide) by phyto-



plankton that attracts the predators of the phytoplankton-grazers. A qualitative modelling

approach is applied to explore the potential importance of this feedback in driving regime

shifts in the Southern Ocean, and to identify key interactions determining the stability of the

community. Thus, in this chapter I provide the first demonstration of the use of qualitative

models with simulation to assess the importance of positive feedbacks for ecosystem stability,

an approach that could usefully be applied to other systems.

This thesis also improves capability for detecting regime shifts once they have occurred,

and to distinguish regime shifts from an ecological fluctuation without a regime shift. In

some ecosystems it is not always evident that a regime shift has occurred, and data con-

straints prevent the application of existing methods for detecting regime shifts. This thesis

develops a new approach for detecting regime shifts from transect (1-dimensional spatial)

data. This method (1D Characteristic Length Scale estimation) involves reconstruction of

the system attractor and nearest neighbour prediction to identify the emergent spatial scale

of the system, with a shift in this scale indicating regime shift. The method is tested suc-

cessfully on model systems and then applied to a coral reef data set, which shows evidence

of past regime shifts. This methodological advance broadens the range of ecosystems which

can be tested for evidence of regime shifts, and removes some ambiguity in characterising the

nature of community change.

The final element of the thesis is a discussion of the management of ecological regime shifts

in the context of global tipping points in climate and human systems, and some thoughts on

how this thesis might help progress the study and management of regime shifts.

Together the tools provided in this thesis help deepen our understanding of regime shifts, di-

rect future research, and assist ecosystem managers adapt to a future in which these complex

changes occur more frequently.
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of interest in the attractor space, and the star and circle its nearest neigh-

bours. The orange square is the point being predicted, based on the orange

star and circle. The lower plot illustrates how each dE dimensional point in the

reconstructed attractor maps to a dE trajectory of densities in space, and that

nearest neighbours in the attractor space have similar trajectories in space but

are not neighbouring in space. (d) The characteristic length scale (CLS) is the

window length at which prediction error begins to plateau. . . . . . . . . . . 80

4.3 Test case 1 Error X spectra from the one-dimensional sliding window method

for (a) regime 1 and (c) regime 2 and corresponding model landscape sections

of 400 × 400 pixels from (b) regime 1 and (d) regime 2. Species are shown

in the same colors in both the spectra and the landscapes as indicated by the

color bar. For each of three species, spectra from three replicate transects

are shown together to demonstrate variability due to transect position. Solid

lines are a rolling mean (three windows) of the Error X estimates from the

20 sets of random samples for each window size, and shading indicates the

95% pointwise confidence intervals. The black boxes indicate the CLS range

estimated from each species. The reduction of the growth rate of Species 5 in

regime 2 did not result in a change in the CLS in this test case. . . . . . . . . 89

4.4 Further Test case 1 spectra obtained from one-dimensional “transect” data.

Sliding window (SW) Prediction r2 spectra for (a) regime 1 and (d) regime

2; short time series (STS) Error X spectra for (b) regime 1 and (e) regime 2

and short time-series Prediction r2 spectra for (c) regime 1 and (f) regime 2.

Solid lines are a rolling mean (three windows) of the Error X estimates from

the 20 sets of random samples for each window size, and shading indicates the

95% pointwise confidence intervals. Colors as per Fig. 4.3. . . . . . . . . . . . 90

xi



List of Figures

4.5 Test case 2 Error X spectra from the one-dimensional sliding window method

for (a) regime 1 and (c) regime 2 and corresponding model landscape sections

of 400 × 400 pixels from (b) regime 1 and (d) regime 2. Species are shown in

the same colors in both the spectra and the landscapes, as indicated by the

color bar. For each species, spectra from three replicate transects are shown

together to demonstrate variability due to transect position. Solid lines are a

rolling mean (three windows) of the Error X estimates from the 20 sets of

random samples for each window size, and shading indicates the 95% pointwise

confidence intervals. The black boxes indicate the CLS range estimated from

each species. In this test case, the CLS increased from 15 to 20 pixels in the

first regime, to 20–25 pixels in the second regime following a change in the

interaction between Species 1 and 2. See Appendix C.3 for spectra of Species

3 from regime 2 on a smaller y-axis scale. . . . . . . . . . . . . . . . . . . . . 91

4.6 Test case 3 Error X spectra from the one-dimensional sliding window method

for (a) regime 1 and (c) regime 2 and corresponding model landscape sections

of 400 × 400 pixels from (b) regime 1 and (d) regime 2. Species are shown

in the same colors in both the spectra and the landscapes, as indicated by

the color bar. For each species, spectra from three replicate transects are

shown together to demonstrate variability due to transect position. Solid lines

are a rolling mean (3 windows) of the Error X estimates from the 20 sets of

random samples for each window size, and shading indicates the 95% pointwise

confidence intervals. The black boxes indicate the CLS range estimated from

each species. There was no change in the CLS following the cessation of open

recruitment in this test case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.7 Test case 4 Error X spectra from the one-dimensional sliding window method

for (a) regime 1 and (c) regime 2 and corresponding model landscape sections

of 400 × 400 pixels from (b) regime 1 and (d) regime 2. Species are shown in

the same colors in both the spectra and the landscapes; the invasive species

is Sp.21 in black. For each species, spectra from three replicate transects are

shown together to demonstrate variability due to transect position. Solid lines

are a rolling mean (three windows) of the Error Xestimates from the 20 sets of

random samples for each window size, and shading indicates the 95% pointwise

confidence intervals. The black boxes indicate the CLS range estimated from

each species. In this test case, there was a decline in CLS from 15 to 20 pixels

in regime 1 to 10–15 pixels in regime 2 following the invasion of a new species

to the landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xii



List of Figures

4.8 Error X spectra determined from cover of five morphotypes from Blue Bowl

reef in 2007, 2010, 2011. Solid lines are a rolling mean (three windows) of the

Error X estimates from the 20 sets of random samples for each window size,

and shading indicates the 95% pointwise confidence intervals. The black boxes

indicate the CLS range estimated from each spectra. CLSs indicated by hard

corals (left column, foliose coral [CF] in orange, branching coral [CB] in blue)

declined markedly from 2007 (top row) to 2010 (middle row). In the right

column, spectra from soft coral (SC) is shown in orange, algae (A) in green,

and dead coral (DC) (2007), and dead, algae-covered-coral (DCA) (2010 and

2011) are shown in dark blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.9 Error X spectra determined from cover of four morphotypes for each of Coral

Gardens (left) and Sampela (right) reef slopes in 2007 (top), 2010 (middle),

and 2011 (bottom). Soft coral (SC) spectra are shown in orange, sponges

(SP) in green, encrusting coral (CE) in black. Blue lines are branching coral

(CB) at Coral Gardens and massive coral (CM) at Sampela. The black boxes

indicate the estimated CLS range from each spectra. . . . . . . . . . . . . . . 97

4.10 Error X spectra determined from cover of seven morphotypes Hoga Buoy 2

reef slope for 2007 (top row), 2010 (middle), and 2011 (bottom row). Spectra

from cover of hard coral morphotypes are presented in the left column: mas-

sive (CM, green), branching (CB, blue), and laminar (CL, orange), and other

morphotypes (coralline algae [CA, blue], encrusting coral [CE, black], sponges

[SP, green], and soft corals [SC, orange]) are presented on the right. The black

boxes indicate the CLS range estimated from cover of each morphotype. . . . 99

xiii



List of Figures

5.1 Illustration of how ecological and social-ecological (and other) systems could

be managed to avoid tipping points, using the cusp diagram as a theoretical

example (top panel). In the cusp diagram (top panel) the z-axis represents

internal system structure or ecological-environmental feedbacks, where greater

strength of positive feedbacks can increase the degree of non-linearity in the

response of the system to changes in the driving parameters. In the case where

hysteresis exists, to retain the system in a ‘safe operating space’ and avoid a

change in regime altogether, one approach would be to control the drivers

(on the x-axis) to avoid the region of hysteresis (to ensure stochastic events

don’t push the system towards the alternative basin of attraction) (lower right

panel). Where controlling the drivers is not possible on relevant timescales,

then an alternative approach is to change the internal structure and feedbacks

(on the z-axis) to steer the system towards a smoother transition pathway and

avoid tipping points (lower left panel). In both lower panels, the green area

represents the more desirable operating space. . . . . . . . . . . . . . . . . . . 118

A.1 Flow diagram illustrating the dependence of ecological predictions related to

regime shifts on other predictions. The most uncertain predictions (when a

regime shift will occur, and what the future state will be) depend on predicting

and understanding the ecological mechanisms and drivers. . . . . . . . . . . . 125

B.1 Connectance versus the proportion of matrices (from QPress) that are stable

for each model. The smaller motif models are indicated with points and the

larger Southern Ocean models with triangles. Left = stability results from

models as described in main text, with some validators and/or constraints

applied; Right = stability results of the same models without any validators

or constraints applied in QPress. . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.2 Proportion of the total feedbacks that are positive versus the proportion of

matrices (from QPress) that are stable for each model. The smaller motif

models are indicated with points and the larger Southern Ocean models with

triangles. Left = stability results from models as described in main text, with

some validators and/or constraints applied; Right = stability results of the

same models without any validators or constraints applied in QPress. . . . . 127

xiv



List of Figures

B.3 Percentage of simulated community matrices (of 10,000) that were stable for

each model, in the absence of any validators or constraints. Dark blue-green

bars correspond to models including predator contribution to a nutrient pool

(via faeces), realised as a positive effect from predators to phytoplankton (grey

edges in Fig. 3.1); light green bars correspond to models without this edge. . 131

C.1 Short time series approach to delay embedding and prediction. a) Transects

are collected at four points in time (for dE=3) and the mean species occupancy

in each window position (XP ) is tracked through time. b) Each time step rep-

resents different dimension in the delay embedding, and the mean occupancy

in the final time step is what we want to predict. c) The nearest neighbours

in the reconstructed attractor have similar trajectories (of mean species occu-

pancy) through time. Refer to Fig. 4.2 in the main text for the equivalent

images for the sliding window method and further description of the method. 133

C.2 Test case 2 Prediction r2 spectra from sliding window and short time series

Error X spectra, and prediction r2 spectra from short time-series . . . . . . . 134

C.3 Test case 2, Sliding window Error X spectra for Species 3 from three different

transects in regime 2. These are the same spectra as those presented in Fig 5c

of the main text, except that they are presented over a smaller y-range. This

makes it clear that the CLS for Species 3 in regime 2 is 20-25 pixels – similar

to that of the other species - and highlights the variability between transects

for this species. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C.4 Test case 3 Prediction r2 spectra from sliding window and short time series

Error X spectra, and prediction r2 spectra from short time-series . . . . . . . 136

C.5 Test case 4 Prediction r2 spectra from sliding window and short time series

Error X spectra, and prediction r2 spectra from short time-series . . . . . . . 136

C.6 Coral Gardens and Sampela Error X spectra as estimated from select mor-

photypes presented on a smaller y-scale than they appear in Figure 4.9 of the

paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C.7 Hoga Buoy Error X spectra as estimated from select morphotypes presented

on a smaller y-scale than they appear in Figure 4.10 of the paper. . . . . . . 138

xv



List of Figures

E.1 Map of the Southern Ocean Continuous Plankton Recorder (SO-CPR) data

set. The SO-CPR is a device that captures zooplankton from surface waters

when towed behind a ship. Different coloured lines represent the SO-CPR

transects completed by different ships, as named in the lower left corner. Fig-

ure taken from the Australian Antarctic Data Centre. . . . . . . . . . . . . . 153

E.2 Transect of zooplankton occurrence collected by the Southern Ocean Contin-

uous Plankton Recorder (SO-CPR) in January 1998. . . . . . . . . . . . . . . 154

E.3 Error X spectra estimated from occurrence of the ubiquitous copepod Oithona

similis (left panel) and from the total counts of all zooplankton (right panel)

from a Continuous Plankton Recorder trawl during a voyage from Hobart

to Mawson Station, Antarctica, in January 1998 (see map E.2). The average

distance represented by each silk segment is 5.1 nautical miles, so the maximum

window size considered here corresponds to 204 nautical miles. . . . . . . . . 154

xvi



Chapter 1

Context of the thesis

Persistent shifts in ecosystem structure and function can occur unexpectedly, and sometimes

abruptly (Biggs et al. 2012). Coral reefs can become overgrown by macroalgae causing the loss

of a wide range of species dependent on coral (Hughes 1994). Highly productive kelp forests

can be suddenly decimated by urchin grazing, leaving behind barren rock and causing the loss

of important fishery species (Ling et al. 2015). Formerly clear shallow lakes become turbid

and rooted vegetation is replaced by floating plants (Scheffer et al. 1993). Arid ecosystems

can lose their vegetation to become bare desert (Rietkerk et al. 2004). Tropical rainforest can

shift to open savanna woodlands and cloud forest to dry forest (Biggs et al. 2012; Hirota et al.

2011). Such shifts - termed regime shifts - can cause the loss of important ecosystem services

on which people depend, for example, loss of fisheries and reduction in food security, loss of

income, recreational activities and natural aesthetics, and altered patterns of precipitation

and fire (Biggs et al. 2012; Rocha et al. 2015b).

Regime shifts are complex dynamics which can seemingly occur without warning and can be

difficult to detect. This is particularly problematic for ecosystem managers – a regime shift

means that the most appropriate way to manage an ecosystem might be radically different in

the new regime compared to the old regime. However, to respond to such changes promptly,

ecosystem managers need some forewarning as to the likelihood of a regime shift occurring

in the ecosystem they are managing, the circumstances where a regime shift is more likely,

the types and mechanisms of potential changes, and perhaps most importantly, they need to

be able to assess whether a regime shift has occurred so that they can adapt their manage-

ment practices. Managing a new ecological regime according to the dynamics of a previous

regime could result in further, potentially deleterious, changes. Since ecological regime shifts

present such a multifaceted problem, a multifaceted research approach is required. In this

thesis I present new tools for assessing ecosystems for evidence of regime shifts, and draw

together existing tools to create a cohesive framework that can be used to improve ecosystem

management for regime shifts.
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1.1 How do regime shifts happen? Why are they
challenging? Understanding from case studies of ecological

regime shifts

The drivers and mechanisms of regime shifts are specific to each ecosystem, but there are

some general patterns that have emerged from intensive study of a few ecosystems. Shallow

lakes, for example, can either exist in a clear water regime containing benthic plants, or a

turbid state where loss of those plants results in sediments being stirred up by winds and

benthivorous fish, which inhibits the regrowth of vegetation on the benthos (Scheffer et al.

1993). The transition from a clear-water to turbid state is typically driven by nutrient input

increasing above a certain threshold, which drives algal blooms on the surface of the lake

which then causes overshadowing and loss of rooted benthic plants due to light limitation.

The loss of benthic rooted plants leads to increased pertubation of the benthic sediments by

wind and by benthivorous fish, causing waters to remain turbid. In these lakes the nutrient

threshold at which the ecosystem transitions depends on the water depth, so a sudden loss

of water from a lake can drive the transition even where the nutrient level remains constant.

To return a turbid shallow lake to a clear water regime requires reducing the nutrients to a

concentration below that which triggered the shift to the turbid state, such that there is an

overlap in the level of nutrients at which either the turbid or clear water state can exist – a

feature of regime shifts know as hysteresis (see Figure 1.1).

Positive feedbacks between the environment and the ecological community are important

features of hysteresis in shallow lakes (and other systems), but the dynamics within the com-

munity preceding and during a regime shift are also interesting. There is some evidence that

the stability of the food web in shallow lakes gradually decreases as nutrient levels increase

until the community rapidly reorganizes into a new, stable configuration at the nutrient

threshold (Kuiper et al. 2015). Interestingly, this change in stability is driven primarily by

changing interaction strengths at lower trophic levels, with zooplankton gradually increasing

their per capita consumption rate of diatoms and detritus as nutrients increase. The changes

in interaction strengths result in decreasing community stability towards the nutrient thresh-

old, but it is only once that threshold is reached that biomass rapidly changes - zooplankton

decline and phytoplankton dominate (Kuiper et al. 2015). The same changes in interaction

strengths and stability occur during the reverse transition towards clear water state, which

suggests that monitoring community stability (interaction strengths) could provide an early

warning of impending transition (Kuiper et al. 2015), but in practice would be challenging

to do. In some lakes (depending on the community present), it is also possible to trigger

the shift back to a clear state by fishing, which causes a trophic cascade, e.g. removing the

benthivorous fish gives the benthic plants a chance to take root, and removing planktivorous

2



Chapter 1. Context of the thesis

fish allows zooplankton abundance to increase and graze down phytoplankton stocks (Meijer

et al. 1989; Scheffer et al. 1993; Wright and Phillips 1992).

Figure 1.1: ‘Cusp’ diagram illustrating the theoretical continuity between continuous and discontin-
uous regime shifts. a) Ecosystems can change linearly with changes in driving conditions; b) they
can change abruptly at a certain level of the driving conditions; or c) there can be hysteresis where
the forward and reverse transitions occur at different levels of the driving conditions, with overlap in
the range of conditions at which the two regimes can persist. This latter relationship is also called a
critical transition. Figure redrawn based on Collie et al. (2004), Petraitis (2013), and van de Leemput
et al. (2016).

Combinations of sustained stressors with occasional perturbations can interact to push an

ecosystem towards a threshold or alternative regime in ways that are difficult to predict or

even detect (e.g. Dal Bello et al. 2019; Hughes 1994; Ratajczak et al. 2017). The response

of an ecosystem to different pressures depends on its intrinsic ecological properties and its

history of perturbations, which together determine the resilience of the system (e.g. to

withstand or recover from pressure and maintain ecosystem function). Combined impacts

of pulse and press perturbations can also drive regime shifts, where the press perturbation

slowly erodes resilience, and the pulse perturbation shifts the system closer towards (or over)

the boundary of its basin of attraction (Scheffer et al. 2008). For example, the transition

from coral-dominated to algal-dominated reefs in Jamaica in the 1980s followed the gradual

loss of resilience through overfishing of herbivorous fishes, then a pulse disturbance to corals

from Hurricane Allen, and finally a disease outbreak decimated the remaining herbivores –

urchins (Hughes 1994).

For coral reefs, evidence indicates that there may be a number of different possible pathways
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between alternative regimes and also a number of possible regimes. For example, coral reefs

could become dominated by algae through increased sedimentation, loss of herbivores, or

through direct loss of corals (e.g. by bleaching, storms or disease), but coral reef communities

can also shift structure with differences in the types of coral and fish that dominate (e.g. Bozec

and Mumby 2015; Donovan et al. 2018; Fung et al. 2011). Whether each of these pathways

involves a critical transition is unclear, and probably varies spatially and temporally with

varying strength of feedbacks (van de Leemput et al. 2016). The dependence of tipping

points on combinations of multiple different factors, makes it difficult to predict at which

point a critical transition will occur, even in systems for which there is clear evidence of

alternative regimes. For those systems in which evidence of alternative regimes is lacking,

the interdependence of thresholds on multiple drivers makes investigation into whether the

ecosystem is susceptible to regime shifts particularly daunting.

Pelagic ecosystems also experience regime shifts, but because they are hidden from view

and lack foundation species that provide physical habitat, the changes may be less evident

than in the examples described above. Typically, regime shifts in pelagic marine ecosystems

have been detected decades after they occurred (Lees et al. 2006). As a consequence, marine

scientists have lead the development and application of methods aimed at detecting regime

shifts from time-series data (e.g. Hare and Mantua 2000; Rodionov and Overland 2005).

Application of these approaches has shown that pelagic regime shifts tend either to be driven

by climate, or by fishing, or a combination of the two - although in more enclosed seas

eutrophication can also be a driver (Daskalov et al. 2007; Lees et al. 2006; Möllmann et al.

2009). There is even evidence that climatic changes in the 1980s drove synchronous marine

regime shifts in different ocean basins in the Northern Hemisphere (Beaugrand et al. 2015). In

some cases pelagic ecosystems shift back towards a similar regime following further climatic

changes, however, in other cases changes in food webs prevent the system from shifting back

(Lees et al. 2006). For example, multiple abiotic (human and climate) drivers, together with

fishing, drove a regime shift in the central Baltic Sea in the late 1980s (Möllmann et al.

2009). The changes in abiotic conditions (e.g. temperature, salinity, oxygen) drove a shift

in the ecosystem, with sprat replacing cod as the dominant fish species (along with changes

in other ecological variables). When the abiotic factors returned to their previous levels,

the ecosystem did not. In general, such shifts have been better studied in the Northern

Hemisphere than in the Southern Hemsiphere, where data for large ocean regions such as the

Southern Ocean are more sparse.
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1.2 Southern Ocean ecosystems as the muse for the thesis

In this thesis I aimed to develop tools and approaches for assessing ecosystems for regime

shifts, and particularly to increase capacity for doing so in data-poor ecosystems. Southern

Ocean ecosystems (especially pelagic ecosystems) have been the guiding focus for the ap-

proaches taken, in that I wanted to develop methods and approaches that could be applied

to this region. The Southern Ocean is remote, and relatively little travelled. Opportunities

for data collection in person are few, and tend to be temporally and spatially restricted to

areas close to Antarctic bases, or on occasional marine science voyages. Remotely sensed

satellite data (e.g. chlorophyll-a, ice cover) is used as much as possible, but is hampered by

high cloud cover over the Southern Ocean, and long periods of darkness over winter. The

Southern Ocean experiences high interannual variability at a range of temporal frequencies,

with multiannual fluctuations in many environmental and ecological variables (e.g. Hobbs

et al. 2016; Jenouvrier et al. 2005; Massom et al. 2013). As a result, longer time series are

required to distinguish cyclic patterns, or linear responses to environmental changes, from

shifts in structure and dynamics. In considering these challenges, and attempting to develop

methods to overcome them, I also aimed to ensure that the methods and approaches devel-

oped were general and that they could usefully be applied to other ecosystems. To acquaint

the reader with the particularities of Southern Ocean ecosystems, the following sections pro-

vide a brief overview of the importance of the Southern Ocean ecosystem and its structure,

drivers and trends.

1.2.1 Southern Ocean ecosystems are important and interesting

Southern Ocean ecosystems are important both regionally and globally, and make an inter-

esting case study for the investigation of regime shift dynamics (Fig. 1.2). Globally, the

Southern Ocean is responsible for 40% of the total oceanic anthropogenic carbon uptake

(Frolicher et al. 2015). A significant proportion of that uptake (and export) is thought to

be performed by the Southern Ocean pelagic ecosystem (the biological pump), though ex-

actly how much has not yet been quantified (MacGilchrist et al. 2019). A regime shift in

this ecosystem could therefore have important flow-on impacts to global climate. Indeed, it

has been estimated that loss of physiological carbon sinks (of which the Southern Ocean is

an important one) could result in an extra 0.25 to 2.0oC of warming – substantially more

than any other feedback considered (Steffen et al. 2018). In addition to their importance in

climate regulation, Southern Ocean ecosystems host important fisheries, very large marine

bird and mammal populations, and considerable biodiversity and tourism values (Grant et al.

2013; Rogers et al. 2019). The Antarctic krill (Euphausia superba) fishery has the potential

to become the largest fishery (by weight) in the world and in the future could be an impor-
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tant source of protein for the growing global population (Fig. 1.2). Antarctic krill are an

important prey in the ecosystem (Trathan and Hill 2016), and so a shift to a regime which

supports a lower biomass of krill would have considerable feedbacks to the ecosystem, as well

as for global food security and for carbon export (Cavan et al. 2019).

Figure 1.2: Global importance of Southern Ocean ecosystems. Thanks to McCormack et al. 2019a
for sharing this figure.

1.2.2 Ecosystem structure

Southern Ocean ecosystems encompass a range of habitats, including pelagic habitats, sea-ice

zones and deep-sea, slope, shelf, and near-shore benthic habitats around Antarctica and sub-

Antarctic islands (De Broyer et al. 2014). The whole system is highly seasonal, and closer to

Antarctica it experiences extremes of light and temperature, with little productivity over the

dark winter months, but very high productivity in spring and summer, especially associated

with the melting sea-ice edge as it releases nutrients (particularly iron) into the water column

(De Broyer et al. 2014).

At the base of the foodweb, blooms of large diatoms dominate seasonally in many areas

of the Southern Ocean (Deppeler and Davidson 2017). Their large size enables them to be

captured by relatively large organisms, such as krill (whereas smaller phytoplankton are eaten

by smaller zooplankton). There is concern that predicted shifts to smaller phytoplankton

dominating community composition in some areas of the Southern Ocean could reduce the

flow of energy to higher trophic levels, and entrain energy and carbon in the microbial loop

- decreasing productivity at higher trophic levels, and reducing carbon export to the deep
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(Deppeler and Davidson 2017).

Another important and interesting phytoplankton species in the Southern Ocean is Phaeo-

cystis antarctica. This small species has high genetic diversity, a complex lifecycle and has

evolved a complex suite of grazer avoidance strategies (Gäbler-Schwarz et al. 2015; Verity

et al. 2007; Whipple et al. 2005). For example, P. antarctica can form colonies surrounded by

extracellular polysaccharides which both helps them compete for nutrients (by concentrating

the nutrients within the colony), and also escape from grazing pressure by increasing their

size (Verity et al. 2007). This species also produces a strongly smelling chemical compound

- dimethyl sulfide (DMS, see Glossary), which is unpalatable to many grazers (Haberman

et al. 2003a,b). Dimethyl sulfide has a range of physiological functions (e.g. Nejstgaard et al.

2007; Stefels et al. 2007; Sunda et al. 2002), and also contributes to climate regulation by

triggering the formation of clouds when aerosolized (Charlson et al. 1987; Cropp et al. 2007).

The chemical ecology of this species, and other DMS-producing phytoplankton, is especially

interesting because DMS attracts organisms across the size spectrum (including bacteria,

zooplankton, fish, mammals and birds, e.g. DeBose et al. 2008; Nevitt et al. 1995; Seymour

et al. 2010).

The high spring and summer-time primary productivity supports very large biomasses of

higher trophic levels, including Antarctic krill, migratory whales, seals and seabirds. The

main prey of baleen whales, and several other marine mammals and birds is Antarctic krill

(Euphausia superba), which is a swarming crustacean that grows to a few centimetres in

length and lives for a number of years. There is some evidence that Antarctic krill biomass has

declined since the 1970s (Atkinson et al. 2004), but estimates of krill biomass and trends are

highly variable and uncertain due to highly localised distributions (in dense, mobile swarms),

episodic recruitment events (a large recruitment event every few years), and avoidance of nets

(e.g. Atkinson et al. 2019; Cox et al. 2019; Hill et al. 2019). Nevertheless, the most recent

evidence indicates that krill habitat has contracted southwards due to climate change in the

South Atlantic region (Atkinson et al. 2019; IPCC 2019a) and will continue to contract under

future climate change. Krill are also likely to be vulnerable to ocean acidification, warming,

and climate-related changes in sea ice habitats (which they depend on over winter), as well

as to other changes that are likely to act synergistically with these (Flores et al. 2012; IPCC

2019a). Impacts of future declines in Antarctic krill populations are likely to be spatially

heterogeneous both due to differences in climate impacts, but also due to regional differences

in their importance in the food web (McCormack 2019; Piñones and Fedorov 2016).

Short, highly efficient food chains from diatoms, to krill to whales and other large predators

have typically been thought of as characteristic of Southern Ocean ecosystems, but there is

growing understanding of the importance alternative energy pathways in the system as well as

regional difference in the dominance of the krill-based food chains (McCormack 2019). Longer
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energy pathways including copepods and fish are also known to be important, especially in

the sub-Antarctic (Murphy et al. 2016). Understanding of the pelagic Southern Ocean food

web is still developing. For example, as new methods for assessing predator diet have become

available (e.g. DNA metabarcoding, stable isotope analysis, video loggers) there is growing

awareness of the importance of jellyfish as prey items, which previously could not be identified

via traditional methods of diet analysis (visual inspections of stomach-content) (Hays et al.

2018; McInnes et al. 2017; Thiebot et al. 2016).

1.2.3 Challenges for assessing Southern Ocean ecosystems and hints of
regime shifts

A challenge in assessing for regime shifts in the Southern Ocean is a lack of baseline data

combined with the fact that the system is still on a trajectory of recovery following the past

near-extirpation of whales (as well as of some seals and fishes) (Ainley and Pauly 2014).

Whales are thought to be important ecosystem engineers (Roman et al. 2014), and their loss

from Southern Ocean pelagic ecosystems may have led to increases in krill-eating seal and bird

populations through release from competition for prey (Ballance et al. 2006). In addition,

there is evidence that large populations of whales may have supported larger populations

of phytoplankton and Antarctic krill in the past (Lavery et al. 2014; Nicol et al. 2010;

Ratnarajah et al. 2014). The mechanism for this is nutrient enrichment, both through stirring

of the water column as whales descend and ascend, and also through release of their iron-rich

faeces into the water column, promoting greater phytoplankton productivity (Ratnarajah

et al. 2016; Smetacek and Nicol 2005). This positive feedback has the potential to create

alternative stable states in the pelagic system – one with large populations of whales, krill

and phytoplankton, and another with smaller whale, krill and phytoplankton populations.

High whale numbers would also have led to greater whale fall (sinking of dead whales to the

ocean floor) in the past. Whale carcasses provide important benthic habitat and food source

in Antarctic waters (Smith 2006), and so the decrease in whale numbers would have resulted

in decreased habitat and connectivity for many benthic organisms (and also decreased carbon

export) (Pershing et al. 2010). Whale harvesting is likely to have triggered species losses in

Southern Ocean benthic ecosystems (Roman et al. 2014), but there are insufficient data prior

to the commencement of commercial whaling to demonstrate whether whaling triggered a

benthic regime shift. Some whale populations in the Southern Ocean are recovering, but

it is not known whether the system is on a trajectory towards a past ecosystem state, or

towards a novel ecosystem state. Present and future changes in climate are likely to alter the

ecosystem further, as well as the carrying capacity of different species. Recovery of whale

populations and whale fall is predicted to increase carbon export and thus help mitigate

climate change (Pershing et al. 2010); however, continued population recovery is threatened
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by climate change (Tulloch et al. 2019). Coupled climate-biological models predict future

declines in baleen whale populations to be driven by decreasing availability of their main

prey, krill and copepods, which itself is driven by declining primary productivity and sea ice

(Tulloch et al. 2019).

More recently, shifts in bird and mammal predator populations, shifts in phytoplankton

community size structure and potential changes in krill and salp abundance have all been

cited as evidence of regime shifts (Atkinson et al. 2004; Montes-Hugo et al. 2009; Reid and

Croxall 2001; Weimerskirch et al. 2003). For example, widespread declines in squid and krill

predators based on sub-Antarctic islands in the southern Indian Ocean and south-western

Pacific during the 1980s, and coincident increases in myctophid predators is suggestive of

a regime shift (Weimerskirch et al. 2003). These changes were associated with positive air

temperature anomalies, however, the scope of the shift (number of trophic levels affected) is

unclear due to a lack of data (combined with the fact that one of the species - subantarctic

fur seals, Arctocephalus tropicalis - was also recovering from past harvesting (Weimerskirch

et al. 2003). Similar declines in krill predators occurred in the Atlantic sector of the Southern

Ocean during the 1990’s, which was associated with a decline in the average size of krill in

their diet (Reid and Croxall 2001).

Predicting, detecting and characterising regime shifts in Southern Ocean ecosystems therefore

requires development of innovative solutions to overcome challenges of detecting ecosystem

change in a dynamic ocean environment, with patchy data availability.

1.3 Outline of the thesis

The overarching goal of this thesis is to explore and draw together a range of tools and

approaches for assessing ecosystems for regime shifts. In particular, the aim is to enhance

capability for assessing ecosystems such as in the Southern Ocean, which face challenges due

to data limitations. The following section describes the different approaches taken in each of

the chapters of this thesis for addressing this problem, and Table 1.1 summarises the specific

aims and methods.

The literature around ecological regime shifts is large and growing rapidly. Chapter 2 is

my attempt to bring together the disparate research on regime shifts into a single, synthetic

framework for assessing ecosystems for regime shifts. This work draws on theoretical advances

and real ecological regime shift examples to develop a framework that describes how to

identify ecosystem features that could increase vulnerability to regime shifts, approaches for

predicting and characterising different aspects of regime shifts, and approaches for detecting

regime shifts once they have occurred. To illustrate how this framework can be used, I then

apply it to Southern Ocean ecosystems as a case study.

9



Chapter 1. Context of the thesis

From Chapter 2, the presence of net positive feedbacks stands out as a key quality implicated

in propensity for regime shifts. A further finding is that non-trophic interactions are often key

components of feedbacks. However in pelagic systems generally, including in the Southern

Ocean, understanding of non-trophic interactions is poor. In the Southern Ocean a number

of positive feedback mechanisms have been proposed, but determining the importance of

these feedbacks is challenging in such a remote and hostile environment. One mechanism for

positive feedback that has been proposed in Southern Ocean ecosystems involves attraction

of predators to dimethyl sulfide (DMS) released by phytoplankton. It is thought that by

attracting predators of their grazers with DMS, phytoplankton are able to either reduce

their own mortality or to increase their productivity by creating a hotspot of defecating

predators (which increases nutrient availability) (Savoca and Nevitt 2014). Nevertheless,

the arrangement of these non-trophic links remains uncertain, as do their strengths and

potential importance for the stability of the system. Because the strength and structure

of these feedbacks are unclear, traditional quantitative approaches to stability analysis are

impractical. Chapter 3 uses a qualitative modelling approach to explore the stability of

alternative arrangements of these links in a component of the ecosystem. In this chapter I

discuss the utility and limitations of this qualitative approach for determining community

stability and likelihood to transition to an alternative regime. This piece of work is also the

first to examine and compare network stability in simulation and symbolic approaches to

loop analysis.

Perhaps a more immediate problem is that there are currently no available techniques for eval-

uating whether a regime shift has already occurred in Southern Ocean ecosystems. Scarcity

and lack of concurrency in Southern Ocean ecological datasets mean that methods used else-

where to detect regime shifts are not appropriate to use. Chapter 4 addresses this problem

directly by successfully developing, testing and presenting an example application of a new

method for detecting regime shifts from limited data. This chapter presents ‘1D CLS estima-

tion’, and identification of changes in the optimal scale at which to observe an ecosystem (the

Characteristic Length Scale; see Glossary), as a means of detecting regime shifts. This work

makes it possible to detect regime shifts that have occurred between two sampling events,

using 1-dimensional spatial (transect) data. In this chapter, an Indonesian tropical coral reef

system is presented as a first test application of the method to real data, because suitable

data were available (Haapkylä et al. 2016), and because there was previous indication that

a regime shift may have occurred in at least one of the reefs in this system (Haapkylä et al.

2015), which was confirmed in this study. The development of this method greatly enhances

the possibility for detecting regime shifts in Southern Ocean ecosystems, for example using

benthic video transect data, and can be used to guide future monitoring program data col-

lection. This chapter has been published in Ecological Monographs (Ward et al. 2018), and
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the method has been made freely available as an R package on the code-sharing site GitHub

(Ward and Wotherspoon 2018; Appendix D).

Ecological regime shifts are particularly concerning because the welfare of human populations

depends so heavily on the services ecosystems provide, and also because regime shifts often

have deleterious effects on biodiversity and ecosystem functioning. However, the same type

of non-linear behaviour also occurs in other systems, e.g. physiological, financial, social,

climatic, and others. Chapter 5 discusses the findings and contributions of this thesis in

the context of tipping points that could occur in global climate and human systems, the

feedbacks between the different system scopes, and how the tools provided in this thesis can

be used to improve management of ecological regime shifts.

In summary, ecological regime shifts are, and will continue to be, a challenge to study and

manage. This thesis offers a number of practical tools to deepen understanding of ecological

regime shifts (e.g. Chapters 2 and 3) and importantly highlights future research directions

to further extend this understanding. The method for detecting regime shifts offered in

Chapter 4 reduces the lag between a regime shift occurring, and managers being able to

detect and adapt to it. Together, these advances enhance the capacity of ecosystem managers

to proactively adapt their management strategies as (or before) regime shifts occur, and more

generally, to adapt to a future in which these complex changes are increasingly common.
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Table 1.1: Summary of chapter aims, approaches and case study ecosystems used in this thesis.

Chapter Aims Approach Ecosystems

2 Develop a framework for assessing ecosystems for likelihood,
nature and detection of regime shifts.
-Summarise ecosystem properties affecting vulnerability to
regime shifts, and how these can be used to inform
management.
-Detail approaches that can be used to predict different
aspects of regime shifts, and highlight available methods
for doing so.
-Provide overview of methods for detecting regime shifts once
they have occurred.
-Use Southern Ocean ecosystems as a case study to illustrate
how the framework can be applied to summarise
understanding of the system and guide future research.

-Network theory
-Case studies
-Prediction and
detection methods
-Synthesis
-Framework
development

-Southern Ocean
ecosystems.
-A variety of
others including
coral reefs,
shallow lakes,
pelagic
ecosystems.

3 -Explore the potential for feedbacks to destabilise a Southern
Ocean ecological community.
-Explore how uncertainties in feedback structure affect con-
clusions of stability.
-Identify key interactions that could destabilise the
community.

-Qualitative
network models
(simulation and
symbolic loop
analysis)
-Machine learning
(random forest)

-A Southern
Ocean pelagic
community

4 -Adapt the method of 2D Characteristic Length Scale
estimation so that it can be estimated from 1D spatial data.
-Test the method on model data.
-Apply the method to real ecological transect data.

-Attractor
reconstruction
-Non-linear
prediction
-Characteristic
length scale
estimation

-Probabilistic
cellular
automata
-Indonesian coral
reef

5 -Synthesise the contribution of this thesis, and describe how
it can be used to improve management of ecological regime
shifts in the context of global changes.

-Synthesis -Southern Ocean
communities
-Climate
-Social-ecological
systems
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Chapter 2

Is my ecosystem a shifter? A framework for
predicting, characterising and detecting

ecological regime shifts

2.1 Introduction

Regime shifts are persistent changes in ecosystem structure, function and dynamics, and

often involve the loss of ecosystem services upon which people depend (Biggs et al. 2012).

Climate change and direct human pressures are generating cumulative impacts at levels

not previously experienced by ecosystems, and so the likelihood of regime shift responses is

increasing globally (Rocha et al. 2015b). It is therefore increasingly important to understand

when and how ecological regime shifts occur, and how to manage them. The literature on

regime shifts is extensive and the topic has so many facets that it is challenging for individual

researchers or ecosystem practitioners to synthesise learning on the topic. This makes it very

difficult to make policy-relevant assessments of the vulnerability of a particular ecosystem to

regime shifts. This review synthesises existing literature - including theoretical, observational

and experimental studies - to present a framework for assessing ecosystems to evaluate the

likelihood, nature and occurrence of regime shifts.

This framework comprises a three-pronged approach to assessing ecosystems: 1) assessment

of ecological features that may make ecosystems vulnerable to regime shifts; 2) predicting

whether regime shifts are imminent, and the nature of regime shifts; and 3) detecting regime

shifts once they have occurred (Fig. 2.1). This framework could be used in applied research

and by ecosystem practitioners such as environmental agencies, conservation planners, local

and regional management authorities, policy advisors, and agencies engaged with restoration

activities. The format of the chapter is designed such that a reader who works on more

applied aspects of ecosystem management could most usefully refer to and step through the

most pertinent elements of the Tables, and Sections 2.3.1 and 2.4 (depending on their system
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detecting ecological regime shifts

of interest, and using the case study in Section 2.5 as a guide), while the main text of the

chapter provides a higher level synthesis of the key emergent issues from the tables and boxes,

and is more targeted to academic readers. To illustrate how this framework can be used, the

final section of this review presents an example application to Southern Ocean ecosystems.

This region provides a useful case study in that it typifies many of the key challenges that

researchers and practitioners might face in understanding and managing regime shifts (i.e.

paucity of data and difficult to observe, undergoing rapid environmental change and subject

to both historical and current human pressures) and also because it has received limited

attention to date in the regime shift literature.

My Ecosystem

Assess ability to predict regime shifts (early 
warnings and also nature of change) based on data 
and methods available (Section 2.3.1 & Table 2.3).

Consider management options to 
minimise risk, reverse transitions or adapt
pathways (Tables 2.1 & 2.2; Section 2.3.1).

Assess whether regime shifts
can be detected (Section 2.4).

Assess potential vulnerability of 
ecosystem to regime shifts based on:
a) network features (Table 2.1)

Implement management

Data filter

+

b) spatial and dynamic features (Table 2.2)

Figure 2.1: Framework for assessing the likelihood, nature and detectability of regime shifts in ecosys-
tems, presented to help the reader conceptualise and integrate the different elements of this review.
The data available from the ecosystem will determine if and how, and to what degree regime shifts
can be predicted or detected - this is represented here by the ‘data filter’. The network feature dia-
grams link to Table 2.1 and symbolise (in order) distribution of interaction types (over the network),
distribution of interaction strengths, lack of functional redundancy, higher-order interactions, sign
and arrangement of feedbacks, network complexity, and importance of ecosystem engineers in the
network. Spatial and dynamic feature diagrams link to Table 2.2 and symbolise spatial connectiv-
ity, heterogeneity and homogeneity, evolutionary history and life-history traits, self-organised spatial
patterns, and step-changes in drivers or disturbance regimes.
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2.2 Ecosystem properties implicated in regime shifts

Ecosystem practitioners need to know whether regime shifts are likely their ecosystem. Ac-

cordingly, an understanding of the different features that affect ecosystem vulnerability to

regime shifts is needed for ecosystem practitioners to diagnose their own system (or systems).

Regime shifts occur when the current regime becomes unstable, causing the system to transi-

tion towards a different regime. A growing body of literature shows that ecosystem stability

is affected by the way ecological interactions are structured in a network, and the nature

of these interactions (Kéfi et al. 2019; Landi et al. 2018). Table 2.1 summarises ecosystem

network features known to be important for stability and suggests how these features can

be assessed and used to inform management practices. While assessment of all the network

features described is perhaps impractical for all ecosystems, the hope is that this table can

also be a prompt for considering how perturbations might act on an ecosystem to alter its

network and stability characteristics, and thus affects its vulnerability to regime shifts.

Equally important for ecosystem stability is the spatial and temporal context in which in-

teractions play out (Garcia-Callejas et al. 2019). Table 2.2 details spatial and temporal

ecosystem features that affect vulnerability to, and dynamics of regime shifts. In the follow-

ing sections I provide a general review of the importance of different ecosystem features in

the context of regime shift risk, while the tables provide detailed guidance on how researchers

and practitioners might assess each network feature (Table 2.1) and spatial and temporal fea-

tures (Table 2.2). To help the reader connect the text with the tables, the ecosystem features

from these two tables are written in bold font in the first instance they are mentioned within

each of the paragraphs in this section.
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Table 2.1: Ecosystem network features associated with stability. System stability may change when disturbance alters the balance of these features within
an ecosystem, thus making the ecosystem vulnerable to regime shifts. Southern Ocean ecosystem examples are given here, but see the main text (Section
2.5) for a more general description of Southern Ocean ecosystems, important species, and discussion of vulnerability to regime shifts. Numbers refer to
references given in the footnote of the table.

Network fea-
tures

Why is this a risk factor? How can it be assessed? How can it inform
management?

Southern Ocean
(see also section 2.5 of text)

Distribution
of interaction
types
(trophic,
negative
non-trophic,
positive
non-trophic)

Distribution of interaction types over
ecosystem network is non-random (1),
and likely balanced for high stability (2),
productivity and community persistence
(1, 3, 4).
•Biased loss of one interaction type, or
changes in strength of one interaction
type, can destabilize the network (3).
•Some species perform multiple interac-
tion types and their loss triggers cascad-
ing losses (1).
•Facilitation especially increases likeli-
hood of hysteresis (5, 6).
•Higher-order interactions and feedbacks
often involve non-trophic interactions (see
rows below).

•Requires (long-term) observation
and experimentation. (1, 7).
•Generally, non-trophic interac-
tions poorly understood, so difficult
to assess changes in distribution of
interaction types.
•Impact of non-trophic interac-
tions investigated through mod-
elling (e.g. 1, 8-15).
•Possible short-cuts: explore in-
teractions driving spatially self-
organised patterns (16) (see Table
2.2), and ecosystem engineers, to
identify species that perform key
non-trophic roles.

•Rigorous assessment of dis-
tribution of interaction types
unfeasible in most ecosystems;
ecosystem engineers and other
non-trophic functional roles
should be targeted for monitor-
ing and management.
•Models (1, 15) can help iden-
tify key functional ‘hubs’ in the
ecosystem which can be targeted
for protection and management.
•For degraded systems, under-
standing non-trophic interac-
tions can support ecosystem
recovery (17).

•Very little known about non-trophic inter-
actions.
•Competitive (negative non-trophic) inter-
actions implicated in trophic networks, but
more difficult to incorporate other non-
trophic interactions.
Some positive non-trophic interactions doc-
umented (that could potentially increase
vulnerability to regime shifts):
•The role of DMS in attracting seabirds
(18, Chp. 3).
•Some flying seabirds benefit from follow-
ing cetaceans (and fishing vessels) to locate
prey (19, 20).
•Predators at multispecies feeding aggrega-
tions benefit from each other as diverse for-
aging strategies scatter prey (21-23).
•Facilitation by habitat-formers in benthos.

Distribution
of interaction
strengths

Natural food webs tend to have a skewed
interaction strength distribution, with
many weak and few strong interactions
(24).
•Changes to distribution of interaction
strengths likely to destabilise the ecosys-
tem.
•Effect of changes in the distribution
of interaction strengths depends on in-
teraction types (25, 26). E.g. de-
creased strength of mutualistic compared
to antagonistic interactions could decrease
community persistence (27).
•Can change dynamically (e.g. sea-
sonally) and hence system stability also
changes (28).

•Observation & experimentation
followed by modelling/network
analysis (e.g. 28).
•Need to identify appropriate
temporal scale, given interaction
strength changes dynamically (28).
•Need to select appropriate mea-
sure of interaction strength (e.g.
energy flow, Jacobian matrix ele-
ments, 29).
•Dynamic assessment of interac-
tion strengths and stability possible
from high-resolution time-series
(28, 30).
•Possible short-cut: Use allomet-
ric scaling to predict interaction
strengths (31).

•Preferentially deal with stres-
sors that are more likely to
destabilise the system (e.g.
those that change the distribu-
tion of interaction strengths).
•Reassess exploitation targets
and quotas: targeting species
with strong interactions may
increase likelihood of trophic
cascades (32).
•Possible approach: Assess
seasons with lower stability (e.g.
more strong links) and prioritise
management of perturbations
that reduce resilience at those
times.

•Highly seasonal system so interaction
strengths likely to vary temporally.
•Krill fishing pressure at certain times of
year might alter distribution of interaction
strengths and decrease system stability.
•Climate change-induced stressors likely to
alter species fitness and behaviours, alter-
ing distribution of interaction strengths.
•Observed and predicted phenological
changes (33) likely to affect interaction
strengths.

Continued on next page
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Table 2.1 – Continued from previous page

Why is this a risk factor? How can it be assessed? How can it inform
management?

Southern Ocean
(see also section 2.5 of text)

Lack of
functional
redundancy

•Lack of functional redundancy makes the
system vulnerable to loss of species that
perform unique functions.
•‘Wasp-waist’ ecosystems with lack of re-
dundancy at mid-trophic levels implicated
in pelagic regime shifts (34, 35).
•Redundancy in key functional roles par-
ticularly important (e.g. herbivores on
coral reefs (36)).

•Characterisation of functional
roles performed by different species
through observation and experi-
mentation.
•Experimentation to identify
‘sleeper’ functional roles (e.g. 37).
•Dietary studies to identify trophic
roles and redundancies (e.g. DNA-
based, stable isotopes).

•If clear lack of redundancy
in a key functional role, direct
management strategies towards
protecting the species perform-
ing that role.
•Direct management towards
increasing resilience by re-
establishing redundancy.

•Krill-based system is considered a wasp-
waist system (38-40) (although increasing
evidence of alternative energy pathways,
e.g. 41). Southern Ocean ecosystems
particularly vulnerable to changes in krill
abundance, dynamics and behaviours. (see
also text, and row below re life history
strategies and prey-switching).

Higher-order
interactions

Higher-order interactions can stabilise
community dynamics and support high di-
versity (42). These often involve non-
trophic interactions, e.g. facilitation,
fear-induced behaviour modification.
•Loss of species involved in higher-order
interactions likely to decrease system sta-
bility.

•Experimental manipulation (43,
44).
•Behavioural observations (e.g.
23).
•Modelling to explore importance
of higher-order interactions present
for ecosystem stability (9, 11, 42,
45).

•Loss of species that medi-
ate interactions between other
species likely to have greater
than expected impact; target
these species for conservation
management.

•Higher-order interactions difficult to ob-
serve in pelagic ecosystems.
•Presence of multiple predator species in
foraging aggregations (e.g. cetaceans, fly-
ing seabirds, penguins, seals) thought to en-
hance prey capture by each species (21-23).

Net sign and
arrangement
of feedbacks

+

Negative feedbacks are stabilizing, while
positive feedbacks are destabilizing (e.g.
46). The strength of net positive feedbacks
determines the degree of hysteresis in a
system (5).
•Changes in sign and strength of feed-
backs can trigger regime shifts.
•Positive feedbacks particularly impor-
tant if ecosystem engineers or keystone
species involved (most well-known case
studies of hysteresis involve foundation
species: e.g. coral, macroalgae, trees).

•Experiments and observation to
identify feedback strengths and pos-
sible thresholds (e.g. 47).
•Modelling (e.g. loop analysis, 48)
to investigate net feedback sign, or
(e.g. simulation-based qualitative
networks, Chp. 3) to investigate ef-
fects of altering feedback strengths.
•Modelling (e.g. quantitative, 49)
to explore possible thresholds, hys-
teresis and effects of interacting
feedbacks.

•Understanding feedbacks which
shape the ecosystem can help di-
rect management strategies (50).
•After a transition, understand-
ing of feedbacks can be used
to direct recovery of the system
(17, 50).
•Management actions can create
new feedbacks and alter the net
feedback sign.

•Positive feedbacks largely unknown, a few
hypothesised.
•DMS-production by phytoplankton at-
tracts predators of grazers, facilitating
greater phytoplankton blooms (51, 52, see
Chapter 3).
•Krill-whale-nutrient feedbacks proposed
(53, 54).
•Feedbacks exist in some microbial commu-
nities (e.g. 55, 56).
•Arrangement and net sign of system feed-
backs yet to be explored.

Continued on next page
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Table 2.1 – Continued from previous page

Why is this a risk factor? How can it be assessed? How can it inform
management?

Southern Ocean
(see also section 2.5 of text)

Complexity
(species
richness,
connectance)

Random complex systems less likely to
be stable than simple systems (57), but
natural complex systems are not random
and have a balance of interaction types,
strengths and network structure that of-
ten promote stability (58, see also 59
and rows above). Broad, and allometric
scaling of degree distribution (e.g. large
predators have many prey and few preda-
tors) stabilises food webs (60, 61)
•Changes in complexity alter system sta-
bility, e.g. increases in complexity of
competition networks may reduce stabil-
ity (27).

•Reconstruct ecosystem as a net-
work including all interactions.
•Complexity measured as function
of connectance and species richness
(57, 62).
•Measure degree distribution
as number of prey and num-
ber of predators for each
species/functional group (61,
62).
•Where ecosystem structure is
unclear, proxies could be used to
infer presence of interactions e.g.
(63).

•Monitor changes in complex-
ity (e.g. arrival/loss of species,
changes in connectance) that
may destabilise the system.
•Shifts often towards simpler
regimes, so restoration of com-
plex regime likely to be chal-
lenged by reduced species pool.

•Traditionally considered as a fairly simple
system with short food chains, but grow-
ing evidence of greater complexity, and the
extremity of environment drives species to
have broad trophic niches, increasing the
connectance and thus complexity.
•Climate-driven poleward range shifts
likely to alter system complexity.

Presence of
ecosystem
engineers

•Ecosystems with dependence on foun-
dation species, or other ecosystem engi-
neers, appear to be particularly prone
to critical transitions including hystere-
sis (e.g. coral reefs, kelp forests, tropical
rainforests, drylands, shallow lakes).

•Identify ecosystem engineers as
species which create, significantly
modify, maintain or destroy habi-
tat.
•Observation and experimentation.

•Target monitoring and man-
agement around ecosystem engi-
neers (and other key functional
species, see row above re func-
tional redundancy).
•Consider actively removing or
reintroducing ecosystem engi-
neers to support habitat persis-
tence.
•Develop understanding of feed-
backs involving engineer species
and any potential stressors and
thresholds.

•Both ecosystem engineers and hysteresis
harder to identify in pelagic systems.
•Large whales considered ecosystem engi-
neers (64).
•Sea-ice is habitat forming. It is a 3D sub-
stratum for biota at different scales, has
a strong seasonal dynamic and is under
threat from climate change.
•Benthic systems characterised by habitat-
forming macroinvertebrates may be prone
to regime shifts (65).

References: 1Kéfi et al. 2016a. 2Kondoh and Mougi 2015. 3Mougi and Kondoh 2012. 4Morris et al. 2007. 5Kéfi et al. 2016b. 6Xu et al. 2015a. 7Scheffer et al. 1993.
8Vasas and Jordán 2006. 9Dambacher and Ramos-Jiliberto 2007. 10Fontaine et al. 2011. 11Kéfi et al. 2012. 12Kéfi et al. 2015. 13Pilosof et al. 2017. 14Lurgi et al. 2016.
15Hutchinson et al. 2018. 16Xu et al. 2015b. 17Suding et al. 2004. 18Nevitt et al. 1995. 19Sakamoto et al. 2009. 20Hodges and Woehler 1994. 21Lett et al. 2014.
22Veit and Harrison 2017 23Harrison et al. 1991. 24McCann et al. 1998. 25Melián et al. 2009. 26Allesina and Tang 2012. 27Sauve et al. 2014. 28Ushio et al. 2018.
29Wootton and Emmerson 2005. 30Deyle et al. 2016 31Berlow et al. 2009. 32Bascompte et al. 2005. 33Chambers et al. 2013. 34Bakun 2006. 35Cury et al. 2000. 36Hughes 1994.
37Bellwood et al. 2006. 38Flores et al. 2012. 39Atkinson et al. 2014. 40Murphy et al. 2016. 41McCormack et al. 2019b. 42Grilli et al. 2017. 43Heithaus et al. 2008.
44Billick and Case 1994. 45Golubski et al. 2016. 46Dambacher et al. 2003. 47Ling et al. 2009. 48Marzloff et al. 2011. 49van de Leemput et al. 2016. 50Nystrom et al. 2012.
51Savoca and Nevitt 2014. 52Lewis et al. 2012. 53Smetacek and Nicol 2005. 54Nicol et al. 2010. 55Bertrand et al. 2015. 56Subramaniam et al. 2016 57May 1972.
58Borrelli et al. 2015. 59Landi et al. 2018. 60Otto et al. 2007. 61Allesina et al. 2015. 62Dunne et al. 2002. 63Morales-Castilla et al. 2015. 64Roman et al. 2014. 65Clark et al. 2013.
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2.2.1 The importance of ecosystem network features for stability

Many ecosystems are highly complex, yet debate continues as to whether complexity confers

stability or instability (Landi et al. 2018). Complex, random interaction networks tend to be

unstable (May 1972, 1973), but natural, persistent ecosystems are not random; they are the

product of evolutionary and selective processes occurring simultaneously at multiple levels

and scales of the ecosystem (Borrelli et al. 2015). These processes result in ecological networks

with a mix of features that are balanced for maximal stability, given the environment and

range of conditions in which they exist (Borrelli et al. 2015); however, if environmental con-

ditions change, then these same systems may become unstable. Some network structures are

more stable than others, but this is balanced by the distribution of interaction types and

strengths over the network (Sauve et al. 2014), and the optimal mix of features will depend

on the nature of variability and perturbations in the system. For example, nested network

structures (see Glossary) are more stable for mutualistic communities (e.g. flower-pollinator

networks), but more modular networks (with clusters of interactions compartmentalised, e.g.

into different habitats) are more stable in networks of mixed interaction types (Lever et al.

2014; Stouffer and Bascompte 2011; Thebault and Fontaine 2010). Environmental change

or disturbance that alters network structure or interaction types could alter the balance of

these features, and thus reduce stability and affect susceptibility to regime shifts (e.g. Kuiper

et al. 2015). Moreover, cyclical changes in interaction strengths (as might occur in highly

seasonal systems) may make ecosystems more vulnerable to disturbance at certain times of

the year (Ushio et al. 2018).

As ecosystems become more complex (greater diversity and connectance), there is opportu-

nity for more feedbacks - both positive and negative - to be present. The presence of positive

feedbacks is implicated for hysteresis (Table 2.1) because above a certain strength they can

destabilise an ecosystem, causing it to switch to an alternative stable state (e.g. of the same

network structure), where each alternative state is reinforced by a different set of dominant

feedbacks (Marzloff et al. 2011). If low level feedbacks are weak in comparison to high level

feedbacks, the system may experience divergent oscillations until it crashes (and may then

be replaced by a different community, e.g. with a different network structure) (Dambacher

et al. 2003). Perturbations that alter the distribution of interaction strengths in the

ecosystem are likely to change the relative strengths of negative versus positive feedbacks, and

so are likely to have greater impact on system stability than if perturbations had a uniform

impact on interaction strength. Similarly, perturbations that have a biased impact on certain

types of interactions (e.g. facilitation) or on species involved in multiple interaction types

(e.g. ‘multiplex hubs’ sensu Kéfi et al. 2016a) are likely to alter the pattern of positive and

negative feedbacks in the system, and thus ecosystem stability and vulnerability to regime

shifts. Importantly, even positive feedbacks that are too weak to individually cause tipping
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points, can collectively create tipping points when aligned with other weak positive feedbacks

(van de Leemput et al. 2016). This has important implications for decisions about the scope

of the system to assess (Box 1). For example, ecosystem practitioners might observe positive

feedbacks in their system of interest (e.g. an ecological community), but conclude that they

are too weak to cause tipping points. But these weak feedbacks could align synergistically

with positive feedbacks beyond the scope of consideration (e.g. including abiotic variables or

neighbouring communities) to create unidentified tipping points.

Protection of biodiversity is a key conservation goal and regime shifts tend to result in loss

of biodiversity (Biggs et al. 2018). High species diversity implies greater ecosystem com-

plexity, greater likelihood of high functional redundancy, more stable distribution of

interaction strengths (i.e. many weak, few strong), greater variance in responses to dis-

turbance, and potentially greater adaptive capacity of the ecosystem, meaning the system

might evolve gradually rather than shift suddenly (Folke et al. 2004; Loreau and Mazancourt

2013). Loss of biodiversity can reduce the range of possible ecosystem configurations, and

capacity to buffer perturbations (Peterson et al. 1998). For example, on the Great Barrier

Reef experimental manipulation of an area of reef resulted in overgrowth of coral by macroal-

gae (an alternative state), amongst which even herbivorous fish avoided feeding because of

the risk that predators could hide in the algae (Bellwood et al. 2006). Surprisingly, batfish,

a planktivorous fish, acted outside its known functional role to graze all the macroalgae from

the experimental plots (Bellwood et al. 2006). Without batfish to remove the macroalgae,

the section of reef is likely to have remained in its alternative, macro-algae dominated state,

yet prior to these experiments the importance of this species performing this function could

not have been predicted. Loss of species can thus have larger than expected impacts on

functional diversity, and the ability of the system to avoid or recover from regime shifts.

Most well-characterised examples of systems with alternative stable states involve the loss of

(or stress to) habitat-forming species or other ecosystem engineers (e.g. coral, kelp,

urchins on reefs, trees in woodlands/forests, submerged vegetation in shallow lakes). The

research focus on these systems may be because regime shifts are more evident in those sys-

tems, but it also highlights the importance of key functional species in determining ecosystem

state. Habitat-forming species and other ecosystem engineers tend to be involved in mul-

tiple types of interactions (e.g. facilitation, inhibition/competition, trophic), as well as

higher-order interactions which can stabilise systems and promote species coexistence

(Grilli et al. 2017; Levine et al. 2017). Loss of species performing multiple types of interac-

tions - ‘multiplex hubs’ - have been shown to have disproportionate impacts on ecosystems,

and are more likely to result in cascading losses of species, than loss of species involved in

fewer types of interaction (Kéfi et al. 2016a). Accordingly, disturbance or stress on species

that perform key functions or multiple functions in an ecosystem are likely to increase risk
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of regime shifts (see Table 2.1).

2.2.2 Dynamic and spatial features of ecosystems that affect regime shift
vulnerability

There is a diversity of risk factors posed by different dynamic and spatial ecosystem features

in relation to regime shifts (Table 2.2). Spatial patterns of the ecosystem, connectivity,

and how these interact with spatial patterns of disturbance, affect the nature and apparent

rapidity of regime shifts (Gravel et al. 2016; Schneider and Kéfi 2016; van de Leemput et al.

2015; van Nes and Scheffer 2005) (Table 2.2). For example, spatially heterogeneous land-

scapes tend to shift gradually (patch-by-patch) which theoretically provides greater warning

of the regime shift (unless there is a smooth gradient, high connectivity, and depending on

spatial patterns of drivers) (van Nes and Scheffer 2005); however in practice it remains chal-

lenging to recognise when change in one patch of an ecosystem indicates vulnerability to a

broader regime shift (Hughes et al. 2013). Self-organised spatial patterning can arise through

positive feedbacks and change in the emergent spatial patterns can sometimes be used as an

indicator of approaching regime shifts (e.g. Rietkerk and van de Koppel 2008; Rietkerk et al.

2004). Use of spatially explicit models to understand and predict regime shifts is necessary

but can be challenging as the presence of thresholds depends strongly on the way the models

are implemented (e.g. representation and simplification of spatial patterns, processes and

feedbacks), the way that space itself is represented in the model, as well as the spatial scale

of observation (Bathiany et al. 2016; Marzloff et al. 2016b).
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Table 2.2: Dynamic/spatial features of ecosystems that affect vulnerability to and dynamics of regime shifts. Southern Ocean ecosystems are used as an
example to illustrate how these features can be explored for a real ecosystem, but see main text (Section 2.5) for more general introduction of Southern
Ocean ecosystems and important species. Numbers refer to references given in the footnote of the table.

Dynamic &
spatial
features

Why is this a risk factor? How can it be assessed? How can it inform
management?

Southern Ocean?
(see also section 2.5 of text)

Spatial
connectivity,
heterogene-
ity and
homogeneity

Metacommunity complexity (number of and
connectedness among food webs in heteroge-
neous system) enhances system stability (1),
and changes to this can alter resilience
•Mobile consumers stabilise large, spatially
heterogeneous systems (but destabilise spa-
tially constrained ecosystems) (2), so changes
in their populations could destabilise an
ecosystem.
•Spatial connectivity promotes both recovery
from and spread of perturbations.
•Heterogeneous landscapes tend to transition
gradually (patch by patch), unless connectiv-
ity is strong, whereas homogenous systems
tend to transition suddenly (3, 4).
•Loss of resilience in homogenous systems can
be difficult to reverse (4).

•Satellite observations, tracking
studies (to monitor metacommu-
nity structure at large scales).
•Monitoring and modelling of dis-
persal and recruitment (e.g. estab-
lish coral settlement plates; particle
tracking models).

•Important to assess resilience
of homogeneous systems, or
highly connected heterogeneous
systems, as transition between
alternative states can be sudden.
•Assess implications of changes
in connectivity and spatial pat-
terns (e.g. fragmentation, in-
creases in dispersal) for system
stability and use to inform man-
agement strategies to maximise
resilience and stability.
•Action to avert transitions may
be most effectively targeted to-
wards the spatial front of a
regime shift (5).

•Highly mobile top-predators exert
enormous predation pressure season-
ally. Declines in predator numbers (6-
8) of concern.
•System spatially heterogeneous, but
highly connected via circumpolar cur-
rents and mobile predators.
•Modelling studies (e.g. 9-11) high-
light connectivity by investigating pat-
terns of dispersal through Southern
Ocean.
•Molecular observations suggest that
despite connectivity, gene flow between
regions can be low (12).

Evolutionary
history and
life
history traits

Evolutionary history and resultant set of life
history traits (and phenotypic diversity) in an
ecosystem can influence how the system might
buffer or respond to change.
•Ecosystems adapted to low stochasticity or
variability in conditions more susceptible to
strong perturbations compared to systems
that are highly seasonal (13).
•Life history and behavioural adaptations
(e.g. dispersal strategies, reproductive ‘bet-
hedging’, diapause or stasis, prey-switching,
14-16) can potentially buffer system against
change in short-term, and mask loss of re-
silience in the face of longer-term changes to
drivers.

•The impact of life history traits
and evolutionary history on the re-
silience of ecosystems (particularly
in terms of likelihood of ecological
transitions) requires investigation.
•Monitor biological rates (e.g.
breeding success, diet, dispersal)
in conjunction with environmental
parameters.
•Observations of bet-hedging (17);
of prey-switching; of dispersal (12).
•Modelling (e.g. of dispersal strate-
gies, population level consequences
of bet-hedging, prey-switching to
suboptimal diets, etc.).

•Where possible factor evolu-
tionary history into manage-
ment frameworks.
•Use monitoring data of biolog-
ical rates to understand drivers
of changes in life-history traits
and implications for system re-
silience, e.g. diets of longer-lived
predators may be more sensitive
indicators of change than popu-
lation size (e.g. 18, 19).

•Bet-hedging is common amongst
long-lived seabirds in the Southern
Ocean (17, 20). It is unclear how much
reduced reproductive output of these
predators will impact (or already has
impacted) the ecosystem.
•Many organisms adapted to high
seasonality and to extremes in some
drivers. This may buffer against some
environmental changes (but the loss of
sea-ice could be catastrophic - see Ta-
ble 2.1).
•Prey-switching over different time
scales may affect resilience (e.g. 21,
22).

Continued on next page
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Table 2.2 – Continued from previous page

Why is this a risk factor? How can it be assessed? How can it inform
management?

Southern Ocean?
(see also section 2.5 of text)

Self-
organised
spatial
pattern

Self-organised spatial patterns are an emer-
gent feature of internal dynamics (interac-
tions) taking place in a spatial context.
•Bistability of alternative stable states has
been associated with spatial patterns that
emerge from a combination of short-range pos-
itive feedbacks and long-range negative feed-
backs (23, 24, 25). This is often associated
with resource limitation and facilitation by the
ecosystem engineer.

•Assess large-scale patterns aeri-
ally, e.g. by satellite, plane, drone.
•Need to determine mechanisms to
identify whether spatial patterning
is self-organised; requires experi-
mental observations and modelling
(23).

•Could be used as indicator for
presence of positive feedbacks
(23).
•Possible indicator of hysteresis:
prioritise exploration of drivers,
feedbacks and thresholds (24).

•No obvious application to pelagic sys-
tems
•Could be investigated in benthic or
sea-ice algal ecosystems.

Step-changes
in drivers or
disturbance
regime

•Step-changes in environmental conditions can
drive reorganisations in ecosystem structure
even in systems not otherwise prone to regime
shifts. This appears to be especially true for
open pelagic systems (26).
•Increased frequency of disturbance limits per-
sistence of some organisms and can reduce sys-
tem resilience (27). If these organisms play
unique functional roles the whole system may
change (see Table 2.1 - ecosystem engineers).

•Paleo-reconstructions of local cli-
mate to assess frequency of changes
in climatic state.
•CMIP5/6 models (possibly down-
scaled) to assess possible future
change.

•Be prepared to adapt manage-
ment strategies to new climatic
conditions, altered disturbance
regimes and consequent changes
in ecosystems.

•Some large step-changes already ob-
served around the West Antarctic
Peninsula (e.g. loss of fast-ice and
increase in iceshelf collapse, iceberg
scour, glacier retreat and increase in
sedimentation) which have driven large
changes in benthic ecosystems (28, 29).

References:1Mougi and Kondoh 2016. 2McCann et al. 2005. 3van Nes and Scheffer 2005. 4van de Leemput et al. 2015. 5Zelnik and Meron 2018. 6Weimerskirch et al. 2003.
7Reid and Croxall 2001. 8Hindell et al. 2017. 9Fraser et al. 2017. 10Mori et al. 2017. 11Young et al. 2018. 12Moon et al. 2017. 13Holling 1973. 14Pelletier 2000.
15Kondoh 2003. 16Kondoh 2006. 17Nevoux et al. 2010. 18Hempson et al. 2018. 19Huckstadt et al. 2017. 20Jenouvrier et al. 2005. 21Croxall et al. 1999. 22Bedford et al. 2015.
23Rietkerk and van de Koppel 2008. 24Rietkerk et al. 2004. 25van de Koppel et al. 2005. 26Lees et al. 2006. 27Dal Bello et al. 2019. 28Barnes and Souster 2011. 29Sahade et al. 2015.
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The temporal variability of an ecosystem, and the life history traits of the organisms

within it, shape not only the dynamics of a regime shift, but how easily we can detect that

it is occurring. The evolutionary history of the organisms within an ecosystem - how

they have evolved in response to each other and their environment - determines the range

of their possible adaptations to future environmental and ecological changes (Dakos et al.

2019). In strongly seasonal or stochastic ecosystems, organisms evolve a suite of life history

traits to persist through environmental fluctuations, and the persistence of the ecosystem as

a whole depends on the continuation of the variability to which it has adapted (e.g. Chesson

2000; Nevoux et al. 2010). For example, the persistent co-existence of species depends on the

frequency of disturbance, and change to the disturbance regime can thus alter community

composition by reducing the capacity of some species to persist (e.g. Chesson 2000; Dal Bello

et al. 2019). Ecosystems with low variability tend to transition suddenly in response to

environmental change, whereas in highly stochastic systems, many of the organisms are able

to buffer their populations against unfavourable conditions, for example by reducing their

reproductive output, switching to substandard prey or by producing propagules that remain

dormant until conditions become favourable (Holling 1973). These kinds of adaptations

throughout an ecosystem can buffer the system against short-term change and can mask the

loss of resilience (depending on the variables being monitored), but in the face of longer-term

changes to drivers or the disturbance regime, the ecosystem is likely to change as species are

gradually lost. Step-changes in environmental conditions or disturbance regime are likely

to drive step-changes in the ecosystem, even where the relationship is linear (e.g. Dakos et al.

2015; Lees et al. 2006).

2.2.3 Assessing regime shift risk in practice

Assessment of the ecosystem features described in Tables 2.1 and 2.2 will typically require a

lot of data; it requires in-depth understanding of processes developed through experiments,

behavioural observations, long-time series of multiple variables, and so on. For some ecosys-

tems these data will exist, but for systems that are less accessible, or otherwise challenging

to study, shortcuts may need to be developed to assess these properties. As an example,

identifying emergent spatial patterns may be used to focus research towards understanding

the presence of positive feedbacks (Rietkerk and van de Koppel 2008). In general, identifica-

tion of risk factors will depend on the spatial, temporal and system scope being considered

(Box 1). While I have described a range of ecosystem properties that play a role in stability

and regime shifts, other important features may yet be discovered. In reality vulnerability to

regime shifts involves many interacting factors, and depends on how the intensity and dura-

tion of perturbations interact with the inherent ecological properties and biological rates of

the system at different scales (e.g. Harris et al. 2018; Kéfi et al. 2019; Ratajczak et al. 2017,
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Bergstrom et al. in review). This is the first time (that I am aware of) that these ecosystem

properties have been brought together and discussed in the context of regime shifts. It is

hoped that this will prompt new research directions and understanding of regime shifts.

Box 1: The problem of scale for the prediction and detection of ecological
regime shifts

A key consideration for the discussion of regime shifts is that of scale. Scale is an issue for
the whole field of ecology (Levin 1992), but in the study of regime shifts it is particularly
pertinent: what is considered a regime shift at one scale may not be at another. Here I
discuss 4 interrelated aspects of scale: temporal scale, spatial scale, organism scale, the
scope of the system (e.g. community, ecosystem, social-ecological system, biosphere),
as well as the scale of change (size of shift in terms of system function and structure –
i.e. does the change matter?). Integral to this discussion is consideration of the scale of
observation, which may not always coincide with the scale of the system of interest, the
scale at which change is occurring, or indeed the scale at which a signal is observable.
In all cases, expert opinion and conceptual models of the system structure and function
are useful for identifying the most relevant scales.

Spatial scale The optimal spatial scale for observing regime shifts will depend on the
system scope of interest. For example, a regime shift can be detected through change in
the (spatial) characteristic length scale (CLS) of a system (Chapter 4, Ward et al. 2018).
A change in the CLS when the underlying data are at millimetre resolution is likely to
reflect a physiological, individual or community-scale shift (depending on organism size),
but data at kilometre resolution is likely to reflect landscape or oceanographic scale shifts.
Regime shifts may appear abrupt in restricted spatial locations, but at a larger spatial
scale change may be more gradual, which means that observations conducted at one
spatial scale will describe a different pattern of change to those at another (e.g. Bathiany
et al. 2016). Observation scale also affects interpretations of network stability; e.g.
interaction strengths vary spatially (and temporally) so the scale over which interaction
strength is averaged will affect how stable it appears (see Table 2.1).

Temporal scale What appears to be a sustained transition at one temporal scale,
might be a normal fluctuation at a longer temporal scale (Fig. a). Similarly, what
may appear to be a gradual, linear change in ecosystem state at one temporal scale
may be a transition to an alternative stable state over a longer temporal scale (Fig. b).

Time

E
co

sy
st

em
 s

ta
te

Time

Ec
o

sy
st

e
m

 s
ta

te

Time

Time

a) b)

The temporal resolution of observations will also determine the
system scale that is being observed, and the scale of the changes
being observed. Generally, shorter, higher resolution observa-
tions will signal changes within a smaller system scope (e.g.
physiological, population, community), while coarser, longer
time-series will contain signals of change for broader system
scopes (e.g. community, ecosystem, biosphere), or for drivers
that change more slowly, or variables that respond more slowly.
Systems with long positive feedback loops (that involve many
ecosystem components) will have lags in their responses (tend
to spend longer in transient states), and so may require long
observational time series to observe the final response.

Organism size Different sized organisms respond to environmental change at different
scales, and thus require different scales of observation and of experimental manipulation
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to inform prediction and detection of regime shifts. To predict thresholds, experiments
are easier to conduct on small, short-lived plants and animals (e.g. plankton) than on
long-lived megafauna that can migrate great distances (e.g. whales). At the same time,
organisms with faster generation times can adapt and evolve more quickly to changing
conditions than animals with longer generation times. This limits capacity to identify
distant thresholds for short-lived organisms (because they may adapt to drivers before
a threshold is reached) and for long-lived organisms - because the duration and spatial
scale of the experiment would need to be so large (as well as potentially involving ethical
considerations). Organism size also affects which variables will be appropriate to monitor
for signals of (impending) change. Large migratory animals integrate environmental
variability across large areas, whereas smaller, sessile organisms will reflect local trends,
which has consequences for their usefulness as indicator variables (e.g. for Early Warning
Signals) for systems of different scope. Additionally, populations of species at the edges
of discontinuities in body size distributions also exhibit greater variability, affecting their
use as indicator variables of regime shifts (Nash et al. 2014).

System scope Ecosystems exist within a hierarchy of systems – from the physiological
system of organisms to the biosphere or Earth system – and regime shifts can occur
within each of these system levels. Regime shifts in one system can also trigger regime
shifts in broader or nested systems, either through domino effects or through feedbacks
(Rocha et al. 2018). Determining which is the ‘correct’ system scope to consider could
be challenging – e.g. an ecosystem may be the system of interest, but if social-ecological
feedbacks trigger a regime shift, then predicting, detecting or acting to avert it will
require consideration of a larger system scope.

2.3 Prediction of regime shifts

Much of the recent work developing capacity to predict regime shifts has focused on early

warning signals of impending transitions (e.g. Scheffer et al. 2015 and references in the first

three rows of Table 2.3.1), but here I take a broader view of regime shift prediction. While

knowing if a regime shift is imminent is important, ecosystem practitioners also need to know

how it will happen (e.g. drivers and ecological mechanisms involved), whether they need to

act (or can act) to avoid it (i.e. if the likely future regime is greatly different or undesirable),

and how urgently action must be taken (i.e. when it will happen). In the following section, I

pose a series of questions about regime shifts for which answers are required to characterise

future regime shifts. For each question I describe the approaches that could be taken to

obtain answers, and where specific methods exist for addressing the question, I describe

those in greater detail in Table 2.3.1 (method numbers given in the text (e.g. MX ), are

cross-references to rows in Table 2.3.1).

2.3.1 Some specific questions and approaches to predict them

Question 1: Is a regime shift imminent? A large number of early warning signals (EWS)

have been developed to predict whether ecosystems will suddenly shift to a different regime.
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Most EWS metrics are based on two different phenomena found in some systems as they ap-

proach a bifurcation point: critical slowing down (CSD) of dynamics (e.g. increase in recovery

time, rise in variance, increase in autocorrelation); or, stochastic ‘flickering’ of the community

between alternative ecosystem regimes. A few other EWS are based on autonomous dynam-

ics and patterns of the ecosystem (Scheffer et al. 2015), measures of disorder in multivariate

time-series (Eason et al. 2013) and food web stability (Kuiper et al. 2015).

Approach: Generic early warning signals (M1-3) can be used to determine whether a regime

shift is imminent, though there are a number of limitations and caveats (Table 2.3.1, M1-3).

It is best to apply multiple EWS metrics, and preferably multivariate metrics (Drake and

Griffen 2010; Spanbauer et al. 2014). Additionally, monitoring disturbance regime in the

system for evidence of change might be used as an early warning (Dal Bello et al. 2019).

With understanding of thresholds and mechanisms, more system-specific indicators could be

developed (e.g. number of urchins in kelp forests, Marzloff et al. 2016b) for greater precision

and reliability.

Q2. Which driver/s will cause the shift and what are the threshold/s? Most ecosystems

respond to multiple drivers, but their dynamics may not involve thresholds or tipping points.

Change in one driver may trigger a shift in some ecosystems, whereas in others the tipping

point is likely to depend on levels of multiple drivers, and their interactions (multi-driver

thresholds), (e.g. Fung et al. 2011; Möllmann and Diekmann 2012). Thus, to accurately

predict which drivers are likely to trigger a regime shift requires an understanding of both

predicted future trends in drivers, their relationships with key ecological variables, and how

drivers might interact to create ‘multivariate’ thresholds. Also, tipping points may change

before they are reached as ecosystems and species within them adapt and evolve to chang-

ing conditions (Dakos et al. 2019). It is important to note that abrupt shifts can occur in

ecosystems even in the absence of external drivers, i.e. arising purely from internal ecological

dynamics (e.g. Beninca et al. 2015; Hastings et al. 2018).

Approach: Observational data can be used to explore relationships between ecological vari-

ables and drivers by applying statistical models to observations e.g. GAMS (M4), potential

analysis of probability distributions (M7), or others to identify possible thresholds. These

approaches will only identify thresholds within the range of the observations. It is difficult

to tease apart influence of different drivers purely from observations, and many drivers are

predicted to reach levels beyond what has been previously observed. Thus, experimentation

(especially multi-stressor, multi-species experiments) is required to extend understanding of

ecological response to drivers and thresholds (Schroder et al. 2005). Dynamic ecosystem

modelling can help understand synergies between drivers (e.g. Fung et al. 2011), and differ-

ences in drivers of forward and reverse transitions and management of those (e.g. Marzloff

et al. 2016b) (M9), but these models need to be informed by deep understanding of the
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system developed through experimentation.

Q3. Is there hysteresis? The presence of hysteresis increases the importance of avoiding a

regime shift, as it makes reversing the shift much harder. However, the presence of hysteresis

may not matter if the drivers cannot be controlled or reversed (e.g. climate change related

drivers). There is also a spatial consideration: at a small spatial scale there may be alternative

stable states, but at a larger spatial scale the shift may be continuous (e.g. Bathiany et al.

2016, Box 1).

Approach: Experimentation (Schroder et al. 2005) and dynamic ecosystem modelling (M8 &

M9), where the skill of the models to detect hysteresis depends on how (well) the dynamics of

the ecosystem are parameterized, and the spatial scale of the model. The presence of strong

positive feedbacks could potentially indicate presence of hysteresis, but experimentation and

modelling are required to confirm this. ‘Potential analysis’ (M7) of observational data can be

used to identify alternative stable states (hysteresis) of the past, but future changes may not

be consistent with this past behaviour of the system. Statistical exploration of relationships

between species and drivers (M4) can be used to identify differences between forward and

reverse thresholds. Spatial or temporal patterns and dynamics of the system could also be

explored for evidence of flickering, which could indicate presence of an alternative regime

(M2).

Q4. What are the key ecological mechanisms? Non-linear ecological responses to environ-

mental change can take multiple forms, e.g. thermal physiological thresholds (e.g. Boyd et

al. 2018; Hughes et al. 2017b), prey overcompensation (e.g. Gardmark et al. 2015), trophic

cascades (e.g. Pershing et al. 2015), competition (e.g. Prowse et al. 2014), role reversal in

predator-prey relationships following population depletion (e.g. Barkai and McQuaid 1988;

Fauchald 2010). Positive feedbacks particularly create nonlinear responses. The ecological

mechanisms that lead to a regime shift may be highly reliant on the nature of environmental

change, and differ from those that prevent a reverse shift. Organisms with fast generation

times relative to change in drivers may evolve or adapt to changing conditions in unforeseen

ways, altering predicted biological responses.

Approach: Experimentation combined with modelling (M8 & M9) is the best approach to

understand ecological mechanisms that might be involved in a regime shift. In ecosystems

where experimentation is not possible, statistical exploration of observational data can pro-

vide insight into mechanisms (M5 & M6).

Q5. Can the system be guided towards a ‘safe operating space’? A safe operating space

would be far enough away from thresholds or regions of bistability that stochastic events

would be unlikely to push the system across a threshold. This would require understanding of

multivariate thresholds (both forward and reverse tipping points), understanding of feedbacks

and ecological mechanisms as well as the ability to control the drivers or ecological response
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to changes in drivers. It may be possible to maintain or guide small, manageable systems

towards a ‘safe operating space’, but more challenging/unlikely in large, open systems. It may

also be the case that desirable ecosystem services depend on feedbacks that create hysteresis.

Approach: Modelling to inform management: see M6 for an example with a single-species

focus, but for ecosystem-based management, using ensembles of models (e.g. including M8-

11) will be more informative. It may be difficult to predict outcomes of management actions

that interact with complex, or poorly understood, feedbacks. It is therefore important to

capture key processes and interactions between them in conceptual models (M12) developed

through expert opinion (e.g. Margoluis et al. 2009).

Q6. When will the system shift? Knowing when an ecosystem might shift is important for

planning and prioritising management actions. It requires knowledge of the likely pathway

(driver + ecological mechanisms causing a shift), the thresholds, and if hysteresis is present,

the likelihood of stochastic perturbations causing a shift before the threshold is reached. It

is also important to understand lags between change in drivers and ecosystem responses, e.g.

if some variables respond slowly to changes, or if long feedback loops (i.e. involving many

intervening components) delay the impact of changes (Hastings et al. 2018; Walker et al.

2012). Key challenges include difficulty predicting large step changes in other systems (e.g.

climate) which may trigger a shift sooner, and evolution or adaptation of ecosystem and

components before the predicted threshold is reached.

Approach: Coupled dynamic ecosystem models incorporating projected changes in driver

trends and stochasticity (M11).

Q7. What is the future state of the ecosystem? Is the future state likely to be one that is

undesirable (i.e. do we need to act to avoid it)? Key considerations include likely bias in

predictions depending on which species are monitored, and that future ‘state’ is not the same

as future ‘regime’ (see Glossary for definitions). While a future state (e.g. initial species com-

position) might be predicted based on methods below, this is indication only of one future

state, not the future regime (e.g. nature of species interactions, feedbacks and dynamics),

or even the final community composition as the predicted state may be transitional. Species

biomass trends on the approach to a regime shift are not reliable indicators of species dom-

inance after the shift (e.g. Dakos 2018). The pathway (drivers and ecological mechanisms)

will determine the available species pool that can make up a future ecosystem regime.

Approach: Some early warning signals may give an indication of future state, for example

multivariate autocorrelation patterns (M1) and flickering (M2) tend to be towards the alter-

native regime. Past changes or regime shifts in similar systems may indicate one potential

future regime, but similar systems can have inherently different dynamics (e.g. Ling et al.

2015), and ecosystems can change such that a pathway to a previous regime is no longer

possible. Experiments can be used to predict future state, but observed outcomes depend on
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drivers tested and available species pool. Using ecosystem models with predicted or conjec-

tured responses to changes in drivers, and predicted available species pool can be useful for

describing potential future states (e.g. M11 & M12), but can be highly uncertain.
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Table 2.3: Methods and approaches available for predicting aspects of ecological regime shifts. Methods numbers (MX ) are those referred to in the main
text Section 2.3.1. Questions the method could be useful for addressing are given in the final column, and refer to the question numbers in Section 2.3.1
(parentheses around question numbers indicate those that may be addressed with the method, but to which the method is less generally suited).

Method
No.

Method and
example references

Requirements Limitations Advantages Q’s

Generic early warning signals (EWS)

M1 Critical Slowing Down (CSD)
EWS
•Group of measures based on sys-
tem dynamics slowing down as ap-
proach tipping point (e.g. increase
in recovery time, rise in variance,
increase in autocorrelation).
•Many, many papers. Some ex-
ample overviews: Dakos et al.
2015, 2013, 2012; Génin et al.
2018; Jager and Fullsack 2019;
Kéfi et al. 2014; Majumder et al.
2019; Nijp et al. 2019; Scheffer et
al. 2009; Scheffer et al. 2015.

•Data: High resolution, regu-
larly sampled ecological data
(either temporal or spatial)
•Ideally, need understanding
of system to select appropri-
ate state variables to monitor
(e.g. Dakos 2018; Dakos and
Bascompte 2014; Gsell et al.
2016).
•Species with body sizes at
the edge of discontinuities in
body size distributions may
be less useful than those at
the centre (Nash et al. 2014).

•Limited applicability to real, noisy systems.
•Limited by changes in stochasticity or speed of system.
•Not all species time-series will give signal.
•Detection of EWS may be too late to act to avoid shift
(e.g. in fast moving system).
•Signal not expected for all types of regime shifts (e.g.
step-change in the driver won’t cause a CSD signal in
ecological data).
•If multiple stressors and thresholds being approached,
the signal will be masked/confounded.
•Challenging/unlikely to work for open pelagic systems
due to system scale; ecological signal masked by move-
ment of species.
•Detection depends on data series length and resolution
and false alarms possible.
•For spatial methods, signal depends on spatially self-
organised patterns, but these affected by spatial pat-
terns of human disturbance, geomorphological features
and gradients.
•See e.g. Boettiger and Hastings (2012) and Dakos et
al. (2015) for discussion of limitations.

•If appropriate time series available,
detection possible even without ex-
tensive understanding of the system.
•Recommended for use as indicators
of relative resilience of the system
(over time or compared to similar
systems)(Scheffer et al. 2015).
•Presence of CSD EWS might
give indication of type of path-
way/mechanism (Dakos et al. 2015).
•Able to apply spatial metrics in ar-
eas lacking high resolution temporal
data.
•Patterns of correlation between
species CSD metrics approaching
transition may provide indication of
future state (Dakos and Bascompte
2014; Scheffer et al. 2015; van de
Leemput et al. 2014).

Q1
(Q7)

M2 Flickering EWS
•Group of measures for systems
that ‘flick’ between alternative
states (basins of attraction) as ap-
proach tipping point.
•Dakos et al. 2013; Kéfi et al.
2014; Scheffer et al. 2015

•As for CSD EWS
•Understanding of whether
system is likely to ‘flick’.

•Large data requirement
•System (or selected variables) may not flicker.
•Detection of EWS may still be too late to act to avoid
shift
For Q7:
•Likely bias in predictions based on which species are
monitored.
•Indication of future ‘state’ rather than future ‘regime’.

•Detection possible even without ex-
tensive understanding of the system.
•May be detectable in systems where
CSD EWS are not detectable due to
high stochasticity.
•Presence of Flickering EWS could
potentially address multiple ques-
tions
•For Q7: Not reliant on past obser-
vations of regime shifts, or on find-
ing similar systems with alternative
states.

Q1
Q3
Q7

Continued on next page
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Table 2.3 – Continued from previous page

Method
No.

Method and
example references

Requirements Limitations Advantages Q’s

M3 Information theoretic metrics
to detect changes between
ordered and disordered be-
haviour
•Fisher information (Eason et al.
2019, 2016; Fath et al. 2003;
Karunanithi et al. 2008; Span-
bauer et al. 2014).
•Global transfer entropy (GTE)
(Bossomaier et al. 2018).

•Methods developed for
Fisher Information require
multivariate time series or
spatial information.
•Global Transfer Entropy
can be calculated from high-
resolution univariate data
(e.g. Bossomaier et al. 2018),
but for ecosystems multivari-
ate data is recommended.

•Large data requirement
•Have only been applied post hoc to time series of con-
taining regime shifts.
•Global Transfer Entropy not yet tested on ecological
data.
•May work best for systems with long transient states
leading to regime shifts.

•May provide earlier warning signal
than other EWS.
•Multivariate approach may provide
clearer signal in complex ecosystems.
•Also used to detect regime shifts af-
ter they occur, and to assess ecosys-
tem resilience and its limits (Konig
et al. 2019).

Q1

Statistical models

M4 Statistical exploration of rela-
tionships between drivers and
species
•Application of GAMs to obser-
vational data to identify non-
linearity (Hunsicker et al. 2016).
•Application of regression analy-
sis to experimental data, where
dual relationships between driver
and species can indicate hysteresis
(Scheffer and Carpenter 2003).

•Concurrent observations of
drivers and ecological re-
sponse data, over range of
driver levels (could be tempo-
ral or spatial replicates).
•Or, results from appropriate
experimental studies, ideally
testing multiple driver combi-
nations on multiple variables.

•Difficult to tease apart effects of different drivers, un-
less this is based on experiments rather than observa-
tions.
•Difficult to predict relationship beyond what has been
observed.
•Different drivers and thresholds may interact in ways
not captured in the observations.
•Relationships based on observations are not necessarily
causal, and so not definitive evidence of a threshold.
Also, because observational data required from either
side of a threshold, the threshold can only be determined
after it has been crossed.
•Changes in system might alter shape of relationship
between drivers and species before identified thresholds
reached.

•Option for systems where experi-
mentation not feasible.
•Useful for identifying trends before
further investigation via experimen-
tation.

Q2
Q3

M5 Statistical exploration of re-
lationships between species
•Multivariate Autoregressive
models (Ives et al. 2003)
•Manipulation of observational
timeseries (Pershing et al. 2015)
•Non-linear approaches (Ushio et
al. 2018)

•Time series of multiple
species observations
•Preferably also time-series
data of drivers.

•Large data requirement: requires time-series (prefer-
ably long & high-resolution) of multiple species.
•Scope limited by type of data available and range of
conditions over which observations made.

•Useful in ecosystems for which ex-
perimental manipulation not feasible.

Q2
Q4

Continued on next page
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Table 2.3 – Continued from previous page

Method
No.

Method and
example references

Requirements Limitations Advantages Q’s

M6 Statistical exploration of pop-
ulation dynamics
•Post-hoc exploration of time se-
ries to diagnose mechanisms, e.g.
Gardmark et al. (2015)
•Bayesian approaches to avoid un-
known tipping points (Boettiger
et al. 2015).

•Time series of species bio-
logical rates, population size
structure and prey availabil-
ity.

•Single-species focus.
Post-hoc exploration of time series to determine mech-
anisms:
•Has a large data requirement and is indicative of mech-
anisms but not conclusive.
•Only useful for a posteriori exploration of mechanisms:
requires data from different regimes.

•Useful for populations populations
of key functional groups, e.g. ecosys-
tem engineers.
•Useful in ecosystems for which ex-
perimental manipulation not feasible.
•Bayesian approach of Boettiger et
al. (2015) useful to support manage-
ment decisions where limited data
available as it takes into account
uncertainty in regions of parameter
space unsupported by observations.

Q3
Q4
(Q5)

M7 Analysis of probability distri-
bution of ecosystem states
•“Potential analysis” is a method
for identifying alternative states
from multimodal data (Hirota et
al. 2011; Livina et al. 2010; Schef-
fer et al. 2012a)

•Spatial replicates of alterna-
tive ecosystem state in spa-
tially multimodal system or
long time series data on
ecosystem state (e.g. from
single location).
•Understanding and data on
drivers.

•Large data requirement
•Different drivers and thresholds may interact in ways
not captured in the observations.
•Challenging to predict the relationship beyond what
has been observed.
•Changes in system might alter shape of relationship
before reaching identified thresholds.
•Identifies existence of past regimes or alternative
regimes in similar systems, but not necessarily an in-
dication of future dynamics.

•Option for systems where experi-
mentation not feasible.
•Can be used to identify thresholds,
and hysteresis (and potentially future
state).

Q2
Q3
(Q7)

Dynamic ecosystem models

M8 Qualitative loop analysis of
feedbacks
•Dambacher et al. 2003; Justus
2006; Marzloff et al. 2011; Puccia
and Levins 1985
•Qualitative simulation analysis,
e.g. with QPress (Chapter 3)

•Understanding of relation-
ships between ecosystem
components (existence and
sign of interactions, but not
strength).

•Equilibrium approach - not applicable to systems with-
out an equilibrium.
•Only describes behaviour in local neighbourhood of
equilibrium.
•Imprecise: cannot quantify thresholds.
•Spatial and temporal characteristics of interactions not
captured.
•Focuses on press perturbations, but cannot assess im-
pact of pulse perturbations.

•Can use to assess ecological thresh-
olds (ie. ecological conditions under
which system is stable)
•Don’t need to know interaction
strengths.
•Indication of possible hysteresis if
strong net positive feedbacks, and
negative correlations between sets of
ecosystem components.

(Q3)
Q4

Continued on next page
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Table 2.3 – Continued from previous page

Method
No.

Method and
example references

Requirements Limitations Advantages Q’s

M9 Quantitative modelling to
elucidate drivers and thresh-
olds
•Faassen et al. (2015), Fung et al.
(2011), Griffith and Fulton (2014),
Marzloff et al. (2016b), Scheffer
(1989), and van de Leemput et al.
(2016).

•Drivers, response of ecosys-
tem to changes in drivers
•Predicted driver trajectories
•Relationships between
drivers and ecological re-
sponse, thresholds
•Understanding of system
feedbacks

•Limited by information available for parameterisation,
e.g. responses of ecosystem to interacting drivers, un-
derstanding of ecological mechanisms and their response
to drivers.

•Can assess for hysteresis
•Can assess likely efficacy of differ-
ent management actions in avoiding
or promoting shifts.

Q2
Q3
Q4

M10 Quantitative modelling to
predict future states
•Model scenarios based on either
observed relationships or on con-
jectured responses (e.g. Ainsworth
and Mumby 2015; Marzloff et al.
2016b)

•Balanced ecosystem simula-
tion model (e.g. Ecopath
with Ecosim)
•Experimentally observed or
predicted responses to chang-
ing stressors

•Future changes often beyond what has been observed
in the past, making it difficult to project ecological re-
sponses into models (e.g. previously unobserved func-
tional responses).
•Unobserved relationships with drivers difficult to pre-
dict and therefore implement in models.

•Can test multiple scenarios (e.g. im-
pact of pathway on future state).
•Could explore role of management
actions in determining future state.

Q7

Integrated modelling approaches

M11 Coupled models
•Species distribution models cou-
pled with dynamic models to pre-
dict shifts in the future (e.g. Con-
lisk et al. 2013; Franklin 2010)
•End-to-end models incorporat-
ing multiple submodels for subsys-
tems e.g. CMIP5/6 (Griffith and
Fulton 2014; Melbourne-Thomas
et al. 2017).

•Validated species dis-
tribution models coupled
with dynamic climate (e.g.
CMIP5/6) and/or ecosys-
tem models (e.g. Atlantis,
Ecopath with Ecosim).
•Projected trends and vari-
ability in drivers.
•Predicted lags between
thresholds and shift (e.g. if
slow variables involved, e.g.
Ling et al 2015).

•All the limitations of separate models (e.g.
information-in constrains information-out).
•Species may evolve/adapt to changing environment in
a way not captured in the models, and which may alter
predicted thresholds.
•Difficult to predict large step-changes in other systems
(e.g. climate) which may trigger an ecological shift.

•Can explore multiple scenarios, and
over longer time period than possible
with field experiments.
•May be able to identify most likely
pathway (driver + ecological mecha-
nism) where multiple pathways pos-
sible.

Q6
Q7

Continued on next page

34



C
h
a
p
ter

2.
Is

m
y
eco

sy
stem

a
sh
ifter?

A
fram

ew
ork

for
p
red

ictin
g,

ch
aracterisin

g
an

d
d
etectin

g
ecological

regim
e
sh
ifts

Table 2.3 – Continued from previous page

Method
No.

Method and
example references

Requirements Limitations Advantages Q’s

Conceptual models

M12 Conceptual models and ex-
pert judgement
•Collaborative development of
conceptual models of ecosys-
tem, its drivers and processes,
as well as targeted ecosystem
regime/state and strategies to
mitigate drivers (e.g. Gladstone-
Gallagher et al. 2019; Linden-
mayer and Likens 2010; Margoluis
et al. 2009).

•Experts from diverse back-
grounds and disciplines to
workshop and crystallise un-
derstanding of the processes
playing out in a system (Mar-
goluis et al. 2009). Struc-
tured processes for training,
eliciting and assessing ex-
pert opinions are important
for reducing bias and im-
proving accuracy and cali-
bration of judgements (e.g.
Burgman et al. 2011; Hem-
ming et al. 2018; Sutherland
and Burgman 2015).

•Will capture biased view of ecosystem and its pro-
cesses, depending on scope of interest, breadth of back-
grounds, understanding and experience of the experts,
but this can be overcome with appropriate elicitation
processes and through revisiting the model over time.

•Useful for identifying key processes
and variables in systems for which
data are insufficient to quantify.
•Facilitates identification of interact-
ing processes and drivers, as well as
opportunities for intervention.
•Because current understanding of
the system is so clearly mapped
out in conceptual models, they can
be explicitly updated as new evi-
dence/understanding of the system
emerges.

Q2
Q4
Q5
Q7
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2.3.2 Considerations emerging from the findings of Section 2.3.1

In ecology, two broad categories of prediction exist: anticipatory predictions (prediction of

the future) and explanatory or corroborative predictions (theoretical models that can be

corroborated by data) (Maris et al. 2019; Mouquet et al. 2015). Predicting the answers

to the questions we pose in some cases will involve anticipatory prediction, in other cases

corroborative prediction, and in some cases both. For example, predicting when an ecosystem

will shift is purely anticipatory - the answer cannot be corroborated until a regime shift

occurs, or the predicted time passes. Predicting drivers and thresholds can be corroborative

- e.g. it is possible to experimentally test thresholds that currently exist for the system;

but it can also be anticipatory - will thresholds identified still exist by the time that level

of the driver is reached (or will the system adapt/evolve altering the thresholds, or will

more influential drivers arise making different thresholds more important). In most cases,

anticipatory predictions are highly uncertain (likely to be wrong), making it necessary to

use multiple approaches for both making the predictions, and for assessing risks in acting on

those predictions (Mouquet et al. 2015).

Predicting the answers to many of the questions posed above depends on understanding the

ecological mechanisms likely to be involved in the shift from one regime to another (Fig. A.1,

Appendix A). Typically, the ecological mechanisms (e.g. key interactions) might be involved

in some sort of positive feedback (see Table 2.1, and discussion above), but the interactions

driving the shift will depend on how both negative and positive feedbacks are distributed over

the ecosystem, and how the drivers affect the strength of individual interactions and feedbacks

(Scheffer and Carpenter 2003). For example, in shallow lakes a shift from a clear to a turbid

water regime could be driven by an increase in nutrients beyond what can be absorbed

by the submerged vegetation or loss of (a critical mass of) submerged vegetation leading

to resuspension of sediments (Scheffer et al. 1993). Submerged vegetation contributes to a

number of positive feedbacks supporting the clear state, including stabilising the sediments,

providing refuge for zooplankton from planktivorous fish and producing chemical compounds

that suppress competing algae (Scheffer et al. 1993). The type of ecological understanding

required to predict the ecological mechanisms and feedbacks triggering regime shift behaviour

highlights the importance of long-term programs of observation and experimentation (e.g.

shallow lakes, kelp-urchin shifts) (Marzloff et al. 2013; Marzloff et al. 2016b). Importantly,

the ecological mechanisms and feedbacks need to be well understood to know how to avert

(or reverse) a regime shift (e.g. Marzloff et al. 2016b).

Ecosystems frequently face numerous drivers and disturbances, which can interact with each

other and ecological processes to modify thresholds (Biggs et al. 2018; Dal Bello et al. 2019;

Ratajczak et al. 2018; Ratajczak et al. 2017). This makes predicting thresholds particularly
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challenging, as often no single threshold exists, but a range of thresholds depending on

levels of multiple drivers, as well as cumulative impacts from recent history of perturbations

(Dal Bello et al. 2019; Ratajczak et al. 2017). If long positive feedback loops (i.e. those

involving many intermediate interactions; see Glossary) are present, the ecosystem is likely

to spend longer in transient states on a trajectory towards (possible) equilibrium and this

can affect the ability of researchers and practitioners to recognise that a regime shift is

occurring. Single-driver thresholds can be identified through experiments (depending on

scale and speed of the system), but it is challenging to design experiments that effectively

illuminate how multiple drivers and ecological processes interact to modify thresholds. This

is even true for species with relatively short life-spans (e.g. phytoplankton, Boyd et al.

2018), and whether thresholds in these lower trophic levels will trigger larger system-scale

regime shifts depends on the structure and nature of feedbacks over the ecosystem. There

is added uncertainty around how ecosystems (and their component species) may adapt or

evolve to changing conditions, which may alter thresholds before they are reached (Dakos

et al. 2019) - especially in the face of increasing climate driven range shifts that create novel

ecosystem assemblages (Hobbs et al. 2018; Pecl et al. 2017). Running experiments that

capture potential evolutionary responses to drivers is difficult to do at an appropriate scale,

and ecosystem models incorporating adaptation and evolutionary processes will be required

to fill this gap. In the meantime, since persistence of precise thresholds into the future is

difficult to predict, it may be best to focus on the likely pathway - i.e. mechanisms and driver

- of the shift, rather than on specific threshold values. In many cases, expert opinion (and

conceptual models) will be critical for identifying most likely pathways of transitions where

data are lacking, for designing appropriate experiments and monitoring programs to obtain

those data and for weighing up and selecting management strategies (see M12, Table 2.3.1,

Margoluis et al. 2009).

In the face of an impending regime shift, ecosystem practitioners could choose to a) do noth-

ing - i.e. continue managing the system as usual; b) try to avoid the regime shift (e.g. reverse

the drivers away from threshold levels); or c) try to avert a sudden shift (e.g. by intervening in

the ecological mechanisms/feedbacks of the system itself) to try to guide it along a smoother

pathway of change (e.g. Figure 5.1, Chapter 5). The action pathway chosen will depend on

the relative desirability of the current versus predicted regime, the practicality of managing

the drivers, and how easily the ecological mechanisms can be controlled. Although many

drivers cannot be controlled in time to limit their impact on ecosystems (e.g. climate change

drivers), because thresholds are often likely to be multivariate (threshold level of each driver

depends on the level of other drivers), it may be possible to focus on controllable-drivers to

guide the system along a smoother pathway and avoid an abrupt shift. For example, transi-

tions from rainforest to savannah are related to levels of precipitation (which is an emergent
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property of the vegetated state and climate) (Hirota et al. 2011), however precipitation itself

cannot be controlled. In this case, acting on other drivers such as deforestation will be more

effective in supporting the rainforest regime. Control of ecological mechanisms is more com-

plicated. For example, while strong positive feedback may create hysteresis, intervening to

alter the feedbacks or reduce their strength could fundamentally change the ecosystem - i.e.

cause a regime shift. Whether it is necessary to avoid a regime shift (from an anthropocentric

perspective) depends on the importance of the emergent ecosystem services of the current

regime, and how undesirable the predicted future state is likely to be.

2.4 Detection of regime shifts

Detecting that a regime shift has occurred is fundamental for managing an ecosystem appro-

priately. If the ecosystem is managed according to the dynamics and patterns of a previous

regime, it could result in further regime shifts, or deterioration of ecosystem state (Hughes et

al. 2013; Möllmann et al. 2009). Detecting that a regime shift has occurred may be relatively

simple in some ecosystems, for example, where alternative stable states are well described

or where the physical structure of the system substantially changes. In other ecosystems

regime shifts are less evident, demonstrated by decadal lags in identifying their occurrence in

several pelagic ecosystems (Hare and Mantua 2000; Möllmann et al. 2009; Reid et al. 2001).

Following a regime shift, we might expect the ecosystem state (e.g. abundances of ecosystem

components) to have changed, but this alone is not evidence of a regime shift as state can

change dramatically within a regime (Biggs et al. 2012; Johnson 2009). Regime shifts involve

reorganisation of ecosystem structure and function, with a change in self-reinforcing feedbacks

(Biggs et al. 2012). Consequently, changes that might be evident following a regime shift

include emergent properties such as spatial and temporal patterns, and dynamics dominated

by (fundamentally) different processes.

In systems where regime shifts are difficult to identify (e.g. pelagic systems), detection

has primarily been achieved by testing time-series data for evidence of a sustained shift in

ecosystem state, and identifying the time of the shift. The different statistical approaches

for detecting regime shifts from time-series data, their benefits and limitations have been

well summarised and reviewed elsewhere (Andersen et al. 2009; Rodionov 2005). The major

classes of approach involve identifying shifts in the mean state, the variance, the frequency

structure and shifts in the system (Rodionov 2005). Major challenges for their application to

ecological data include having short (and low-resolution) time-series, dealing with underlying

trends in the data, identifying small magnitude shifts, distinguishing shifts from longer wave-

length fluctuations or dealing with cases with multiple change-points (Andersen et al. 2009).

Many of the available tests have limited statistical power to deal with these challenges, or
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to quantify the uncertainty in the estimation of change-points in the data set. For example,

one of the most popular methods for detecting regime shifts is STARS: a sequential t-test

or f-test to identify shifts in the mean and variance respectively, of an ecological time-series

(Rodionov 2004; Rodionov 2005). This method can handle multiple change-points and does

not require many time-steps after the change-point (Rodionov 2005), but does tend to work

better for larger magnitude shifts and if pre-whitening is applied to remove red noise. It

requires some trial and error to determine the optimal parameter settings and though it can

identify that a regime shift has occurred, the estimation of timing of the change-point tends

not to be precise (Stirnimann et al. 2019).

Evidence of ecosystem regime shifts detected from time-series is most convincing where there

is data indicating that multiple ecological variables have shifted (e.g. Hare and Mantua 2000;

Möllmann et al. 2009) (but where alternative regimes are well characterised, evidence from

a single indicator variable may be sufficient, e.g. chlorophyll-a in shallow lakes, algal cover

on coral reefs). Also, in order to characterise the nature of the shift, understanding of

trends in multiple organisms and trophic levels is required but can be difficult to obtain.

There is also need to decide from which spatial domain it is appropriate to consider data

together, highlighting the importance of expert opinion in identifying appropriate variables

and making analytical decisions. Multiple variables can either be tested separately, or they

can be combined into an ecosystem-wide metric, e.g. with principle component analysis

(Möllmann and Diekmann 2012). Another option to increase certainty that a regime shift

has occurred is to apply multiple detection methods to the same time-series (Biggs et al.

2012). Although this will increase the risk of falsely detecting a regime shift, if multiple

methods all detect the same regime shift then the evidence is more convincing (Andersen

et al. 2009). However, all these approaches depend on the assumption that a change in

community structure must represent a regime shift, which while often true, is not necessarily

the case.

Emerging methods for detecting regime shifts based on emergent spatial patterns - Char-

acteristic Length Scale (CLS) estimation - provide an alternative approach, especially in

ecosystems with little time-series data (Habeeb et al. 2007, 2005; Johnson 2009; Johnson

et al. 2017; Ward et al. 2018). This approach is attractive because it requires data from few

timepoints; however it still has a high data requirement, needing high-resolution spatial data

(either 2D or 1D) of species (or other ecological variable) occurrence, and also depends on

the presence of emergent spatial patterns (Habeeb et al. 2005; Keeling et al. 1997; Pascual

and Levin 1999; Ward et al. 2018, Chapter 4). Greater availability of 2-dimensional spatial

data from drones or satellites makes detection of regime shifts using CLS-estimation of 2D

data increasingly feasible (Habeeb et al. 2005). On the other hand, transect (1D spatial)

data exist for many more ecosystems, which could be used to detect regime shifts using the
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1D-CLS estimation approach; however 1D-CLS may be less sensitive than the 2D approach

(Ward et al. 2018, Chapter 4). Importantly, because CLS estimation involves reconstruction

of the ecosystem attractor, change in CLS provides more definitive evidence of a shift from

one ecosystem attractor to another than does a change in ecosystem state (Johnson 2009;

Johnson et al. 2017). A particular feature of this approach is that it distinguishes cases

where there is change in structure but no regime shift from those where change in structure

is reflective of a regime shift (Johnson 2009; Johnson et al. 2017). How changes in emergent

CLS relate to changes in spatial early warning signals remains an outstanding question.

2.5 Southern Ocean case study

In the following section I step through the framework with Southern Ocean ecosystems as a

case study to illustrate how it can be used to evaluate capability to predict, characterise and

detect regime shifts. First I provide a brief overview of the system, followed by an investiga-

tion of its potential vulnerability to regime shifts, based on the characteristics described in

Tables 2.1 and 2.2. I then explore available evidence and data that could be used to predict

the nature of regime shifts, based on the approaches detailed in section 2.3.1. Finally, I

discuss available data that could be used to detect regime shifts once they have occurred.

Southern Ocean ecosystems include a range of coastal, pelagic, benthic and sea-ice habitats

(Constable et al. 2014). The pelagic habitat is divided by circumpolar currents, with strong

poleward gradients of most parameters, which has resulted in isolation of species and high

endemism and biodiversity (Chown et al. 2015). The region is highly seasonal, with high

latitude areas experiencing extremes of light, temperature and productivity (Deppeler and

Davidson 2017). It seasonally hosts numerous important migratory predators such as whales

and seabirds, many of which prey on Antarctic krill, a keystone species (e.g. Bestley et al.

2019; Cleeland et al. 2014). Other (non-krill) trophic pathways (e.g. through copepods

and fish, and through gelatinous zooplankton) are also important, especially in some sectors

(McCormack et al. 2019b). Though remote, Southern Ocean ecosystems provide important

ecosystem services including high volume krill and high value toothfish fisheries, and high

seasonal productivity supports high export of anthropogenic carbon (Boyd et al. 2019; Grant

et al. 2013; MacGilchrist et al. 2019).

Key challenges for assessing regime shifts in the Southern Ocean include a lack of baseline

data and the fact that it is not stationary; the ecosystem is recovering from past over-

harvesting, while also being affected by directed changes in climate. By stepping through

the process using Southern Ocean ecosystems, I hope to demonstrate how the framework can

be used both to directly assess the ecosystem, and how it can be used to direct/prompt future

research and data collection by identifying gaps in understanding and capability. Application
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of the framework to Southern Ocean ecosystems is detailed in Tables 2.1 & 2.2, and in the

Box 2 below, and in the following text I discuss the key issues (with terms in bold font

indicating those discussed in Tables 2.1 and 2.2).

2.5.1 Vulnerability

(based on ecosystem properties; Tables 2.1 and 2.2) The potential vulnerability of Southern

Ocean ecosystems to regime shifts based on network properties is difficult to assess due to the

lack of understanding of the distribution and importance of non-trophic interactions over

the food web (Table 2.1, see also Chapter 3). Some non-trophic interactions are recognised,

for example that some flying seabirds benefit from following whales (and fishing vessels),

which locate and concentrate prey items such as krill close to the surface (a higher-

order interaction) (Hodges and Woehler 1994; Veit and Harrison 2017). However, the

importance of these interactions for the functioning of the ecosystem is not known. For

example, the proportion of krill consumed by seabirds that results from following whales

has not been studied. Additionally, positive feedbacks from predator faeces fertilising

phytoplankton blooms, and attraction to chemical compounds released by phytoplankton,

potentially promote high phytoplankton and krill biomass (Nicol et al. 2010; Savoca and

Nevitt 2014), but may increase vulnerability to regime shifts and affect capacity to predict

community response to perturbation (Chapter 3).

Krill occupy an important, wasp-waist link between phytoplankton and higher trophic

levels in the food chain in some sectors of the Southern Ocean (Atkinson et al. 2014), thus

the system is vulnerable to changes in krill population and behaviour. For example, many

Southern Ocean predators are dependent on the swarming behaviour of krill which concen-

trates smaller prey items into more energetically beneficial meals. However, it is unclear how

krill behaviour, and behavioural responses to chemical cues (e.g. avoidance or attraction),

will change in response to changing conditions (e.g. temperature, CO2) or how this will

affect their swarming behaviour and ‘catchability’ by predators. Many predators can switch

prey in response to reduced access to their preferred prey, but how and when they are able

to, and the energetic and ecosystem consequences of prey-switching behaviour are poorly

understood, making it difficult to predict long term trends (e.g. Bedford et al. 2015; Croxall

et al. 1999; Trathan et al. 2007; Xavier et al. 2018).

While the pelagic habitat has no foundation species to form habitat structure, in the South-

ern Ocean sea-ice forms an important physical habitat for life at many scales. Sea-ice plays

the role of a habitat-forming species and its seasonal growth contributes to a self-supporting

positive feedback (enhancing sea-ice formation by increasing albedo and decreasing ab-

sorption of radiation), but the reverse feedback inhibits sea-ice growth when temperatures
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are above freezing (Goosse et al. 2018). Sea-ice provides important habitat and the algae

growing beneath it are an important food source for Antarctic krill and other organisms

(Kohlbach et al. 2017). Changes in sea-ice extent, thickness and dynamics are likely to drive

change in dependent communities (e.g. Trathan et al. 2019). Already in the Western Antarc-

tic Peninsula region (WAP), climate-related changes in the sea-ice environment, together

with other environmental changes, have driven ecosystem change at multiple trophic levels

(e.g. Bestelmeyer et al. 2011; Montes-Hugo et al. 2009; Trivelpiece et al. 2011). Changes

in sea-ice and floating ice-sheet cover will also affect benthic systems through altered light,

mixing, sedimentation and ice-berg scour disturbance regimes, and is likely to change the

type of benthic habitat-forming species that dominate (e.g. Clark et al. 2013; Dayton et

al. 2019). Additionally, warming waters are likely to drive large-scale species redistribution

in the Southern Ocean, with the potential to alter the ecosystem structure and the distri-

bution of interaction types and strengths (e.g. Aronson et al. 2015). Together these

features make Antarctic benthic systems particularly vulnerable to regime shifts, most likely

at local scales (though there may be regional patterns of change) (Griffiths et al. 2017).

2.5.2 Predicting regime shifts for Southern Ocean ecosystems

Box 2 summarises how the prediction questions posed in Section 2.3.1 have been or could

be addressed for Southern Ocean ecosystems. The potential for existing data to be tested

for evidence of generic Early Warning Signals (EWS) is limited by the patchy, irregularly

sampled ecological data available in the Southern Ocean (Brasier et al. 2019), and because

it is an open ocean system there is unlikely to be a clear signal of approaching transitions

(Dakos et al. 2015). Nevertheless, current development of ecological Essential Ocean Vari-

ables (eEOVs) for the Southern Ocean provides an opportunity to target data collection

towards variables that could give a signal of impending regime shifts (Constable et al. 2016),

though careful consideration of the system scope being observed will be needed (Box 1).

Collecting data on multiple trophic levels concurrently (i.e. from the same temporal and

spatial domain), targeting spatially constrained regions (e.g. benthos, enclosed bays), ob-

serving a mix of specialists and generalists (Dakos 2018; Dakos and Bascompte 2014), and

considering body-size distributions (Nash et al. 2014) would maximise capacity for predicting

regime shifts. Technological advances (e.g. buoys moored on the shelf, in the sea-ice zone,

environmental DNA) are likely to increase capacity for remote, regular sampling of many

variables from many trophic levels as well as concurrent environmental conditions (Newman

et al. 2019). Ecological variables are likely to give the clearest signals for more spatially con-

strained communities (e.g. enclosed bays), but given that open ocean systems are thought

to be more likely to exhibit shifts in response to climatic regime shifts rather than biological

thresholds (Conversi et al. 2015; Lees et al. 2006), it is also recommended to apply EWS to
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climatic variables from this region as well, particularly to sea-ice parameters.

Box 2: This box highlights available evidence, data and approaches that could
be used to address each of the questions posed in Section 2.3.1 for Southern
Ocean ecosystems. A summary of the potential to currently address each
question is given in italics, and specific examples and data are provided in
the dotpoints. Numbers, MX, are cross-references to methods described in
Table 2.3.1. See Sections 2.3.1 and 2.3.2 for more detailed discussion of the
general approaches to address these questions, and the main text in this
Section for a more detailed discussion of the Southern Ocean case.

Q1: Is a regime shift imminent?

This is not currently assessable for the pelagic ecosystem (methods not appropriate), or
for most spatially constrained Antarctic marine ecosystems (lack of data). May be possi-
ble to assess for approaching climate transitions which could drive shifts in ecosystems.

•For the open pelagic ecosystem Critical Slowing Down EWS unlikely to be appropriate
(M1).
•There are few appropriate time series or spatial data at most ecosystem levels, especially
multivariate time series. Some predator time-series and a couple of long term ecosystem
observation programs exist which could be tested, but these data may not be of sufficient
length or resolution (e.g. Hindell et al. 2017; Smith et al. 1995; Weimerskirch et al. 2003).
•Trait-based information such as breeding success time-series of long-lived predators may
be more appropriate than population time series for exploration of EWS (Baruah et al.
2018).
•Ecological Essential Ocean Variables (eEOVs) being developed which could be used for
this in the future (Constable et al. 2016), for some geographically constrained areas.
•Whale body size used as warning signal of impending stock collapse (post hoc)(Clements
et al. 2017).

Q2. Which driver/s will cause the shift and what are the threshold/s?

Addressing these questions is possible (but challenging) for lower trophic levels, and is
an active area of research. Predicting thresholds for higher trophic levels, and whole-
of-ecosystem transitions would depend on extrapolation and expert opinion (educated
guesses). There is need to better understand how thresholds depend on multiple drivers.

•Possible drivers: fishing, species invasions, plus numerous, interacting climate related
changes (e.g. Deppeler and Davidson 2017; Montes-Hugo et al. 2009). The Marine
Ecosystem Assessment for the Southern Ocean (MEASO) project currently underway is
a key avenue for gathering expert opinion and data on the relative importance of these
drivers.
•Timing of changes in drivers uncertain - order and succession of changes will determine
community responses (Deppeler and Davidson 2017).
•Possible threshold-levels of drivers are likely not contained within the limited ecological
time-series.
•Likely CO2 driven tipping point in phytoplankton community composition (e.g. be-
tween 634 and 953 µatm of fCO2, Hancock et al. 2018), but phytoplankton may evolve,
altering this threshold before it is reached.
•Predicted light driven tipping points in benthic community with changing timing of
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sea-ice cover (Clark et al. 2013).
•Tipping points predicted for oceanic productivity are multivariate: depending on both
changes in light (from changed mixed layer depth), and on iron availability (Llort 2015).

Q3. Is there hysteresis?

Drivers and thresholds for which experimental studies of hysteresis could be carried out
(climate drivers on lower trophic levels) are changing directionally, making even regime
shifts without hysteresis irreversible. There is a lack of threshold data to inform ecosys-
tem modelling studies into community-level hysteresis.

•Experimentation possible in near-shore benthic habitats but not in the open ocean
(other than in mesocosms with lower trophic levels).
•Time-frame of changes in driving (climate change related) variables too long for scale-
appropriate experiments.
•Hysteresis implied for possible high versus low productivity regimes related to whale
abundance and iron recycling (e.g. Nicol et al. 2010; Ratnarajah et al. 2014, 2016).
•There may be paleo records (e.g. phytoplankton in sediment cores) that could be
explored with ‘potential analysis’ of probability distributions (M7), but how relevant
this will be depends on levels of drivers in the past, compared to what is predicted for
the future.
•Multiple ecosystem models (M9, M11) being set-up will make it possible to explore
thresholds and assess for hysteresis (Brasier et al. 2019).
•Available ecological time series data may not be of sufficiently high resolution to identify
flickering (M2).

Q4. What are the key ecological mechanisms?

Challenging to fully develop understanding of possible ecological mechanisms for regime
shifts, especially at the fine scale (paucity of multivariate time series data). There is
scope to better address this question.

•Most available time-series not matched by data from other ecosystem components
(e.g. many predator time-series but few concurrent prey field data, e.g. as part of
the CCAMLR Ecosystem Monitoring Program, CEMP). This makes it difficult to ex-
plore ecological mechanisms.
•Long time series containing multiple variables available in the East Pacific Sector of the
SO: (Palmer LTER, Rothera Rats; Brasier et al. 2019) which could be used to identify
some, coarse-scale mechanisms.
•Concurrent tracking and mounting of video loggers on predators (Thiebot et al. 2016),
with diet data, which is increasingly available (e.g. from DNA metabarcoding of faeces,
McInnes et al. 2017), offer advances for identifying mechanisms.
•More targeted data collection from the breadth of trophic levels within the same spatial
and temporal domain is required.
•Experimentation is challenging, but models are being developed which could be used
to explore potential ecological mechanisms (Brasier et al. 2019).
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Q5. Can the system be guided towards a ‘safe operating space’?

Unknown. Ensemble modelling to predict responses to change, combined with expert
opinion and precautionary approaches to management is the best hope in the absence of
understanding of thresholds and ecological mechanisms for regime shifts.

•‘Safe operating space’ is unknown and feedback mechanisms poorly understood.
•Fishing pressure is the main manageable driver, the many climate-related drivers cannot
be controlled on relevant time-scales.
•The precautionary catch limit set for Antarctic krill is an attempt to maintain the
system within a safe operating space, in the absence of understanding of thresholds in
the system (Constable et al. 2000).
•Continued development of ecosystem models will enable exploration of management
options and outcomes (Brasier et al. 2019).

Q6. When will the system shift?

This is not currently predictable given lack of information on thresholds.

•Ecosystem models (M10 & M11) that could be used to explore this question are under
development (Brasier et al. 2019), but information on drivers, thresholds, mechanisms,
and likely pathways is required to parameterise them.
•Order in which different drivers will become important is still uncertain (Deppeler and
Davidson 2017).

Q7. What is the future state of the ecosystem?

Not yet predictable due to high number of unknown factors (e.g. timing of shift and
available species pool and environmental conditions at that time).

•There are few appropriate ecological time series data that could be explored to pre-
dict future state from flickering (M2) or for multivariate autocorrelation (M1), except
potentially from the WAP (Brasier et al. 2019). In the future, predator dietary data
(e.g. DNA metabarcoding of faeces) could be used to detect shifts in availability of lower
trophic levels, but these time-series are currently too short.
•No similar system to compare with, but changes in different regions (e.g. WAP) may
indicate future changes in other regions.
•Past changes (e.g. M7) could be explored (to gain an understanding potential future
states) in a few paleo records, e.g. predator paleo guano time-series reconstruction, an-
cient DNA (e.g. Younger et al. 2016), diatoms in sediment cores; however, it is not clear
if these capture a different regime, and driver trends are unlikely to return to previous
state.
•Several Southern Ocean ecosystem models (in different regions and at different scales)
exist or are being developed which could be used to explore possible future states (Brasier
et al. 2019), in combination with expert judgement.

Capacity to predict ecological mechanisms and thresholds in Southern Ocean ecosystems is

challenged by issues of scale and accessibility. The Southern Ocean is a harsh, and high-risk
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environment in which to operate, making it challenging to conduct in-situ experiments to

identify thresholds. Experiments that have been conducted have necessarily been small scale,

considering relatively few drivers and on lower trophic levels with relatively fast generation

times (e.g. Hancock et al. 2018) and/or are conducted in ex-situ with organisms isolated from

their ecological context (e.g. Boyd et al. 2015a). However the system is facing concurrent

changes in multiple drivers (e.g. temperature, wind patterns, salinity, sea-ice, pH, etc.) that

can act synergistically, will affect different organisms and trophic levels differently, and are

changing over longer time scales (Constable et al. 2014; Deppeler and Davidson 2017; Gutt

et al. 2015). Modelling studies can be used to fill this capability gap (e.g. Clark et al. 2013;

McNeil and Matear 2008), but these need to be informed by understanding of ecological

relationships (and physiological limits) developed through experimentation, long time-series

observations and expert opinion. Planned advances in observational capability (Newman

et al. 2019) will be essential in extending the understanding of ecological processes and

relationships in the Southern Ocean, and for predicting thresholds arising from them.

2.5.3 Detection of past regime shifts in Southern Ocean ecosystems

Capacity for detecting past regime shifts in the Southern Ocean ecosystems is also limited

by data availability. For example, given the multifunctional, ecosystem-engineering role of

whales (Roman et al. 2014) it is possible that their past near-extirpation from the Southern

Ocean caused a regime shift, but a lack of baseline data means this cannot be definitively

assessed (though with the right models some assessment might be possible) (Chapter 1.2.3).

Southern Ocean ecosystems encompass several habitats, sectors, environmental gradients

and boundaries, and data from different trophic levels are frequently not associated with

concurrent timeseries of other trophic levels from the same domain (Brasier et al. 2019).

This makes it challenging to identify system-wide shifts (as opposed to shifts in individual

species or functional groups). For example, more recent (1980’s and 1990’s) changes in

higher predator populations (Reid and Croxall 2001; Weimerskirch et al. 2003) suggest the

possibility of shifts in the system, but paucity of concurrent data from lower trophic levels

limits capacity to determine the system-scope of the change. In the Atlantic sector there are

indications that it was related to changes in krill availability (Reid and Croxall 2001), but

the nature of the change is less clear. These data sets are candidates for the application of

change-point analyses described earlier. For benthic habitats, there is the potential to use

camera, AUV or SCUBA transects to identify regime shifts using the 1D-CLS method (Ward

et al. 2018, Chapter 4), and in the pelagic zone this method could be applied to underway

transects during voyages (e.g. Appendix E), however in this latter case the system scale is

likely to be ecological-oceanographic rather than being purely ecological. Remotely sensed

chlorophyll-a data could be explored using 2D-CLS methods (Habeeb et al. 2005) but may
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be hampered by missing data caused by cloud cover.

2.5.4 Summary for Southern Ocean ecosystems

Application of this assessment framework to Southern Ocean ecosystems highlights both the

likely vulnerability of benthic and sea-ice communities to regime shifts, as well as the need for

targeted data collection using new technology as it becomes available. Step-changes in drivers

and altered disturbance regimes are likely to alter the dominance of habitat-forming species

in Antarctic shelf benthic ecosystems, making benthos particularly vulnerable to regime

shifts. Positive feedback in sea-ice growth means that beyond a threshold temperature, sea-

ice growth will be inhibited. This will affect sea-ice algal communities at the local scale,

but the importance of sea-ice for the whole system means loss of sea-ice is likely to cause

regional scale shifts. While pelagic communities are likely to be affected by shifts in the sea-

ice, the intrinsic vulnerability to regime shifts is less clear, highlighting the need for greater

understanding of the importance of different feedback processes. Future targeted collection

of time-series data from multiple trophic levels within the same spatial and temporal domains

will increase capacity both to develop a better understanding of ecological mechanisms and

feedbacks, and to predict and detect regime shifts.

The application of this framework to Southern Ocean ecosystems has identified a number of

data sources that could be used to address key questions posed (Section 2.3.1, Box 2; see also

Brasier et al. 2019), and the process has additionally identified data gaps limiting capacity

to identify and understand regime shifts in this system. In general, the taxonomic, spatial

and temporal patchiness of ecological data available from the Southern Ocean limits possible

evidence of ecosystem-level regime shifts (e.g. Brasier et al. 2019; De Broyer et al. 2014). Key

strategies recommended to advance capacity to assess for regime shifts include: i) identifying

spatial domains (at different scales) which behave consistently (e.g. Trebilco et al. 2019), and

which can be feasibly sampled regularly; ii) selecting a range of ecological variables which

could provide signals of shifts, including shifts in dominant ecological mechanisms, processes

and feedbacks within each spatial domain; and iii) identifying and monitoring variables that

can provide links between spatial domains and across scales to evidence broader-scale shifts.

Judicious selection of areas for longer-term research programs, use of technological advances

for sampling, and prudent selection of ecological variables could advance current capacity

to predict, detect and characterise regime shifts in Southern Ocean ecosystems, despite the

physical challenges the environment engenders. Collaborative expert opinion and ecological

modelling exercises are key to designing and refining such a program (e.g. Constable et al.

2016; Newman et al. 2019).

This has been a first, broad-scale assessment of the vulnerability of Southern Ocean ecosys-
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tems to regime shifts, and the capacity for predicting and detecting such shifts. Future work

will be required to conduct more formal risk assessments and to develop processes for incorpo-

rating these assessments into management procedures. Implementing or updating ecosystem

management procedures (e.g. in response to predictions of regime shifts) could occur through

the Commission for the Conservation of Antarctic Living Resources (CCAMLR) or might

require joint decision-making across multiple agreements, such as between CCAMLR and the

International Whaling Commission (IWC). Generally, adaptive management that combines

annual measures and within-season provisions with assessments of future ecosystem trends

and shifts will help reduce the risks of negative impacts on Southern Ocean ecosystems (IPCC

2019a).

2.6 Conclusion

This review has presented a variety of approaches to assessing different aspects of ecological

regime shifts and synthesised these into a general framework. This framework is intended

to assist both researchers and ecosystem practitioners to ascertain the status and nature of

regime shifts in their ecosystem, and to proactively adapt management to address changes

before or as they occur. To increase the accessibility of this information to a broader range

of ecosystem stake-holders and policy decision makers, it could usefully be translated into a

risk assessment protocol (e.g. Hobday et al. 2011).

A key overarching consideration is the spatial and/or temporal scale at which to consider

and observe for regime shifts and features that make ecosystems vulnerable to them (Box 1).

Recent analyses highlight the interconnectedness of many regime shifts - with regime shifts

in different systems being connected by not only shared drivers, but also hidden feedbacks

and cascading changes (Rocha et al. 2018). What is clear is that ecosystems will increasingly

reach and cross thresholds as the climate and other pressures on ecosystems reach levels

beyond what present-day ecosystems have experienced. Ecosystem practitioners and policy-

makers will need to be able to proactively assess for and respond to impending and detected

regime shifts. A broad suite of tools and approaches, such as those presented here, will be

required to achieve this.
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Interleaf 1

The previous chapter highlighted the importance of feedbacks, higher-order interactions

and the distribution of non-trophic interactions over a community network for determining

stability and vulnerability to regime shifts. The next chapter explores these features more

in depth using the example of a Southern Ocean community. To do this, I use and present

a novel application of simulation-based qualitative network modelling combined with

machine learning classification.
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Chapter 3

Trophic mediation and ecosystem stability:
an assessment using qualitative network

models

3.1 Abstract

Regime shifts are fundamental changes in ecosystem structure, function and dynamics and

the presence and relative importance of positive feedbacks in an ecosystem strongly influences

its stability and the likelihood of regime shifts. A potentially important positive feedback

in the Southern Ocean ecosystem involves production of a chemical cue, dimethyl sulfide

(DMS), by some phytoplankton. Production of DMS can promote phytoplankton growth by

attracting predators of phytoplankton-grazers, and nutrients released as faeces from those

predators help fertilise the water column. Here I used a qualitative modelling approach to

explore how uncertainties in the nature of this feedback affect community stability in a set

of small, community models. I found that stability varied substantially depending on how

the community was modelled, but that the interactions most important for determining sta-

bility were consistent across all models. Community stability was sensitive to the strength

of phytoplankton competition, controls on phytoplankton, DMS production and release, and

predator attraction to DMS, suggesting that the community could be destabilised by per-

turbation affecting these interactions. Incorporating DMS-mediated feedbacks into a larger

Southern Ocean network had a moderate impact on stability characteristics and altered the

trophic level at which the system would be most vulnerable to perturbation.

3.2 Introduction

The possibility of regime shifts – fundamental changes in ecosystem structure, function and

dynamics – occurring in ecosystems is of concern, and tools for assessing their likelihood
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are required by researchers and decision-makers (Scheffer et al. 2001). Regime shifts are

difficult to predict and manage and to do so requires a deep understanding of underlying

mechanisms. One feature that consistently arises as important for regime shifts is the presence

of net positive feedbacks which can destabilise a system (Marzloff et al. 2011; Scheffer et

al. 2009). Positive feedbacks can cause unsustainable growth or decline of species, which

beyond a threshold destabilises the community. This can trigger the system to transition to

an alternative stable state (e.g. consisting of different abundances of the same species), or it

could also trigger a complete collapse and replacement by a completely different community,

with different network configurations. In fact, the strength of net positive feedbacks in a

system determines the degree of hysteresis between forward and reverse transitions (Kéfi

et al. 2016b).

Positive feedbacks often involve higher-order interactions as well as positive, non-trophic in-

teractions, which are themselves also implicated in system stability (Grilli et al. 2017; Kéfi

et al. 2016a; Kéfi et al. 2016b; Kondoh and Mougi 2015; Levine et al. 2017). These types of

interactions are typically challenging to study, and to incorporate into ecosystem models, par-

ticularly into food web models (Berlow et al. 2004). Nevertheless, in some ecosystems, such

as plant-pollinator communities, non-trophic relationships are well studied and recognised.

In pelagic ecosystems, the nature of many of the higher-order and non-trophic interactions

(that could potentially be involved in positive feedbacks) are uncertain because community

structure is generally reconstructed from trophic data (i.e. ignoring non-trophic interactions),

and non-trophic interactions are difficult to observe at sea. Consequently, the strength and

importance of non-trophic interactions and feedbacks in the pelagic system are often poorly

understood. This makes it difficult to assess whether they are likely to be involved in regime

shifts, or how important they are for the emergent dynamics of ocean ecosystems.

An interesting proposed positive feedback in the Southern Ocean pelagic ecosystem involves

the production of the infochemical dimethyl sulfide (DMS) by some phytoplankton and sea-

ice algae (Savoca and Nevitt 2014). This chemical is released by some phytoplankton as they

are grazed and is an attractant for many predatory species (e.g. birds, seals, fish) (DeBose

et al. 2008; Kowalewsky et al. 2006; Nevitt et al. 1995). It is thought that the phytoplankton

producers of DMS benefit from reduced predation as their grazers are consumed by the preda-

tors attracted to the DMS (Savoca and Nevitt 2014). Additionally, predators, particularly

large predators such as whales, can contribute to phytoplankton productivity by fertilizing

the water column with nutrients from their faeces (Nicol et al. 2010; Ratnarajah et al. 2014;

Savoca and Nevitt 2014).

The importance of DMS as an infochemical among lower trophic levels in pelagic systems

has been explored by Lewis et al. (2012, 2013) who used quantitative models to explore the

effects of DMS production by phytoplankton in simple predation and competition models,
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using attraction to DMS as a ‘tuning’ parameter. They found that attraction of predators to

DMS stabilised system dynamics in a predator-prey model (and even promoted phytoplank-

ton blooms) (Lewis et al. 2012), and that attraction of grazers to DMS promoted coexistence

of phytoplankton groups in a competition model (Lewis et al. 2013). In the Southern Ocean,

the strength and configuration of DMS-mediated interactions are largely unknown. More-

over in this region, DMS-mediated interactions are thought to involve much larger species

(megafaunal rather than planktonic predators) than modelled by Lewis et al. (Amo et al.

2013; Nevitt et al. 1995; Savoca and Nevitt 2014).

One approach to assess for potential regime shifts is to construct a stability landscape (e.g.

range of parameter values for which the regime is stable) of the ecosystem (Beisner et al.

2003). However, doing this quantitatively for systems in which the strength and configuration

of the interactions are uncertain is difficult. When interaction strengths are unknown, an

alternative approach is to construct qualitative network models (Levins 1974). Qualitative

network models are codified conceptual models that enable exploration and interrogation of

the conceptual understanding of a system (Dambacher et al. 1999; Levins 1974; Melbourne-

Thomas et al. 2012). The method is particularly useful for data-poor systems because no

assumptions are required about the strength or shape of relationships between species - only

the sign and direction of interactions are modelled. Strengths of the qualitative approach

include that different types of interactions can easily be accommodated in within a single

model, and that it facilitates exploration of alternative network structures where uncertainty

exists (Dambacher and Ramos-Jiliberto 2007; Dambacher et al. 2007; Melbourne-Thomas

et al. 2012).

Qualitative network models have been used to explore the role of feedbacks in determining

network stability (Dambacher et al. 2003), to assess alternative persistent states (Marzloff

et al. 2011), and to predict ecosystem response to perturbation (e.g. Melbourne-Thomas et

al. 2013). Here I am primarily interested in ecosystem stability, and whether the presence of

DMS-mediated feedbacks might make the system more vulnerable to collapsing or shifting

towards a different ecosystem structure. I carefully make a distinction between alternative

stable states (of the same network structure) and other types of regime shifts that could

occur when a community moves into an unstable parameter space (and focus interpretations

on the latter case). I combined two different qualitative approaches, simulation and symbolic

analysis of community matrices, to explore the implications of the uncertainties in DMS-

mediated interaction networks for evaluation of system stability. I first explored stability

feedback configurations in a set of alternative, small ‘motif’ versions of the network, and then

explored how these interactions could be incorporated into larger Southern Ocean trophic

networks. For each model I aimed to identify the interactions most influential in determining

stability, and how these related to the patterns of feedback present in the network.
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3.3 Methods

3.3.1 Qualitative network modelling

Qualitative network modelling is a useful tool for exploring ecosystem structure and sta-

bility when the exact strengths of interactions are uncertain (Dambacher et al. 2002, 2003;

Melbourne-Thomas et al. 2012). The interaction network is represented as a signed directed

graph (digraph) of nodes (interacting entities) connected via edges (their interactions). Edges

represent the sign (—•is negative; →is positive) and direction, but not the magnitude, of

pairwise interactions. The approach for incorporating mediated interactions (where the in-

teraction between two nodes is modified by a third node) into the pairwise framework has

been formalized previously (Dambacher and Ramos-Jiliberto 2007). Mediated interactions

were modelled following Dambacher and Ramos-Jiliberto (2007) such that: if a trophic in-

teraction (•→) is enhanced by a third node, then it results in a negative pairwise effect from

the mediating node to the node of the prey, and a positive effect on the predator (and only

the net pairwise interactions arising from this mediation are included in the community ma-

trix). If the mediating node suppresses a trophic interaction, then there is a positive effect

on the prey and a negative effect on the predator from the mediating node. From the model

network, a community matrix of interaction coefficients is constructed, with each pairwise

edge in the network model represented in the community matrix. Mediated interactions are

reduced to their net pairwise effects, as described above, and represented in the commu-

nity matrix as pairwise effects. In the symbolic approach the community matrix is analysed

symbolically through analysis of feedbacks, but weights are not assigned to interactions (see

Section 3.3.5 for more detailed description of the symbolic approach). In the simulation ap-

proach a large number of community matrices are constructed with randomly assigned edge

weights, such that the underlying qualitative model is identical (see Section 3.3.3 for details

of the simulation approach).

3.3.2 Alternative model structures

I constructed three groups of models based on the models of Lewis et al. (2012, 2013) (Fig-

ure 3.1). The first group of models are predator-prey models and have a DMS-producing

phytoplankton group that is consumed by grazers. The second group of models include an

additional phytoplankton group which competes with the DMS producers for nutrients. The

third group of models is similar to the second, but the presence of the other phytoplankton

group is beneficial to the DMS producers by being the favoured prey of the grazers (Haber-

man et al. 2003b). In the model of Lewis et al. (2013), both predators and grazers show

attraction to DMS, but in our example the importance of grazer attraction to DMS is less

clear. Antarctic krill initiate and increase their search behaviours in response to phytoplank-
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ton odours (Hamner et al. 1983; Weissburg et al. 2019), but the possible responses of these

grazers are likely to be less important when compared to the great distances over which some

predators may respond to DMS. This uncertainty in structure is explored in different models.

There are both direct costs and benefits of DMS production to DMS producers. For these

models I assume that these costs and benefits balance out so that there is no direct effect of

DMS on DMS producers, except in Model 3 and Models 6-9 where DMS mediates the trophic

interaction between DMS producers and grazers. Other uncertainties in the sign of edges

are not explored in this paper. QPress accepts constraints on edge weights, and in all cases

when using the simulation modelling approach, the strength of the direct DMS impact on

nodes (resulting from mediated interactions) was constrained to be weaker than the trophic

edge which it mediates (individuals gain more by consuming other prey than by being at-

tracted to DMS; see Section 3.3.3 for details). I imposed negative self-effects on all nodes

to represent a suite of effects not otherwise captured in the models (such as intraspecific

competition for biotic nodes and dissipation for DMS). For each model, I also consider an

alternative configuration involving a proposed feedback from predators (via defecated nutri-

ents) to phytoplankton (Savoca and Nevitt 2014) (hereafter when discussing specific models,

an ‘n’ is shown after the model number to indicate that it includes nutrient feedbacks). For

these models it could be argued that the magnitude of the gain to predators from grazers

is minimal in comparison to the negative effect of predators on grazers. I chose to include

the positive effect of grazers on predators because grazers are an important component of

predator diet, and in the bigger picture I am interested in the potential importance of DMS

in predator foraging success and population growth in the Southern Ocean. In the Southern

Ocean many predators are central place foragers (e.g. seabirds, seals) and for these organisms

even few prey items are important for offspring survival. Nevertheless, I also explored the

effect of leaving out predator gain from feeding on grazers and present these results in the

appendices (Table B.1, Appendix B).
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Figure 3.1: Alternative model configurations examined. Abbreviations are: DMS = dimethyl sulfide;
DP = DMS-producing phytoplankton; GR = grazers; PR = predators; OP = other (not DMS-
producing) phytoplankton. See the text for explanations of the different model structures. Arrows
signify positive effects and circles negative effects. Dashed edges represent those that mediate another
edge, while solid edges are direct effects. Listed below each model are the pairwise effects resulting from
the mediated edges. Additionally, below Models 8 & 9 are indicated the edges that are constrained (in
addition to the constraints on DMS mediated edges and attraction). Grey edges represent nutrient
addition from predators to phytoplankton, and are only present in the nutrient versions of the models.
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Basic predation model

The first group of models (M1-3) comprises predator-prey type model with grazers (GR)

eating DMS producers (DP) and being consumed by predators (PR), based on the model

of Lewis et al. (2012)). Model 1 is a control, in which phytoplankton produce DMS (DMS),

but DMS has no mediating effect on trophic interactions. Model 2 includes the attraction of

predators to DMS. In these models, which represent the scale of a ‘hotspot’ of productivity,

the attraction of wide-ranging predators to DMS brings more predators into the arena of

the model, but does not alter the encounter rate of prey by the predators. Thus, I modelled

predator attraction to DMS as a direct effect, rather than having DMS mediate the trophic

interaction between grazers and predators. Model 3 is similar, except in this model grazers

are attracted by DMS (and thus to phytoplankton prey) at the local scale, so DMS enhances

the trophic interaction between DMS producers and grazers, resulting in a positive edge from

DMS to grazers, and a negative edge from DMS to DMS producers.

Competition model

The second group of models (M4-6) includes a second phytoplankton node, other phytoplank-

ton (OP), which does not produce DMS (as per Lewis et al. 2013). In this group of models,

the two phytoplankton nodes compete for nutrients (nutrients are not included as a node in

the interests of keeping our models simple), and both are consumed by grazers, which in turn

are consumed by predators. A similar set of alternative configurations are explored in this

group of models as in the first. Model 4 represents a control, where DMS is produced but

does not mediate any other edges. Model 5 is equivalent to Model 2 in that DMS attracts

predators into the model arena, but has no direct effect on grazers. Model 6 is equivalent to

Model 3: DMS both attracts predators and mediates the trophic interaction between grazers

and DMS producers.

Other phytoplankton benefit DMS-producers

In Antarctic waters, the main DMS-producer is Phaeocystis antarctica, which is a substandard

prey item for most grazers (Haberman et al. 2003a,b; Turner et al. 2002). The third set of

models (M7-9) present different ways of representing a scenario where the presence of the

other phytoplankton node benefits the DMS producers by being the preferred prey of the

grazers (i.e. the presence of ‘other phytoplankton’ triggers the grazers to switch prey targeted

from DP to OP). In each of these models, both phytoplankton groups are assumed to be in

a mixed assemblage, and grazers are attracted to the area of increased DMS concentration

containing both groups of phytoplankton. In Model 7, DMS mediates (strengthens) the

trophic interaction between OP and GR, but this model does not represent a grazer preference
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for OP. Model 8 has the same network structure as Model 7, but additionally increases prey

preference for OP by constraining the trophic interaction between OP and GR to be stronger

than that between DP and GR. Model 9 is the same as Model 7, but additionally, the presence

of OP mediates (suppresses) of the trophic interaction between DP and GR, and, as with

the DMS-mediated interactions, the magnitude of the resultant pairwise effect of OP on DP

is constrained to be smaller than the magnitude of the effect of GR on DP.

3.3.3 Stability analysis with QPress

I used the R package ‘QPress’ (Marzloff et al. 2016a; Melbourne-Thomas et al. 2012), which

is available from https://github.com/SWotherspoon/QPress. This package uses a Bayesian

framework to simulate a set of community matrices (Figure 3.2). In each community matrix,

each edge is randomly assigned an interaction weight drawn from a uniform distribution of |0
and 1|, such that each different matrix represents different quantitative configurations of the

same qualitative community structure (determined by the existence and sign of edges). The

exception to edges being randomly assigned a weight between |0 and 1| is when the strength

of an edge relative to that of another is constrained (as described in Section 3.3.2 and Fig.

3.1). In this case, a topological sort is applied to the edges, and they are indexed according

to their relative strength. Then a set of random values are drawn a uniform distribution

between |0 and 1|, and the values assigned to the edges according to their index, such that

edges that are constrained to be smaller than another are assigned a smaller weight value

(closer to 0). So for example, if a < b, then the weight assigned to edge a will be closer to 0

than that of edge b.

Unlike previous uses of this framework (e.g. Marzloff et al. 2016a; Melbourne-Thomas et al.

2013; Reum et al. 2015), I retained the unstable as well as the stable formulations of the

community matrix to enable comparisons between them. In QPress, matrix configurations are

stable if the real roots of its characteristic polynomial equation are all negative. In ecological

terms this means that the community does not head away from equilibrium following a press

perturbation.
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Figure 3.2: Stability analysis in QPress. Diagram illustrating the process for building alternative
realisations of network configuration. Stable realisations of the community matrix are those for which
the real roots of the characteristic equation are negative. Classification to identify edges which differ
in strength in stable versus unstable matrices is carried out with machine learning algorithms, such
as random forest as used here. Adapted from Melbourne-Thomas et al. (2012).

For each model, 10,000 random community matrices were simulated. QPress takes criteria

for validating community matrices to ensure realistic responses to perturbations. I only

retained simulated matrices in which a decline in grazers would lead to a decline in predators

(predators leave the model ‘arena’ in the absence of prey). Each simulated community

matrix was then tested for stability. The percentage of simulated matrices that are stable

are reported for each model.

3.3.4 Edge importance

I used random forests (Breiman 2001) to explore differences in the edge weights of the stable

and unstable community matrices simulated in QPress. Random forests are a machine learn-

ing classification technique involving the construction of an ensemble of random classification

trees that are used together to make stronger predictions than are possible with single trees

(Breiman 2001). The importance of different variables can be assessed by removing variables

from the classification, and calculating the difference in the error rate of predictions. For

each model, I used the randomForest function from the R package ‘randomForest’ (Liaw

and Wiener 2002) to compare the edge weights of the stable versus unstable community
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matrices. Having unbalanced sample sizes is a problem when using random forests because

there is little penalty for incorrectly classifying minority classes. I balanced the classes by

down-sampling the majority group with replacement, and also increasing node size (to 20)

so that classification error rates were similar for stable and unstable matrices. Each random

forest contained 3000 trees. I ranked edges according to their importance in determining

stability by considering how much removing each edge from the classification decreased ac-

curacy and the Gini Index. For each model, I plotted partial dependence plots of each of

the most important edges to determine whether it tended to be weak or strong in stable

matrices. I then synthesised this information to enable comparison of the importance of

different edges in determining stability across different model structures. I present only the

most influential edges in the random forest, with the cut-off for inclusion being based on the

pattern of edge influence, and whether the accuracy and Gini Index metrics both ranked the

relative importance of each edge in the same order.

3.3.5 Stability analysis and feedback identification with symbolic loop
analysis

Using QPress it is not easy to identify all the feedback cycles contained in each model, or

explain how the edges identified as being important affect model stability. Thus, I conducted

symbolic analysis of the community matrix for each model using the Maple software, following

(Dambacher et al. 2002, 2003). In brief, feedback cycles contained within the model were

determined from the symbolic qualitative community matrix (i.e. including the sign, but not

magnitude of interactions). Each model was assessed according to the Hurwitz criteria for

Lyapunov stability (Dambacher et al. 2003). The first Hurwitz criterion states that to be

stable, the roots of the characteristic equation of a system must have negative real parts,

and further, that their polynomial coefficients must all be of the same sign (Dambacher et al.

2003). Systems that fail this criterion are destabilised by positive feedbacks and are called

Class I systems. The second Hurwitz criterion states that the Hurwitz determinants of the

system are all positive. Systems that fail this criterion are destabilised by weak low-level

feedbacks and are termed Class II systems. Systems that pass both criteria are sign stable

(Dambacher et al. 2003), and only Class I systems could potentially have alternative stable

states. For interest, I also present the connectance of each model. Connectance is a measure

of complexity sometimes used to infer stability and is the proportion of realised versus possible

interactions (edges/nodes2) (Dunne et al. 2002, Glossary). The Maple code for conducting

these symbolic analyses is available in the supplementary information of Dambacher et al.

2002.
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3.3.6 Southern Ocean models

In the small motif networks described earlier, DMS attracted predators into the realm of the

model, and so had a direct effect on predators (increases predator numbers as opposed to

encounter rate). However over the scale of the Southern Ocean, DMS affects the encounter

rate of predators, and so in this context (Southern Ocean scale), DMS mediates (enhances)

the interaction between predators and grazers.

I aimed to investigate the possible stability implications for incorporating DMS related feed-

backs into larger Southern Ocean ecosystem models. Given uncertainty about which Southern

Ocean species are attracted to DMS, there are many possible alternative configurations to

model DMS attraction in the system. I explore three of these alternative configurations,

based on a simple model developed to represent the food webs in the eastern sector of the

Southern Ocean (Figure 3.3) (Constable et al. 2017):

Figure 3.3: Simple Southern Ocean trophic network model used as a basis for exploring implications
of DMS-mediated interactions and feedbacks. SOM1 includes trophic edges plus release of DMS
shown in green; SOM2 additionally includes blue edges and SOM3 additionally includes orange edges.
Solid edges indicate direct effects and dashed edges mediation of other edges. Black dotted edges
indicate uncertain trophic links (included in 50% of simulations). Arrows signify positive effects and
circles negative effects. All nodes have negative self-effects (not shown in diagram). Thanks to Rowan
Trebilco for assistance with this figure.

60



Chapter 3. Trophic mediation and ecosystem stability: an assessment using qualitative
network models

SOM1: Trophic control only –This model includes all trophic edges in Figure 3.3, plus release of

DMS by grazing on diatoms and small phytoplankton by copepods and krill. However,

because P. antarctica (a small phytoplankton) produces more DMS per capita than

diatoms (Stefels et al. 2007), the contribution of diatoms and copepods to the DMS

pool is constrained to be smaller than the contribution of small phytoplankton, and

the contribution of krill to be smaller than that of copepods. In this model DMS does

not mediate any interactions.

SOM2: This model is the same as SOM1, except that DMS attraction is included for those types

of organisms for which there is a demonstrated response to DMS, viz. copepods, seals,

birds (krill-feeders), and fish. Although DMS attraction of Southern Ocean copepod,

fish or seal species has not been investigated, species of these groups in other ocean

basins have demonstrated attraction to DMS (DeBose et al. 2008; Kowalewsky et al.

2006; Steinke et al. 2006). Thus, in this model, DMS mediates the trophic interactions

between these organisms and their prey (shown in blue in Fig. 3.3), resulting in a

positive effect towards the predator and a negative effect towards the prey. Because

copepods and their predators are both attracted to DMS, I assume for this model that

these costs and benefits balance and there is no net direct effect of DMS on copepods.

All DMS-mediated effects are constrained to be smaller than the trophic links they

mediate. Nutrient addition by higher predators is not considered in this model.

SOM3: This model is the same as SOM2, but additionally, baleen whales are attracted to DMS

(DMS→Baleen, DMS—•Krill), and contribute to the nutrient pool (Baleen→N). This

configuration is more hypothetical, because although there is some evidence that baleen

whales may detect and orient themselves towards DMS (Berta et al. 2014; Torres 2017),

as far as I am aware no studies have definitively shown DMS-attraction in cetaceans.

However, there is growing evidence of their contribution to nutrient recycling in surface

waters through defecation (Ratnarajah et al. 2014).

All three models contain 12 nodes. For each of these three models, 20,000 community matri-

ces were simulated in QPress. As for the smaller motif models above, all nodes have negative

self-effects and all pairwise edges resulting from DMS-mediation of interactions were con-

strained to be weaker than the trophic interaction they mediated. The two uncertain trophic

interactions were included in 50% of simulations. No validation criteria were applied as there

was no obvious expected response for any node. Random forests were used to distinguish

edges which had the greatest influence on the stability. For each forest, 12,000 trees were

built and were balanced by down-sampling the larger group and increasing the node size to

70. Symbolic analysis in Maple was used to classify the models according to the Hurwitz

criteria, but no exploration of model feedbacks was conducted.
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3.4 Results

3.4.1 Stability of simulated matrices

The percentage of simulated community matrices that were stable varied across the models

(Figure 3.4). The first group of models with 3 trophic groups were generally stable over a

wide range of interaction strength combinations, while the competition models were stable

over a smaller range of configurations. In the 3rd group of models, the stability depended

on how the prey-switching and preference was represented in the model; the two models

that included competition between the phytoplankton groups were stable over a smaller

range of configurations than the model that did not include competition. The inclusion of

an edge representing nutrient addition from predators benefiting phytoplankton typically

only made a small difference to the stability of the models. The model in which inclusion

of nutrient feedbacks had the greatest impact was Model 2, for which the percentage of

simulated matrices was 15% lower in the model including nutrient addition. Stability was

slightly higher when nutrient feedbacks were included in Model 7n, and similar when included

in Model 3n. There was no relationship between connectance and stability for our models

(Fig. B.1, App. B).
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Figure 3.4: Percentage of simulated community matrices (of 10,000) that were stable for each model.
Dark blue-green bars correspond to models including predator contribution to a nutrient pool (via
faeces), realised as a positive effect from predators to phytoplankton (grey edges in Fig. 3.1); light
green bars correspond to models without that edge. Group 1 models are predator-prey models,
Group 2 are the same but include an additional phytoplankton node and competition between the
two phytoplankton nodes, and Group 3 represent prey-switching (by grazers) in different ways.
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3.4.2 Edge importance for stability

Stable and unstable matrices of a model can be distinguished based on the strengths of their

component edges. Weak edges have values closer to 0, whereas strong edges have values

closer to 1 or -1. The strength of an edge can affect its stability, but it is important to note

that the presence of an edge (even when weak) can create feedback loops and so may have a

greater influence on stability. Below I discuss the effect of edge strength on relative stability

of different community matrices with the same network structure (but the importance of

edge presence/absence is considered separately through different model versions above).

The edges that were most influential in distinguishing between stable and unstable matrices

were consistent across model structures (Figure 3.5). Community matrices with weak self-

limitation of, and strong competition between, phytoplankton groups tended to be unstable

for most model structures, while the reverse was true of stable matrices. Self-limitation of

other nodes, other controls on DMS producers, release of DMS and predator attraction to

DMS were also important in distinguishing between stable and unstable matrices in some

model structures. For some models there was a clear distinction in the importance of some

edges over others, whereas for other models there was a ‘gradient’, of importance – where

each edge had some influence in distinguishing between stable and unstable matrices, and the

importance of some edges was clearly dependent on the strength of other edges within the

matrices. For example, for M4, there were four edges that were highly influential, and each

of the remaining edges had minimal influence in determining stability. Conversely, for M2,

nearly all edges had some usefulness in distinguishing between stable and unstable matrices.

3.4.3 Symbolic analysis of stability and feedbacks

When nutrient feedbacks were not included, Model 1 was the only sign-stable model. All

other models were Class 1 models, with either net negative or net neutral feedbacks at the

highest level (Table 3.1). Models that included nutrient feedbacks were either Class 1 or Class

2 models (none were sign-stable), and one model (Model 3n) had positive net feedbacks at

the highest level (Table B.2, App. B). Model 1n QPress matrices were all stable, but loop

analysis identified this as a Class I model. This discrepancy is due to the use of the validator

(that predators must decline when grazers decline) used to eliminate ecologically unrealistic

matrices in QPress; without the validator, 50% of community matrices were unstable (Table

B.3, App. B). The lower level feedbacks tended to be common to several models, while some

of the higher-level feedbacks were unique to one or two models. In most models, low level

positive feedback sequences also contributed to higher level feedbacks when combined with

sequences of the opposite sign, for example with negative self-effects. Models with a higher

proportion of positive feedbacks tended to be less stable (Fig. B.2, App. B).

63



Chapter 3. Trophic mediation and ecosystem stability: an assessment using qualitative
network models

stable

unstable

No nutrients With nutrient feedbacks

DMS GR

DMS DP

GR DMS

DP DMS

OP DP

DP OP

GR OP

PR GR

GR DP

OP GR

GR PR

DMS DMS

GR GR

OP OP

PR PR

DP GR

DP DP

% Stable 
 

rf class 
error 
(%)

se
lf-

lim
it
at

io
n

tr
op

h
ic  p

os
it
iv

e
D

M
S
 a

tt
ra

ct
io

n
 &

 
m

ed
ia

te
d
 i
n
te

ra
ct

io
n
s

 n
eg

at
iv

e
co

m
p
.

DMS PR

OP DP^

DMS OP*

D
M

S
 

re
le

as
e

M2 M4M3 M5 M6 M9M8M7 M2n M4nM3n M5n M6n M9nM8nM7n

PR DP

PR OPn
u
tr

ie
n
t

ad
d
it
io

n

4.6

5.2 3.4

2.7

7693

8.8

8.3

94

10.1

9.1

50

2.9

2.7

49

2.9

3.8

48

6.0

6.4

42

8.4

7.9

62

6.8

6.9

54

7.8

10.1

50

7.2

7.4

55

9.1

8.1

61

5.8

8.7

56

8.5

7.7

97

11.5

12.3

92

11.7

10.5

91

1

0.8

0.3

0.5
 

U
n
st

ab
le

 w
h
en

 w
ea

k 
/ 

S
ta

b
le

 w
h
en

 s
tr

on
g

U
n
st

ab
le

 w
h
en

 s
tr

o
n
g
 /

 S
ta

b
le

 w
h
en

 w
ea

k

Figure 3.5: The importance of edges in distinguishing between stable and unstable matrices is con-
sistent across model structures. Here each column represents one model structure and each row an
edge. Random forests were used to rank the importance of each edge in classifying stable and unstable
matrices. The most influential edges are denoted with a coloured square. Edges that tended to be
weak (values closer to 0) when the simulated community matrices were unstable are shown in orange.
Edges that tended to be strong (values closer to 1 or -1) when the simulated community matrices were
unstable are shown in blue. Shading indicates relative importance of the edges for stability within that
model (where shading value 1 - strongest colour - indicates the most important edge in that model,
and shading value 0.3 indicates an edge whose importance is 30% that of the most important edge
in that model, based on the relative decrease in accuracy from the random forest). Boxes with grey
crosses indicate interactions not represented in that model. The bottom rows show the proportion of
simulations that were stable for each model and the class error rates for that random forest model.
Phytoplankton and DMS limitation, and phytoplankton competition were particularly important in
determining stability across all models. Abbreviations: DMS, Dimethyl sulfide; DP, DMS-producing
phytoplankton; OP, other phytoplankton; GR, grazers; PR, predators.
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Table 3.1: Symbolic loop analysis results for models not including nutrient feedbacks (results for models including nutrient feedbacks are provided in
Appendix B Table B.2). Reported for each model is the connectance (C), class (based on Hurwitz criteria for Lyapunov stability; weighted feedback at
highest level wFn, weighted determinant wDn, and ratio of the weighted determinant to a control model C, as per Dambacher et al. 2003), net sign of
feedbacks (at highest level), total number of feedbacks with total positive feedbacks in parentheses. The unique positive feedback sequences at each level of
feedback are listed, with the total number of times each sequence is repeated in higher positive feedback cycles in the model stated in parentheses.

Model C Class
Sign at Feedbacks, Positive feedback sequences

highest total and Length 2 Length 3 Length 4 Length 5
level (positive)

M1 0.625 Sign stable negative 24 (0) none none none NA

M2 0.688

Class I,
wF4=-0.60,
wD3=0.16,
ratio to model C=1.8

negative 27 (1) none none DP → DMS → PR—•Gr—•DP (1) NA

M3 0.75

Class I,
wF4=-0.43,
wD3=0.16,
ratio to model C=1.8

negative 33 (5) GR→DMS→GR (4) none DP → DMS → PR—•Gr—•DP (1) NA

M4 0.6

Class I,
wF5=0,
wD4=0.04,
ratio to model C=4.3

neutral 74 (18) DP—•OP—•DP (10)
DP → GR—•OP—•DP (4)
DP—•OP → GR—•DP (4)

none none

M5 0.64

Class I,
wF5=0,
wD4=0.037,
ratio to model C=4

neutral 82 (21) DP—•OP—•DP (11)
DP → GR—•OP—•DP (4)
DP—•OP → GR—•DP (4)

DP → DMS → PR—•GR—•DP (2) none

M6 0.72

Class I,
wF5=-0.14,
wD4=0.017,
ratio to model C=1.8

negative 116 (33)
DP—•OP—•DP (11)
GR → DMS → GR (8)

DP → GR—•OP—•DP (4)
DP—•OP → GR—•DP (4)

DP → DMS → GR—•OP—•DP (2)
DP → DMS → PR—•GR—•DP (2)
DP—•OP → GR → DMS—•DP (2)

none

M7/8 0.76

Class I,
wF5=0,
wD4=0.016,
ratio to model C=1.7

neutral 129 (42)
DP—•OP—•DP (11)
GR → DMS → GR (8)

DP → GR—•OP—•DP (5)
DP → DMS—•OP—•DP (5)
DP—•OP → GR—•DP (3)

DP → DMS → GR—•OP—•DP (2)
DP → GR → DMS—•OP—•DP (2)
DP → DMS—•OP → GR—•DP (2)
DP → DMS → PR—•GR—•DP (2)
DP—•OP → GR → DMS—•DP (2)

none

M9 0.76

Class I,
wF5=-0.46,
wD4=-0.03,
ratio to model C=3.2

negative 129 (21) GR → DMS → GR (10) DP—•OP → GR—•DP (4)
DP→ DMS—•OP→GR—•DP (2)
DP → DMS → PR—•GR—•DP (2)
DP—•OP → GR → DMS—•DP (2)

DP→DMS→PR—•GR—•OP→DP (1)
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3.4.4 Larger Southern Ocean models

All three Southern Ocean models contain positive feedbacks and are Class I models (Table

3.2). The proportion of stable community matrices decreased across the models as more

interactions were added. The number of both negative and positive feedbacks increased

as DMS-mediated interactions were added to the models, but the increase in the number

of positive feedbacks was greater relative to the negative feedbacks. In the trophic model,

SOM1, 16% of the total number of feedbacks are positive. In SOM2 and SOM3, positive

feedbacks comprise 26% and 30% of the total feedbacks respectively. The trophic level at

which the ecosystem would be most vulnerable to perturbation depended on how the DMS-

mediated interactions were arranged in the food web. For SOM1, matrices tended to be more

unstable when controls on higher trophic levels were weaker and inputs stronger, while SOM2

matrices tended to be unstable when lower level controls were weaker. The most influential

edges for stability in SOM3 are a mix of controls on the lower levels and baleen whales, and

contribution of baleen whales to nutrients.

Table 3.2: Results of qualitative analysis of the larger Southern Ocean models. Refer to the main
text for detailed description of the models. In brief, SOM1 is a trophic model, SOM2 includes
DMS-mediated interactions involving organisms with recognised DMS attraction, and SOM3 includes
hypothetical DMS attraction by baleen whales as well as their contribution to the nutrient pool via
defecation. Colours as per Fig. 5: orange edges are those that tend to be weak, and blue edges
strong in unstable matrices. Abbreviations: Baleen = baleen whales; DMS = dimethyl sulfide; N =
nutrients; SBkf = krill-feeding seals & birds; TP = top predators. Class is based on Hurwitz criteria
for Lyapunov stability and wF12 is the weighted feedback at highest level (as per Dambacher et al.
2003).

SOM1 SOM 2 SOM 3

class Class 1 Class 1 Class 1

wF12 -0.33 -0.15 -0.10

Net feedback sign negative negative negative

# positive feedbacks 11940 36742 49379

# negative feedbacks 63580 104179 116911

Connectance 0.33 0.36 0.375

Stable matrices (of 20,000) 92% 89% 82%

Important edges for stability

SBkf—•SBkf,
Fish&Squid → TP,
TP—•TP,
SBkf—•Fish&Squid,
TP—•SBkf

Diatoms—•N
DMS—•DMS
Diatoms—•Diatoms

Diatoms—•N
Diatoms—•Diatoms
DMS—•DMS
Baleen → N
Baleen—•Baleen
N—•N

Random forest class error rate
Unstable= 0.27
Stable= 0.26

Unstable= 0.25
Stable= 0.24

Unstable= 0.24
Stable= 0.24
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3.5 Discussion

In this study I used qualitative modelling approaches to explore how uncertainty in network

structure might affect conclusions in assessment of ecological stability, and thus the likelihood

of a community persisting or shifting to a different community structure. Overall, I found

that while there were substantial differences in the stability of the alternative configurations

amongst the smaller network motifs that I investigated, the interactions that were most

influential in determining stability were consistent across models. For the larger ecosystem

models, introducing DMS mediated interactions decreased stability slightly, but the most

prominent effect was to alter which interactions were most influential in determining stability.

3.5.1 Network stability patterns

In general we would expect that networks with low stability would rarely be observed in

nature, or may exist mainly as a transitional state. Low stability networks have a smaller

range of possible interaction strength configurations compared to the more stable network

structures. Low stability networks would be more easily perturbed towards an unstable state,

and then reorganise into a different network structure. In comparison, network structures

with a greater proportion of stable matrices are less sensitive to perturbation so may not

exhibit regime shift type behaviour. However, it should be kept in mind that not all of the

community matrices that are mathematically stable, will be ecologically viable, and that using

QPress I have used a validator (that predators decline – i.e. leave the model arena – if grazer

populations decline) and constraints (costs and benefits of DMS to other nodes are weaker

than the trophic interactions they mediate) to eliminate ecologically unrealistic matrices.

This affects the resultant stability of the models because there may be biased elimination of

stable or unstable matrices (e.g. the ecologically unrealistic matrices may tend to be more

stable or unstable - in this case eliminating ecologically unrealistic matrices resulted in a

higher proportion of stable matrices being retained; see Figure B.3 for comparison).

Of the smaller network motif models, only the first control model, M1, was stable over all

of its parameter space. Each of our remaining alternative representations of the network

contained destabilising positive feedbacks. Similarly high proportions of the community

matrices for Models 2 and 3 were stable, but inclusion of competitive edges in Models 6-8

reduced stability, most likely through exclusion of one phytoplankton group (Lewis et al. 2013;

Tilman 1976). Whether DMS stabilised the competitive networks (compared to the control

Model 4) depended on how it was connected to other nodes. Attraction of both grazers

and predators to DMS (Model 6) stabilised the network, whereas attraction of predators

alone (Model 5) reduced stability. All simulated community matrices were stable for M1n,

but this was identified as a Class I model (containing positive feedbacks) via loop analysis.
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Exploring this disparity, removing the validator resulted in 50% of the community matrices

being unstable (Fig. B.3). This indicates that 50% of the matrices would have had predators

remaining, or increasing, even as their prey numbers dwindled, which is ecologically unlikely

(especially in this model where predators are not attracted by DMS). In most cases, including

nutrient feedbacks from predators to phytoplankton decreased stability slightly, but in Models

3n and 7n, it resulted in slightly higher stability. Though only marginally different, this

result is somewhat unexpected as the models including nutrient feedbacks contain a higher

proportion of positive feedbacks, and Model 3n is the only model with net positive feedbacks

at the highest level. This pattern was not present in the absence of validators or constraints,

suggesting that making the models more realistic also made them more stable in this case.

In some other cases, adding nutrient feedbacks changed the network from a Class I to a Class

II model, meaning that they may be destabilised by having weak lower level feedbacks.

3.5.2 Comparison with quantitative models

Four of the model motifs presented here are based on quantitative models presented elsewhere:

Models 1 and 2 (Lewis et al. 2012), and Models 5 and 6 (Lewis et al. 2013). Interestingly,

while our Model 1 was stable, the quantitative representation of the system in Lewis et al.

(2012) contained an unstable focus point with stable limit cycles. Oscillatory behaviour is

not dealt with well in the qualitative modelling framework: in QPress a community matrix is

stable if it returns to an equilibrium, so an oscillatory system would be unstable (Justus 2006).

It is interesting but unclear why the qualitative representation of the same system is stable.

Lewis et al. (2012) found that including DMS induced mortality of grazers into this model

(equivalent to our Model 2) resulted in a number of stable and unstable equilibria, depending

on the degree of attractiveness of DMS to the predators. Our results are broadly consistent;

Model 2 was stable under most configurations of the community matrix (92% of matrices

stable), though it was not possible to tease out different stable equilibria. Nevertheless, our

results do show that this network has the potential to be destabilised by positive feedbacks.

Lewis et al. (2013) found that when grazers were not attracted to DMS (and thus the DMS-

producing phytoplankton), DMS-producing phytoplankton were outcompeted by the other

phytoplankton, and driven to extinction. This was due to the cost involved in DMS pro-

duction which resulted in lower growth rates. Our version of this (Model 5) was different;

because the relative strength of the direct costs and benefits of producing DMS (and pre-

cursor compounds) are difficult to quantify (e.g. Stefels et al. 2007; Verity et al. 2007), for

the purpose of this exercise I assumed that they balanced out, such that there was no net

direct effect of DMS on DP. I found that only half of the Model 5 community matrices were

stable, but consistent with the findings of Lewis et al. (2013) and others, I found that the

unstable matrices tend to have strong competition between the phytoplankton, and weak self-
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limitation. In their model, when grazers were attracted to DMS (equivalent to our Model

6) the phytoplankton groups stably coexisted because increased attraction to DMS (and

therefore DMS-producing phytoplankton) led to increased grazing, increased DMS release,

increased attraction of predators and therefore increased mortality of grazers. Our Model 6

was also stable in comparison to Model 5, but was not stable over all of its parameter space.

3.5.3 Interactions and feedbacks important for stability

In systems which contain a mix of positive and negative feedbacks, the relative strength of

negative versus positive feedbacks will determine stability (Dambacher et al. 2003). Our two

qualitative approaches for investigating the importance of feedbacks (QPress with random

forest to identify edges important for stability, and symbolic loop analysis to identify feed-

backs) produced consistent results, which together highlight the importance of particular

edges in strengthening negative and weakening positive feedbacks in stable matrices. For

each of the models, the most influential edges identified in the random forests that tended

to be strong in unstable matrices were ones contained mostly (or only) in positive feedbacks,

and those that tended to be weak in unstable matrices were only or mostly present in nega-

tive feedbacks. Detailed examples exploring the relationship between the results of the two

qualitative approaches can be found in Appendix B. In brief, competition between the phyto-

plankton groups created low-level positive feedback (which was amplified at higher levels of

feedback, i.e. in longer feedback loops), whereas attraction of predators to DMS contributed

to positive feedback only at higher levels (i.e. in long loops; Table 3.1).

Despite some differences in the nature of the positive feedbacks present in each model, there

is a consistent pattern across all the models for self-limitation (particularly of phytoplankton)

to be strong and competition to be weak in stable matrices. Other interactions also arise as

being important in some models, for example, negative effects of DMS on DMS producers

and predator attraction to DMS. While the alternative motifs are exploratory rather than

definitive representations of the community, there is still interest in exploring how sensi-

tive the community might be to changing climate or human pressures. These interactions

could also usefully be targeted for monitoring and better quantification given their potential

importance in this type of community.

A future increase in competition strength, decrease in negative control strength, increase in

DMS production and release or increase in predator attraction to DMS would destabilise the

community represented in these models, as outlined below.

Competition: In the Southern Ocean iron is the main limiting nutrient, but how well phyto-

plankton can compete for this resource depends on a range of other factors including light

(Deppeler and Davidson 2017; Strzepek et al. 2012). Climate changes such as increased ocean
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acidity and temperature are likely to alter the relative competitive fitness of phytoplankton

species and sensitivity to changes in other drivers (e.g. Boyd et al. 2015b; Hancock et al.

2018). Changes in iron and light availability (e.g. driven by changes in mixed layer depth

(MLD), or cloud cover) are expected to differ among different regions and habitats of the

Southern Ocean (Deppeler and Davidson 2017). Phaeocystis antarctica is well adapted to

low light, and so may do better where MLD increases (Deppeler and Davidson 2017). Inter-

estingly, DMS also acts as a cloud condensation nucleus, so P. antarctica could potentially

also be promoting their own competitive advantage by triggering cloud formation, as well as

creating feedbacks to climate (Charlson et al. 1987; Wang et al. 2018).

Dimethyl sulfide production and release: Predictions of future trends in DMS production and

release are contradictory and depend on the species, habitat and scenarios tested (e.g. Sunda

et al. 2002; Vogt et al. 2008; Webb et al. 2016; Wingenter et al. 2007). Producing DMS (and

its precursors) has an energetic cost for phytoplankton, but the compounds have a number of

direct benefits for phytoplankton (reducing oxidative stress, e.g. from UV exposure, nutrient

limitation and cold stress, and as a grazing deterrent) (Nejstgaard et al. 2007; Stefels et al.

2007; Sunda et al. 2002). Climate change is likely to alter the balance of costs and benefits,

and if costs consistently outweigh combined direct and indirect benefits, then there will

be strong selection pressure against DMS production. Assuming cellular DMS production

continues, the spatial distribution of DMS is likely to change in the Southern Ocean. Under

warmer climate conditions DMS flux to the atmosphere is predicted to increase close to the

continent, but decrease in other regions (especially between 50o and 60o S), driven by

pole-ward shifts of ecological communities (P. antarctica) and changes in sea-ice (Cameron-

Smith et al. 2011). Decreasing sea-ice extent is likely to reduce DMS production and release

(Stefels et al. 2018). Predicted future trends in P. antarctica are variable (Hancock et al.

2018; Kaufman et al. 2017), although their high genetic diversity may enable them to evolve

to changing conditions (Gäbler-Schwarz et al. 2015).

Other controls on phytoplankton: Colony formation could reduce intraspecific competition,

and this would have substantial consequences for stability in this framework. The colonial

life stage of Phaeocystis is thought to be a means of avoiding predation mortality, and in-

creasing competitive advantage for nutrients, but the triggers for colony formation are poorly

understood so predicting the response to future change is difficult (Bender et al. 2018; Verity

et al. 2007). In these models the negative effect of DMS on DMS-producing phytoplank-

ton resulted from DMS mediating the trophic interaction between the phytoplankton and

grazers. This effect could reduce in the future if grazers become less responsive to DMS.

For example, ocean acidification alters the behavioural response of fish to chemical cues, but

whether zooplankton exhibit a similar behavioural response is yet to be investigated (Draper

and Weissburg 2019).
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Predator attraction to DMS : Attraction of Southern Ocean aquatic predators to chemical

foraging cues may reduce as ocean acidity increases, as has been shown for some tropical

fishes (Cripps et al. 2011; Dixson et al. 2015; Munday et al. 2009). Attraction of air-breathing

predators depends on the DMS flux to the atmosphere, and the strength and direction of

winds to carry the scent. Therefore, attraction of air-breathing predators will be sensitive to

changes in wind patterns and DMS flux.

3.5.4 Incorporating DMS-mediated interactions into Southern Ocean net-
works

Including DMS-mediation of interactions in more complex Southern Ocean models (i.e. with

more nodes) increased the proportion of positive feedbacks relative to negative feedbacks.

Consequently, the range of parameter space over which SOM2 and SOM3 are stable is reduced

compared to SOM1. These models are too large for detailed investigation of feedbacks

using symbolic analysis, but it was possible to identify edges most influential in determining

stability using QPress and random forests. Most importantly, the change in the level at

which the network is most sensitive to perturbation has strong implications for predicting

changes in this ecosystem. In particular, the high-level feedbacks created from the inclusion

of baleen whale contribution to the nutrient pool, removes the system from both top-down

and bottom-up control. This highlights the importance of understanding the nature of these

feedbacks for predicting likely responses to changing pressures on this ecosystem.

There are many different possible configurations of DMS attraction in this ecosystem, and

here I have just considered three. Nevertheless, in contrast to the smaller motif models,

the results from these more complex models highlight how lack of understanding of the

importance of DMS attraction by different organisms is likely to limit the capacity to predict

how the ecosystem will respond to altered interaction strengths amongst different nodes.

As the ecological role of DMS becomes better understood, the uncertainty in the nature of

the associated feedbacks will be reduced. Qualitative modelling - symbolic loop analysis in

particular - is useful for predicting and understanding dynamics that could lead to a shift,

but not necessarily the future beyond that shift. The approach is less useful for characterising

the likely alternative regimes unless there are clear positive and negative correlations between

nodes in responses to press perturbations, or, where the alternative regime is already known

(e.g. Marzloff et al. 2011). However, based on the results of Lewis et al. (2012), we could

predict that an alternative regime might be one with lower productivity. Importantly, this

approach has clarified the relative interaction strengths that could tip the community towards

a different regime which is often more difficult to achieve in quantitative ecosystem models,

where limited combinations of interaction strengths are explored.

Qualitative models such as these represent snapshots of a system, but in the Southern Ocean
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and other ecosystems, the inherently spatial and temporal nature of interactions is likely to

impact the overall stability of the system (DeAngelis and Yurek 2017; Lurgi et al. 2016).

While the small motif models represent local ‘hotspots’, the larger Southern Ocean models

were intended to represent the whole ecosystem. However, lags induced by spatial and tem-

poral features of interactions (e.g. time taken for predators to detect and arrive at an area

of high DMS concentration) are not included in these models. The spatial scale of DMS-

attraction is likely to vary greatly, from quite local benefits for zooplankton to long-distance

benefits for predators (with the actual scale dependent on mobility and sensitivity of the

predator to DMS as a cue). On the other hand, there are likely to be fewer predators than

zooplankton grazers overall, so DMS could be an important mechanism for concentrating

both groups (and thus potentially enhancing productivity of the whole system). Spatial

components of the interactions cause temporal lags, which cannot be captured in these qual-

itative models. Additionally, in the Southern Ocean, DMS concentration and flux to the

atmosphere is highly seasonal (Lana et al. 2011) so the strength of these interactions, and

consequently the stability of the network, is also likely to vary seasonally (e.g. Ushio et al.

2018). How these factors interact to modify the potential importance of DMS (and DMS-

producing phytoplankton) in structuring and enhancing productivity in the Southern Ocean

will need further exploration, i.e. in spatially and temporally explicit, quantitative models.

Targeted studies quantifying the strength and spatial scale of DMS-attraction in the Southern

Ocean will be required to support these analyses.

In conclusion, the use of qualitative modelling approaches to assess the stability of a commu-

nity with uncertain network structure and interaction strengths is a relatively rapid means

of exploring the consequences of structural uncertainty on conclusions of stability. While

this approach does not enable identification of precise thresholds, it does enable useful ex-

ploration of the feedbacks that may result in threshold behaviours, and can be used to help

guide future data collection on important interactions. If the key interactions identified are

perturbed such that they change in strength, then the balance of feedbacks within the system

can change, destabilising the community and leading to a regime shift. Use of the symbolic

loop analysis approach is powerful in identifying these feedbacks, but is difficult to carry out

for models with more than 5 nodes. In this case, use of a simulation qualitative modelling

approach, such as QPress, combined with machine learning classification algorithms, such as

random forest, is valuable for identifying key interactions. Overall, this exercise is valuable

as a sensitivity analysis for understanding consequences of decisions made in constructing

and parameterising quantitative ecosystem models, in terms of model stability.
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Interleaf 2

The previous chapter focused mainly on the importance of network structure and

interactions for ascertaining vulnerability to regime shifts. Feedbacks of the sort explored in

that chapter can give rise to emergent spatial patterning of ecosystems. As discussed in

Chapter 2, identifying change in emergent spatial pattern is an alternative means (rather

than change in temporal dynamics) for detecting regime shifts. The following chapter

addresses the need for methods for detecting regime shifts (after they occur) by developing

a method of regime shift detection for 1-dimensional spatial data.
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4.1 Abstract

Timely detection of ecological regime shifts is a key problem for ecosystem managers, because

changed ecosystem dynamics and function will usually necessitate a change in management

strategies. However, currently available methods for detecting regime shifts depend on hav-

ing multiple long time series data from both before and after the regime shift. This data

requirement is prohibitive for many ecosystems. Here, we present a new approach for de-

tecting regime shifts from one-dimensional spatial (transect) data from just a single time

step either side of the transition. Characteristic length scale (CLS) estimation is a method

of attractor reconstruction combined with nonlinear prediction that enables identification of

the emergent scale at which deterministic behaviour of the system is best observed. Im-

portantly, previous studies show that a fundamental change in ecosystem dynamics, from

one domain of attraction to another, is reflected in a change in the CLS, i.e., the approach

enables distinguishing regime shifts from variability in dynamics around a single attractor.

Until now the method required highly resolved two-dimensional spatial data, but here we

adapted the approach so that the CLS can be estimated from one-dimensional transect data.

We demonstrate its successful application to both model and real ecosystem data. In our

model test cases, we detected change in the CLS in cases where the shape (topology) of

the interaction network had changed, leading to a shift in community composition. In an

examination of benthic transect data from four Indonesian coral reefs, changes in the CLS

for two of the reefs indicate a regime shift. This new development in estimating CLSs makes

it possible to detect regime shifts in systems where data are limited, removing ambiguity in

the interpretation of community change.

4.2 Introduction

Increased anthropogenic pressure is driving change in most ecosystems (Hughes et al. 2017a;

Pecl et al. 2017; Walther 2010; Walther et al. 2002). Yet as the drivers and nature of

ecosystem change are varied and interdependent, characterizing and quantifying the degree

and type of change remains a challenge. Ecosystem change can take many forms. Losses and

invasions of species with particular qualities can completely disrupt the dynamics of some

ecosystems, but have little observable impact in others (Ricciardi et al. 2013). Changes in

the frequency or type of disturbance events can force changes in any number of directions

and can interact with other ecological changes in complex ways (Pascual and Guichard 2005;

Sousa 1984; Turner 2010). While some ecosystem changes may be straightforward to detect

(for example, the addition or loss of species), whether an observed change constitutes a

fundamental change in system structure and dynamics, a transition from one regime to

another, is much more difficult to determine (deYoung et al. 2008; Litzow et al. 2016).

75



Chapter 4. Detecting ecological regime shifts from transect data

The distinction between ecosystem state and regime is important. The state of an ecosystem

is essentially its status at a point in time, for example, the population sizes (or other state

variable) of component species (Biggs et al. 2012). Ecosystem state changes dynamically and

continuously; for example, seasonal oscillations between high and low biomass states, or mul-

tiannual cycles in population sizes. However, a change in regime constitutes a fundamental

change in the dynamics of the ecosystem, such that the system functions in a different way

than previously (Biggs et al. 2012; Scheffer and Carpenter 2003). Importantly, there may

be many possible ecosystem states within the same regime. For example, Figure 4.1 shows

a well-studied example of a system that has large changes in state within a single regime.

This type of intrinsic system behavior complicates the detection of regime shifts based on

changes in state. Consequently, changes in ecosystem state alone are not evidence of a

change in regime. A shift from one regime to another is difficult to demonstrate because it

requires evidence that fundamental dynamics, e.g., the nature of species interactions, or more

formally, the underlying attractor for the system (see Glossary), have changed. Harnessing

information about system dynamics inferred from emergent spatial pattern is likely to be one

practical means of overcoming this challenge (Hammond and Kolasa 2014; Marcos-Nikolaus

et al. 2002).

Regime shifts can have significant consequences for ecosystem function and service delivery

(Ainsworth and Mumby 2015; Graham et al. 2013; Nystrom et al. 2012; Selkoe et al. 2015;

Travis et al. 2014). Thus, identification of regime shifts is vital for effective ecosystem

management, managing an ecosystem according to the dynamics of a previous regime may

result in further deterioration of ecosystem state, or even further regime shifts. Growing

awareness of the importance of early detection of regime shifts, soon after they have occurred,

has led to increased effort in developing methods to detect them (Andersen et al. 2009;

Rodionov 2005; Scheffer et al. 2001). Parallel efforts have considered methods to predict

regime shifts prior to their occurrence (as distinct from detection after a shift has occurred;

e.g. Biggs et al. 2009; Dakos et al. 2012; Kéfi et al. 2014; Scheffer et al. 2015); here we focus

on the detection aspect only.

Most methods currently used to detect regime shifts only describe change in ecosystem state,

using time series data to identify sustained shifts in state (Biggs et al. 2012, but see Habeeb

et al. 2005; Johnson 2009). These methods rely on having time series of multiple ecosystem

variables from both before and after the suspected transition, to allow clear identification

of system state both before and after the shift, and to distinguish sustained shifts in mean

ecosystem state from stochastic fluctuations away from a steady state or deterministic cycles

(Beaugrand et al. 2002; Mantua 2004; Rodionov and Overland 2005; Rodionov 2004). These

approaches can identify significant change in ecosystems where sufficient long time-series data

exist (e.g. Beaugrand et al. 2015; Möllmann and Diekmann 2012; Reid et al. 2015), but they
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have limitations. Firstly, the requirement for long time series data of multiple variables from

both before and after the transition delays possible detection of regime shifts until long after

they have occurred (as opposed to soon after they occur). Secondly, the data requirements

are prohibitive for many ecosystems. Finally, because these methods track ecosystem state

over time, any interpretation of changes in regime will be ambiguous since there could be

sustained changes in state within the same regime (Di Lorenzo and Ohman 2013; Doney and

Sailley 2013). The goal is therefore to develop capacity to distinguish changes in ecosystem

state within the same regime or “basin of attraction,” from a regime shift representing change

to a different system attractor (Johnson 2009; Johnson et al. 2017).

An attractor is the region of multivariate phase space (values of state variables) to which a

system (ecological system) of interacting entities (species) tends to return. A regime shift

involves the transition of the system to a different attractor, with a consequent change in the

structure and functioning of the system (Biggs et al. 2012; Scheffer et al. 2001). Transitions

between attractors can occur when the ecosystem is pushed from one basin of attraction to

another in response to pulsed or sustained perturbations, and can also relate to a change in

stability of an attractor (Scheffer et al. 2001). The behaviour of the system as a whole may

differ around different attractors. For example, a system may remain fairly stable, it may

oscillate around an attractor (cyclical changes in ecosystem state), or it may move around

the attractor in a haphazard manner in the face of multiple pulsed forcing events (Scheffer

and Carpenter 2003; Scheffer et al. 2012b). This complicates the detection of regime shifts

and the characterization of observed change as regime shifts, and emphasizes that ecosystem

state alone is insufficient to detect regime shift from one attractor to another.

Developing methods based on consideration of ecosystem attractors rather than ecosystem

state provides a more objective means to detect regime shifts. Takens (1981) showed that

it is possible to reconstruct the attractor of a system of interacting components from the

time series of a single component of that system. This is based on the theory that the

behaviour of any one component is related to the behaviour of the rest of the system and

thus information about the system should be contained in the history (time series) of that

component’s behaviour (Fig. 4.1). This is important because if the attractor of an ecosys-

tem can be reconstructed, then it becomes possible to detect when the system shifts to an

alternative attractor. This makes it possible to distinguish cases where changes in ecosystem

state are due to oscillations around a single attractor, from cases where a change in system

state reflects transition from one attractor to another. However, a key issue is that most

methods of attractor reconstruction require very long, continuous time-series data, making

them impractical for detecting change from one point in time to another.

Habeeb et al. (2005) provided a solution to the problem of unrealistic data demands by

largely substituting space for time to reconstruct the system attractor, which they used to

77



Chapter 4. Detecting ecological regime shifts from transect data

Figure 4.1: Schematic representation of attractor reconstruction from time series data. The top panel
shows how time series of three interacting “species” relate to the ecosystem attractor, using the Lorenz
attractor as a hypothetical example. The bottom panel shows how a topologically equivalent shadow
of the real system attractor can be reconstructed from the time series of a single species, by delay
embedding its time series on itself. The Lorenz system typifies a time series that has large swings in
state within a single attractor.

estimate the characteristic length scale (CLS) of ecological systems. The concept of CLSs

was originally developed to determine the optimal spatial scale at which to observe the

deterministic dynamics of an ecosystem, which is the scale of observation at which the signal

to noise ratio is maximal (Keeling et al. 1997; Pascual and Levin 1999). Importantly, if a

system shifts from one domain of attraction to another, i.e., there is a fundamental shift

in space–time dynamics, then the shift is reflected as a change in the CLS (Johnson 2009).

Conversely, there is no change in the length scale when the fluctuations in system state

are within a single attractor even though the fluctuations may be large (Johnson 2009).

Applications to real (marine) ecosystems show that CLSs can be calculated by considering

space–time dynamics at the habitat (Habeeb et al. 2007) or species (Johnson et al. 2017)

level and that, as the theory predicts, the CLS of the system can be estimated from attractor

reconstruction based on the dynamics of a single component habitat or species, provided

that components are connected directly or indirectly in an interaction network. However,

a limitation of the approach is that to date it has only been applied using highly resolved

two-dimensional spatial data (Habeeb et al. 2007, 2005; Johnson 2009; Johnson et al. 2017),
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which can be difficult to obtain for some ecological systems.

One-dimensional spatial data (transects) are collected far more commonly for a wide range

of ecosystem types (e.g., grasslands, forests, reefs), and in marine systems is the form of data

streams that emanate from autonomous underwater vehicles (AUVs), towed instruments,

and acoustic information collected along ship tracks. Thus, adapting the CLS method to

estimate characteristic length scales (and changes in these scales) using one-dimensional

transect data would constitute a significant step forward in terms of detecting regime shifts

in a much broader range of ecosystem types. This paper aims to (1) test whether the methods

described by Habeeb et al. (2005) can be adapted to estimate the CLS of ecological systems

using transect data; (2) use model systems to explore the types of ecological changes that

can be detected as a change in the CLS; and (3) test the utility of the method applied to

data obtained from one-dimensional transects on coral reefs in Indonesia.

4.3 Methods

The CLS of an ecosystem is the emergent spatial scale that arises from the dynamics between

interacting species (see Glossary for definition). Characteristic Length Scale estimation in-

volves reconstruction of the system attractor by delay embedding spatial data, then using

nearest neighbour trajectories (see Glossary) to predict subsequent points in the data series

(Keeling et al. 1997; Pascual and Levin 1999), similar to the methods introduced by Sugihara

and May (1990) for purely temporal data. Habeeb et al. (2005) adapted the long timeseries

approaches of Keeling et al. (1997) and Pascual and Levin (1999) by substituting variation

in space for variation in time to estimate the CLS of a system from a two-dimensional land-

scape based on either a single time step (“sliding window” method) or very few (4) time

steps (“short time series” method). Here we describe how these two methods can be applied

to one-dimensional transect data. Application of these approaches to a system assumes that

the system has underlying deterministic dynamics resulting in emergent spatial pattern, and

that spatial data can be obtained from the system. For more detailed information about the

techniques described here, please refer to Kantz and Schreiber (2003).

4.3.1 CLS estimation process

The sliding window and short time-series approaches to CLS estimation primarily differ in

how the delay embedding is constructed. We first describe the steps in detail in relation to

the sliding window approach, following Figure 4.2. Then we give an overview of the short

time-series approach, highlighting how the steps differ in that approach.
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Figure 4.2: Flow diagram showing the steps in the characteristic length scale (CLS) estimation
method. Panels a–c illustrate the process for the one-dimensional sliding window approach. A similar
diagram is provided for the one-dimensional short time-series approach in Appendix C.1. For more
detailed descriptions of the techniques, see Kantz and Schreiber (2003). (a) Slide the 1D window
of observation along the transect and calculate mean number (density) of the target species in each
window (0 = absent, 1 = present). (b) Delay embed the spatial data series so that the trajectory over
dE sequential windows becomes a single point on the reconstructed attractor (shown in panel c). (c)
Identify k nearest neighbours of each point in the reconstructed attractor space and predict density
X in the subsequent window based on the trajectory of neighbouring points. Here, the blue square
represents the three-dimensional point of interest in the attractor space, and the star and circle its
nearest neighbours. The orange square is the point being predicted, based on the orange star and
circle. The lower plot illustrates how each dE dimensional point in the reconstructed attractor maps
to a dE trajectory of densities in space, and that nearest neighbours in the attractor space have similar
trajectories in space but are not neighbouring in space. (d) The characteristic length scale (CLS) is
the window length at which prediction error begins to plateau.
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Sliding window approach: prediction in space

The “sliding window” approach can be used to estimate the CLS of a system from purely

spatial data in a single time step (Figure 4.2). In our case the base data is a transect of

species inhabitancy recorded over regularly spaced intervals. Here we use presence–absence

data, but note that the method could also work with count or concentration data.

i Generate species densities From the transect data, we need to create series of species

densities in one-dimensional windows of different sizes (with side length l). The minimum

window size has a length that is two times the spatial resolution of the transect (e.g., if

resolution is 1 cm, the minimum window size will be 2 cm). The choice of maximum window

size is a trade-off between being large enough to capture the CLS, and small enough to

achieve sufficient replication along the transect. The species density series are generated by

sliding windows of observation along the transect. A new vector of species densities is created

for each window size. The window of observation slides along the transect by one-half the

window length to each new window position (p) (Fig. 4.2a). The density X of the target

species is then calculated for each window position.

ii Attractor reconstruction The system attractor is reconstructed multiple times by

delay embedding each vector of species densities generated for each window length (l) into

dE embedding dimensions. For the sliding window approach, the delay (τ) is a spatial delay.

Habeeb et al. (2005) found that, for the sliding window method, a proportional delay works

better than a fixed delay, such that τ = α× window length l. We found 1D CLS estimates

to be robust to choices of α, and here we set α to 50% of the window length, as described

above in section 4.3.1. One representation of the attractor is reconstructed per window size

by delay embedding the vector of densities generated for that window size. To do this, a

matrix is constructed where the original vector of species densities forms the first column.

The second column is the same vector of densities, delayed by one spatial step (minus the

density in the initial window; see Figure 4.2b for illustration of delay embedding). Each

column of the resultant matrix is one dimension of the reconstructed attractor, and each row

is a single delay embedded point. Each embedded point therefore captures the trajectory of

the species density forward in space by dE number of window positions. We found 1D CLS

estimates to be robust to choice of dE , and here use a dE of 3.

In theory, observations of any of the interacting species in a system can be used to reconstruct

the system attractor (Abarbanel 1996), though Habeeb et al. (2005) found some sensitivity

to choice of species when estimating the CLS from long time series. We use observations of

a number of species to reconstruct separate representations of the attractor of each system.
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iii Prediction Many more small windows fit along the transect than large windows so

there will be many more points in the attractor reconstructed from small windows than those

reconstructed with large windows. To avoid resultant bias in predictive power, N equally

sized samples (we used N = 20) of delay embedded points are generated for each window size

by randomly sampling with replacement from the delay embedding of each window length.

The aim is to predict the next point in space (which is effectively the dE + 1 dimension

from the reconstructed attractor). To do this, k nearest neighboring points to each sample

point in the attractor space are located using the nn2 function from the ‘RANN’ package

(Arya et al. 2017) in R (R-Core-Team 2017). The trajectory from each embedded point is

predicted from the trajectories of the nearest neighbours (see definition in Glossary), with the

prediction being weighted toward the trajectories of the closest neighbours (inverse distance

weighting) (Fig. 4.2c). To illustrate, in Figure 4.2c, the blue square on the reconstructed

attractor is the delay embedding of the three blue squares (representing species densities) in

the spatial series in the panel below. The point to be predicted is the species density in the

following window position (the orange square). The two nearest neighbours are represented

by a blue star and circle in the reconstructed attractor, and represent similar sequences of

species density in space. The trajectories from the two nearest neighbours (the orange star

and the circle on the lower panel) are used to predict the next species density (the value

of the orange square). To calculate the prediction error, the predicted value (the weighted

average of the orange star and circle) is then compared with the observed species density

(the value of the orange square). Initial testing showed that 1D CLS estimates were robust

to the choice of k (we set k equal to 7).

There are two available measures of prediction error: Error X (Keeling et al. 1997) and

Prediction r2 (Pascual and Levin 1999). Previous work (Trebilco 2002) showed that Error X

produces the most interpretable curves when using the sliding window method (but that

Prediction r2 was the better metric when using the short time series approach), and our

initial testing supported that finding. We therefore use Error X as the metric to identify

the CLS using the sliding window method, but present examples of both metrics.

Error X For two-dimensional data, Error X is calculated as follows:

Error X = l

√
Ep[(X

p
l − X̂

p
l )2] (4.1)

where Xp is the observed and X̂p species X in a window of length l at window position p,

and Ep is the expectation of their difference for that window length (mean difference over

different window positions). For one-dimensional data, a window of length l contains less

information than a two-dimensional window of the same length because the area contained
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in the two-dimensional window is l2. Thus for one-dimensional data, Error X is given by:

Error X =

√
lEp[(X

p
l − X̂

p
l )2] (4.2)

Prediction r2 The Prediction r2 metric of Pascual and Levin (1999) is given by:

Prediction r2 = 1− Ep[(X
p
l − X̂

p
l )2]

V ar(Xp
l )

(4.3)

Estimate the CLS Finally, the prediction errors are plotted against window length, to

produce a variance spectrum showing how prediction error varies with the scale of observation

(Fig. 4.2d). For both Error X and Prediction r2, the CLS is defined as the window size at

which the variance spectra begin to plateau (following Habeeb et al. 2005; Johnson 2009).

In practice, the precise window size at which the curve begins to plateau can be difficult to

pinpoint. Accordingly, the CLS is given as a range of possible window sizes.

Short time-series approach: prediction in time

This approach to CLS estimation involves reconstructing the system attractor from short-

time series of observations from multiple window positions placed along the transect (see

Appendix C.1 for figures illustrating this approach). As in the sliding window approach, each

window is placed one-half a window length along the transect from the previous window. The

density of a given species in each window position is then tracked for a small number of time

steps (four or five), where each time step acts as one dimension of the embedding and the

final time step is the one being predicted. Unlike in the sliding window approach above, this

delay τ is a temporal lag. We use a delay of ten time steps, as per Habeeb et al. (2005)

and Johnson (2009). The attractor of the system is then reconstructed for each window size

from the multiple short time series. Then, for each point, the density in the next time step

is predicted from the trajectories of k neighbouring points on the attractor. This is the key

difference between the two approaches: in the short time-series method the density in the

same window position in the following time step is being predicted, whereas in the sliding

window method the density the next window position in space (in the same time step) is

being predicted.

4.3.2 Detection of regime shifts

Regime shifts can be detected by comparing the CLS of the system from time to another.

A change in the CLS of a system from one time to another indicates that there has been a

regime shift (Johnson 2009; Johnson et al. 2017). When the CLS of a system is identified, it

is given as a range of possible window sizes (see 4.3.1: ‘Estimate the CLS’). A regime shift
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can only be detected when the CLS range in one time step does not overlap the CLS range

from the other time step.

4.3.3 Model test systems

To create test cases, we planned to run ecosystem models for 5,000 time steps, change the

model parameters to simulate different types of ecosystem change, then continue the model

run for a further 5,000 time steps. The test systems we used are two-dimensional toroidal

probabilistic cellular automata of interacting species, programmed in Python. In the model

simulations, the initial cover of species over the model landscape is set by randomly selecting a

species to inhabit each cell (pixel) within a 2,000× 6,000-pixel landscape. Species interactions

are governed by a set of overgrowth probabilities, where each species has a set probability of

overgrowing each other species. At each time step, the species in each cell interacts with one

randomly selected neighbouring cell. To determine the outcome of each interaction, a random

number between 0 and 1 is generated. If the random number is less than the probability that

the cell would be overgrown by the species in the neighbouring cell, then the cell is replaced

by the species in the neighbouring cell when the landscape is updated in the next the step.

Otherwise, the species inhabiting the cell continues to inhabit that cell into the next time

step. To avoid artefacts of sequentially updating the landscape, after each individual cell

interacts with one neighbour at time t the result is written to a “new” working landscape

matrix representing time t+ 1, and once the whole landscape is updated the new landscape

at t + 1 replaces the landscape at t before the next new time step begins. The competitive

dynamics of each system and the changes to those dynamics are described in test cases of

ecosystem change.

Test cases of ecosystem change

To evaluate whether the 1D CLS estimation methods could detect a change in system dynam-

ics, we used the test cases previously described by Johnson (2009). Johnson’s model systems

were run in the Compete software package (Johnson 2002) (and analysed using the two di-

mensional CLS methods) (Johnson 2009). The simulations in this paper were run in Python

to be able to consider larger landscapes (from which long transects could be extracted) than

is possible with Compete. A summary of test cases, species considered, metrics and figures

presented is provided in Table 4.1.
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Table 4.1: Summary of all the analyses performed on each system and the species analysed.

System Test case Regime 1D methods Species analysed Figures

5-Species
model

Test case 1 1 and 2 SW Error X;
SW Prediction r2;
STS Error X;
STS Prediction r2

2, 3, 4 Figs. 4.3 & 4.4

Test case 2 1 and 2 SW Error X;
SW Prediction r2;
STS Error X ;
STS Prediction r2

2, 3, 4 Fig. 4.5;
App. Figs. C.2 & C.3

20-Species
model

Test case 3 1 and 2 SW Error X;
SW Prediction r2;
STS Error X ;
STS Prediction r2

3, 10, 19 Fig. 4.6;
App. Fig.C.4

Test case 4
1 SW Error X;

SW Prediction r2;
STS Error X ;
STS Prediction r2

3, 10, 19 Fig. 4.7a, b;
App. Fig.C.5a-c

2 SW Error X;
SW Prediction r2;
STS Error X ;
STS Prediction r2

3, 10, 19, 21 Fig. 4.7c, d;
App. Fig. C.5d-f

Coral reef
benthic
community
transect data
from Wakatobi
Marine NP

Blue Bowl reef slope 2007, 2010, 2011 SW Error X foliose, branching, and soft
corals, algae, dead coral
(2007 only), and dead,
algae-covered coral (2010
and 2011 only)

Fig. 4.8

Coral Gardens reef slope 2007, 2010, 2011 SW Error X soft coral, sponges, branch-
ing coral, encrusting coral

Fig. 4.9a, c, e;
App. Fig.C.6

Sampela 1 reef slope 2007, 2010, 2011 SW Error X soft coral, sponges, massive
coral, encrusting coral

Fig. 4.9b, d, f;
App. Fig. C.6

Hoga Buoy 2 reef slope 2007, 2010, 2011 SW Error X massive, branching, lam-
inar, encrusting and soft
corals, coralline algae and
sponges

Fig. 4.10;
App. Fig. C.7

Note: Tests in shown in italic typeface (short time-series [STS] methods and sliding window [SW] prediction r2 for all except Test case 1) were performed and included in Appendix
C but are not presented in the main text. Detailed description of models and test cases are provided in test cases of ecosystem change.
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Four test cases based on two model systems were considered. The first model system is a

five-species intransitive loop, where each species is able to overgrow just one other species,

and does so in 100% of occasions in which they interact. This system is structured so that

Species 1 overgrows Species 2, which overgrows Species 3 and so on: Species 1 > Species 2

> Species 3 > Species 4 > Species 5 > Species 1. After this model system runs for 5,000

time steps, the system dynamics change and the model runs for a further 5,000 time steps

(continuing from the final landscape of the previous “regime”). The change in dynamics

brought about in this second regime were as follows:

1 Test case 1: A change in the environment results in the growth rate of Species 5 being

reduced to 75% of its original growth rate. This is achieved by reducing the probability

that it overgrows Species 1 from 100% to 75% of occasions in which they interact.

2 Test case 2: A change in the environment causes a change in the way Species 1 and

Species 2 interact, such that Species 1 now only over grows Species 2 in 60% of inter-

actions and Species 2 overgrows Species 1 in the other 40% of occasions in which they

interact.

In the second set of test cases, the initial system is a 20-species system interacting according

to a random interaction matrix. The system initially has open recruitment, meaning that

no species can become permanently extinct from the landscape, regardless of how poorly

competitive it might be. At each time step, 0.0001% of cells suffer random mortality (dis-

turbance) events, so that those cells become empty space in the following time step. Any of

the species are then able to recruit to one of these empty cells, where each species has a 1%

chance of being recruited to each empty cell at each time step. After 5,000 time steps, the

dynamics change as follows:

3 Test case 3: The system changes such that open recruitment stops. According to these

new rules, empty space can only be filled by the overgrowth of a species from one of

the four neighbouring cells.

4 Test case 4: An invasive species arrives. Open recruitment is maintained; however,

a 21st species of a highly invasive nature enters the system. This invader overgrows

three randomly selected species in 80% of occasions in which they interact, and is

overgrown by those same species in the other 20% of interactions. Interactions between

the invader and any of the other 17 species result in standoff, i.e., it neither overgrows,

nor is overgrown by, any of those 17 species.

For each test case, we chose to present the spectra estimated from three species. For Test

cases 1 and 2, spectra estimated from Species 2, 3, and 4 are presented. For Test Cases 3
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and 4, three species were chosen to analyze based on their abundance in regime 1: Species

19 was the most abundant, Species 10 was the third most abundant, and Species 3 was the

fifth most abundant. The spectra from Species 21 was also analysed and presented for Test

Case 4, regime 2. For each test case, three transects were extracted from each of the final

landscapes (of the first and second regimes) to test the sliding window method. We present

the spectra of all three transects for each species together to demonstrate variability amongst

transects. To test the short-time series method, transects were taken from four landscapes

separated by ten time steps at the end of each regime for Test Cases 1–3. However for Test

Case 4, transects for the short time-series method were taken from landscapes separated by

50 time steps because regime 2 of this test case evolved so slowly that there was very little

difference between landscapes separated by only 10 time steps.

4.3.4 Real world test case

We applied the sliding window 1D CLS estimation method to pre-existing coral reef benthic

community transect data from four sites within the Wakatobi Marine National Park, Sulawesi,

Indonesia (Haapkylä et al. 2016). The collection of these data is described in Haapkylä et al.

(2015, 2016, 2007, 2009). Briefly, three replicate line-intercept transects of 20 m length and

1 cm resolution were recorded from the slope, crest, and flat of each of these sites in 2007,

2010, and 2011. The three replicate transects at each site followed a fixed depth contour in

each habitat, and were separated by 5 m. When the 20 m coral reef replicate transects were

analysed individually, the CLS sometimes appeared to be larger than the maximum window

size we were able to consider. Accordingly, the coral reef transects from each site were

treated as a single transect to maximize the maximum window size that could be considered.

The maximum window size and transect length were kept consistent (100 cm and 60 m,

respectively) between sites to ensure CLSs were comparable.

Here we present the CLS estimated from each of the reef slopes (Blue Bowl, Coral Gardens,

Sampela1 Reef, Hoga Buoy2 Reef), and discuss both temporal and spatial differences in the

estimated CLSs within and among the sites. Initial testing of the short time-series method

on this data set showed that this method was inappropriate for the data set, because of the

nature of the data set and the number of time steps available (only three time steps). We

therefore only estimated CLS using the sliding window approach. The CLSs presented for

each reef are based on morphotypes rather than species. Decisions on which morphotypes

to investigate and present for each reef were based on whether morphotypes had sufficient

coverage to produce an interpretable curve in each of the three years, so that comparisons

could be made between years.
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4.3.5 Analyses

All model test case simulations were run using the NumPy and Numba packages in Python

(Python Software Foundation, version 3.5.2, available at http://www.python.org) Anaconda

(Anaconda Software Distribution, version 4.2.0, https://anaconda.com) on a Ubuntu (16.04.1

LTS x86 64) system hosted by NeCTAR. NeCTAR is a cloud computing research environ-

ment supported by the Australian Government through the National Collaborative Research

Infrastructure Strategy. Landscape data were exported in NumPy format and read into RStu-

dio using the RcppCNPy library (version 0.2.6; Eddelbuettel and Wu 2016). Transects were

sampled, data formatted, and analyses performed in the RStudio (version 1.1.383, RStudio

Team 2015) environment and R (version 3.4.1; R-Core-Team 2017) using version 2.5.1 of the

‘RANN’ package (Arya et al. 2017). All code for test case simulation and analysis is available

online as supplementary material in ‘Data S1’ associated with the publication Ward et al.

(2018), and all coral reef transect data are available through Australian Ocean Data Net-

work (Haapkylä et al. 2016). The 1D CLS estimation R package is available through GitHub

(https://github.com/DelphiWard/CLS1D; Appendix D; Ward and Wotherspoon 2018).

4.4 Results

4.4.1 Model test cases

Test case 1

The estimated CLS of the first regime in Test case 1 was 15–20 pixels. After the Species

5 growth rate was reduced, Species 1 increased in abundance, Species 2 and 4 decreased

in abundance, and the abundance of Species 3 and 5 increased very slightly. Despite these

observed changes in abundance, there was no clear change in the estimated CLS between

the two regimes, with the CLS in the second regime also being estimated at 15–20 pixels

(Fig. 4.3). The lack of change in CLS indicates there was not a regime shift in this test

case. Although the estimated CLS did not change, the shape of the sliding window Error X

spectra from Test case 1 differs between the two regimes. The main difference in the spectra

is that while the magnitude of Error X was equivalent between species in the first regime,

the height of the curve (magnitude of Error X) for species 2 and 4 were smaller in the

second regime, coinciding with declines in the numbers of those species observed within the

landscape. Despite this, the emergent CLS of the system remained consistent when estimated

from the different species, as expected from the theory, indicating that the species are indeed

interacting within the same community (Habeeb et al. 2005; Keeling et al. 1997; Pascual and

Levin 1999; Rand and Wilson 1995).
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Figure 4.3: Test case 1 Error X spectra from the one-dimensional sliding window method for (a)
regime 1 and (c) regime 2 and corresponding model landscape sections of 400 × 400 pixels from (b)
regime 1 and (d) regime 2. Species are shown in the same colors in both the spectra and the landscapes
as indicated by the color bar. For each of three species, spectra from three replicate transects are
shown together to demonstrate variability due to transect position. Solid lines are a rolling mean
(three windows) of the Error X estimates from the 20 sets of random samples for each window size,
and shading indicates the 95% pointwise confidence intervals. The black boxes indicate the CLS range
estimated from each species. The reduction of the growth rate of Species 5 in regime 2 did not result
in a change in the CLS in this test case.
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Prediction r2 spectra proved more difficult to interpret than the Error X spectra. The

sliding window Prediction r2 spectra appear inverted (Fig. 4.4a, d), as had been previously

reported by Trebilco (2002). Similarly, the CLS is not estimable from the short time-series

Prediction r2 spectra for Test case 1 (Fig. 4.4c, f). These spectra continue to increase

with window length and do not appear to reach a plateau. The short time-series Error X

spectra in both regimes for Test case 1 indicated a CLS of approximately 5–10 pixels, which

is smaller than that of the sliding window spectra (Fig. 4.4b, e). Interestingly, these spectra

exhibit a decline in Error X after a peak is reached. Given the difficulty interpreting the

1D Prediction r2 spectra, and the ultimate goal for this method to be used to detect change

between time steps, we hereafter only present sliding window Error X spectra (the other

spectra are available in Appendix C).

Figure 4.4: Further Test case 1 spectra obtained from one-dimensional “transect” data. Sliding
window (SW) Prediction r2 spectra for (a) regime 1 and (d) regime 2; short time series (STS)
Error X spectra for (b) regime 1 and (e) regime 2 and short time-series Prediction r2 spectra for (c)
regime 1 and (f) regime 2. Solid lines are a rolling mean (three windows) of the Error X estimates
from the 20 sets of random samples for each window size, and shading indicates the 95% pointwise
confidence intervals. Colors as per Fig. 4.3.

Test case 2

All three species considered in Test case 2 indicate a CLS of approximately 15–20 pixels in the

first regime (Fig. 4.5a, b). After the interaction between Species 1 and Species 2 changed, the
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abundance of Species 1, 2 and 4 increased in the landscape, while Species 3 and 5 decreased

(Fig. 4.5d). In this second regime, the CLS estimated from spatial patterns of Species 2 and

4 increased to 25–30 pixels (Fig. 4.5c). For Species 3, the CLS in the second regime was

difficult to interpret (when considered on the same y-axis scale) because its Error X curve

was very shallow, seemingly a consequence of its low abundance. Nevertheless, the estimation

of the CLS as 25–30 pixels was supported when the Error X spectra was considered over a

smaller y-axis range (App. C.2). The CLS of this system changed so we detected a regime

shift in this test case.

Figure 4.5: Test case 2 Error X spectra from the one-dimensional sliding window method for (a)
regime 1 and (c) regime 2 and corresponding model landscape sections of 400 × 400 pixels from
(b) regime 1 and (d) regime 2. Species are shown in the same colors in both the spectra and the
landscapes, as indicated by the color bar. For each species, spectra from three replicate transects
are shown together to demonstrate variability due to transect position. Solid lines are a rolling mean
(three windows) of the Error X estimates from the 20 sets of random samples for each window size,
and shading indicates the 95% pointwise confidence intervals. The black boxes indicate the CLS range
estimated from each species. In this test case, the CLS increased from 15 to 20 pixels in the first
regime, to 20–25 pixels in the second regime following a change in the interaction between Species 1
and 2. See Appendix C.3 for spectra of Species 3 from regime 2 on a smaller y-axis scale.
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Test case 3

Species 10 and 19 indicated a CLS of around 20 pixels in the first regime of Test case 3,

while the CLS indicated by Species 3 is larger: between 20 and 30 pixels (Fig. 4.6a, b).

In the randomly determined interaction matrix, Species 3 typically had low probabilities of

either overgrowing or being overgrown by other species, so its dynamics may be somewhat

more independent than those of species with strong interaction probabilities. In the second

regime, the CLS indicated by each species remains unchanged after the cessation of open

recruitment, suggesting that scale of this system is dominated by interaction outcomes rather

than by recruitment (Fig. 4.6c, d). Accordingly, we did not detect a regime shift in this test

case.

Figure 4.6: Test case 3 Error X spectra from the one-dimensional sliding window method for (a)
regime 1 and (c) regime 2 and corresponding model landscape sections of 400 × 400 pixels from
(b) regime 1 and (d) regime 2. Species are shown in the same colors in both the spectra and the
landscapes, as indicated by the color bar. For each species, spectra from three replicate transects
are shown together to demonstrate variability due to transect position. Solid lines are a rolling mean
(3 windows) of the Error X estimates from the 20 sets of random samples for each window size,
and shading indicates the 95% pointwise confidence intervals. The black boxes indicate the CLS
range estimated from each species. There was no change in the CLS following the cessation of open
recruitment in this test case.
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Test case 4

The CLS estimates from Species 10 and 19 in the first regime of Test case 4 are 15–20

pixels, similar to those of Test case 3 (Fig. 4.7a, b). Again in this test case, Species 3

indicates a slightly larger CLS, but the curves are more difficult to interpret, and are more

variable between transects than for the other species. Following the invasion of a new,

highly competitive Species 21 in the second regime, the landscape became dominated by

that invasive species while the abundances of other species fell (Fig. 4.7d). This is reflected

in much shallower Error X spectra for Species 3 and 19 (Fig. 4.7c). For both of these

species, the spectra became harder to interpret. Species 19 appears to indicate a CLS of

10–15 pixels in regime 2, and Species 3 possibly indicates a CLS of 20–25 pixels, though this

is difficult to estimate. Neither Species 3 nor Species 19 interacted directly with Species 21.

Species 10 was one of the three species that directly interacted with Species 21. Although

Species 10 was still present in very low numbers on the final landscape, it was absent from

all three transects and so Error X could not be calculated from this species. In the final

landscape, the Species 21 spectra indicate a clear CLS of 10–15 pixels. The changes in CLS

observed in this test case indicate that there was a regime shift.

4.4.2 Coral reefs

Blue Bowl reef

Blue Bowl reef exhibited large changes in CLS over the time period 2007 to 2011 (Fig. 4.8,

Table 4.2). In 2007, this reef was dominated by foliose coral, which indicated a CLS of the

order of 55–70 cm. Other morphotypes considered were branching coral, which indicated a

CLS of about 65 cm, soft coral showing a CLS of about 45 cm, and algae, which indicated

a CLS of about 25–30 cm. These length scales had changed markedly in 2010. In 2010, the

CLS indicated by foliose and branching corals had declined to 30–35 cm, and that indicated

by soft coral had declined to around 35 cm. The CLS determined from cover of algae is

harder to distinguish in 2010, but appears to be around 45 cm. Interestingly, the CLS of

dead, algae-covered-coral was about 60 cm in 2010, similar to that of foliose coral and dead

coral in 2007 (though with a much higher abundance than the latter). This probably reflects

the spatial patterns of (now deceased and overgrown) foliose coral. In 2011 the CLSs were

largely similar to those of 2010. The CLS indicated by cover of foliose coral was 35–50 cm,

while that estimated from branching coral appeared to increase slightly to 40–55 cm. CLSs

determined from cover of algae and dead, algae-covered-coral remained unchanged at 40–55

cm and 60 cm respectively. The changes in CLS on this reef indicate that a regime shift

occurred between 2007 and 2010 and that the new regime persisted into 2011.
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Figure 4.7: Test case 4 Error X spectra from the one-dimensional sliding window method for (a)
regime 1 and (c) regime 2 and corresponding model landscape sections of 400 × 400 pixels from
(b) regime 1 and (d) regime 2. Species are shown in the same colors in both the spectra and the
landscapes; the invasive species is Sp.21 in black. For each species, spectra from three replicate
transects are shown together to demonstrate variability due to transect position. Solid lines are a
rolling mean (three windows) of the Error Xestimates from the 20 sets of random samples for each
window size, and shading indicates the 95% pointwise confidence intervals. The black boxes indicate
the CLS range estimated from each species. In this test case, there was a decline in CLS from 15 to 20
pixels in regime 1 to 10–15 pixels in regime 2 following the invasion of a new species to the landscape.

Table 4.2: Blue Bowl reef characteristic length scale (CLS) estimates from one-dimensional sliding
window Error X spectra, and percent cover of each morphotype (in the 60-m transect).

CLS (cm) Cover (%)

Morphotype 2007 2010 2011 2007 2010 2011

Foliose coral 55-70 30-50 (50) 35-50 (35) 60.6 7.5 9.3
Branching coral 60-70 (65) 30-40 (30) 40-55 12.0 9.6 5.0
Dead coral (DC)/dead
algae-covered coral
(DCA)

55-70 (55) 55-70 (60) 55-65 (60) 6.1 (DC) 58.3 (DCA) 61.9 (DCA)

Soft coral 45-65 (45) 35-45 (35) 30-40 (30) 7.9 5.8 2.9
Algae 25-30 35-45 (45) 40-55 3.6 5.7 16.5

Note: The CLS estimated from the Error X spectra is stated as range of possible scales, but where possible,
the most likely CLS is also given in parentheses.
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Figure 4.8: Error X spectra determined from cover of five morphotypes from Blue Bowl reef in 2007,
2010, 2011. Solid lines are a rolling mean (three windows) of the Error X estimates from the 20 sets of
random samples for each window size, and shading indicates the 95% pointwise confidence intervals.
The black boxes indicate the CLS range estimated from each spectra. CLSs indicated by hard corals
(left column, foliose coral [CF] in orange, branching coral [CB] in blue) declined markedly from 2007
(top row) to 2010 (middle row). In the right column, spectra from soft coral (SC) is shown in orange,
algae (A) in green, and dead coral (DC) (2007), and dead, algae-covered-coral (DCA) (2010 and 2011)
are shown in dark blue.
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Coral Gardens

For the most part, the CLSs determined from the cover of morphotypes on the Coral Gardens

reef slope remained unchanged between 2007 and 2011 (Fig. 4.9a, c, e, Table 4.3). Coral

Gardens was dominated in coverage by soft coral, and in 2007 the CLS of this morphotype

was 60–80 cm. In 2007, encrusting coral and sponges both indicated a CLS of about 30 cm,

while that derived from branching coral was slightly larger. In 2010, the CLSs indicated

from the latter three morphotypes were largely unchanged, but that shown by soft coral had

declined. The spectra for encrusting coral in 2010 appears shallower, despite having similar

cover and CLS in both years. In 2011, the CLS indicated by encrusting coral had declined

slightly, but soft coral indicated a similar CLS to 2007. Sponges indicated a similar CLS to

the previous years. The CLS was difficult to estimate from branching coral for 2011, but was

possibly around 35 cm. The lack of clear changes in CLS mean that there is no evidence of

a regime shift at this reef.

Table 4.3: Coral Gardens reef characteristic length scale (CLS) estimates from one-dimensional sliding
window Error X spectra, and percent cover of each morphotype (in the 60-m transect).

CLS (cm) Cover (%)

Morphotype 2007 2010 2011 2007 2010 2011

Encrusting coral 20-35 (30) 20-35 (25) 10-20 (15) 3.0 3.6 1.8
Soft coral 60-80 (60) 40-55 (45) 45-65 (65) 20.6 31.8 16.6
Sponge 20-40 (30) 20-35 (30) 35 1.6 6.6 6.1
Branching coral 35-50 (40) 25-45 (40) 30-50, or 70+ (35) 2.7 2.7 2.7

Note: The CLS estimated from the Error X spectra is stated as range of possible scales, but where possible,
the most likely CLS is also given in parentheses.

Sampela1 reef

Sampela reef slope only exhibited small changes in CLS between 2007 and 2011, despite

experiencing declines in cover of all morphotypes considered except encrusting coral (Fig.

4.9b, d, f, Table 4.4). In 2007 the CLS indicated by massive coral, soft coral, and sponges was

around 50 to 60 cm. The CLS was harder to determine from encrusting coral, but appeared

to be about 40 cm. In 2010, the CLS indicated by encrusting coral was slightly smaller, at

around 35 cm, but that shown by the other morphotypes was either unchanged (sponges)

or had declined (soft coral and massive coral). The CLS ranges estimated from soft coral

do not overlap between 2007 and 2010; however the CLS range estimated in 2011 overlaps

both the previous years. Between 2010 and 2011 there was no change in CLS estimates

from encrusting coral or massive coral, but there was a slight increase in that indicated by

soft coral, and there was a decline in the CLS indicated by sponges to 25–45 cm. The CLS

estimated from sponges declined enough in 2011 to be detected as a regime shift; however

the lack of a consistent pattern from the other morphotypes at this reef mean we would not
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Figure 4.9: Error X spectra determined from cover of four morphotypes for each of Coral Gardens
(left) and Sampela (right) reef slopes in 2007 (top), 2010 (middle), and 2011 (bottom). Soft coral
(SC) spectra are shown in orange, sponges (SP) in green, encrusting coral (CE) in black. Blue lines
are branching coral (CB) at Coral Gardens and massive coral (CM) at Sampela. The black boxes
indicate the estimated CLS range from each spectra.

be confident in identifying a regime shift here.
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Table 4.4: Sampela1 reef characteristic length scale (CLS) estimates from one-dimensional sliding
window Error X spectra, and percent cover of each morphotype (in the 60-m transect).

CLS (cm) Cover (%)

Morphotype 2007 2010 2011 2007 2010 2011

Encrusting coral 30-50 (40) 30-50 (35) 30-40 (40) 2.3 6.3 5.4
Soft coral 50-65 (50) 30-45 (40) 45-55 (50) 11.2 7.6 6.6
Sponge 50-60 (50) 50-60 (50) 25-45 (25) 14.3 8.1 6.3
Massive coral 50-70 (60) 30-50 (35) 30-40 (35) 12.0 6.4 6.5

Note: The CLS estimated from the Error X spectra is stated as range of possible scales, but where possible,
the most likely CLS is also given in parentheses.

Hoga Buoy2 reef

At Hoga Buoy 2 reef slope, there were a number of large changes in CLS derived from cover

of hard corals over the period 2007 to 2011 (Fig. 4.10, Table 4.5). The CLS indicated by

branching coral declined from 90 cm in 2007, to about 50 cm in 2010. The next year (2011)

it appeared to indicate multiple length scales: one at about 30 cm and possibly another at

60 cm or over. The CLS from cover of laminar coral declined by a similar magnitude: falling

from around 65 cm in 2007 to around 15–20 cm in 2010, and then remained low in 2011.

Conversely, the CLS indicated by massive corals increased over the study period, from 40 cm

in 2007 to 60 cm in 2011.

Table 4.5: Hoga Buoy2 reef characteristic length scale (CLS) estimates from one-dimensional sliding
window Error X spectra, and percent cover of each morphotype (in the 60-m transect).

CLS (cm) Cover (%)

Morphotype 2007 2010 2011 2007 2010 2011

Branching coral 90+ 40-50 (50) 30-60 (30 or 60+) 11.3 11.1 4.4
Laminar coral 60-70 (65) 15-20 15-30 (15) 6.9 0.95 1.2
Massive coral 20-40 (40) 60 50-60 (60) 3.5 7.1 10.5
Coralline algae 45-55 (50) 40-55 (45) 50-60 (55) 12.0 28.7 13.4
Encrusting coral 40-55 (50) 45-60 (60) 40-50 (45) 10.5 17.6 15.0
Soft coral 20-30 (30) 15-35 (30) 15-30 (15) 3.7 2.3 1.5
Sponge 20-40 (20) 25-40 (40) 30-50 (40) 3.0 6.1 5.1

Note: The CLS estimated from the Error X spectra is stated as range of possible scales, but where possible,
the most likely CLS is also given in parentheses.

There appeared to be a slight increase in the CLS estimated from sponges from 20 cm to

40 cm between 2007 and 2011 at Hoga Buoy reef; however, the overlap in the estimated

CLS ranges between years makes this uncertain. There was little apparent change in CLS

determined from coralline algae, despite large changes in its cover. Similarly, there was no

change in the CLS indicated by encrusting corals between 2007 and 2010, despite a large

increase in the cover of this group, but there was a very small decline in the CLS estimated

from it between 2010 and 2011. Finally, the CLS range estimates determined from soft

coral were overlapping between years, making it difficult to confidently identify any change.

Nevertheless, it appears likely that there was a decline in the CLS when estimated from soft
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Figure 4.10: Error X spectra determined from cover of seven morphotypes Hoga Buoy 2 reef slope for
2007 (top row), 2010 (middle), and 2011 (bottom row). Spectra from cover of hard coral morphotypes
are presented in the left column: massive (CM, green), branching (CB, blue), and laminar (CL,
orange), and other morphotypes (coralline algae [CA, blue], encrusting coral [CE, black], sponges [SP,
green], and soft corals [SC, orange]) are presented on the right. The black boxes indicate the CLS
range estimated from cover of each morphotype.

coral between 2007 and 2011. Consistent changes in the CLS estimated from cover of hard

corals between 2007 and 2010 mean that a regime shift was detected at this reef, despite the
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lack of clear change in CLS estimated from other morphotypes.

4.5 Discussion

We have successfully adapted the method for estimating the CLS of ecological systems

(Habeeb et al. 2005; Johnson 2009; Johnson et al. 2017; Keeling et al. 1997; Pascual and

Levin 1999) so that it can be used with one-dimensional spatial data (transects). Using this

approach, we were able to estimate the 1D CLS for real and model systems based on the

cover of most species or morphotypes that we tested. The results demonstrated that 1D

CLSs are sensitive to the changes in network topology that we instigated. Using 1D CLS

Error X estimates, obtained with the sliding window method, we detected changes in eco-

logical regimes in both the model and real world ecosystems examined. However there are

caveats in the application of the method, which we detail in following sections.

The results of this study contribute important findings to ongoing discussion about what

defines regime shifts and how to detect them (Andersen et al. 2009; Doney and Sailley 2013;

Mantua 2004; Rodionov 2005). In our model test cases, it was circumstances where the

structure of the interaction network changed (Test case 2 and Test case 4) that exhibited

the clearest change in CLS. Conversely, in Test cases 1 and 3, where the network topology

of the system was not changed, there was no clear change in CLS. The model test cases

presented here provide a range of examples of ecosystem change, but it is not exhaustive.

Further studies are necessary to determine whether these observations hold true in other test

systems. Among the four coral reef sites, two had clear changes in the CLS, while the other

two did not.

4.5.1 Model test systems

In the five-species model, the abundances of species changed in both test cases between

the first and second regime, but only in the second test case did the changes manifest as

a change in CLS. In Test case 1, although the reduction in growth rate of Species 5 did

affect the abundances of other species, the form of the interaction network was still an

intransitive loop, and there was no apparent change in CLS. However there was a change in

magnitude (asymptote) of Error X estimates obtained from Species 2 and 4. This difference

in magnitude suggests a change in the system, but it is beyond the scope of this study to

explore what kind of change it indicates.

In Test case 2, the interaction network began as an intransitive loop, but the interaction

between Species 1 and 2 changed so that each could overgrow the other, changing the net-

work topology. A feedback developed such that, as Species 2 had more opportunities for
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overgrowth, its numbers increased, which gave more overgrowth opportunities to Species 1.

Species 3 became scarce as Species 2 had more opportunities to overgrow it. This in turn

meant Species 4 did well, and overgrew more of Species 5. Consequently, the cover of Species

1, 2, and 4 increased while that of Species 3 and 5 decreased, and patch sizes increased overall.

Thus, the change in the structure of the interaction network had significant implications for

the scale of spatial self-organization in the system, which changed the CLS and, by definition,

the shape of the attractor describing the dynamic (consistent with previous work; Habeeb

et al. 2005; Johnson 2009; Johnson et al. 2017).

In the 20-species model, both test cases had the same randomly determined interaction

network and had open recruitment to empty cells that were created by a low background

level of disturbance. In Test case 3, the cessation of open recruitment did not change the

form of the competitive interactions, but did result in the loss of the less competitive species

from the landscape. The numbers of these species were originally low and their presence

in the landscape was maintained solely by open recruitment to empty spaces. Their loss

did not result in an observable change in the spatial scale of the system dynamics, implying

that these species had little impact on the system dynamics overall. This suggests that the

dynamics of this system were dominated by direct (overgrowth) interactions of key species

rather than by the low levels of ‘background’ recruitment. The lack of change in CLS in this

test case means we did not detect the changes as a regime shift. We interpret this to indicate

that there was no regime shift in the system (that the loss of background recruitment of

rare species did not substantially alter the system dynamic), rather than as a regime shift

to a new attractor where the CLS is the same as in the original regime, although this is

theoretically possible.

Test case 4 involved the arrival of a new species that was highly competitive with three species

in the system, but did not interact directly with the other 17 species. In this case, one of the

randomly selected species with which it interacted (Species 10) was highly competitive and

among the most abundant species on the landscape. Consequently, the invader (Species 21)

was able to dominate the landscape to such a point that its opportunities for overgrowing

more cells became limited – it had reduced the abundance of those species it could overgrow,

effectively blocking its own spread. Those species that did not directly interact with Species

21 remained present in the landscape, but their opportunities for interactions were likewise

limited by the spatial dominance of Species 21, which they could not overgrow. These changes

in the system reduced the CLS (which we estimated from Species 3 and 19), indicating that

a regime shift occurred in this dynamic.

Using 2D short time-series Prediction r2 spectra, Johnson (2009) found that in each of these

test cases a change in dynamics resulted in a change in the CLS of the system. The CLS

values presented here are not directly comparable to those of Johnson because the analytical
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methods used are different (2D vs. 1D, short time series vs. sliding window, Prediction r2

vs. Error X). Moreover, Johnson’s 20-species models are not directly comparable to ours

because their random interaction matrices are different. Nevertheless, for the test cases that

are comparable (the five-species model test cases), and where we did detect a change in

CLS using the 1D sliding window method (Test Case 2), the direction of the changes was

consistent with those of Johnson (2009). It should be noted however, that while the network

topology (i.e., nature of competitive interactions) of Johnson’s five species models and ours

are the same, the CLSs indicated by the 1D analyses were generally smaller than those

indicated by the 2D analyses. Also, the 1D analysis did not indicate a change in the CLS in

both of the test cases with five species, where this was indicated by the 2D analysis. These

differences in results between the 1D and 2D approaches using the same model system may

reflect differences in the magnitude of variability captured by 2D and 1D windows. There is

more spatial information in a 2D window than in a 1D window of the same length, and less

variability between 2D windows than between 1D windows of the same length on the same

landscape, and so the 2D CLS approach may be more sensitive to change. It is beyond the

scope of this study to do a more in-depth comparison of 1D and 2D CLS. Future studies

should aim to estimate and directly compare 2D and 1D CLS for the same system to better

understand their sensitivities to changes in system topologies and dynamics.

The model test cases presented here provide examples of the kinds of changes to ecosystems

that could plausibly induce a regime shift, however there are other mechanisms that can

induce regime shift. Further work is required to determine whether the patterns we observed

here are general to other systems. Our results do raise questions as to what constitutes a

regime shift in this type of model system. The changes imposed in Test Cases 1 and 3 did

not trigger changes in CLS in our model systems, but the same kind of change could have

greater consequences in other systems. In our Test Case 1, the change in growth rate of a

single species was not enough to change the CLS, while in other model systems changes in

growth rate of a single species may have a substantial effect on the dynamics and CLS of the

system (Johnson 2009), particularly if the species plays a key ecosystem role (e.g., keystone

species, ecosystem engineer). Conversely, the arrival of a new ‘invasive’ species triggered

a dramatic change in our model simulation (Test Case 4) since it happened to be highly

competitive against very abundant species, but if a less competitive species was to arrive, or

in a different system, there might be little observable impact on the system dynamics or on

the CLS (Ricciardi et al. 2013).

4.5.2 Coral reefs

Coral reefs are open systems and are subject to a variety of ecological and physical processes

(and stressors) operating at a wide range of spatial and temporal scales, and different reef
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organisms respond to the various processes (and stressors) to different degrees (Hughes et al.

2017a). It is likely for this reason that CLSs estimated from different morphotypes at any

one reef varied more than occurred in the model systems. For example, CLSs estimated from

branching and laminar corals were often similar, indicating that they interact within the

same dynamical subsystem of the coral reef community. The CLS estimates from coralline

algae and encrusting coral were also often similar to each other, but tended to be different

to the CLSs estimated from hard coral morphotypes. This indicates that different processes

may determine the dynamics of these two groups, and that they interact within different

subsystems, at least on the reefs examined as part of this study. Notably, for other benthic

marine systems with closely interacting species, the CLSs estimated from a wide diversity

of taxa representing a wide variety of life history characteristics are remarkably consistent

(Johnson et al. 2017).

Changes in CLSs were evident at two of the coral reef sites (Blue Bowl and Hoga Buoy2),

indicating a change not only in community structure but also in the nature of the system

dynamics. The change in CLS for Blue Bowl is consistent with changes in community com-

position and ecosystem function described by Haapkylä et al. (2015) for this site, however the

detection of a possible regime shift at Hoga Buoy2 constitutes a new observation. Blue Bowl

reef was a pristine site in 2007 with high (74.4%) coral cover and a unique coral assemblage

dominated by foliose corals (Haapkylä et al. 2015). However, between 2007 and 2010, there

was a series of coral disease outbreaks, and consequently, a decline in coral cover. Over this

time, the CLS determined from cover of hard corals decreased from 50 to 60 cm, to about

30 cm, making it similar to the CLS determined from cover of algae. This suggests a change

in the system resulted in stronger interactions between hard corals and algae. At this site,

filamentous algae overgrew many of the coral colonies that died completely or manifested

patches of mortality (Haapkylä et al. 2015). Algal dominated reefs are widely thought to

be an alternative stable state to coral dominated reefs (Done 1992; Fong and Paul 2010;

Mumby et al. 2007, but see Fung et al. 2011; Mumby 2009), and given that we have observed

such a clear change in CLSs at this site, it appears that this reef has transitioned to a new,

algal-dominated attractor. Thus, while Haapkylä et al. (2015) were not able to ascertain

whether the change they observed in assemblage structure constituted a regime shift, our

results suggest clearly that it does.

At Hoga Buoy2 reef there was also a decline in the CLS coincident with a decline in cover of

branching and laminar coral over the period 2007 to 2011. For branching coral in particular,

the decline in CLS preceded the decline in cover, suggesting that there was a change in

spatial structure and dynamics prior to the decline in cover. These declines were matched by

an increase in the abundance of massive coral, and also in the CLS estimated from massive

coral cover. Conversely, encrusting coral and coralline algae experienced large fluctuations
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in abundance but there was little change in CLS estimated from their cover, or from that of

sponges. The changes in CLS derived from different groups of organism on this reef, together

with the changes in composition, suggest that the dynamics changed in favor of benthic

morphotypes that are more resistant to physical damage, and so may have flow on effects for

the types of organisms inhabiting the reef. A regime shift was only indicated by the hard

corals at this reef, and the CLSs estimated from their cover shifted to be closer to the CLSs

estimated from the other morphotypes, indicating that perhaps these groups interacted more

strongly after the regime shift.

Sampela1 and Coral Gardens reef slopes exhibited little change in CLS. At Sampela reef,

there was possibly a decline in the CLS estimated from massive corals and sponges, however

the uncertainty around those estimates makes it difficult to interpret. Of all of the reefs,

Sampela is the closest to human settlement and was the most subject to human pressures,

in particular high sedimentation and nutrient input (Haapkylä et al. 2015, 2009; Salinas-de-

Leon et al. 2013). However, these pressures were present throughout the period of this study

and prior to it, and so the reef had most likely already responded to these pressures, i.e., if

there was a regime shift at this site, it occurred prior to 2007. Although all reefs in the area

are subject to fishing pressures, Coral Gardens is considered a relatively pristine reef and the

lack of clear change in the CLS suggests no significant shift in the dynamics of this reef over

the period of our observation.

4.5.3 Application of the 1D-CLS method

A number of considerations regarding the use and application of CLSs from 1D data arise

from this study, in particular for the length and resolution of the transect data used, the

species investigated, and the interpretation of change. The length and spatial resolution of

a transect dictates the range of spatial scales that can be considered in CLS estimation.

Characteristic length scale estimation depends on having sufficient information about the

spatial patterns of ecosystem components, whether they be species, morphotypes, or even

habitats (see Habeeb et al. 2007), for each window size. The higher the spatial resolution, the

more information will be available about spatial patterns at smaller scales and the more the

landscape or transect can be subdivided into windows. Greater resolution therefore allows for

smaller scales to be considered, which can facilitate identification of the CLS. Additionally,

the sliding window method in particular is limited by the need for suitable replication of

the larger window sizes. Longer transects enable replication of longer 1D windows along the

transect (and greater replication of all window sizes). Therefore longer transects increase

the maximum scale that can be detected. Shorter and/or lower resolution transects reduce

the range of scales that can be considered, and will increase the risk that the actual CLS is

outside that range (and thus remain undetected).
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Initial testing showed that estimation of CLSs using the 1D sliding window method for

Error X spectra was not sensitive to choice of embedding dimension, spatial lag, or the

number of nearest neighbours used in the prediction. However, we found some sensitivity to

the maximum window size considered (discussed in more detail in Appendix C.1). Another

issue evident from this study is that rarer species may be less suitable to estimate CLSs

using the 1D approach. Using the 1D methods, rare species have a high chance of being

missed altogether by a transect, and so are more likely to be represented by zeros. Thus,

for CLS estimation from 1D data, sufficient information about the patterns of rare species

is unlikely to be captured and we recommend that more abundant species be investigated

or that species are aggregated into functional groups. It appears that for real systems, it is

important to estimate the system CLS using a range of species and then compare the CLSs

to determine (1) which species are likely to be part of the same dynamic community and (2)

whether changes implied by observations of one species are common to the whole community.

A potential limitation in using CLSs to detect regime shifts is that a shift is only detected if

there is a clear change in the CLS that emerges from the system dynamics. It is theoretically

possible that a shift could occur to a different regime that has the same emergent spatial

scale. Further work is required to elucidate how likely this is to occur. The detectability

of a shift might also be hampered in some cases given a level of subjectivity in estimating

the CLS from the spectra. Because the exact point at which a variance spectrum plateaus

can be difficult to pick, it is usual to identify the CLS as a range of possible window sizes.

In cases where there appears to be a change in the CLS but the ranges overlap, there can

be ambiguity in interpreting the difference as a regime shift. Given these limitations, this

approach is conservative in detecting regime shifts in that it is only when there is a clear

change in the CLS that we can assert strong evidence of a change in the regime. Since a

change in state alone is insufficient evidence of regime shift (Johnson 2009), we are unaware

of any other option to unambiguously interpret whether regime shifts have occurred. This

method offers the potential for greater insight into the nature of ecosystem change, where a

clear shift in the CLS is a powerful indicator that a regime shift has occurred. We recommend

this approach be used as part of a toolbox of techniques for studying ecosystem change.

4.5.4 Conclusion

In conclusion, we have successfully adapted the 2D CLS estimation method for 1D data,

and shown that the 1D method can be applied successfully to data from both model and

real-world ecological systems. It is clear that the CLS can now be estimated for systems

that are monitored using transects. Our results suggest that the characteristic length scale

emerges as a useful metric for detecting regime shifts because it (1) has a value that depends

on the dynamics of an entire community of interacting species, (2) can be estimated from a
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single, or very few, time steps, and (3) a change in the value of the CLS between time steps

indicates a fundamental change in the ecosystem dynamics. Further work is required to test

the generality of our observations in a broader range of model and real ecosystems.
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Chapter 5

Managing ecological regime shifts in the
context of global tipping points

In this thesis I apply multiple approaches for predicting, detecting and characterising regime

shifts in ecosystems, with a goal of enhancing capacity for assessing data-poor ecosystems

for regime shifts. In Chapter 2, I developed a framework for assessing ecosystems that

addresses the multifaceted nature of regime shifts and will help researchers target assessment

of regime shifts towards those aspects most relevant to their system. In Chapter 3, I presented

a qualitative simulation approach to assessing stability of ecological communities that can

usefully be applied to explore the potential importance of interactions and feedbacks among

species or functional groups in determining system stability and potential vulnerability to

regime shifts. Finally, in Chapter 4, I presented a method for detecting regime shifts from 1-

dimensional spatial (transect) data, which enables detection of regime shifts in the absence of

lengthy time-series data and removes ambiguity in distinguishing regime shifts from variation

in community structure that does not represent a regime shift.

Until now relatively little work has been done to assess the vulnerability of Southern Ocean

ecosystems to regime shifts (but see Clark et al. 2013; Hancock et al. 2018), despite the

global importance of the ecosystem services it provides. This thesis shows that Southern

Ocean ecosystems contain features likely to make them vulnerable to regime shifts (Chapter

2 and Chapter 3), and that they may have experienced regime shifts in the past (Chapter

1). The Southern Ocean has been an interesting case study because it is generally data-poor

(like many ecosystems) and is also managed by multiple sovereign states and international

bodies. The approaches presented in this thesis (Chapters 2, 3 and 4) are particularly useful

for Southern Ocean ecosystems as they do not require extensive data (and can make use of

the data that are available). However, the added uncertainty due to data-scarcity increases

the importance of using an ensemble of approaches both for assessing the risk of regime

shifts, and for assessing the risk of acting on those predictions. Additionally, the complexity

of management structures in this system means that a great deal of work is required in
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translating data streams and regime risk assessments into management actions, and updating

procedures for managing risks.

An emergent theme from this thesis is the consideration of scale in relation to regime shifts.

In Chapter 2, issues of scale arose as being important in predicting and/or detecting regime

shifts. The qualitative models in Chapter 3 were scale-free (though they did represent a

spatial region), but the different scales at which the interactions involved occur are likely

to be important (see also discussion in the following section). The application of the 1-

dimensional Characteristic Length Scale (CLS) estimation method to coral reef transects that

were measured at the centimetre scale highlighted the importance of the scale of observation

in determining the CLS, especially when compared to the attempt to apply the method to

transect data at the nautical mile scale (Appendix E). In the case of the coral reef data,

the interactions being observed were most likely ecological, with the estimated CLSs being

in the range of 20 – 70cm (Chapter 4). In comparison, the system scale being observed

in transects of 5 nautical mile resolution would be biological-oceanographic (Appendix E).

Similar mismatches between the system scale of interest and the scale being observed are

likely to arise in the application of generic early warning signals (EWS) of regime shifts.

Whether a signal is observed will depend on the scale at which the variable interacts with

and responds to change.

5.1 Specific recommendations for Southern Ocean
ecosystems

There are a number of key recommendations for targeting new research and monitoring of

Southern Ocean ecosystems that arise from this thesis. Firstly, a key gap for oberving and

understanding regime shifts in the Southern Ocean is lack of concurrent multivariate time

series data (observations of multiple species at the same time and space). Access to such

data would allow better characterisation of the nature of change, including understanding the

scope of change (single species or community level change) and possible ecological mechanisms

(Chapter 2). Future studies could also usefully aim to increase understanding of community-

and biophysical-level feedbacks, including those that involve non-trophic interactions. Given

the challenges in accessing the Southern Ocean, comprehensive monitoring of all ecosystem

components is not feasible; however strategically targeting certain locations and variables

could signicantly enhance capacity to detect and characterise regime shifts.

Secondly, the network modelling exercise in Chapter 3 highlights the lack of understanding

of the importance of chemical ecology (beyond microbial communities) in Southern Ocean

ecosystems, and that feedbacks caused by chemical attraction could alter the stability (and

potential vulnerability to regime shifts) of pelagic communities. A key gap here includes
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understanding the attraction of cetaceans and Antarctic krill to DMS, and the scales over

which different organisms could be attracted to DMS. A useful future research project could

be to quantify associations between different trophic levels with different natural concentra-

tions of DMS at sea, which could elucidate how DMS affects the spatial distribution and

structure of the pelagic and sea-ice communities. The qualitative approach used in Chapter

3 is useful for exploring the stability of different network structures, and thus potential vul-

nerability to regime shifts; however attraction to DMS needs to be incorporated into spatially

explicit, quantitative ecosystem models to better explore the importance of these feedbacks

in a spatial and temporal context, and to explore possible alternative regimes.

Thirdly, the 1D Characteristic Length Scale estimation method offers the opportunity to

better understand the nature of change in Southern Ocean ecosystems (i.e. regime shift or

not), and the CLS1D R package facilitates application of this method (Chapter 4, Ward

and Wotherspoon 2018; Ward et al. 2018). The most obvious datasets which could be

explored with this approach are benthic camera transects, particularly to identify spatial

differences in regimes. Importantly, to detect changes in regime over time, there needs to be

the opportunity to conduct repeat transects, and there is a need to ensure future transects

are of suitable length and resolution for application of the method. Direct observations of

pelagic communities are generally collected in transects along ship routes, but the spatial

resolution of data (and suitability for estimating CLS) along these transects is variable. For

example, it would be difficult to complete a transect of appropriate length or resolution with

pelagic trawl nets as the sampling method; however data collected by active acoustics, for

example, are more likely to be appropriate, if well calibrated to the variable of interest. Given

CLS estimation has only been applied to benthic or terrestrial systems so far, there is a need

for further work testing the suitability of the approach to pelagic communities and at what

scale the CLS represents ecological versus oceanographic processes. If the approach proves

suitable for pelagic systems, transect data of select variables could be included in the routine

data collection of ecosystem Essential Ocean Variables for the Southern Ocean (Constable

et al. 2016).

5.2 Regime shifts and stability

In Chapters 2.2 and 3 of this thesis, I have explored factors that can reduce community

stability in relation to vulnerability to regime shifts. Although there are clear links between

stability and regime shifts, the precise nature of the relationship between them is not straight-

forward, not least because there are multiple definitions and properties of stability, each with

multiple metrics (Donohue et al. 2013; Grimm and Wissel 1997; Ives and Carpenter 2007;

Kéfi et al. 2019; Pimm 1984, also see Glossary). For example, two stability definitions related
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to regime shifts involve the number of alternative stable states (more = less stable) and how

easily the system can flip from one stable state to another (more easily = less stable) (Holling

1973; Ives and Carpenter 2007). According to these definitions, stability clearly relates to

vulnerability of the system to regime shifts, but for other types of stability the relationship

can be less clear. Here I will discuss just a few of the stability concepts.

A common definition of stability (that mostly considered in this thesis) is the propensity of

a community to return to, or remain close to, its equilibrium following a small perturbation

from that equilibrium (e.g. Allesina and Tang 2012; Landi et al. 2018; Pimm 1984). To take

the example presented in Chapter 3, for each of the small, motif models (Fig. 3.1), some

configurations of interaction strengths are stable (won’t move away from equilibrium), but

other configurations (i.e. with same network structure) are unstable (Fig. 3.4). Following

perturbation, unstable networks could collapse and reorganise into a different network struc-

ture, or the interaction strengths could change to become a stable configuration of the same

network structure. Whether either of these changes is recognised as a regime shift would

depend largely on the scale of the change in terms of biomass and function or community

composition.

Another type of stability mentioned in Chapter 2.2 is persistence - i.e. maintenance of species

co-existence and function over time (Grimm and Wissel 1997). According to this definition,

species co-existence could be maintained through regular perturbations creating opportunities

for those species which might otherwise go extinct from the ecosystem (i.e. network structure

does necessarily need to be stable, but could be). But equally, a community that has low

variability (constancy, another type of stability) could persist through time (Grimm and

Wissel 1997). A decrease in ‘stability’ (persistence) in this context indicates that components

of the community are being lost or going extinct. How this relates to regime shifts depends

on the species or functional groups that are lost from the system - loss of species that perform

important functional roles could trigger a complete reorganization of the community, but the

community may continue to function in the same way if only functionally redundant species

are lost. Whether the gradual loss of species from a system is considered a regime shift

depends on the temporal scale at which the change is considered. Similarly, the temporal

and spatial scale which is considered when measuring many types of stability is likely to

affect the assessment of stability.

In summary, the concepts of stability and regime shifts are interrelated, but the correspon-

dence between them depends on the type of stability considered, as well as the spatial and

temporal environments in which changes occur. There are growing calls to better understand

how different concepts of stability (and their different metrics) relate to each other (e.g. Dono-

hue et al. 2013; Kéfi et al. 2019). Equally important is to explore how these different types

of stability vary within an ecosystem through time and space and in response to different
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combinations of drivers, and how changes in stability (of different types) relate to regime

shifts (e.g. Kuiper et al. 2015). For example, the ecological network features presented in

Table 2.1 all affect network stability (propensity to return or remain near equilibrium) but

more work is needed to fully understand how these features interact with each other and

spatial and temporal dynamics and pressures to modify vulnerability to regime shifts.

5.3 The importance of multifunctional organisms

One interesting observation arising from this thesis is the importance of particular species or

functional groups with complex roles and adaptations in structuring ecosystems, and which

could increase vulnerability to regime shifts if lost (Kéfi et al. 2016a, Chapter 2). In general,

conceptual models of ecosystem processes are useful for identifying multifunctional organisms.

Two examples of this type of multifunctional organism within Southern Ocean ecosystems

are whales (discussed in Chapter 1.2.3) and DMS-producing phytoplankton, particularly

Phaeocystis antarctica (Chapter 3). In the following sections I elaborate further on the

multifunctional role and multi-scale feedbacks associated with P. antarctica and also highlight

humans as important multifunctional players in the Southern Ocean and in ecosystems more

generally.

5.3.1 Phaeocystis antarctica : a Southern Ocean example

Phaeocystis antarctica contributes to feedbacks and complexity at multiple scales, from the

molecular to global (climate). For example, at the population level there is evidence that

‘cheater’ individuals exist that benefit from the DMS produced by other cells, without pro-

ducing it themselves (Nejstgaard et al. 2007) and evidence from terrestrial systems shows

that this type of phenotypic diversity in production of chemicals can promote species coex-

istence (and thus diversity) to stabilise communities over time (Lankau and Strauss 2007;

Maynard et al. 2019). This highlights a gap in pelagic ecosystem research – while in ter-

restrial systems understanding of the way plants modify their environment to their benefit

(engineer-environment feedbacks) is relatively advanced, few studies investigate the impor-

tance of phytoplankton in doing the same.

In exploring the contribution of abiotic habitat modification and facilitation to positive feed-

backs and hysteresis, Kéfi et al. (2016b) hypothesised that tipping points were more likely

when a) plants modify their physical environment to their own benefit; b) the effects of this

facilitation extend over a considerable area of the ecosystem; and c) the effects of facilita-

tion interact with disturbances to provide opportunities for the community to establish. It

is unclear whether P. antarctica would meet the final condition, but it does meet the first

two. Phaeocystis antarctica (and other DMS-producing phytoplankton) modify their habitat
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by altering the chemical composition of the water, adding DMS and other molecules, which

reduces their mortality rate (by attracting predators that eat their grazers), and potentially

increases their growth (via extra nutrient availability from faeces of the predators) (Savoca

and Nevitt 2014). When aerosolised, the released DMS molecules also act as cloud con-

densation nuclei - reducing irradiance levels by increasing cloud formation (benefitting P.

antarctica which does well in low-light conditions) (Charlson et al. 1987; Cropp et al. 2007).

In modifying their habitat to their own benefit, Phaeocystis antarctica also contributes to

climate regulation in several ways. This species (and other species in the Phaeocystis genus)

is a major producer of DMS – it is estimated that they contribute 13% of the global DMS

flux to the atmosphere (Wang et al. 2015). Coupled earth system models containing explicit

parameterisations of Phaeocystis spp. ecology, indicate that these species contribute to a

positive feedback whereby they release DMS, which increases cloud formation and albedo

(reflectance) resulting in a cooling effect on the climate (Wang et al. 2018). They benefit from

this by being adapted to cooler temperatures, but a predicted shift to smaller phytoplankton

dominance (away from diatoms and P. antarctica) will alter the sign of the feedbacks and

the ecosystem (Wang et al. 2018). Since P. antarctica contribute directly to carbon export

by the sinking of their colony matrix (DiTullio et al. 2000), and indirectly by enhancing

productivity through attracting predators that fertilise the water column (Savoca 2018), a

replacement of P. antarctica by other small phytoplankton is also likely to reduce carbon

export (the carbon produced by small phytoplankton is less likely to sink to the ocean floor).

5.3.2 Humans as multifunctional players in ecosystems

Considering organisms with multifunctional roles and effects on different systems, naturally

leads to consideration of the role of humans in ecosystems. Humans perform many functions

within ecosystems: we destroy, modify and create habitat in many ways that affect species

distributions and assemblages; we act as super-predators at the top of the food chain, but

also contribute to eutrophication that affects bottom-up processes; we affect disease dynamics

(such as through waste and food production); we alter sound- and light-scapes; and we affect

climate which impacts on all ecosystems (Darimot et al. 2015; Daskalov et al. 2007; IPCC

2014, 2019b; Millennium Ecosystem Assessment 2005). Given the fundamental importance

of humans in determining the way so many ecosystems function, key actions required for

managing ecological regime shifts involve understanding and modifying the way humans

interact within ecosystems (e.g. Möllmann and Diekmann 2012; Osterblom and Folke 2015;

Rocha et al. 2015b).

Compared to many other ecosystems, Southern Oceans are typically considered an example

ecosystem relatively untouched by people, because current, direct human impacts are rela-
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tively few. However, past over-harvesting has undoubtedly shaped the current state of the

ecosystem (e.g. see discussion on historical whaling in Chapter 1.2.3). At a global scale,

humans depend on ecosystem services provided by the Southern Ocean, including for exam-

ple, for food security, climate regulation and carbon export, and medicinal products from

its unique biodiversity (Grant et al. 2013; Rogers et al. 2019). Humans now act as migra-

tory predators in the ecosystem through fisheries, but also affect Southern Ocean ecosystems

through pollution, tourism, species introductions, and indirectly through our effect on cli-

mate. Whether these impacts are considered internal or external pressures on the ecosystem

is a matter of perspective – the scope of the system being considered – but nevertheless,

socioecological feedbacks could destabilise the ecosystem. This is especially of concern for

the setting of catch limits in the Antarctic krill fishery. CCAMLR, the managing body for

Southern Ocean fisheries, uses a precautionary principle in setting catch limits for krill (with

current catch levels well below this limit, but has potential to become the largest single

species fishery in the world) (Nicol and Foster 2016); however, the importance of Antarctic

krill in the food web, especially in the areas that fishing occurs, is such that unrecognised

feedbacks between the krill fishery and the ecosystem could fundamentally alter the food

web (e.g. Ryabov et al. 2017). Ongoing monitoring and modelling efforts are required to

ensure this does not occur. Nevertheless, the impacts of human-induced climate change on

the ecosystem are likely to be more profound (Rintoul et al. 2018; Rogers et al. 2019), and

will interact with other human drivers (Möllmann and Diekmann 2012).

5.4 System scope

In the following section I use the term ‘system scope’ to refer to the range of related sys-

tem elements that are being considered. These elements include (but are not limited to),

biophysical elements, socio-economic elements, coupled social-ecological systems, coupled

(global) climatic-ecological (biosphere) systems, and finally coupled climate-socioecological

systems (which might be considered at different scales). Consideration of system scope is

critically important to discussions of regime shifts and tipping points (as discussed in Box

1, Chp. 2), and while this thesis has focused mostly on the biophysical scope (with some

consideration of management responses), here I extend this discussion to a broader system

perspective.

There is increasing recognition that a social-ecological perspective is required to manage

ecosystems and societies sustainably (e.g. Biggs et al. 2018; Cumming et al. 2006; Ostrom

2009; Walker et al. 2004). Social, economic and ecological interactions can create feedbacks

within and between the different system types that result in undesirable outcomes, such as

the degradation of ecosystem services (e.g. Glaser et al. 2018; Lade et al. 2015; Yletyinen et

113



Chapter 5. Managing ecological regime shifts in the context of global tipping points

al. 2019). This is especially apparent in primary industries, where economic pressures drive

over-exploitation of natural resources, such as fisheries stocks (Yletyinen et al. 2019). This

human-driven development of detrimental positive feedbacks often happens where immediate

economic need overwhelms the longer-term need of the ecosystem service to be maintained,

or where there is a social, spatial and temporal disconnect between the main economic benefit

and the people who depend on the ecosystem services in the longer term. In this context, and

in order to prevent degradation of ecosystems, there is a need to explicitly frame ecosystem

management in a social-ecological context to identify destabilising feedbacks, or feedbacks

that are resilient but that create undesirable outcomes (e.g. Glaser et al. 2018). For example,

social power imbalances can create a situation where the people exploiting an ecosystem are

trapped in poverty and have little choice but to continue exploiting the ecosystem unsustain-

ably, but gain relatively little from doing so (e.g. Glaser et al. 2018). In this case, the people

who gain the greatest economic benefit from the degradation of the ecosystem are those with

the greatest power, and have little interest in changing the status quo. Once undesirable

feedbacks are identified, the next task is to figure out how to break those feedbacks – or

modify them such that they support rather than degrade ecosystem function and services.

The qualitative approach used in Chapter 3 is useful here because it can easily be extended

to social-ecological systems (e.g. Dambacher et al. 2009; Dambacher et al. 2007) or also

to include abiotic feedbacks such as with climate or sea ice (e.g. Melbourne-Thomas et al.

2013). The benefit of this approach is that because it is qualitative, there is no requirement

for interactions to be of the same type; thus interactions that represent energy flow, social

pressure, monetary exchange and so on, can all be included within the same network. The

second advantage in the context of identifying solutions for breaking undesirable feedbacks,

is that while there is some skill required for accurately distilling dynamics into the network,

it is relatively easy to construct alternative representations of the network. The stability

and response to perturbation of these alternative network structures can then be compared

to identify the most effective way to modify the feedbacks for more sustainable ecosystem

management.

5.5 Managing ecological regime shifts in the context of
global tipping points

As the climate changes, there is no doubt that ecosystems will be increasingly pushed across

thresholds and experience regime shifts, and indications so far are that they will shift towards

less productive regimes with a net loss of ecosystem services (e.g. Harris et al. 2018; Rocha et

al. 2015a). Even if ecosystems are not pushed across ecological tipping points, step-changes

in the global system will effectively create the same result. Evidence is mounting that Earth
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has now entered its sixth mass extinction event (e.g. Barnosky et al. 2011; Ceballos et al.

2015; Fey et al. 2015; Payne et al. 2016) – indicating that a human-driven shift in the whole

biosphere is occurring (Barnosky et al. 2012; Rockström et al. 2009; Steffen et al. 2018).

Past evidence indicates that ecological regime shifts can also trigger social ones (Cumming

and Peterson 2017; Diamond 1994). For example, fishing villages and societies collapsed

following the collapse of the cod fishery (itself the result of a shift to industrialisation of

fisheries) (Hamilton and Butler 2001); and collapse of ancient civilizations has been associated

with over-exploitation of resources including trees and water (Diamond 1994), most likely in

combination with climate variability. While social collapse resulting from ecological regime

shifts has been geographically constrained in the past, the increasing global synchrony of

projected ecological regime shifts has the potential to trigger broader-scale social disorder

or regime shifts. If this occurs, then opportunities to effectively manage ecosystems and

support ecosystem services may become limited. It is therefore imperative to proactively

alter human-ecosystem interactions to maintain as many ecosystem services as possible into

the future (and to avoid social collapse).

Thinking about ecological regime shifts in the context of their increasing inevitability could

create a sense of despondency (especially for ecosystem practitioners that are invested in the

conservation of their system); however, reframing the problem can offer hope. Specifically,

management of ecological regime shifts should be viewed as an opportunity to avert global-

scale climate and social tipping points. While the impact of climate on ecosystems is typically

viewed as being a one-way interaction, it is also clear that there are ways in which ecosystems

affect climate. Research into climatic tipping points has identified a number of ecological

tipping elements in the Earth system (e.g. Bathiany et al. 2016; Lenton et al. 2008), which

can then feedback to climate change. For example, Steffen et al. (2018) looked at a number

of carbon cycle feedbacks that have the potential to accelerate climate change. Of these,

weakening of oceanic and terrestrial physiological carbon sinks has the greatest potential

impact, and together these could increase warming by an additional 0.25-2.0oC (Steffen et al.

2018). Other elements, including boreal and Amazon forest dieback and increased oceanic

bacterial respiration, each have the potential to contribute an additional 0.02-0.06oC warming

(Steffen et al. 2018). In this light, even though the importance of a single ecosystem in the

climate system may seem negligible, collectively they play a role in regulating climate. It is

clear then that maintaining ecosystem function, specifically those functions that maximise

carbon uptake, is an important part of mitigating climate change. Equally important is to

support those ecosystem functions that support socioeconomic resilience.
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5.5.1 Some next steps towards management of ecological regime shifts

Ecological regime shifts are a multifaceted problem requiring an ensemble of approaches to

predict, detect and manage. This thesis does not claim to solve the problem of regime shifts,

but it does offer a range of tools that can be used to improve understanding of regime shifts

and adaptation to a world where regime shifts are increasingly common.

Assessing ecosystems for evidence of past regime shifts, or for risk of future regime shifts, will

invariably require evaluating multiple lines of evidence (such as in the process for assessing

ecosystems against the IUCN Red List of Ecosystems criteria for risk of collapse) (e.g. Bland

et al. 2017; Keith et al. 2013; Rodriguez et al. 2015). Together, the contributions of this thesis

broaden the range of tools and avenues for understanding and investigating regime shifts,

and increase the possible lines of evidence to inform ecological management (Table 5.1).

These analytical options will be especially useful for assessment of data-poor ecosystems.

These tools are equally valuable for evaluating major gaps in understanding and assessment

capacity, and how future monitoring and research can be strategically targeted to maximise

capacity to predict, understand, and detect regime shifts where data are few and where there

is no option to monitor indiscriminately. In this case, as well as more generally, the role of

expert opinion and judgement is fundamental for assessing and synthesising multiple lines of

evidence into a coherent monitoring and management plan or risk assessment. Importantly,

expert judgements can be biased, but the accuracy and usefulness of expert groups can be

enhanced in a number of ways; this includes using a structured elicitation process, embedded

training and assessment of expert judgement, and ensuring diversity amongst the experts

(e.g. Burgman et al. 2011; Hemming et al. 2018; Sutherland and Burgman 2015). Unlike

the Red List of ecosystems criteria, the tools and approaches from this thesis can be applied

to any ecosystem – not just to those with evidence of collapse. These tools are therefore

especially useful for setting research and monitoring priorities.

The review and framework developed in Chapter 2 can be used to characterise vulnerability

to and the nature of regime shifts. The ecosystem attributes detailed in Tables 2.1 and 2.2 can

be used to characterise the ways in which ecosystems might be vulnerable to regime shifts, but

may also be increasingly useful to assess the stability of novel ecosystems that arise following

species extinctions and geographic range shifts (e.g. Pecl et al. 2017) to understand whether

they might experience further regime shifts and species loss. A useful future project would

be to translate these tables into a risk assessment protocol or product that could be used

more easily by managers and to inform policy making (e.g. Hobday et al. 2011). This will

require further research to explore how the different network, spatial and dynamic features

are balanced in stable systems, and how changes in one feature could be counterbalanced

by forcing change in another feature to support persistence of an ecosystem. It may then

116



Chapter 5. Managing ecological regime shifts in the context of global tipping points

be possible to rank ecosystem features, combinations of features or combinations of features

and stressors by how they affect likelihood of, and hazard posed by, regime shifts (e.g. in

concert with the research recommended in Section 5.2). In the future, understanding the

interplay of these ecological attributes may even assist researchers to ‘design’ more stable

novel ecosystems within the goal of maintaining ecosystem functioning (e.g. Schlappy and

Hobbs 2019).

Our capacity to predict future ecosystem states is becoming increasingly important, such

that decisions can be made about where best to concentrate effort on managing regime

shifts. Given the extent of projected ecosystem change (IPCC 2014, 2019b), it is likely that

a triage approach will be required for deciding which ecosystems justify the most effort (e.g.

Schlappy and Hobbs 2019). While there will need to be discussion around how ecosystems

are prioritised (e.g. for greatest biodiversity conservation potential, for climate regulation

services, for food production services, their likelihood of recovery following management in-

tervention), predicting the future state of an ecosystem following a regime shift may be key

to making these decisions. The challenge with this is that ecosystems and social-ecological

systems are complex adaptive systems. This means there are many possible future configu-

rations, and thus many possible futures; the configuration that eventually arises will depend

on the order in which different drivers affect the system, the evolutionary capacity of or-

ganisms within it, the way ecological interactions change in response to those drivers and

evolutionary changes, as well as the element of chance. It is therefore not possible to predict

future state with certainty; however, with an ensemble model approach it may be possible

to identify the most likely trajectory and suite of possible trajectories (Griffith and Fulton

2014; Melbourne-Thomas et al. 2017). The methods and approaches suggested in Chapters

2.3.1 and 3, and in Table 2.3.1 can be used and combined to gain an understanding of how

ecosystems might respond.

Figure 5.1 illustrates potential approaches for avoiding catastrophic thresholds (discussed

in Chapter 2.3.2). The Earth is already ‘locked in’ to a certain degree of future climate

change, meaning that controlling these drivers to avoid a regime shift on ecologically relevant

timescales is unlikely. However other pressures on ecosystems that are more responsive

to management intervention can be reduced to increase resilience of ecosystems and steer

systems away from regions of hysteresis or abrupt shifts (lower-right panel of Figure 5.1).

Where that is not possible, or where a combination of approaches is required, understanding

the ecological features and mechanisms discussed in Chapter 2 may be used to help steer

ecosystems towards a smoother trajectory of change (lower left panel of Figure 5.1).

Finally, and also central to limiting the impact of regime shifts, will be the capacity to detect

them when they happen. Being able to adapt management processes soon after a regime

shift occurs limits the potential for management actions being applied that are maladapted
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Figure 5.1: Illustration of how ecological and social-ecological (and other) systems could be managed to
avoid tipping points, using the cusp diagram as a theoretical example (top panel). In the cusp diagram
(top panel) the z-axis represents internal system structure or ecological-environmental feedbacks,
where greater strength of positive feedbacks can increase the degree of non-linearity in the response
of the system to changes in the driving parameters. In the case where hysteresis exists, to retain the
system in a ‘safe operating space’ and avoid a change in regime altogether, one approach would be to
control the drivers (on the x-axis) to avoid the region of hysteresis (to ensure stochastic events don’t
push the system towards the alternative basin of attraction) (lower right panel). Where controlling
the drivers is not possible on relevant timescales, then an alternative approach is to change the internal
structure and feedbacks (on the z-axis) to steer the system towards a smoother transition pathway
and avoid tipping points (lower left panel). In both lower panels, the green area represents the more
desirable operating space.

for the new regime and further erode the ecosystem state and the services it provides. The

method for detecting regime shifts from spatial data that is presented in Chapter 4, provides

the opportunity to detect, and therefore act promptly to adapt management processes soon

after a regime shift occurs.
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Table 5.1: Synthesis of advances and suggested future work. (Ticks and bullet points coloured orange
for contributions to the general field of ecological regime shifts, while blue refers specifically to the
Southern Ocean)

Prediction of regime shifts
This thesis Future work

Distilled key questions to predict about regime shifts
(Chp. 2)

Identified and described approaches for predicting
regime shifts (Chp. 2)

Developed approach for predicting importance of inter-
actions for stability and vulnerability to shifts (Chp. 3)

Identified specific features that increase vulnerability
of SO ecosystems to regime shifts (Chp. 2 and 3).

Identified data suitable for predicting regime shifts
(Chp. 2).

Improve capacity to predict ecological responses to syn-
ergistic interactions between drivers.

Test available long-time series data for evidence of early
warning signals

Further explore data and ecosystem features of South-
ern Ocean ecosystems identified in Chapter 2, to predict
regime shifts.

Detection of regime shifts
This thesis Future work

Developed and tested a new method 1D-CLS for de-
tecting regime shifts from 1D spatial data (Chp. 4).

Applied 1D-CLS method to coral reef dataset and de-
tected a regime shift (Chp. 4).

Created an R-package, ‘CLS1D’, to increase accessibil-
ity of the method (Chp. 4, App. D).

Identified and explored Southern Ocean data sets for
potential application of the 1D-CLS method (Chp. 2,
App. E).

Directly compare 2D and 1D CLS for same ecosys-
tem/models

Investigate whether 1D CLS works if there is a gradient
along the transect, and if so, under which circumstances.

Compare temporal and spatial methods for detecting
regime shifts

Explore relationship between spatial EWS and CLS
Apply 1D CLS to Southern Ocean datasets.

Characterisation of regime shifts
This thesis Future work

Described ecological features that can be used to char-
acterise vulnerability to regime shifts (Chp. 2).

Described approaches for characterising the nature of
regime shifts (e.g. mechanisms, drivers, future state)
(Chp. 2).

Presented qualitative simulation method for exploring
network stability and vulnerability to regime shifts (Chp.
3).

Explored potential for DMS-mediated interactions and
feedbacks to create tipping points (Chp. 3).

Better characterise how these ecological features work
together to determine vulnerability.

Investigate how the interplay of different ecological fea-
tures of a system might affect the trajectory of the system
if it does regime shift (e.g. hysteresis, relative rapidity of
shift, future state).

Extend the qualitative models presented in Chapter 3
into spatially and temporally explicit ecosystem models to
better characterise the importance of the feedbacks they
contain and characterise the risk that they cause a regime
shift.

Managing for regime shifts
This thesis Future work

Developed a framework ecosystem managers and re-
searchers can follow to assess their ecosystem for regime
shifts (Chp. 2)

Synthesized advice for using specific ecosystem prop-
erties to improve management to avoid or reverse regime
shifts (Chp. 2)

Discussed implications for regime shifts on manage-
ment processes and structures (Chp. 2 and 5)

Discussed importance of managing ecological regime
shifts in context of cross-scale feedbacks and global tip-
ping points (Chp. 5)

Identified and proposed data that should be incorpo-
rated into management decisions to enhance capacity to
respond to predicted and detected regime shifts (Chp. 2).

Interdisciplinary research into social-climate- ecosystem
feedbacks to improve management of ecosystem regime
shifts

Translate framework developed in Chapter 2 into a sim-
pler (less academic), risk assessment document suitable for
use by ecosystem managers

Conduct more detailed risk assessments for regime shifts
in Southern Ocean ecosystems

Identify, assess and implement management actions to
avoid or minimise impact of regime shifts.

Update SO management structures and processes for
better incorporation of data streams, and to be able to act
proactively avert, or manage the impact of regime shifts
as they occur.
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Attractor: A point or set of points in phase space to which a system is attracted, and to

which it will tend to return following a perturbation.

Attractor reconstruction: Production of a representation of an attractor in phase space

that is topologically equivalent to the real system attractor. The most common approach to

attractor reconstruction is delay embedding (e.g. see Fig. 4.1, Chapter 4).

Carbon export: Phytoplankton take up dissolved inorganic carbon and convert it into cell

structures. When they die, their cells either sink out of the surface waters (exported) or

are consumed by grazing zooplankton or bacteria. Larger particles sink more quickly and

are thus more likely to be exported rather than being consumed and retained in surface

waters. Thus larger particles and larger-bodied organisms export more carbon. Carbon that

is exported to the deeper ocean is effectively removed from the atmospheric carbon cycle for

long time periods, and no longer contributes to atmospheric warming while at depth.

Characteristic Length Scale (CLS): The optimal spatial scale at which to observe a

system to obtain meaningful information on its behaviour. The CLS is defined as the spatial

scale at which stochastic and deterministic variation are balanced (Pascual and Levin 1999)

and the scale above which windows in different regions of a landscape are statistically inde-

pendent (Keeling et al. 1997). This scale emerges from the dynamics of the system and as

such, a change in the CLS of a system is an indication that the dynamics of the system have

fundamentally changed. Estimating the CLS involves attractor reconstruction combined with

nearest neighbour prediction.

Connectance: The proportion of all possible connections that are realised in a network

(where the total number of possible connections is the number of species2).

Delay embedding: A method of generating a multidimensional data set from an original

data set of a single dimension. This is usually done with temporal data, but here in Chapter

4 (the sliding window approach to CLS estimation), spatial data is used. Each column in

the resultant matrix will be one dimension, and each row one delay embedded point, in the

reconstructed attractor in phase space.
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Dimethyl sulfide: A strongly smelling compound produced by marine phytoplankton, and

other organisms, via a precursor compound, dimethylsulfoniopropriate (DMSP). Dimethyl-

sulfoniopropriate and DMS have a range of direct benefits for species that produce it, in-

cluding as an antioxidant. A range of taxa - including bacteria, copepods, fish, seals, birds,

turtles - are attracted to DMS and/or DMSP. When it enters the air as sea spray, DMS

can become aerosolised, attract air-breathing organisms and also act as cloud condensation

nuclei (CCN).

Early warning signals: Early warning signals (EWS) of regime shifts are based on emergent

behaviours common to complex systems as they approach a threshold. They are generic

rather than being system specific and so theoretically little understanding of the system is

required to detect an early warning signal.

Feedback: A feedback is created when an organism (or a network component) affects itself

through its interactions with other organisms. A feedback can be short - organism 1 affects

organism two which affects organism 1, or it consist of a longer loop, e.g. organism 1 affects

organism 2 which affects organism 3 which affects organism 1. When the end effect of the

feedback is positive on organism 1, this is termed a positive feedback; when the end effect on

organism 1 is negative, it is a negative feedback. Negative feedbacks tend to be stabilising,

while positive feedbacks are destabilising.

Higher-order interactions: A higher-order interaction is when the presence of an organism

alters the interaction between two different organisms (but is not involved in that interaction

itself), such that the emergent outcome of the interaction cannot be predicted from the pair-

wise interaction alone. For example, one species may outcompete another in open grasslands,

but in the shade of a tree, the other species outcompetes the first. In this case, the tree alters

(mediates) the interaction between those two species.

Hysteresis: Hysteresis is typified by the presence of two different relationships between the

driving and response variables, such that (at least) two different regimes are possible over

a common range of the driving variable. There is a difference in the forward and reverse

thresholds of a regime shift.

Interaction types: Food webs consist of networks of trophic interactions (where there

is a positive effect on the consumer, and a negative effect on the prey), but many other

types of interactions occur in ecosystems. Non-trophic interactions include e.g. facilitation

and mutualism where one organism positively affects another, and e.g. competition and

amensalism where an organism negatively affects another.

Lorenz attractor: The Lorenz attractor (also called the butterfly attractor) is a based on

a set of ordinary differential equations that describe and simplify atmospheric convection. I

use it as a visual aid in Chapter 4 because it is a readily recognizable example of an attractor
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with complex (chaotic) dynamics (Figs. 4.1 and 4.2, Chapter 4; and fig. C.1 in Appendix

B). It also typifies a system that experiences large sustained swings in mean system state

within a single regime.

Nearest neighbours: Nearest neighbours in a reconstructed attractor are a set of delay

embedded points that represent similar local trajectories in time (or space) of the original

time series (or spatial series). Nearest neighbours are adjacent in the phase space, but not

necessarily proximate in the original data series (see Fig. 4.2c, Chapter 4).

Network: A network is a collection of interacting entities (e.g. individuals, species, func-

tional groups, organisations). When represented in a network model, each entity is called a

node, and they are connected by lines called edges, which represent the interactions between

the nodes.

Network structure: Network structure refers to the pattern in which entities are connected

with each other over the network. For example, nested structures involve generalists acting

as hubs of connectivity linking more disconnected, specialised species. Modular network

structures contain distinct clusters of organisms that are tightly connected within each cluster

(e.g. in one habitat), but that are more loosely connected to the broader network (e.g. to

organisms in other habitats).

Phase space: A space in which all possible states of a system are represented. Each

state variable corresponds to one axis. Each point in phase space corresponds to a different

ecosystem state.

Regime: An ecosystem regime constitutes the dynamic behaviour and functioning of a

system determined by its structure and self-supporting processes and feedbacks. Because it

is dynamic in nature, a system can transition through many different states within the same

ecosystem regime. An ecosystem regime is associated with a single attractor.

Regime shift: A change in the structure and functioning of an ecosystem (or other complex

system) involving a switch to a different attractor. Also called phase shift or phase transition.

A regime shift can be classed as continuous (also called a transcritical transition, if it involves

a bifurcation) or discontinuous (involving hysteresis, also called a critical transition).

Resilience: The ability of a system to return to its previous state following a perturbation,

and, the time taken to do so.

Self-organised spatial patterns: Self-organised spatial patterns are those that emerge

from the community interactions, rather than from spatial variability in environmental con-

ditions or disturbance. One key feature leading to such pattern formation is the presence

of organisms that facilitate growth in their local vicinity (e.g. increased moisture retention,

habitat creation) but create negative effects at a greater distance (e.g. resource depletion)
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(Rietkerk and van de Koppel 2008).

Southern Ocean: The Southern Ocean encircles Antarctica and extends north to the Sub-

tropical Front, following one defintion used elsewhere (e.g. Constable et al. 2014; Deppeler

and Davidson 2017). The term as used here therefore includes waters along the coast of

Antarctica, sub-Antarctic waters and islands and the sea-ice, pelagic and benthic habitats in

between.

Spatially multimodal system: Over its distribution, an ecosystem can exist in different

alternative states at the same time - i.e. different patches of the ecosystem are in alternative

stable states. The probability distribution of such a landscape/ecosystem would have multiple

modes.

Stability: There are multiple definitions of stability, reflecting the multifaceted nature of the

concept (Donohue et al. 2013; Grimm and Wissel 1997; Ives and Carpenter 2007; Kéfi et al.

2019). In this thesis, particularly in Chapter 3, the definition used is Lyapunov stability:

a system is stable when its characteristic polynomial has roots with negative real parts. In

ecological terms, Lyapunov stability means the ecosystem will remain in the vicinity of its

equilibrium following a small (press) perturbation away from that equilibrium (i.e. it will

not move away from the equilibrium following perturbation). In Chapter 2 a broader range

of stability qualities are considered, depending on what has been considered in the literature,

this includes e.g. resistance to and recovery from perturbation, persistence, and Lyapunov.

State: An ecosystem state is the configuration of an ecosystem at one point in time (e.g.,

combination of population sizes, values of state variables). Importantly, there may be many

possible states within an attractor, and even sustained and/or highly oscillatory changes in

state (e.g., see time series in Fig. 4.1, Chapter 4).

Variance spectra: Plots of error variance (Error X or Prediction r2) against window size,

used to estimate the Characteristic Length Scale of an ecosystem. This is also referred to as

a fluctuation diagram in Keeling et al. 1997.
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Figure A.1: Flow diagram illustrating the dependence of ecological predictions related to regime shifts
on other predictions. The most uncertain predictions (when a regime shift will occur, and what the
future state will be) depend on predicting and understanding the ecological mechanisms and drivers.
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Table B.1: Comparison of results of selected model simulations in QPress between models with a grazer
→ predator edge, and the same models without. Removing the gr→pr edge reduced the stability of
the models, but for most models it resulted in only slight differences in the relative importance of the
edges for distinguishing between stable and unstable community matrices.

Model With gr→pr Without gr→pr
Matrices stable % Influential edges Matrices stable % Influential edges

Model 1 100% NA Models cannot produce stable community matrices that

Model 1n
100% (but class NA (no unstable pass the validation criterion because predator response to
model) cases to compare) decrease in grazers is uncertain. (100% stable if remove

validator).

Model 2 91%

DP—•DP
DMS—•DMS
DP→DMS
GR—•DP
DMS→PR

72%

DP—•DP
DP→DMS
GR—•DP
GR→DMS

Model 2n 76%

DP—•DP
DMS—•DMS
DP→DMS
DMS→PR

50%

DP—•DP
DP→DMS
GR→DMS
GR—•DP

Model 3 93%

DP—•DP
GR→DMS
GR—•GR
DMS—•DMS

80%

DP—•DP
PR—•PR
GR—•GR
DMS—•DMS

Model 3n 94%
DP—•DP
DMS—•DP
DMS—•DMS

66%

DP—•DP
DP→DMS
PR—•PR
GR—•DP
GR→DMS
DMS→PR
DMS—•DMS

Model 5 48%

DP—•DP
DP—•OP
OP—•OP
OP—•DP

42%

DP—•DP
DP—•OP
OP—•OP
OP—•DP
GR—•DP

Model 5n 42%

DP—•DP
DP—•OP
OP—•OP
OP—•DP

35%
DP—•DP
DP—•OP

Model 7 50%

OP—•OP
OP—•DP
DP—•DP
DP—•OP
DMS—•DP

43%

DP—•DP
DP—•OP
OP—•OP
OP—•DP

Model 7n 55%

OP—•OP
OP—•DP
DP—•DP
DP—•OP
DMS—•DP

50%

DP—•DP
DP—•OP
OP—•OP
OP—•DP
GR—•DP
PR—•PR
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Figure B.1: Connectance versus the proportion of matrices (from QPress) that are stable for each
model. The smaller motif models are indicated with points and the larger Southern Ocean models
with triangles. Left = stability results from models as described in main text, with some validators
and/or constraints applied; Right = stability results of the same models without any validators or
constraints applied in QPress.
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Figure B.2: Proportion of the total feedbacks that are positive versus the proportion of matrices
(from QPress) that are stable for each model. The smaller motif models are indicated with points and
the larger Southern Ocean models with triangles. Left = stability results from models as described
in main text, with some validators and/or constraints applied; Right = stability results of the same
models without any validators or constraints applied in QPress.
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Table B.2: Symbolic loop analysis results for models including nutrient feedbacks. Reported for each model is the connectance (C), class (based on Hurwitz
criteria for Lyapunov stability; weighted feedback at highest level wFn, weighted determinant wDn, and ratio of the weighted determinant to a control
model C, as per Dambacher et al. 2003), net sign (at highest level) of feedbacks, total number of feedbacks and the total number of positive feedbacks in
parentheses. The positive feedback sequences at each level of feedback are listed, with the total number of times each sequence appears in different positive
feedback cycles in the model stated in parentheses.

Model C Class
Sign at Feedbacks, Positive feedback sequences
highest level total and Length 2 Length 3 Length 4 Length 5

(positive)

M1n 0.688

Class I,
wF4=-0.50,
wD3=0.33,
ratio to model C=3.6

negative 26 (2) none DP→Gr→Pr→DP (2) none NA

M2n 0.75

Class I,
wF4=0,
wD3=0.29,
ratio to model C=3.2

neutral 32 (6) none
DDP→GR→PR→DP (2)
DP→DMS→PR→DP (2)

DP→DMS→PR—•GR—•DP (1)
DP→GR→DMS→PR→DP (1)

NA

M3n 0.813

Class I,
wF4=0.091,
wD3=0.17,
ratio to model C=1.9

positive 39 (11) GR→DMS→GR (4)
DP→GR→PR→DP (2)
DP→DMS→PR→DP (2

DP→DMS→PR—•GR—•DP (1)
DP→GR→DMS→PR→DP (1)
DP→DMS→GR→PR→DP (1)

NA

M4n 0.68

Class I,
wF5=0,
wD4=0.017,
ratio to model C=1.9

neutral 86 (26) DP—•OP—•DP (10)

DP→GR—•OP—•DP (4)
DP—•OP→GR—•DP (4)
DP→GR→PR→DP (4)
OP→GR→PR→OP (4)

none none

M5n 0.72

Class II,
wF5=0,
wD4=0.0061,
ratio to model C=0.65

neutral 108 (36) DP—•OP—•DP (11)

DP→GR—•OP—•DP (4)
DP—•OP→GR—•DP (4)
DP→GR→PR→DP (4)
DP→DMS→PR→DP (5)
OP→GR→PR→OP (4)

DP→DMS→PR—•GR—•DP (2)
DP→GR→DMS→PR→DP (2)
OP→GR→DMS→PR→OP (2)

none

M6n 0.8

Class II,
wF5=-0.056,
wD4=0.0053,
ratio to model C=0.57

negative 156 (53)
DP—•OP—•DP (11)
GR→DMS→GR (8)

DP→GR—•OP—•DP (4)
DP—•OP→GR—•DP (4)
DP→GR→PR→DP (4)
DP→DMS→PR→DP (5)
OP→GR→PR→OP (5)

DP→DMS→GR—•OP—•DP (2)
DP→DMS→PR—•GR—•DP (2)
DP→GR→DMS→PR→DP (2)
DP→DMS→GR→PR→DP (2)
DP—•OP→GR→DMS—•DP (2)
OP→GR→DMS→PR→OP (2)

none

M7/8n 0.84

Class II,
wF5=0,
wD4=0.0048,
ratio to model C=0.57

neutral 160 (62)
DP—•OP—•DP (11)
GR→DMS→GR (8)

DP→GR—•OP—•DP (4)
DP→DMS—•OP—•DP (5)
DP—•OP→GR—•DP (4)
DP→GR→PR→DP (4)
DP→DMS→PR→DP (5)
OP→GR→PR→OP (5)

DP→DMS→GR—•OP—•DP (2)
DP→GR→DMS—•OP—•OP (2)
DP→DMS—•OP→GR—•DP (2)
DP→DMS→PR—•GR—•DP (2)
DP→GR→DMS→PR→DP (2)
DP→DMS→GR→PR→DP (2)
DP—•OP→GR→DMS—•DP (2)
OP→GR→DMS→PR→OP (2)

none

M9n 0.84

Class II,
wF5=-0.095,
wD4=0.022,
ratio to model C=2.4

negative 160 (41) GR→DMS→GR (10)

DP—•OP→GR—•DP (4)
DP→GR→PR→DP (4)
DP→DMS→PR→DP (5)
OP→GR→PR→OP (5)

DP→GR→PR→OP→DP (2)
DP→DMS→PR→OP→DP (2)
DP→DMS—•OP→GR—•DP (2)
DP→DMS→PR—•GR—•DP (2)
DP→GR→DMS→PR→DP (2)
DP→DMS→GR→PR→DP (2)
DP—•OP→GR→DMS—•DP (2)
OP→GR→DMS→PR→OP (2)

DP→DMS→PR—•GR—•OP→DP (1)
DP→GR→DMS→PR→OP→DP (1)
DP→DMS→GR→PR→OP→DP (1)
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Table B.3: Comparison of results of selected model simulations in QPress when excluding constraints
and validators (see also Fig. B.3). Note that use of constraints varies in the models due to differences
in mediated interactions, and that Model 1n did not contain constraints because DMS did not mediate
any interactions in that model.

Stable matrices (%) Influential edges
Model Including validator

(and constraints
where relevant)

No validator or con-
straints included

When validator and
constraints included

No validator or con-
straints included

M2 91% 87%

DP—•DP
DMS—•DMS
DP→DMS
GR—•DP
DMS→PR

DP—•DP
DMS—•DMS
DP→DMS

M2n 76% 50%

DP—•DP
DMS—•DMS
DP→DMS
DMS→PR

DP—•DP
PR→DP
DMS—•DMS
DMS→PR
PR—•PR
DP→DMS

M3 93% 87%

DP—•DP
GR→DMS
GR—•GR
DMS—•DMS

DP—•DP
GR—•GR
GR→DMS
DMS—•DMS
PR—•PR
DMS→GR

M3n 94% 62%
DP—•DP
DMS—•DP
DMS—•DMS

PR→DP
PR—•PR
DMS—•DP
DMS→PR
DP—•DP

M7 50% 46%

DP—•DP
DP—•OP
OP—•OP
OP—•DP

OP—•OP
OP—•DP
DP—•DP
DP—•OP
DMS—•DP
DMS—•OP

M7n 55% 32%

OP—•OP
OP—•DP
DP—•DP
DP—•OP
DMS—•DP

OP—•OP
OP—•DP
DP—•DP
DMS—•DP
DP—•OP
PR—•PR
PR→DP

Detailed comparison of results from the two different
qualitative approaches for Model 2 and Model 7

Model 2 contains a single positive feedback through which DMS-producing phytoplankton

could promote their own population growth: by releasing DMS, which attracts predators,

which reduce grazers and thus reduces grazing mortality of the DMS-producing phytoplank-

ton (Fig. 3.1, Table 3.1). Three of the edges identified as being most influential in determining

stability (through QPress and random forests) are contained in this positive feedback: DMS

release by phytoplankton, attraction of predators to DMS (this edge is not present in any

negative feedbacks) and grazing on phytoplankton. Each of these interactions tend be strong

in unstable matrices but weak in stable matrices. This is because if these interactions are

strong, then the positive feedback could overwhelm the stabilising negative feedbacks. On

the other hand, the remaining two interactions identified as being influential in determining

stability, are the self-limitation of DMS-producing phytoplankton and of DMS of itself. These

negative self-effects can only be in negative feedbacks because the only positive feedback in

the model contains all 5 nodes. Hence, strong negative self-effects increase the strength of

stabilising negative feedbacks in comparison to the positive feedback.
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Model 7 contains 42 positive, and 87 negative feedbacks and so is slightly more complicated

than the previous example (Fig. 3.1, Table 3.1). The 42 positive feedbacks come from 10

base positive sequences, all of which are then amplified at higher levels when combined with

complementary adjunct loops. For example, the positive feedback sequence consisting of

the competition between the two phytoplankton groups includes just two negative interac-

tions (which multiply to produce a positive feedback). The sequence is repeated multiple

times at level three (containing three interactions) where it is separately reinforced by the

self-limitation of each of grazers, DMS and predators. In total, this competition positive

feedback sequence appears in 11 different positive feedbacks at different levels. Addition-

ally, competitive phytoplankton interactions are contained in 27 of the 31 other positive

feedbacks. For this and other the competition models, strong competition strengthens the

positive feedbacks, making the network unstable. Conversely, strong self-limitation of phy-

toplankton stabilises this and the other competition models by reducing the ability of either

phytoplankton group to exclude the other. In comparison to Models 4 - 6, Model 7 con-

tains 3 positive feedback sequences not contained in those models: DP→DMS—•OP—•DP,

DP→GR→DMS—•OP—•DP and DP→DMS—•OP→GR—•DP. Together these sequences

are present in 9 positive feedbacks in Model 7, and the DMS—•OP edge (which arose as

influential in the random forests for this model, but not for Models 4-6) is present in all 9 of

those positive feedbacks. The DMS—•DP edge on the other hand, which tends to be weak

in unstable matrices, is only present in two positive feedbacks but acts as another control on

DMS-producing phytoplankton.
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Figure B.3: Percentage of simulated community matrices (of 10,000) that were stable for each model,
in the absence of any validators or constraints. Dark blue-green bars correspond to models including
predator contribution to a nutrient pool (via faeces), realised as a positive effect from predators to
phytoplankton (grey edges in Fig. 3.1); light green bars correspond to models without this edge.

131



Appendix C

Supplementary material to Chapter 4

Sensitivity to maximum window size

In initial testing, there was some sensitivity of CLS estimates to the maximum window

size considered. For a transect of a given length, the number of samples of the maximum

window size decreases as this maximum window size increases (because fewer windows fit

along the length of the transect). The sample size for each window size is then constrained

to this. This tends to result in a ‘bumpy’ appearance of the spectra, a degree of which can

be seen in some of the coral reef examples presented here, but which becomes more extreme

with longer window lengths. This ‘bumpiness’ in the spectra can affect the interpretation of

the CLS. It is therefore recommended that when using the 1D CLS methods, the length of

transects and maximum window size considered be consistent between time-steps and regions

of comparison. For the coral reefs we considered, our results suggest that the optimal transect

length is the same or larger than the 60 m transects used here (to provide unambiguous

estimates of the CLS). Because collecting line-intercept transect data is intensive work, using

videos to collect transect data may be a more appropriate means for collecting longer transect

data to use with this method.
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Figure C.1: Short time series approach to delay embedding and prediction. a) Transects are collected
at four points in time (for dE=3) and the mean species occupancy in each window position (XP ) is
tracked through time. b) Each time step represents different dimension in the delay embedding, and
the mean occupancy in the final time step is what we want to predict. c) The nearest neighbours in
the reconstructed attractor have similar trajectories (of mean species occupancy) through time. Refer
to Fig. 4.2 in the main text for the equivalent images for the sliding window method and further
description of the method.
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Figure C.2: Test case 2 sliding window Prediction r2 spectra (a,d); short time-series Error X spectra
(b,e) and Prediction r2 spectra (c,f) for regime 1 (a,b,c) and regime 2 (d,e,f).
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Figure C.3: Test case 2, Sliding window Error X spectra for Species 3 from three different transects
in regime 2. These are the same spectra as those presented in Fig 5c of the main text, except that
they are presented over a smaller y-range. This makes it clear that the CLS for Species 3 in regime 2
is 20-25 pixels – similar to that of the other species - and highlights the variability between transects
for this species.
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Figure C.4: Test case 3 Prediction r2 spectra from sliding window (a,d) and short time series Error
X spectra (b,e) and prediction r2 spectra (c,f) from short time-series for regime 1 (a,b,c) and regime
2 (d,e,f).

Figure C.5: Test case 4 Prediction r2 spectra from sliding window (a,d) and short time series Error
X spectra (b,e) and prediction r2 spectra (c,f) from short time-series for regime 1 (a,b,c) and regime
2 (d,e,f). Note the varying y-ranges.
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Figure C.6: Coral Gardens and Sampela Error X spectra as estimated from select morphotypes
presented on a smaller y-scale than they appear in Figure 4.9 of the paper.
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Figure C.7: Hoga Buoy Error X spectra as estimated from select morphotypes presented on a smaller
y-scale than they appear in Figure 4.10 of the paper.
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Package ‘CLS1D’
October 24, 2017

Title Characteristic Length Scales from 1D Spatial Data

Version 0.0.0.9000

Description Provides facilities for computing the characteristic length
scale of ecological systems from one dimensional spatial data.

Depends R (>= 3.4.1)

Imports RANN, zoo

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

Author Delphi Ward [aut, cre],
Simon Wotherspoon [aut]

Maintainer Delphi Ward <Delphi.Ward@utas.edu.au>

R topics documented:
CLS1D-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
bb2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
bb2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
CLS1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
CLS1Dsts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
embed50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
knn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
plotCLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
regime1_sw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
regime2_sw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Sp2R1_sts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Sp2R2_sts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
window50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
window50sts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Index 12

1



2 bb2007

CLS1D-package Characteristic Length Scales from 1D Spatial Data.

Description

Provides facilities for computing the characteristic length scale of ecological systems from one
dimensional spatial data.

Author(s)

Delphi Ward, Simon Wotherspoon

bb2007 Coral reef benthic line-intercept transect data from 2007

Description

Coral reef benthic community transect data from Blue Bowl Reef, Wakatobi Marine National Park,
Sulawesi Indonesia.

Usage

bb2007

Source

https://doi.org/10.4226/77/587E953EBFDB3

References

Haapkyla J, Melbourne-Thomas J, Flavell M, Ward D (2016). Hoga coral reef benthic community
transect data. Centre for Tropical Waters and Aquatic Research, James Cook University. DOI:
10.4226/77/587e953ebfdb3

Ward D, Wotherspoon S, Melbourne-Thomas J, Haapkyla J, Johnson CR (submitted). Detecting
ecological regime shifts from transect data.
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bb2010 Coral reef benthic line-intercept transect data from 2010

Description

Coral reef benthic community transect data from Blue Bowl Reef, Wakatobi Marine National Park,
Sulawesi Indonesia.

Usage

bb2010

Source

https://doi.org/10.4226/77/587E953EBFDB3

References

Haapkyla J, Melbourne-Thomas J, Flavell M, Ward D (2016). Hoga coral reef benthic community
transect data. Centre for Tropical Waters and Aquatic Research, James Cook University. DOI:
10.4226/77/587e953ebfdb3

Ward D, Wotherspoon S, Melbourne-Thomas J, Haapkyla J, Johnson CR (submitted). Detecting
ecological regime shifts from transect data.

CLS1D Sliding window prediction error computation

Description

Compute the prediction error spectra for a range of window sizes using the sliding window ap-
proach, for Characteristic Length Scale (CLS) estimation.

Usage

CLS1D(x, Lhalf, d, metric = c("PRSq", "errX"), n.samples = 10, k = 7,
replace = TRUE)

Arguments

x One-dimensional transect data.

Lhalf The maximum half window size.

d The embedding dimension.

metric Metric to calculate. Options are "errX" (Error X) or "PRSq" (prediction r-
squared). Error X is the preferred option for this sliding window approach.

n.samples The number of resamples to draw from the embedding. Default is 10.

k The number of neighbours to use in prediction. Default is 7.

replace Sample from the embedding with replacement. Default is TRUE.
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Details

The transect x must be numeric with each element corresponding to the presence 1 (or concentration
> 0) and absence 0 of the target species at one point along the transect. The spatial resolution must be
constant along the length of the transect and optimally at as fine a resolution as practical. The density
of the target species in windows of size 2 to 2*Lhalf is computed with the window50 function.
Using the embed50 function an embedding is created for each window size into d dimensions.
Using the knn function the k nearest neighbours of each d dimensional point in the embedding are
weighted according to their inverse distance, and the trajectory to the d+1 dimension predicted.
Difference between the predicted and observed trajectory is calculated either as Error X "errX" or
Prediction r-squared "PRsq".

ErrorX =

√
l × Et ×

[(
Xt

l − X̂t
l

)2]

Where l is the window size, Xt
l is the observed and Xt

l is the predicted density of species X , and
Et is the expectation of their difference (mean difference).

Predictionr2 = 1−
Et ×

[(
Xt

l − X̂t
l

)2]

V ar(Xt
l )

Note that Error X is the preferred metric for this sliding window approach. Choice of Lhalf will be
constrained by the length of the transect. For example, if d=3, Lhalf should be 0.49% of the transect
length to have 200 replicates or 0.96% to obtain 100 replicates of the largest window size.

The CLS is defined as the window length at which the spectra reaches a plateau (when plotted).

Value

A matrix of Prediction r-squared or Errror X estimates in which each row is a different window size
and each column is a different subsample of the delay embedding.

References

Ward D, Wotherspoon S, Melbourne-Thomas J, Haapkyla J, Johnson CR (submitted). Detecting
ecological regime shifts from transect data.

See Also

window50,embed50, knn

Examples

#Calculate Error X from Blue Bowl reef in 2007
set.seed(2)
x <- CLS1D(ifelse(bb2007 == "CF", 1, 0), Lhalf=50, d=3, metric="errX", n.samples=20)
plotCLS(x, metric="errX")
#The CLS is 60-70 cm

#Compare that to the Error X spectra from the same reef in 2010
set.seed(2)
x <- CLS1D(ifelse(bb2010 == "CF", 1, 0), Lhalf=50, d=3, metric="errX", n.samples=20)
plotCLS(x, metric="errX")
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#The CLS has declined from 60-70cm to around 30-40 cm.

#Now check the Prediction r-squared spectra
x <- CLS1D(ifelse(bb2007 == "CF", 1, 0), Lhalf=50, d=3, metric="PRSq", n.samples=20)
plotCLS(x, metric="PRSq")

CLS1Dsts Short time-series prediction error computation

Description

Compute the prediction error spectra for a range of window sizes using the short time-series ap-
proach, for Characteristic Length Scale (CLS) estimation.

Usage

CLS1Dsts(x, Lhalf, metric = c("PRSq", "errX"), n.samples = 10, k = 7,
replace = TRUE)

Arguments

x One-dimensional transect data.

Lhalf The maximum half window size.

metric Metric to calculate. Options are "errX" (Error X) or "PRSq" (prediction r-
squared). Error X is the preferred option for this sliding window approach.

n.samples The number of resamples to draw from the embedding. Default is 10.

k The number of neighbours to use in prediction. Default is 7.

replace Sample from the embedding with replacement. Default is TRUE.

Details

Takes a matrix or dataframe x where each column contains transect data from a different time step,
and each row contains numeric data on the presence 1 (or concentration > 0) and absence 0 of
the target species at one point along the transect. The spatial resolution must be constant along
the length of the transect and optimally at as fine a resolution as practical. The density of the
target species in each window is computed with the window50sts function. Then, using the knn
function the k nearest neighbours of each point in the embedding are weighted according to their
inverse distance, and the trajectory to the final dimension (column) predicted. Difference between
the predicted and observed trajectory is calculated either as Error X "errX" or Prediction r-squared
"PRsq".

ErrorX =

√
l × Et ×

[(
Xt

l − X̂t
l

)2]

Where l is the window size, Xt
l is the observed and Xt

l is the predicted density of species X , and
Et is the expectation of their difference (mean difference).

Predictionr2 = 1−
Et ×

[(
Xt

l − X̂t
l

)2]

V ar(Xt
l )
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Value

A matrix of Prediction r-squared or Errror X estimates in which each row is a different window size
and each column is a different subsample of the delay embedding.

References

Ward D, Wotherspoon S, Melbourne-Thomas J, Haapkyla J, Johnson CR (submitted). Detecting
ecological regime shifts from transect data.

See Also

window50sts, knn

Examples

x <- CLS1Dsts(Sp2R1_sts, Lhalf=20, metric="errX", n.samples=20)
plotCLS(x, metric="errX")

x <- CLS1Dsts(Sp2R2_sts, Lhalf=20, metric="errX", n.samples=20)
plotCLS(x, metric="errX")

x <- CLS1Dsts(Sp2R1_sts, Lhalf=20, metric="PRSq", n.samples=20)
plotCLS(x, metric="PRSq")

x <- CLS1Dsts(Sp2R2_sts, Lhalf=20, metric="PRSq", n.samples=20)
plotCLS(x, metric="PRSq")

embed50 Create a Delay Embedding

Description

Form all embeddings of dimension d for window size 2*lhalf where each window along the tran-
sect overlaps the previous by lhalf.

Usage

embed50(x, lhalf, dim)

Arguments

x The spatial transect data.

lhalf The window size increment.

dim The embedding dimension + 1.

Details

Takes one-dimensional spatial (transect) presence-absence or concentration data and creates a delay
embedding of density along the transect. The transect x must be formatted so that each element in
the vector x represents the occupancy of one species, morphotype or habitat in one position along the
transect. Returns a matrix where each row is the trajectory of species density along d+1 windows.
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Value

An embedding as a matrix.

See Also

window50

Examples

x <- seq(1, 100, by=1)
embed50(x, 5, 4)

knn K-Nearest Neighbour Prediction

Description

Compute k-nearest neighbour predictions for the last dimension of an embedding.

Usage

knn(emb, k = 7)

Arguments

emb An embedding constructed with window50.

k The number of neighbours.

Details

This function is based on the nn2 function from RANN. Given an array representing an embedding,
it constructs inverse distance weighted k-nearest neighbour predictions for the last column of the
embedded array.

Value

Returns a list with two components

obs the observed responses.

pred the predicted responses.

See Also

window50,embed50,nn2
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plotCLS Plot prediction error spectra

Description

Plot the prediction error spectra for a range of window sizes, for estimation of the Characteristic
Length Scale (CLS).

Usage

plotCLS(X1, Lhalf = nrow(X1), metric, ylim, xlab, xticks = 10)

Arguments

X1 Matrix of prediction error estimates returned by CLS1D or CLS1Dsts

Lhalf The maximum half window size for which prediction error was estimated. Should
be equal to nrow(X1).

metric Optional. Specify metric for y-axis label. Options are "errX" (Error X) or
"PRSq" (prediction r-squared).

ylim Optional. Specify y-axis range. Default is range(X1).

xlab Optional. Specify x-axis label. Default is "Window length".

xticks Optional. Specify spacing of ticks on x-axis. Default is by 10.

Details

Takes matrix of Error X or Prediction r-squared estimates from CLS1D or CLS1Dsts. Uses rollapply
from package zoo to estimate the rolling mean (rolling window width = 3) of the estimates for each
window size, and plots with pointwise 95 percent confidence intervals.

Value

Returns a plot of the prediction error spectra.

Examples

x <- CLS1D(ifelse(bb2007 == "CF", 1, 0), Lhalf=50, d=3, metric="errX", n.samples=20)
plotCLS(x, metric="errX")

regime1_sw Simulated spatial model output transect data

Description

Transect data from the first regime of Test Case 2 in Ward et al (submitted)

Usage

regime1_sw
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References

Ward D, Wotherspoon S, Melbourne-Thomas J, Haapkyla J, Johnson CR (submitted). Detecting
ecological regime shifts from transect data.

regime2_sw Simulated spatial model output transect data

Description

Transect data from the second regime of Test Case 2 in Ward et al (submitted)

Usage

regime2_sw

References

Ward D, Wotherspoon S, Melbourne-Thomas J, Haapkyla J, Johnson CR (submitted). Detecting
ecological regime shifts from transect data.

Sp2R1_sts Simulated model short time-series transect data

Description

Transect data from three time steps (separated by 10 time steps) of the first regime of Test Case 2 in
Ward et al (submitted). This example contains only Species 2 presence-absence data.

Usage

Sp2R1_sts

References

Ward D, Wotherspoon S, Melbourne-Thomas J, Haapkyla J, Johnson CR (submitted). Detecting
ecological regime shifts from transect data.
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Sp2R2_sts Simulated model short time-series transect data

Description

Transect data from three time steps (separated by 10 time steps) of the second regime of Test Case
2 in Ward et al (submitted). This example contains only Species 2 presence-absence data.

Usage

Sp2R2_sts

References

Ward D, Wotherspoon S, Melbourne-Thomas J, Haapkyla J, Johnson CR (submitted). Detecting
ecological regime shifts from transect data.

window50 Compute averages in sliding window

Description

Compute averages in windows of length 2*lhalf along a transect, where each window overlaps the
previous window by lhalf.

Usage

window50(x, lhalf)

Arguments

x One-dimensional spatial presence absence data.

lhalf The window size increment.

Details

Computes averages in sliding windows along transect by taking differences of cumulative sums.

Value

A numeric vector containing mean density in each window of size 2*lhalf.
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window50sts Compute averages for short time-series

Description

Compute averages in windows of length 2*lhalf along each transect in a set of time-delayed tran-
sects. Each window overlaps the previous window by lhalf within the same transect. Between
transects the windows are in the same position spatially.

Usage

window50sts(x, lhalf)

Arguments

x Data frame or matrix of 1-dimensional spatial transects

lhalf the window size increment.

Details

Computes averages in windows along transects by taking differences of cumulative sums.

Value

a matrix or dataframe containing mean density in each window of size 2*lhalf
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Appendix E

Application of the 1D-CLS method to a
Southern Ocean dataset

The original intent with the 1-dimensional Characteristic Length Scale (1D-CLS) estimation

method developed in Chapter 4, was to apply it to a dataset of zooplankton occurrence data -

the Southern Ocean Continuous Plankton Recorder (SO-CPR) dataset. The CPR is a device

towed by ships that contains a long silk membrane that continuously spools along the voyage.

Seawater enters the device through a small opening (1 cm2) and passes through an exposed

section of the silk membrane. As the water passes through the silk, any plankton contained

in the seawater become trapped on the silk, essentially creating a transect of zooplankton

occurrence data along the ships track. After the voyage, the long silk is cut into segments

representing 5 nautical miles, and all the zooplankton contained on the silk are identified

under a microscope.

The Southern Ocean Continuous Plankton Recorder (SO-CPR) has been towed since 1991

(Hunt and Hosie 2003) and the data now stands at over 21,000 records of 5 nautical mile

sections of Southern Ocean transects. The greatest volume of records are from the area of

Southern Ocean south of Australia and New Zealand (between 50o and 180oE) (Figure E.1).

The dataset is therefore very attractive for assessing change in zooplankton communities over

that time period.

Further investigation of this dataset highlighted problems for the application of the 1D-CLS

method. The first general challenge is that because relatively few ships travel to Antarctica,

the opportunities for sampling an area at the same time of year in multiple years are few.

For example, samples may exist in one region for September in one year, and February in

another - making it challenging to disentangle the effects of seasonal community progression

from longer term community change. There are some transects (e.g. along 110oE) that are

repeated in the same month every year, but technical problems can arise with the CPR device

resulting in lengthy gaps in the coverage, reducing replication at particular latitudes.
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Figure E.1: Map of the Southern Ocean Continuous Plankton Recorder (SO-CPR) data set. The SO-
CPR is a device that captures zooplankton from surface waters when towed behind a ship. Different
coloured lines represent the SO-CPR transects completed by different ships, as named in the lower
left corner. Figure taken from the Australian Antarctic Data Centre.

For application of the 1D-CLS estimation method, the greater and more specific challenge is

the spatial resolution of the transects. The silks are cut at 5 nautical mile resolution, which

means that along even the longest transects, there will only be a few hundred samples. The

maximum window size that can be considered with the 1D-CLS estimation method is limited

by the spatial resolution of the data, where coarser resolution means reduced replication of

larger window sizes. For example, one of the longest transects is 2365 nautical miles, but

this is broken into only 461 silk segments, with each silk segment representing 5.1 nautical

miles (Figure E.2). In this case, to be able to obtain 100 replicates of the largest window

size, the largest window size considered could only be 8 silk segments (or 41 nautical miles).

This is too small to be able to distinguish a CLS, given that the smallest possible window

size is 2 silk segments. Nevertheless, I did test the application of the 1-dimensional CLS

method to this transect, using a larger maximum window size (40 silk segments, or 204

nautical miles), with reduced replication (10 replicates of each window length). Most species

or groups were captured too few times along the transect to produce interpretable results.

However, a CLS was interpretable from the Error X spectra of the most abundant species,

Oithona similis, which is ubiquitously distributed over the Southern Ocean, and also from

the Error X spectra calculated from the total abundances of all zooplankton (Figure E.3).

While a CLS is interpretable from the Error X spectra of these groups, it is unclear how

appropriate it would be to do so given the low replication, and the strong environmental

gradients that the transect crosses (e.g. temperature, nutrients, salinity, and others).
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Figure E.2: Transect of zooplankton occurrence collected by the Southern Ocean Continuous Plankton
Recorder (SO-CPR) in January 1998.
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Figure E.3: Error X spectra estimated from occurrence of the ubiquitous copepod Oithona similis
(left panel) and from the total counts of all zooplankton (right panel) from a Continuous Plankton
Recorder trawl during a voyage from Hobart to Mawson Station, Antarctica, in January 1998 (see map
E.2). The average distance represented by each silk segment is 5.1 nautical miles, so the maximum
window size considered here corresponds to 204 nautical miles.
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