
 
 

 
 

 

Linking genetics and chemistry to minimise bark 

stripping in Pinus radiata 
 

 

 

 

 

 

 

 

 

 

 

 

Judith Ssali Nantongo 

BSc (Forestry), MSc (Agroforestry) 

 
 

 

 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy 

School of Natural Sciences, University of Tasmania (UTAS) 

June 2021 

 

 



i 

Declarations 

This thesis contains no material which has been accepted for a degree or diploma by the University 

or any other institution, except by way of background information and duly acknowledged in the 

thesis, and to the best of my knowledge and belief no material previously published or written by 

another person except where due acknowledgement is made in the text of the thesis, nor does the 

thesis contain any material that infringes copyright.  

The thesis may be available for loan, copying and communication in accordance with the Copyright 

Act 1968 

Signature Date …26.06.2021… 

Judith S. Nantongo, Candidate 



ii 

Statement of co-authorship 

The following people and institutions contributed to the work undertaken as part of this thesis: 

Candidate: Nantongo Ssali Judith, School of Natural Sciences 

Author 1: O'Reilly-Wapstra Julianne, University of Tasmania 

Author 2: Potts M. Brad, University of Tasmania 

Author 3: Fitzgerald Hugh, University of Tasmania 

Author 4: Rodemann Thomas, University of Tasmania 

Author 5: Newman Jess, University of Tasmania 

Author 6: Davies W. Noel, University of Tasmania 

Author 7: Dungey Heidi, SCION Research 

Author 8: Klapste Jaroslav, SCION Research 

Author 9: Graham Natalie, SCION Research 

Author 10: Frickey Tancred, SCION Research 

Author 11: Telfer Emily, SCION Research 

Author 12: Aurik Don, Timberlands Pacific Pty Ltd 

Author 13: Elms Stephen, Hancock Victoria Plantations 

Contribution of work by co-authors for each paper: 

Paper 1: Located in Chapter 2:  

Nantongo JS, Potts BM, Fitzgerald H, Newman J, Elms S, Aurik D, Dungey H, O'Reilly-Wapstra J 

(2020) Quantitative genetic variation in bark stripping of Pinus radiata. Forests 11, 1356. 

- Conception, design and resource allocation:  Author 1, Author 2, Author 7, Author 12 and

Author 13

- Data collection from the field: Candidate, Author 3 and Author 5

- Data curation and analysis: Candidate, Author 1 and Author 2

- Writing, review & editing: Candidate, Author 1, Author 2, Author 3, Author 5, Author 7, Author

12 and Author 13

- Provided pedigree data files that were pertinent to the chapter: Author 7

- Management of field trials: Author 12 and Author 13



iii 

Paper 2: Located in Chapter 3  

Nantongo JS, Potts BM, Davies NW, Fitzgerald H, Rodemann T, O'Reilly-Wapstra J (2021) Variation 

in constitutive and induced chemistry in the needles, bark and roots of Pinus radiata. Submitted to 

Trees 

- Experimentation: Candidate

- Sample collection and management; Candidate and Author 3

- Data collection of all laboratory work: Candidate, Author 3 and Author 6

- Data curation and analysis: Candidate, Author 1, Author 2 and Author 6

- Writing, review & editing: Candidate, Author 1, Author 2, Author 3, Author 4, Author 6, Author

12 and Author 13

Paper 3: Located in Chapter 4  

Nantongo JS, Potts BM, Davies NW, Elms S, Aurik D, Fitzgerald H, O'Reilly-Wapstra J (2021)  

Chemical traits that predict susceptibility of Pinus radiata to marsupial bark stripping. Submitted to 

Journal of Chemical Ecology 

- Experimentation: Candidate, Author 3

- Sample collection and management; Candidate and Author 3

- Data collection of all field work: Candidate and Author 3

- Data curation and analysis: Candidate, Author 1, Author 2 and Author 6

- Writing, review & editing: Candidate, Author 1, Author 2, Author 3, Author 12 and Author 13

- Management of field trials: Author 12 and Author 13

Paper 4: Located in Chapter 5  

Nantongo JS, Potts BM, Davies NW, Fitzgerald H, Rodemann T, O'Reilly-Wapstra J (2021) 

Developing near infrared spectroscopy (NIRS) models for predicting chemistry and responses to 

stress in Pinus radiata. Journal of Near Infrared Spectroscopy, 09670335211006526. 

- Experimentation: Candidate

- Sample collection and management; Candidate and Author 3

- Data collection of all laboratory work: Candidate, Author 3, Author 4 and Author 6

- Data curation and analysis: Candidate, Author 1, Author 2, Author 4 and Author 6

- Writing, review & editing: Candidate, Author 1, Author 2, Author 3, Author 4 and Author 6

Paper 5: Located in Chapter 6  

Nantongo JS, Potts BM, Davies NW, Rodemann T, Fitzgerald H, O'Reilly-Wapstra J (2021) 



iv 

Additive genetic variation in Pinus radiata near infrared estimated bark chemistry and the chemical 

traits associated with variation in bark stripping. Submitted to Heredity 

- Experimentation: Candidate

- Sample collection and management; Candidate and Author 3

- Data collection of all laboratory work: Candidate, Author 3, Author 4, Author 6

- Data curation and analysis: Candidate, Author 1, Author 2, Author 4, Author 6

- Writing, review & editing: Candidate, Author 1, Author 2, Author 3, Author 4, Author 6

Paper 6: Located in Chapter 7  

Nantongo JS, Potts BM, Klapste J, Graham N, Dungey H, Fitzgerald H, O'Reilly-Wapstra J (in prep.) 

Genomic selection for resistance to bark stripping and associated chemical compounds in radiata 

pine. 

- Sample collection and management; Candidate and Author 3

- Data collection of all laboratory work: Candidate, Author 3 and Author 9

- Data curation and analysis: Candidate, Author 1, Author 2, Author 7, Author 8 and Author 9

- Writing, review & editing: Candidate, Author 1, Author 2, Author 3, Author 7, Author 8 and

Author 9

- Provided pedigree data files that were pertinent to the chapter: Author 7

Paper 7: Located in Chapter 8  

Nantongo JS, Potts BM, Frickey T, Telfer E, Dungey H, Fitzgerald H, O’Reilly-Wapstra J (2021). 

Constitutive and induced transcriptome analysis of the needles and bark of Pinus radiata. Submitted 

to BMC genomics 

- Experimentation: Candidate

- Sample collection and management; Candidate and Author 3

- Data collection of all laboratory work: Candidate, Author 3, Author 10 and Author 11

- Data curation and analysis: Candidate, Author 1, Author 2, Author 7, Author 10 and Author 11

- Writing, review & editing: Candidate, Author 1, Author 2, Author 3, Author 7, Author 10 and

Author 11

The Australian Research Council Linkage Grant (LP140100602) was secured by Author 1, Author 2, 

Author 7, Author 12 and Author 13. All the activities of the thesis were supervised by Author 1, 

Author 2 and Author 4 



v 

We, the undersigned, endorse the above stated contribution of work undertaken for each of the 

papers in preparation contributing to this thesis 

 

 

      

 

 

 

Julianne O’Reilly-Wapstra       
Primary supervisor 
Associate Professor  
School of Natural Sciences (Plant Science) 
University of Tasmania 

 Signed …………… … 

Date………26.06.2021……………….. 

Greg Jordan 
Head, Discipline of Biological Sciences 
University of Tasmania 

Signed 

Date …26.06.2021…. 

Judith Ssali Nantongo                                        
Candidate 
School of Natural Sciences 
Plant Science 
University of Tasmania 

 Signed …… . 

Date………26.06.2021……………….. 

Brad M. Potts 
Supervisor 
Professor, Forest Genetics 
School of Natural Sciences (Plant Science) 
ARC Training Centre for Forest Value 
University of Tasmania 

Signed …… …………. 

Date………26.06.2021…………….. 

Thomas Rodemann      
Supervisor 
Deputy Director - Central Science Laboratory 
Senior Research Fellow, Vibrational Spectroscopy 
University of Tasmania 

Signed …… …. 

Date…………26.06.2021……….. 



vi 

Statement of ethical conduct 

The experimental work for the field trials in this thesis was performed with the approval of the 

University of Tasmania Animal Ethics Committee (Permit No. A0015577). 

Judith Ssali Nantongo 
Candidate 
School of Natural Sciences 
Plant Science 
University of Tasmania 

Signed …… . 

Date………26.06.2021……………….. 



vii 

Overall abstract 

 Pinus radiata (radiata pine) is native to California but the main plantation softwood in both Australia 

and New Zealand where it has been subject to breeding to improve productivity and wood quality. 

However, in many plantations in Australia trees are subject to bark stripping by mammalian (mainly 

marsupial) herbivores, which can markedly reduce the genetic gain achieved in breeding 

programmes. This thesis explores the mechanisms and potential for exploiting natural genetic 

variation in resistance/susceptibility to minimise bark stripping in P. radiata. The study uses field and 

nursery experiments, integrating results from quantitative genetics, genomics, gene expression, 

analytical chemistry and rapid phenotyping to understand the genetic basis of variation in bark 

stripping and associated physical and chemical traits.  

To understand the genetic control and the stability of the genetic signal, bark stripping was scored in 

three Pinus radiata family trials (Chapter 2). Quantitative genetic analysis, using pedigree-based 

mixed linear models (ABLUP) revealed significant additive genetic variation in bark stripping. Non-

additive genetic effects were insignificant. While narrow-sense heritability estimates were low, the 

significant genetic signal was relatively stable across sites. The highest damaged families had 

approximately two-fold more bark removed than the least browsed families. Selecting the top 20% 

least susceptible families for planting could potentially reduce bark stripping by up to 22%. In the two 

older trials, reduced bark stripping was genetically associated with the presence of thick and rough 

bark while the presence of obstructive branches and needles on the lower stem (stem access) 

reduced bark stripping in the younger field trial. These important physical traits were also under 

significant genetic control. A positive additive correlation between prior height and bark stripping in 

the younger trial suggests that selecting faster growing trees may make P. radiata more vulnerable 

in the early stages of tree growth. However, when accounting for these physical and growth traits as 

covariates, significant additive genetic variation in bark stripping was still evident suggesting that 

genetic-based chemical properties of the bark were also important. 

To provide a framework to assess if chemical traits mediated variation in bark-stripping, the plant-

wide constitutive and induced chemistry was first assessed. In a shade house experiment, induction 

over a 4-week period was achieved by treating trees with methyl jasmonate (a chemical stressor) 

and artificial bark stripping (Chapter 3), following which 81 chemical compounds were quantified in 

the needles, stem and roots. These plant parts had different constitutive chemical profiles, with 

quantitatively and qualitatively more secondary plant compounds in the bark. After treatment, an 
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overall upregulation of terpenes and phenolics and a down-regulation of sugars and fatty acids was 

observed. However, the quantitative and qualitative chemical responses differed between plant 

parts, treatments and time period over the 4 weeks of the experiment. Stronger responses were 

observed for primary compared to secondary metabolites suggesting their potential roles in plant 

stress responses, including bark stripping. 

To identify the specific constitutive and induced chemical traits that differentiated families with 

extreme levels of bark stripping, 21 of the most damaged and 21 of the least damaged families were 

selected from a fenced area within the younger trial used in Chapter 2. This field experiment 

examined the constitutive and induced chemistry with 83 compounds quantified (Chapter 4). Of the 

constitutive chemical traits in the bark, specific sugars, phenolics and terpenes were significantly 

different between the resistant and susceptible families. The bark sugars - fructose and glucose - 

and the phenolics - phenyl ethanol and benzene acetic acid - increased in the more susceptible 

families. The bark sesquiterpenoids - bicyclogermacrene and an unknown sesquiterpenoid alcohol - 

increased in the less susceptible families. The resistant and susceptible families could not be 

separated based on induced bark chemistry nor constitutive and induced needle chemistry.  

An important aim of this thesis was to generate genetic parameters for the chemical traits and 

identify those that are genetically correlated with bark stripping. To gain sufficient sample size for the 

genetic study, Chapter 5 explored the potential of near infra-red spectroscopy (NIRS) in qualitative 

classification and in quantifying the amounts of compounds identified in the samples from the methyl 

jasmonate treated, artificially bark stripped and non-treated trees used in Chapter 3. NIRS was 

successful in qualitatively separating samples from different plant parts as well as separating the 

treated from non-treated samples. NIRS models with high accuracy were developed for individual 

sugars, terpenes, phenolics and fatty acids. Highest accuracy models were developed for the sugars 

- glucose and fructose, suggesting practical application of such models, while models for most

secondary compounds were able to give proximate amounts. The NIRS modelling was extended to 

quantify the chemistry for all samples in Chapter 6 for quantitative genetic analysis. 

Quantitative genetic analysis of the NIRS predicted values of 65 compounds in the bark using 

pedigree-based mixed models (ABLUP) showed significant additive genetic variation for individual 

chemical traits with low to moderate narrow-sense heritability estimates (Chapter 6). Results further 

showed strong positive genetic correlation of the sugar – glucose with bark stripping and a strong 

negative correlation with the unknown sesquiterpenoid alcohol. The results strengthen the findings 

based on the wet chemistry of the extreme families in Chapter 4. More positive genetic correlations 
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were detected between bark stripping and fatty acids and an unknown diterpenoid, possibly due to 

the increased sample size gained from using NIRS prediction. No additive genetic variation in 

inducibility was detected and non-additive genetic variation in the constitutive chemistry was also not 

significant. However, most of the heritability estimates were low, implying that response to selection 

will be slow for these traits. Therefore, the potential improvement in the heritability estimates was 

tested using genomic models. 

To develop the genomic models, SNP genotyping was performed on needles from trees collected in 

Chapter 6; giving a total of 15,624 SNPs (Chapter 7). Using linear mixed models, the narrow-sense 

heritability estimates based on genomic models, genomic best linear unbiased prediction (GBLUP) 

and single-step GBLUP (ssGBLUP) were substantially better for both resistance and chemical traits 

compared to estimates obtained from the pedigree-based models (ABLUP). For the chemical traits, 

the average of the univariate GBLUP heritability estimates was1.6- fold higher than the average of 

the univariate ABLUP heritabilities, suggesting that the SNPs were able to capture additional genetic 

information. Similarly, the heritability of all the compounds based on the trivariate ssGBLUP was 1.7 

– fold higher than the trivariate ABLUP estimates. The predictive ability (PA) of the ssGBLUP was

comparable to the trivariate ABLUP model. Similarly, the PA of univariate GBLUP was mostly 

comparable to the univariate generalised ridge regression (GRR) with a few exceptions. The better 

performance of the GBLUP over the GRR for most traits suggests that the traits are quantitative in 

nature, influenced by many genes. 

The final chapter examined the expression of genes following methyl jasmonate and bark stripping 

with the aim of linking the chemical phenotypes in Chapter 3 to the underlying molecular activity, 

both in the needles and bark samples (Chapter 8). RNA was extracted and sequenced to yield 

100bp paired-end sequences and each sample was sequenced to a depth of 20m reads per sample. 

After aligning the project transcriptome with the available P. radiata transcriptome, gene expression 

analysis showed up- and downregulation of genes associated with primary and secondary 

metabolism, with differences in transcript expression in the needles and the bark, between 

treatments and at different times. Consistent with the chemistry results, the genes that were related 

to secondary metabolism were also mainly up-regulated. Genes related to primary metabolism were 

more responsive than those related to secondary metabolism by up-regulation or down-regulation. 

Methyl jasmonate and bark-stripping showed many non-overlapping responses. Whereas maximum 

expression of the transcripts was observed 7 days after treatment, on the same population stronger 
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chemical changes were detected 14 and 21 days after treatment, suggesting a time-lag between 

gene and phenotypic expression.  

Overall, the results indicated the potential for selection of less susceptible germplasm for operational 

plantings as a strategy to reduce the effects of bark stripping in plantation forestry. Selection against 

bark stripping in P. radiata can also be performed indirectly based on physical or chemical traits. 

Further tests may be required to establish the stability of the less susceptible families when planted 

as a monoculture.  
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Chapter 1: General introduction 

1.0 Herbivory in conifers 

Conifers of the pine family (Pinaceae) comprise a diverse group of economically and ecologically 

important species found around the world in a diverse range of habitats from the sub‐arctic to the 

tropics (Whitehill et al. 2016). In both natural and planted conifer forests, interactions between trees and 

herbivores are important determinants of forest productivity (Endress et al. 2016). However, in most 

planted forests, needles, bark and root herbivores can be detrimental to plant fitness, reducing growth, 

survival and reproductive output (Leidinger et al. 2019; O'Reilly-Wapstra et al. 2002). These detrimental 

effects translate into significant direct and indirect social-economic losses. In British Columbia for 

example, infestation by the mountain pine beetle has been projected to cause a loss in GDP of $57 

billion by 2050 from reduction of timber sales (Corbett et al. 2015). Similarly large economic impacts of 

mammalian herbivory in conifers have been reported in Australia, Asia, Europe, North America and 

other parts of the world (Endress et al. 2016; Mayle et al. 2009; Miller et al. 2014; White 2019). 

Management of these herbivore pests to mitigate the effects of damage is costly. For example, the cost 

of protecting Thuja plicata seedlings against deer browsing during the initial stages of growth in British 

Columbia has been estimated to reach CAD$ 25 million per annum (Russell 2008). Accordingly, there 

has been interest in the exploitation of natural plant defences and tolerance mechanisms as a 

management solution (Telford et al. 2014). 

1.1 Conifer defence traits 
The arms race between herbivores and conifers over millions of years has led to the evolution of conifer 

defences that underpin natural resistance and tolerance to herbivory (Ehrlich and Raven 1964; 

Franceschi et al. 2005). Natural defences potentially offer environmentally safe, durable and less costly 

opportunities for forest management against herbivores (Johnson 2011; Russell 2008; Sniezko and 

Koch 2017). In some conifers, phenotypic and quantitative genetic variation in resistance and tolerance 

against herbivores has been detected (Moreira et al. 2013b; Zas et al. 2017; Zas et al. 2011). This 

variation is a prerequisite for breeding and genetic improvement programs (Alfaro et al. 2004; Russell 

2008). To maximise the exploitation of such variation in forest management, it is critical to understand 

the mechanisms controlling quantitative variation in resistance and the plant traits underlying this 

variation (Kliebenstein 2014). 

In conifers, a wide spectrum of both physical and chemical traits that act directly or indirectly to reduce 

herbivore damage or its deleterious effects have been characterised (Franceschi et al. 2005; Iason et 
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al. 2011; Moreira et al. 2013a; O'Reilly-Wapstra et al. 2007). Physical traits that play a role in defence 

include thick bark, constitutive and traumatic resin ducts and specialised phloem parenchyma cells 

(Franceschi et al. 2005). Chemical traits include secondary metabolites, mainly terpenoids and 

phenolics, although recently studies suggest that primary metabolites can directly or indirectly 

contribute to resistance or susceptibility (Gershenzon 1994; Page et al. 2013; Tauzin and Giardina 

2014; Tiffin 2000). Defences can be constitutive (preformed) or induced (change in levels in response 

to herbivory). Constitutive defences are thought to be beneficial in environments where herbivory is 

consistent, while induced defences are thought to have evolved in environments where herbivory varies 

temporally. Studies, however, show tremendous variation in the expression of these traits between 

species (Raffa et al. 2017), genotypes (Moreira et al. 2013b), ontogenic stages (Erbilgin and Colgan 

2012), time of expression (Hood and Sala 2015; Schmidt et al. 2005) and plant tissues (Moreira et al. 

2012a). The response to specific defences by different herbivores is also variable, reflecting differences 

in feeding adaptations (Iason et al. 2011; Vourc'h et al. 2002b). The feeding pattern of a single 

herbivore species is often correlated with multiple plant traits, which may include physical traits as well 

as primary and secondary compounds (Agrawal and Weber 2015; Russell 2008). Identifying the 

specific chemistry that is correlated to herbivory in such diverse circumstances can be a complex task, 

necessitating phenotypic screening of large numbers of plants in detail (sometimes in an untargeted 

manner or without a prior hypothesis on traits), which requires fast and cost-effective analytical tools. In 

addition, large population sizes that provide sufficient power and resolution are required to connect 

genotype to phenotype (Singh et al. 2019).  

 

1.2 Phenotyping for large-scale assessment of defence traits 

Powerful analytical tools for the separation, characterization and quantification of the vast diversity of 

compounds in plants are available. The most common analytical technique is mass spectrometry 

coupled to chromatographic techniques (e.g. liquid chromatography–mass spectrometry, capillary 

electrophoresis–mass spectrometry and gas chromatography–mass spectrometry) (Jorge et al. 

2016). Although these techniques are efficient, sample preparation or analysis procedures are 

complicated and time-consuming. Recently, studies have explored the potential application of 

spectroscopic methods to enable fast, low-cost and large-scale chemotyping for genetic studies. Near 

infrared spectroscopy (NIRS) for example has been used for measuring plant constituents and 

assessing the effects of a wide range of biotic and abiotic stressors in plants (Coops and Stone 2005; 

Radeloff et al. 1999). NIRS could possibly be applied to directly model herbivory related stresses in 

conifer plantations. In tree species including conifers, high accuracy of prediction for herbivore damage 

has been attained using near infrared spectroscopy (Henery et al. 2008; Radeloff et al. 1999). NIRS 
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has also been used to assess phytochemical variability, monitoring changing patterns of constituents 

and discriminating tree genotypes (O'Reilly-Wapstra et al. 2013a; Quentin et al. 2017; Stackpole et al. 

2011). Although such technological advances in large-scale plant phenotyping can accelerate selection 

of germplasm with desirable defence traits, the prediction of complex traits and their employment in 

genetic improvement programs requires a detailed understanding of the genetic architecture 

underpinning variation in the phenotypic traits.  

 

1.3 Factors determining the response to selection of resistance and associated traits 

The phenotypic differences between individual organisms are ascribed to underlying genetic and 

environmental variation or their interaction. In quantitative genetics, the phenotype (P) is expressed as 

a function of the genotype (G) and environment (E) and their interaction, where P=G+E+G×E (Falconer 

and Mackay 1996). Hence, the phenotypic variance (σ2
P) can be written as σ2

P=σ2
G+σ2

E+σ2
G×E, where 

σ2
G =genotypic variation, σ2

E= environmental variation and σ2
G×E = variance due to genotype by 

environment interaction. Analysis of these variance terms is used to evaluate additive and non-additive 

genetic effects, heritability as well as expected genetic gain. Heritability can be broad-sense (H2), i.e. 

the proportion of phenotypic variance attributable to genetic causes, while narrow-sense heritability (h2) 

is the proportion attributable to additive gene effects (Falconer and Mackay 1996). A high heritability 

indicates a high correlation between the genetic effects (breeding value) and the phenotype. In 

contrast, if environmental or genotype by environment (G × E) effects are large relative to the additive 

component then the heritability is low (Hallauer et al. 2010). G × E can take different forms, including 

plasticity arising from changes in variance among genotypes across environments, and plasticity 

resulting from genotype rank changes among environments (Aspinwall et al. 2015). Genotypes may 

also show variable linear or non-linear responses to continuous environmental variation (Aspinwall et al. 

2015). In the context of the breeder’s equation, narrow-sense heritability has been used to predict 

genetic gain (∆G), measured by the difference between a selected population and its offspring 

population where, ∆G = h2 × selection differential. If the phenotypic variance is similar, traits with higher 

heritability should exhibit higher genetic gain and, hence, faster genetic improvement or breeding 

progress than those with low heritability. Several studies have documented significant additive genetic 

variation and low to moderate heritability estimates for resistance and traits associated with herbivory in 

conifers (Moreira et al. 2013b; Raffa and Smalley 1995; Wainhouse et al. 2009; Zas et al. 2017), as 

well as significant genetic gain (Zas et al. 2017). In practice, selection may not be based just on the 

individual's own performance, but additionally or exclusively on that of its relatives using a selection 

index or best-linear unbiased prediction (BLUP). BLUP models have especially become popular 
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approaches in practical breeding value evaluations because they are simple and have low 

computational demands (Liu et al. 2008) 

 

Genetic gain can also be constrained by antagonistic genetic correlations (trade-offs) between traits, 

where if two traits are positively correlated, selection on one trait can indirectly improve the other trait 

through indirect selection. Conversely, negative correlations between traits of interest makes 

simultaneous selection for both categories a challenge. Similarly, if there is a plant cost to defence, a 

trade-off between allocation to defence and to other functions that increase plant fitness, such as 

growth, would be expected in the absence of herbivores (Ivey et al. 2009). In the majority of cases, 

plant species produce more than one defensive chemical compound, and trade-offs could exist in 

allocation to different chemicals. In conifers, mixed evidence for the existence of trade-offs has been 

presented (Deslauriers et al. 2015; Moreira et al. 2014; Villari et al. 2014), however, trade-offs are not 

generally expected between multiple defence traits that complement each other or where resources are 

not limited (Lamara et al. 2018; Sampedro et al. 2011).  

 

Despite the potential genetic gain there are still very few examples of operational conifer breeding 

programs against insect and mammalian herbivores (Alfaro et al. 2008; Russell 2008; Sniezko and 

Koch 2017). Traditional pedigree-based methods of breeding involve recurrent cycles of selection, 

mating, and testing. These methods face diverse challenges, including often low heritability, long 

breeding cycles, late flowering, variable juvenile-mature correlations and emerging pests and diseases 

(Gamal El-Dien et al. 2016; Goddard 2009; Hayes et al. 2009; Iwata et al. 2011; Klápště et al. 2018; 

Stejskal et al. 2018; Suontama et al. 2018). Estimation of additive genetic variance from among-family 

variation also requires the existence of large phenotyped and pedigreed populations involving 

numerous parents and their families. More recently, however, the genomic era has provided the 

opportunity for the use of genomic tools in breeding programs that can overcome some of the 

challenges above (Crossa et al. 2017; Meuwissen et al. 2001). 

 

1.4 Application of molecular tools in plant defences 

The use of dense genome-wide single nucleotide polymorphism (SNP) markers in genomic prediction 

of complex phenotypes has become a promising approach in genetic improvement programs. Genomic 

prediction can increase the genetic progress of breeding programs by increasing predictive accuracy of 

breeding values, reducing generation intervals or shortening the breeding cycles. Genomic selection 

was developed especially for quantitative traits to overcome the challenges of traditional pedigree-

based methods and marker-assisted selection (Arruda et al. 2016). It is fast becoming popular in plant 
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breeding because of recent advances in high-throughput marker technologies and accompanying 

reduction in the costs of genotyping. In conifers, one study did not show any improvement in herbivory 

resistance through genomic selection (Lenz et al. 2020), possibly due to the few markers utilised, and 

evidence for whether genomic prediction models can improve selection accuracy of herbivory 

resistance or the associated traits in conifers is not clear. However, evidence for potential improvement 

in genetic prediction for resistance traits is available from pathosystems (Resende et al. 2012b). The 

benefit of genomics has also been clearly illustrated for other economically important traits 

(Kliebenstein 2014; Li et al. 2016; Resende et al. 2012b). In loblolly pine (Pinus taeda) for example, 

prediction accuracy improved by 53–112% using genomic compared with pedigree-based selection for 

growth traits (Resende et al. 2012a).  

 

The use of genomics is based on the principle that phenotypes are the result of variation in gene 

sequence and gene expression and subsequent molecular modifications that vary across cells, tissues, 

organisms, populations and environments (Ralph et al. 2006; Whitehill et al. 2016). The extent to which 

phenotypic variation is modulated by gene expression has been less studied relative to gene sequence 

modifications (Idaghdour and Awadalla 2013). Gene expression data can be useful for prediction of 

complex traits (Gao et al. 2017; Li et al. 2019). Its importance is based on the premise that most 

markers and the associated variants are not located in protein-coding regions, except for recent studies 

that generate genetic markers from protein coding regions through exome capture sequencing (Telfer 

et al. 2019). The transcriptome is also an efficient method for gene discovery and is a major reference 

for annotation of both coding and non-coding genes; it can provide information to study specific 

pathways for specific physiological states. In understanding the defence responses that occur following 

herbivory, studies have shown that large-scale transcriptional responses occur when herbivores attack 

plants (Kovalchuk et al. 2015; Reymond et al. 2004), which may act as an intermediate phenotype 

between genomic DNA sequence variation and more complex cellular, organ, or whole-plant 

phenotypes.  

 

1.5 Consideration of mammalian herbivores 

Most evidence on the role of conifer defences in herbivory comes from insect systems; comparatively 

fewer studies have examined the relationships between conifers and mammalian herbivores. Mammals 

may show divergent responses to plant chemical traits due to behavioural, morphological, biochemical, 

and population-level adaptations (Boyle 1999; Raffa 2014). In conifer–insect systems for example, 

monoterpenes have been shown to exert major defence roles (Raffa and Smalley 1995; Seybold et al. 

2006), since they are exploited as primary chemical cues and/or precursors for the aggregation 
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pheromones of insects. This may not be the case for mammalian herbivores that can rely on visual 

cues (Stutz et al. 2017). Several Australian marsupials for example possess the capability to ingest and 

metabolise a range of dietary terpenes and phenols that would be toxic to many other herbivore 

species (Boyle 1999; El-Merhibi et al. 2007). Also, in contrast to insect species that complete their life 

cycle in a single host, for example the well-studied conifer bark beetles (Schowalter 2012), mammalian 

bark browsers that readily adjust foraging behaviour on spatial and temporal criteria may be less 

affected by chemical defences (Gill 1992; Miller et al. 2014). A few conifer studies have shown genetic 

variation in susceptibility to mammalian herbivory (Dimock et al. 1976; Iason et al. 2011; Miller et al. 

2014; Silen et al. 1986) and selection based on chemical traits has been demonstrated in one breeding 

programme (Russell 2008). However, these studies have been focused on needle herbivory, and 

genetic variation in mammalian bark stripping has not been examined in conifers. 

 

1.6 The bark stripping problem 

Bark stripping mammals may exert selective pressures on conifer populations through their impact on 

growth, reproduction, and survival (Gill et al. 2000; Nagaike 2019; Zamora Nasca et al. 2018). In Picea 

abies in the Czech Republic, for example, Cukor et al. (2019) showed that bark stripping reduced tree 

diameters by 64% compared to non-stripped trees. Similarly, in Picea sitchensis, survival was reduced 

by up to 13% in severely bark stripped trees in Scotland (Welch and Scott 1998), while 80% of trees 

died in subalpine coniferous forests in Japan following bark stripping by deer (Iijima and Nagaike 2015). 

In addition to direct impacts on mortality and reduced growth, bark stripping can cause wood 

degradation with adverse impacts on the forest industry. The extent of bark stripping in conifers 

depends on individual tree characteristics such as size, age and species, bark traits, and the presence 

of lower branches (Gill 1992; Klich 2017), the species of herbivore (Ligot et al. 2013), as well as habitat 

and environmental characteristics (Di Bitetti 2019; Iijima and Nagaike 2015; Kobashikawa and Koike 

2016). Various control and management measures have been implemented to mitigate the effects of 

bark stripping by mammalian herbivores, which include culling of animals, fencing, wrapping of trees, 

diversionary feeds and different silvicultural practices (Di Bitetti 2019; Kimball et al. 2011; Kobashikawa 

et al. 2019; Smith et al. 2020; Turek et al. 2016). The use of natural conifer resistance to minimise 

mammalian bark damage has not been explored.  

 

1.7 Pinus radiata in Australia 

Pinus radiata (D. Don, Pinales: Pinaceae) is native to coastal California (USA) (Offord 1964) but has 

become the most widely planted forest tree in the southern hemisphere with extensive plantations in 

New Zealand, Chile, Australia and South Africa. In Australia, it dominates the softwood plantation 
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estate (ABARES 2018). Plantations are distributed across five states in New South Wales, Victoria, 

South Australia, Tasmania and Western Australia and contributed up to 16.8 million cubic metres of 

saw logs between 2015–19 (ABARES 2018). Tree breeding programs aimed at improving growth, form, 

health and wood traits of P. radiata have been ongoing in Australia and New Zealand since the 1950s 

(Dungey et al. 2009; Wu et al. 2007). However, the needles, bark and roots of P. radiata are attacked 

by numerous insects, fungi and mammals (Hernandez-Escribano et al. 2018; Mead 2013; Miller et al. 

2014; Reglinski et al. 2017), with up to 600 pests and pathogens recorded (Brockerhoff and Bulman 

2014). In Australia, genetic improvement of health has focussed on resistance to Dothistroma needle 

blight and insect pests such as Monterey pine aphid, Essigella californica (Ivković et al. 2010a; Li et al. 

2018; Sasse et al. 2009). However, bark stripping by the brushtail possum (Trichosurus vulpecula), the 

swamp wallaby (Wallabia bicolor), Bennett’s wallaby (Macropus rufogriseus subspecies rufogriseus), 

grey kangaroo (Macropus giganteus), common wombat (Vombatus ursinus), rabbit (Oryctolagus 

cuniculus) and the red-bellied pademelon (Thylogale billardierii) has compromised the realization of 

expected genetic gains in some regions (ABARES 2018). Nevertheless, there is little information on the 

extent to which observed variation in bark stripping is under genetic control and what the underlying 

plant traits are driving this variation. 

 

In Tasmania, bark stripping by the native Bennett’s wallaby (Macropus rufogriseus ssp. rufogriseus), 

eastern grey kangaroo (Macropus giganteus ssp. tasmaniensis) and the red-bellied pademelon 

(Thylogale billardierii) has become the most important pest problem in conifer plantations (ABARES 

2018; Miller et al. 2014; Page et al. 2013). Smith et al. (2020) listed factors that potentially predispose 

Tasmanian P. radiata plantations to bark stripping. These include ease of access, topography and 

weather conditions although there is still limited support for these factors. Page et al. (2013) suggested 

that increases in the amount of sugars in the P. radiata bark relative to other forest vegetation may be 

responsible for bark stripping, which was not supported by Smith et al. (2020) who showed that bark 

stripping occurs even in presence of other forages. Generally, larger reserves of sugars are known to 

be associated with increased cold tolerance in pine species (Bansal and Germino 2009; Ögren et al. 

1997) and are a potential food resource for winter bark stripping herbivores. These studies, however, 

did not examine intraspecific variation in bark stripping. In other P. radiata populations, variation in 

herbivory has been associated with total secondary metabolites (Moreira et al. 2013b), but individual 

compounds contributing to the variation are still unclear. Various bark stripping management strategies, 

including provision of diversionary feed and managing animal densities, have been suggested (Page et 

al. 2013), but currently fencing and tree guards are the most commonly used practices. Given that the 

financial costs of managing mammalian herbivores in P. radiata plantations is high, there is untapped 
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potential to examine the use of natural conifer resistance in mitigating the effects of bark stripping, 

especially given that intraspecific genetic variation in bark stripping that has been noted in a few 

families (Miller et al. 2014).Therefore, there is a need to assess the potential use of natural resistance 

to minimize bark stripping by the marsupials in Pinus radiata in Australia. 

 

1.8 The thesis 

This thesis presents results of an extensive research project examining the genetic-based variability of 

bark stripping of P. radiata and the plant traits conferring variation in resistance. The overall aim was to 

facilitate the selection of less susceptible germplasm for operational deployment as a strategy to reduce 

the effects of bark stripping in plantation forestry. This study was based in Tasmania, Australia. The first 

part of the study investigated if variation in bark stripping is under genetic control and examined the 

importance of genotype by environment interactions based on additive-pedigree based relationships 

(Chapter 2). Second, the chemical traits influencing bark stripping were identified; first by understanding 

plant-wide constitutive and induced chemistry in a more controlled nursery environment (Chapter 3), 

then, by examining the specific traits that differentiate susceptibility categories in a common garden 

field experiment (Chapter 4). To understand the genetic control of these chemical traits, near infrared 

spectroscopy (NIRS) models were developed to facilitate chemotyping of large sample sizes of root, 

bark and needles collected from a nursery trial (Chapter 5). This methodology was then extended to the 

field by examining the genetic variation in the NIRS predicted chemistry based on additive-pedigree 

relationships (Chapter 6). Improvement in heritabilities and breeding value predictions were then tested 

using genomic models, with Chapter 7 presenting the relative predictive ability of genomic versus 

pedigree-based models. Finally, a transcriptomic study was undertaken to compare the effects of bark 

stripping and another stressor on gene expression (Chapter 8).  
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Chapter 2 - Quantitative genetic variation in bark stripping of Pinus radiata 

 

2.0 Abstract 

Natural variation in plant susceptibility to mammalian bark stripping may provide a strategy for forest 

managers to mitigate herbivore impacts in Pinus radiata plantations. Predicting the ability of the 

associated traits to respond to selection requires knowledge about the amount of genetic variation for 

that trait, but also about all environmental factors. This study examined the extent to which variation in 

mammalian bark stripping in Pinus radiata plantations by native marsupials is under additive genetic 

control, whether the additive genetic effects are stable across sites (G x E) and explained by physical 

plant traits such as bark characteristics, stem accessibility and growth rate. Bark stripping was 

assessed at ages of four and five years in two trials that shared most families, comprising 101 and 138 

open-pollinated half-sib families. A third younger trial comprised 74 full-sib control-pollinated families 

was assessed at two and three years after planting. Significant additive genetic variation in bark 

stripping was demonstrated in all trials, with narrow-sense heritability estimates between 0.06 - 0.14. 

Within sites, the amount of additive genetic variation detected increased with the level of bark stripping. 

Across both sites, the genetic signal was stable (no significant G x E). No significant non-additive effect 

(family effect) on bark stripping was detected in the full-sib family trial, where an estimated genetic gain 

of up to 22.1% can be achieved by selecting 20% of the less susceptible families. Overall, results 

indicate that selection for reduced susceptibility is possible, with potential genetic gains for deployment 

and breeding. However, the physical traits that were genetically correlated, and likely influenced, the 

amount of bark removed from the trees by the marsupials appeared to depend upon tree age. In the 

older trials these traits included bark features (presence of rough bark, rough bark height and bark 

thickness) whereas in the younger trial where rough bark was not developed, it was the presence of 

obstructive branches or needles on the stem. In the younger trial, a positive genetic correlation between 

prior height and bark stripping was detected suggesting that faster growing trees exhibit more bark 

stripping than slower growing trees. However, the presence of unexplained genetic variation after 

accounting for these physical factors suggests other explanatory plant traits may be involved such as 

chemical traits.   
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2.1 Introduction 

Herbivores are important determinants of plant productivity in managed and natural plant systems 

(Schowalter 2016). In the case of managed conifer forests browsing may have significant economic 

impacts through the deleterious effects on focal tree growth, reproduction and survival (Ward et al. 

2004). Potential strategies for forest, tree or herbivore management to reduce these impacts are costly 

and difficult to implement on a large scale (Kimball et al. 2011; Nichols et al. 2016). Exploitation of 

natural resistance is a potential strategy for managing browsing damage (Telford et al. 2014). In 

conifers, natural resistance leading to variation in herbivory damage among and within populations, as 

well as within individuals and tissues has been reported (Miller et al. 2014; Zas et al. 2014). This 

variation, if genetically based, is key to the evolution of resistance mechanisms (Ehrlich and Raven 

1964; Maron et al. 2019) and a prerequisite for genetic improvement in tree breeding and deployment 

populations (Falconer and Mackay 1996; White et al. 2007). The response to selection described by the 

concept of genetic gain is measured by the difference between a selected population and its offspring 

population. The narrow-sense heritability of a trait, defined as the proportion of the phenotypic variance 

accounted for by additive genetic effects, is an important indicator of the extent to which parents can 

influence the expression of traits in the progeny (Falconer and Mackay 1996). Significant additive 

genetic variation in resistance to herbivore damage has been predicted in several conifers (O'Reilly-

Wapstra et al. 2007; Zas et al. 2017; Zas et al. 2005).   

 

Despite the potential to exploit genetic variation in resistance to herbivores to improve productivity in 

conifers, other factors that can constrain a genetic increase in resistance need consideration. Genetic 

gain can, for example, be constrained if the expression of resistance varies according to environmental 

conditions. Such genotype by environment interaction (G X E) can result in change in variances among 

genotypes across environments or the relative resistance rankings of plant genotypes (Klápště et al. 

2020b; O'Reilly-Wapstra et al. 2005; Wise and Rausher 2013). The nature of genetic correlations is 

also important, where if two traits are favourably correlated, selection can simultaneously improve both 

by indirect selection. Conversely, adverse correlations between traits of interest makes simultaneous 

selection for the involved traits a challenge. Additionally, the patterns of resistance to herbivory can 

change as trees develop, which may be related to toughening of plant tissues or increase in secondary 

metabolites with age (Barton and Koricheva 2010; Lawrence et al. 2003; Russell 2008).  

 

Genetic variation in resistance to insect herbivores has been reported in many conifer studies (Moreira 

et al. 2013b; Raffa and Smalley 1995; Wainhouse et al. 2009; Zas et al. 2017), and some operational 

breeding programmes are in existence (Alfaro et al. 2008). However, there is limited evidence of 
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genetically-based variation in susceptibility to mammalian herbivory. A few studies have indicated the 

existence of genetic variation in needle herbivory by mammals (Dimock et al. 1976; Duncan et al. 2001; 

Russell 2008; Silen et al. 1986) but not for bark damage. Mammalian bark stripping has been reported 

on various conifers, including Pinus radiata, where it impacts the forest industry through its effect on 

growth, reproduction, and survival as well as its effect on the timber quality resulting from wood decay 

(Cukor et al. 2019; Iijima and Nagaike 2015; Miller et al. 2014; Welch and Scott 1998). However, most 

studies of mammalian bark stripping in conifers have been undertaken at the phenotypic level and no 

studies at the genetic level were found. Since investment in defences may vary with plant tissues 

(Moreira et al. 2012a) and genetic correlations in resistance to different herbivores may not be universal 

in conifers (Iason et al. 2011; Moreira et al. 2013a), the genetic basis of the observed variation in 

mammalian bark stripping is unclear.  

 

Pinus radiata (D. Don, Pinales: Pinaceae) is a softwood species native to California (Eldridge 1979) but 

is widely planted with over 4 million hectares globally (Mead 2013). In Australia, it is the major softwood 

plantation species covering approximately 770,000 ha (ABARES 2018). The plantations are distributed 

across five states - New South Wales, Victoria, South Australia, Tasmania and Western Australia - and 

contributed up to 16.8 million cubic metres of saw logs between 2015–19 (ABARES 2018). Tree 

breeding programmes aimed at improving growth, form, health and wood traits of P. radiata have been 

ongoing in Australia and New Zealand since the 1950s (Dungey et al. 2009; Wu et al. 2007). Genetic 

improvement of health has focussed on resistance to diseases, especially the Dothistroma needle 

blight and insect pests such as Monterey pine aphid, Essigella californica (Ivković et al. 2010a; Li et al. 

2018; Sasse et al. 2009). Variation in resistance to insect pests and pathogens has been shown to 

have strong additive genetic variation (Graham et al. 2018; Moreira et al. 2013b; Sasse et al. 2009; 

Suontama et al. 2019). However, while bark stripping by native marsupials (wallabies and kangaroos) 

might compromise the realization of expected genetic gains, especially in Tasmania (ABARES 2018), 

little is known of the genetic basis of the variation in the damage to assess whether plantations can be 

genetically improved to reduce damage. In Tasmania, P. radiata is the only pine species grown 

commercially, covering 75,900 ha (Downham and Gavran 2018) and producing over 17,013 m3 of 

sawlog and 142,547 tonnes of pulpwood (Forestry Tasmania 2017). Bark stripping by the Bennett’s 

wallaby (Macropus rufogriseus) that occurs between the ages of 1-6yrs has become the most important 

pest problem (ABARES 2018; Miller et al. 2014; Page et al. 2013), affecting up to 40% of the 

plantations, with up to 80% of trees affected in some plantations (Miller et al. 2014). Given that the 

financial costs of managing mammalian herbivores through fencing and culling in P. radiata plantations 
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are high (DPIPWE 2018), the use of genetic variation in resistance to bark stripping is of considerable 

interest as a sustainable avenue for minimising the damage of P. radiata.   

 

This study aimed to:  

1) determine the extent to which bark stripping is under additive genetic control and if this is stable 

across sites and age; 

(2) determine the genetic correlation between the level of bark stripping, growth, stem and bark traits; 

and 

3) estimate possible genetic gains in reducing bark stripping damage from field-based selection of the 

least damaged families. 

 

2.2 Materials and methods  

2.2.1 Genetic trials 

The field trials used in this study were established in Tasmania (Figure 2.1) by Timberlands Pacific Pty 

with seeds from the Radiata Pine Breeding Company. Three trials were studied – Beulah, Payanna and 

Wilmot (Table 2.1). The progeny planted in Beulah and Payanna consisted of fourth generation 

breeding populations of half-sib (open-pollinated; OP) families while that of Wilmot was established 

from third generation full-sib (cross-pollinated; CP) families. The OP families were assumed to be half-

sibs (Bannister 1969). The Wilmot CP families (n = 74 families) was derived from 55 parents and 54 

unique grandparents. The OP families at Beulah (n = 101 families) and Payanna (n = 138 families) 

were derived from 101 and 138 mothers and 194 and 195 grand/great grandparents, respectively, 

highlighting the high pedigree diversity of the populations in the study and that the results were not 

biased by a few founder ancestors (Table 2.1). The progeny were from parents that were selected for 

vigour, stem form, wood properties and branch characteristics (Dungey et al. 2009; Wu et al. 2007). 

The trials planted at Beulah and Payanna were planted in the same year with 98 common families, plus 

3 families which were unique to Beulah and 40 families which were unique to Payanna. G X E was 

tested based on these two trials. The younger Wilmot trial did not have parents in common with those 

represented in the other two trials but had some common ancestry deeper in the pedigree. All trials 

were replicated in a randomized incomplete block design, with families represented as single tree plots 

within each block. Seedlings were raised in pots and were planted in rows, at a spacing of 3 m by 3 m. 

Since trials were established in clear-cut coupes formerly dominated by P. radiata, the remaining debris 

was gathered to form wind rows which separated different sets of blocks within each trial.  

In Tasmania, the major bark stripping pest of P. radiata - the Bennett’s wallaby (Macropus rufogriseus) 

(Page et al. 2013) varies in population density depending on location. The Beulah and Wilmot field trials 
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were situated in mid-north Tasmania where the density of the Bennett’s wallaby is estimated as 

approximately 32.0 animals/km2 (DPIPWE 2019). The Payanna field trial was situated in the north-east 

where the estimated density of the Bennett’s wallaby is approximately 26.9 animals/km2 (DPIPWE 

2019). Apart from operational culling (DPIPWE 2019), the field trials at Beulah and Payanna were freely 

accessible by the animals. The Wilmot site was, however, fenced for the first two years of growth. After 

two years, the gates to the trial were opened during winter for approximately 2 months to allow the 

marsupial herbivores access to 20 of the 26 replicates (6 replicates spread throughout the trial 

remained independently fenced). The gates were closed to stop browsing when browsing was evident 

across all 20 replicates. However, after the first bark stripping assessment, the animals accessed the 

trees for further bark stripping that was also scored. 

 

 

Figure 2.1: A map of Australia showing the location of Tasmania and the location of the three P. radiata genetic 

trials within Tasmania that were studied - P = Payanna, B= Beulah and W=Wilmot. 
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Table 2.1: Description of the genetic trials used for the study indicating the location and date of establishment. All trials were replicated in a randomized incomplete block 

design, with families represented as single tree plots within each block. For each trial, the number of replicates, incomplete blocks as well as the families, parents, 

grandparents and total number of trees are indicated. The total number of trees denotes the trees that were alive at the time of assessment. Selected traits (indicated in Tables 

2.2 – 2.4) were measured twice and the age at which the first and second assessments were performed is shown  

 

Genetic 
trial 

Latitude 
(o) 

Longitude 
(0) 

Elevation 
(m) 

Date 
planted 

Replicates Incomplete 
blocks 

Families Parents Grand 
parents 

# trees 
assessed 

Time of first 
assessment 
(age years) 

Time of 
second 

assessment 
(age years) 

Beulah 14.468984 146.41178 336 2011 25 75 101 101 194 2002 2015 (4 yrs) 2016 (5 yrs) 

Payanna 41.123591 147.70581 170 2011 20 80 138 138 195 2668 2015 (4 yrs) 2016 (5 yrs) 

Wilmot 41.454271 146.10680 580 2015 26 78 74 55 54 1372 2017 (2 yrs) 2018 (3 yrs) 
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2.2.2 Assessment of bark stripping damage and related traits 

Bark stripping damage on the stems of the P. radiata trees was recorded visually on individual plants 

in the field trials. At Beulah and Payanna, the damage was scored on an ordered categorical scale 

assigning zero (0) to plants with no evidence of bark-stripping, 1 = <20% of the circumference 

stripped; 2 = 20 - 50% of the circumference stripped; 3 = 50 – 100% of the circumference stripped. At 

Wilmot, more categories were included i.e., 3 = 50 - 75%, 4 = >75%, 5 = 100% damage (completely 

ring barked). Except for the scores 0 and 100, the remaining scores were converted to class mid-point 

values (average of the range values) for final analyses. Other tree traits including tree height, basal 

diameter (BD), diameter at breast height (DBH = 1.3 m), bark thickness, presence/absence of rough 

bark, stem access and survival were also assessed (Tables 2.2 – 2.4). Rough bark was assessed by 

visual inspection of presence or absence of bark fissures (e.g. Figure 2.2), and when present rough 

bark height was measured as the height from the ground to the top of the rough bark on the side of 

the stem with the highest rough bark cover. Bark thickness was estimated at DBH with a custom-

made bark probe. The trees at the younger Wilmot trial had not yet developed rough bark and were 

still too small to measure diameter at breast height (DBH) or bark thickness at the time of assessment. 

Instead, basal diameter and stem access were assessed at 2 years of age. Stem access describes 

the presence of stem needles and obstructive branches in the first 1 m of the stem which may prevent 

ready access to the bark. This trait was subjectively assessed in a categorical decile scale, where 0 

=all stem covered with needles and branches, 10 = up to 10cm covered, 20 = up to 20cm covered, 

until 100 where no needles or branches were found within 1 m. Survival (trees alive) at all trials was 

assessed at the time of the first bark stripping assessment. Some variables were assessed twice 

(Tables 2.2 – 2.4). The first assessment at Payanna and Beulah was made at 4 years and then at 5 

years after planting. At the Wilmot trial the first and second assessments were made at 2 and 3 years 

after planting, respectively. For bark stripping, recurrent assessments included old damage except 

where the tree had completely healed with no clear signs of earlier damage. Therefore, the two scores 

are not independent.   

 

Figure 2.2: Smooth (left) and rough bark (right) of 4-year-old P. radiata. 
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2.2.3 Spatial analyses  

Presence of spatial heterogeneity in data may cause inaccurate estimation of genetic parameters (Zas 

et al. 2007). To detect small-scale spatial effects within the blocks that were not accounted for by the 

experimental replicates and incomplete blocks on each site, a spatial term was introduced in the linear 

mixed models. The general linear mixed model is represented as; 

y = Xβ + Zu + e,                                                                                          (1) 

where, y is the vector of phenotypic observations for the traits that were assessed from each site 

(Tables 2.2 – 2.4). β is a vector of fixed effects and this included the mean and missing values (mv) 

except where covariates were fitted (Table 2.9). u is the vector of random effects which included 

replicates, blocks within replicates, tree (additive genetic effect – estimated using the relationship 

matrix derived from the pedigree file for trial trees and their ancestors) and family (specific combining 

ability) terms, and e is a vector of random residuals. X and Z correspond to design matrices relating 

the observations in y to the fixed and random effects in β and u, respectively. The joint distribution of 

the random terms was assumed to be multivariate normal, with means and (co)variances defined as: 

[
𝑈
ⅇ

] ~𝑁 ([
0
0

] , [
𝐺 0
0 𝑅

]) 

where 0 is a null matrix, and G and R are (co)variance matrices for effects in u and e, respectively 

(Costa e Silva et al. 2001; Dungey et al. 2014; Isik et al. 2017). The error term e was then fitted with a 

two dimensional spatial term (Costa e Silva et al. 2001; Dutkowski et al. 2006). To set the spatial term, 

every tree was uniquely identified by a row and column position within each trial, setting the absent, 

dead, and filler trees to missing values (Costa e Silva et al. 2001). The missing values (mv) were 

included as a fixed factor in the models (Dungey et al. 2014). The error term in model 1 was then 

partitioned into spatially correlated (ξ) and uncorrelated (η) residuals. The spatially correlated error (ξ) 

was modelled using a first-order separable autoregressive model in the row and column directions 

(Butler et al. 2009; Dungey et al. 2013; Suontama et al. 2019). However, in addition to the two-

dimensional separable first-order autoregressive spatial model, an independent residual (nugget) was 

also added in the random terms with the following form:                      

σ 2Σ = σ 2 (Σpcol ⊗ Σprow) + ψI150                                                          (2) 

where σ 2 is the spatial variance, ⊗ is the Kronecker product, and (p) is a first-order autoregressive 

correlation matrix with autocorrelation p for columns and rows (Butler et al. 2009).  

 

For a visual inspection of the presence of small-scale spatial effects, semivariograms of the residuals 

from the above spatial models were generated in R v. 3.6.0 (R Core Team 2018) using the sp and 

gstat packages. The variograms were generated for selected scores of bark stripping and height but 
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the importance of spatial models was tested for all the variables that were assessed (see results). Flat 

variograms are expected for randomly distributed data. If spatial dependence is present, semivariance 

will be small at short distances, will increase at intermediate distances, and will reach an asymptote at 

longer distances (Zas et al. 2007). The direction of strongest spatial correlation in each site was used 

to generate the variogram although there was spatial autocorrelation in all directions (results not 

shown). Of the five common models (linear, exponential, spherical, Gaussian and Matern), the Matern 

model was selected as the most suitable suggesting presence of irregular spatial patterns in both 

height and bark stripping (Haskard 2007).  

 

2.2.4 Estimation of additive genetic variation and heritability within sites 

Because of spatial effects (see results), spatial models were used to obtain variance components to 

enable testing of the presence of additive genetic variation for each trait that was assessed (Butler et 

al. 2009). To test whether the additive genetic variation were greater than zero, full models were 

compared with respective reduced models using one-sided log likelihood ratio tests (LRT) with one 

degree of freedom in ASReml (Butler et al. 2009). Where rough bark height was fitted in the model, all 

trees without rough bark were fitted as missing values for the trait being modelled. Since the Beulah 

and Payanna trials comprised only open-pollinated families, the family term was excluded from the 

models. For the Wilmot trial that had full-sib families, both the additive and family terms were included 

in the initial models allowing additive genetic variances and specific combining ability to be estimated. 

The significance of the family term was first tested using one-sided LRT with one degree of freedom in 

ASReml (Butler et al. 2009). However, the family term was excluded in the final models because it 

was not significant for all traits (see results; Table 2.4). Then, the additive genetic variation was also 

tested as mentioned above.  

 

For the binary trait i.e. rough bark, a generalized linear mixed model with a binomial distribution and 

logistic link function was used to estimate variance components (Butler et al. 2009). For this model, 

design (replicates and incomplete blocks) and spatial (autoregressive) terms were fitted as random 

variables. The importance of the random factors in the binomial models were evaluated using the 

Akaike information criterion (Burnham and Anderson 2004). The presence of additive genetic variation 

for survival was not tested due to high survival in all the three trials. 

 

For all models, individual narrow-sense heritability (ĥ 2) was estimated from univariate spatial models, 

that included all the design terms as described above as the additive genetic variance divided by the 

sum of the additive genetic variance 𝜎̂𝑎
2 and the error variance 𝜎̂𝑒

2 (Butler et al. 2009) as below: 
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             ℎ̂2 =
𝜎̂𝑎

2

𝜎̂𝑎
2+𝜎̂𝑒

2                                                                (3) 

For the binary trait, the residual error variance on the underlying logistic scale, which is 3.28987 

(Butler et al. 2009), was used in the heritability estimations. Estimates of the associated standard error 

for the estimated heritability were obtained from the average information matrix, using a Taylor series 

approximation in ASREML (Butler et al. 2009).  

 

To test the improvement of the models after fitting the spatial autocorrelation structure to the residuals, 

the spatial model was compared with the corresponding reduced model that did not fit a spatially 

correlated residual using a two-tailed likelihood ratio test (LRT) with 3 degrees of freedom (Dungey et 

al. 2013). Significance was considered at the 5% significance level.  

 

2.2.5 Type B genetic correlations  

In evaluating G X E interaction, type B genetic correlations are used to assess the relative 

performance of traits measured in different environments (Burdon 1977). The across-site additive 

genetic correlation of bark stripping, height, DBH and bark traits was assessed for Payanna and 

Beulah. The same traits at the two sites were treated as different traits (Yamada 1962). The fixed term 

was only the mean while the random terms comprised the additive genetic (i.e. tree) term and site-

specific replicates and incomplete blocks. The unstructured design allowed covariation between 

additive genetic variation, but the site-specific terms were considered as independent. Spatial models 

were not used at this stage to avoid singularities. The additive genetic correlation (𝑟𝑎) was estimated 

as:    

𝑟𝑎 =
𝑐𝑜𝑣𝑎(𝑥,𝑦)

√𝜎𝑎𝑥
2 ⋅𝜎𝑎𝑦

2
                                               (4) 

where cova(x,y) is the additive genetic covariance between traits x and y, σ2
ax is the additive genetic 

variance components for trait x, and σ2
ay is the additive genetic variance components for trait y. 

Standard errors of the genetic correlations were estimated as mentioned above (Butler et al. 2009) .  

 

To test whether genetic correlations were significantly different from zero, a full model was compared 

with the respective reduced model that had the additive covariances fixed to zero using two-sided LRT 

with one degree of freedom in ASReml. To test whether genetic correlations were equal to one 

(perfect correlation), a full model was compared with the respective model that had the additive 

covariances fixed to one using one-sided likelihood ratio tests (LRT) with one degree of freedom in 

ASReml (Butler et al. 2009).  



19 
 

2.2.6 Phenotypic and type A genetic correlations 

Within sites (Type A) additive genetic (rg) and Pearson’s phenotypic correlations among traits were 

estimated directly from non-spatial bivariate models as defined above (equation 4) with mean as the 

fixed term and the design (replicates and incomplete blocks) as well as the additive genetic 

component as random terms. The family term was not included for Wilmot estimates since it was not 

significant (see results). The models allowed covariation at the residual, replicates and incomplete 

block levels. For binomial models, the bivariate models did not fit a link function (O'Reilly-Wapstra et 

al. 2014). To test whether genetic correlations were significantly different from zero, a full model was 

compared with the model where additive covariance was fixed to zero using two-sided LRT with one 

degree of freedom in ASReml (Butler et al. 2009). The test that the Pearson’s phenotypic correlations 

were not equal to zero was done in R using the function cor.test. 

 

To test if the measured physical traits fully explained the additive genetic variation in bark stripping, 

linear models (Equation 1) were re-run with the traits that significantly correlated with bark stripping 

included as covariates (See results; Tables 2.6 – 2.9). For the selected covariates, the models were 

modified as follows.  

 

Beulah 

− Bark stripping (year 4) = µ + height (year 4) + mv + random + spatial + ε 

− Bark stripping (year 5) = µ + bark thickness (year 5) + rough bark height (year 5) + 

mv + random + spatial + ε 

Payanna  

− Bark stripping (year 5) = µ + bark thickness (year 5) + rough bark height (year 5) + 

mv + random + spatial + ε 

Wilmot 

− Bark stripping (year 2) = µ + stem access (year 2) + mv + random + spatial + ε 

− Bark stripping (year 3) = µ + height (year 2) + mv + random + spatial + ε 

As previously mentioned, the significance of the additive genetic variation in bark stripping from zero 

was tested with one-tailed LRT; mv = missing values (that comprised the absent, dead, and filler 

trees) and ε = independent residual. The random term included the replicates, blocks within replicates 

and the additive genetic variation.  

2.2.7 Estimation of genetic gain 
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To determine the family rankings for estimation of genetic gain for a single selection event, family best 

linear unbiased predictors (BLUPs) were estimated for all trials using univariate family models with the 

spatial term as described above. The additive tree term was not included in the model at this stage, 

and the differences between families in this case includes additive genetic and specific combining 

effects. Genetic gain was estimated at the family level since the parents of the families are already 

available in seed orchards and can be used to generate new seed for selected families for 

deployment. Family selection is also associated with lower bias than selection within families and 

strongly correlates with the realized gain than selection within progenies (Viana et al. 2009).  

 

The percentage of genetic gain was estimated as the difference between the average BLUPs of the 

least susceptible families for each trial and the average family BLUPs of the population, divided by the 

average BLUPs (plus mean score of trait) of the population, multiplied by 100 (Dungey et al. 2014; Isik 

et al. 2017). Genetic gain was estimated for selection of a different proportion of families in the 

different sites. Estimates were based on assessments at year 5 (2016) for Payanna and Beulah and 

the year 2 assessment (2017) for Wilmot that exhibited the highest heritability estimates.  

 

2.3 Results 

2.3.1 Differences between sites in bark stripping and associated traits 

The percentage of trees exhibiting bark stripping was variable across sites, with 95%, 70% and 52% 

of the trees experiencing some level of back stripping at Beulah, Payanna and Wilmot, respectively 

(Figure 2.3). Consistently, the amount of bark removed at Beulah (Table 2.2) was higher than the 

other two sites (Tables 2. 3 and 2.4). Within site, the mean bark stripping was greater in the second 

assessment (a year after the first assessment), except for the younger Wilmot trial where slightly lower 

levels were observed; possibly due to fast wound recovery in young trees. Beulah, which had the 

highest levels of bark stripping, had a higher proportion of dead or missing trees and the trees were 

shorter at age 4 years (𝑥̅ = 391 ± 89 cm) than the partner trial at Payanna (𝑥 ̅= 573 ± 94 cm). The 

DBH of the trees in Beulah was also lower than that of Payanna. However, survival was high in all the 

sites (Tables 2.2 – 2.4). 

 

The bark traits were different between the older (Beulah and Payanna) and younger (Wilmot) trials. 

The young Wilmot trees had no rough bark and the bark was too thin to be assessed even at the time 

of the 2nd assessment at age of 3 years. At 4 years of age, 1% of the trees in Payanna had rough bark 

compared with 5.3% at Beulah, but by 5 years of age 76% and 42.6% respectively of the trees had 

rough bark. Of the trees with rough bark at Payanna and Beulah, the mean height of rough bark on 
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Payanna trees (𝑥̅ = 93.5 ± 60.4 cm) was higher than at Beulah (𝑥̅ = 47.9 ± 64.3 cm) (Tables 2. 3 and 

2.4). These differences in bark development at age 5 years may reflect different growth rates with the 

faster growing trial at Payanna having a greater rough bark development.  

 

 

Figure 2.3: The percentage of trees in each bark stripping category at the three field trials – Beulah, Payanna 

and Wilmot. Bark stripping was recorded as the proportion of the bark that was removed relative to the 

circumference. 0 indicates no evidence of bark stripping, 1 = trees that had 1 - <20% of the circumference 

stripped; 2 = 20 - <50%; 3 = 50 - 100%. For this graph the upper 3 categories used at the Wilmot trial were 

merged to match the categories of the other two trials. The number of trees assessed in the three trials; Beulah 

(in 2016, age = 5 years), Payanna (in 2016, age = 5 years) and Wilmot (in 2017, age = 2 years) were 2002, 

2668 and 1372, respectively.  

 

2.3.2 Spatial effects 

Traits assessed in the three field trials were not randomly distributed within the blocks as indicated by 

the high significance of the spatial term (Tables 2.2 – 2.4). For bark stripping, more damage occurred 

at the edge of the blocks possibly due to cover from the windrow. For purposes of illustration, Figure 

2.4 shows that the scale of the spatial dependence or the point at which the semivariogram tended to 

be flat at short distances was less than the sizes of the blocks which were on average 15 m in the 

longest direction.  
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Figure 2.4: Semivariograms of the residuals generated from the spatial models showing small-scale spatial 

variation of bark stripping (above) and height (below) for a) Beulah, b) Payanna and c) Wilmot after adjusting 

for random genetic, replicate and incomplete blocks within replicate effects using mixed models. Estimates are 

based on assessments for year 5 (2016) at Beulah and Payanna and at year 2 (2017) for Wilmot, except for the 

height variogram for Payanna that used year 4 height since only one height measurement was taken for this 

trial.  

 

2.3.3 Additive genetic variation for bark stripping  

There was significant (p <0.001) additive genetic variation for bark-stripping at all trials for at least one 

of the yearly measurements, and heritability estimates ranged between 0.06 - 0.14 (Tables 2.2 – 2.4) 

The least additive genetic variation and heritability estimates were associated with the first bark 

stripping assessment at Payanna (p <0.05; Table 2.3) and the second assessment in the younger 

Wilmot trial (p <0.05; Table 2.4). The highest heritability estimate (h2 = 0.14 ± 0.04) was recorded in 

2016 (age 5) at Payanna.  

Within site, the time of assessment was important in detecting significant additive genetic variation for 

bark stripping, and in part this appeared to reflect the intensity of damage. At Payanna, for example, 

the amount of bark stripping in the first assessment (age 4 years) was lower than in the following year 
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(means of 8% versus 16%, respectively) (Tables 2.2, 2.3), and exhibited less additive genetic variation 

and lower heritability suggesting low distinction between preferred and non-preferred families at low 

bark stripping. However, bark stripping across years was highly additively genetically correlated at 

Beulah (ra = 0.78 ± 0.16), Payanna (ra = 0.91 ± 0.23) and Wilmot (ra = 0.99 ± 0.27) indicating that 

family choice by the animals was consistent across years although the scores across years were not 

independent.  

 

Most other traits assessed showed significant additive genetic variation in one or all trials (Tables 2.2 

– 2.4). There was significant additive genetic variation for height in the older Payanna and Beulah 

trials (p <0.001) as well the younger Wilmot trial (p <0.001). The heritability estimate for rough bark 

height was tending to 1 in Beulah showing a strong family variation of rough bark. However, heritability 

reduces as more trees develop rough bark so the distinction between family reduces.  
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Table 2.2: Statistics for each trait assessed at Beulah. SD = standard deviation, h2(se)=narrow-sense heritability and its associated standard error (se) estimated with 

univariate spatial models. The significance of the additive genetic variation and the spatial effect on the model are also presented and were tested with likelihood ratio tests 

from univariate spatial models. The importance of the binary trait-rough bark (marked *) was tested with the Akaike information criteria (AIC) and + signifies that the parameter 

tested was important. Genetic variation was not estimated (NE) for survival since it was high for all families 

 Trait Year 

assessed 

Age of trees 

(years) 

# of trees 

assessed 

Mean Minimum Maximum SD h2 (se) Significance of 

additive genetic 

variation 

Significance of 

spatial model 

Bark stripping (%) 2015 4 1957 36.44 0.00 75.00 26.89 0.14±0.05 <0.001 <0.001 

Bark stripping (%) 2016 5 2002 40.08 0.00 75.00 26.55 0.12±0.04 <0.001 <0.001 

Height (cm) 2015 4 2032 391.18 40.00 707.00 89.38 0.18±0.05 <0.001 <0.001 

Height (cm) 2016 5 2002 473.92 1.00 807.00 117.29 0.13±0.05 <0.001 <0.001 

DBH (cm) 2016 5 1975 8.67 1.00 14.90 2.46 0.09±0.04 <0.05 <0.001 

Bark thickness (mm) 2016 5 1355 6.67 2.50 13.50 1.26 0.10±0.03 <0.01 <0.001 

Rough bark* 2016 5 2002 0.42 0.00 1.00 0.49 0.09±0.03 --46.82+ -72.14+ 

Rough bark height (cm) 2016 5 847 47.88 2.00 420.00 63.21 1.00±0.06 <0.001 0.372 

Survival 2016 5 2699 0.72 0.00 1.00 0.45 NE NE NE 
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Table 2.3: Statistics for each trait assessed at Payanna. SD = standard deviation, h2(se)=narrow-sense heritability and its associated standard error (se). The significance of 

the additive genetic variation and the spatial effect on the model are also presented and were tested with likelihood ratio tests from univariate spatial models. The importance 

of the binary trait-rough bark (marked *) was tested with the Akaike information criteria (AIC) and + signifies that the parameter tested was important. Genetic variation was not 

estimated (NE) for survival since it was high for all families  

 

Trait Year 

assessed 

Age (years) Sample 

size 

Mean Minimum Maximum SD h2 (se) Significance of 

additive genetic 

variation 

Significance of 

spatial model 

Bark stripping (%) 2015 4 2647 8.21 0.00 75.00 15.99 0.07±0.03 <0.05 0.270 

Bark stripping (%) 2016 5 2668 16.77 0.00 75.00 21.21 0.14±0.04 <0.001 <0.001 

Height (cm) 2015 4 2648 573.92 130.00 827.00 94.06 0.10±0.04 <0.001 <0.001 

DBH (cm) 2016 5 1727 7.90 3.00 19.50 6.48 0.03±0.00 0.205 <0.001 

Bark thickness (mm) 2016 5 1727 6.01 0.00 16.00 1.78 0.11±0.04 <0.010 <0.001 

Rough bark* 2016 5 1694 0.77 0.00 1.00 0.42 0.07±0.04 -29.90+ -35.12+ 

Rough bark height (cm) 2016 5 1327 93.54 5.00 350.00 60.26 0.53±0.10 <0.001 <0.050 

Survival 2016 5 2760 0.97 0.00 1.00 0.18 NE NE NE 
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Table 2.4: Statistics for each trait assessed at Wilmot. SD = standard deviation, h2(se)=narrow-sense heritability and its associated standard error (se). The significance of the 

additive genetic variation, family term (specific combining ability) and the spatial effect on the model are also presented and were tested with likelihood ratio tests from 

univariate spatial models. The importance of rough bark was tested with the Akaike information criteria (AIC) and + signifies that the parameter tested was important. Genetic 

variation was not estimated (NE) for survival since it was high for all families  

 

Trait Year of 

assessment 

Age 

(years) 

Sample 

size 

Mean Minimum Maximum SD h2 (se) Significance 

of additive 

genetic 

variation 

Significance 

of family 

effect 

Significance 

of spatial 

model 

Bark stripping (%) 2017 2 1372 23.96 0.00 100.00 33.18 0.09±0.03 <0.001 >0.05 <0.001 

Bark stripping (%) 2018 3 1269 22.50 0.00 100.00 25.10 0.06±0.03 <0.05 >0.05 <0.001 

Bark strip height (cm) 2017 2 706 2.19 1.00 7.00 1.45 0.12±0.04 <0.001 >0.05 <0.001 

Height (cm) 2017 2 1372 147.40 10.00 248.00 33.51 0.07±0.04 <0.001 >0.05 <0.001 

Height (cm) 2018 3 1275 231.09 30.00 382.00 51.17 0.08±0.04 <0.001 >0.05 <0.001 

Height (cm) 2020 5 1230 544.33 40.00 780.00 99.08 0.11±0.04 <0.001 >0.05 <0.001 

Basal diameter (cm) 2017 2 140 2.99 1.00 5.30 0.78 0.04±0.05 >0.05 >0.05 <0.001 

DBH (cm) 2020 5 1230 103.40 5.00 190.00 42.97 0.03±0.02 <0.01 >0.05 <0.001 

Stem access 2017 2 1371 49.49 0.00 100.00 26.26 0.09±0.03 <0.05 >0.05 <0.001 

Survival 2017 2 1372 0.86 0.00 1.00 0.40 NE NE NE NE 
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2.3.4 Genetics x environment interaction   

The additive genetic correlations for the same traits assessed in the two partner trials – Beulah and 

Payanna - are shown in Table 2.5. There was no significant across-site genetic correlation for bark 

stripping at year 4 (ra = 0.23 ± 0.39) possibly due to a high randomness of damage at the low damage 

intensity observed at Payanna. However, with cumulative and new damage at year 5 heritability 

increased and a significant and high positive across-site additive genetic correlation was observed for 

bark stripping (ra = 0.76 ± 0.25). This indicates a high correspondence of family ranks between the 

two trials at this age. Similarly, high correlations were obtained for year 5 rough bark (ra = 0.74 ± 0.42) 

and height at year 4 (ra = 0.91 ± 0.32).  

 

Table 2.5: Across-site (Type-B) additive genetic correlation (ra) for each trait assessed in both Beulah and 

Payanna and the corresponding standard error (se). The chi-square value (χ 2) associated with the likelihood 

ratio test (LRT) that the p-value of the genetic correlation is different from zero (P[ra=0] ) is also indicated, and 

was generated with two-tailed LRTs. The significance that the genetic correlation is equal to 1 (P[ra=1]) was 

also performed with LRT for correlations that were significantly different from zero. The partner trials at these 

sites share 98 families and were the same age. The importance of the genetic correlation for rough bark was 

tested with the Akaike information criteria (AIC) and for this trait + signifies that the parameter tested was 

important  

 

Trait rg se(rg) χ 2 [rg=0] P[rg=0] P[rg=1] 

Bark stripping (year 4) 0.23 0.39 0.44 >0.05  

Bark stripping (year 5) 0.76 0.25 10.00 <0.01 <0.01 

Height (year 4) 0.91 0.32 14.50 <0.001 <0.001 

Rough bark (year 5) 0.74 0.42 23.80 -10.72+ -22.53+ 

Rough bark height (year 5) 0.25 0.21 1.50 >0.05  

Bark thickness (year 5) 0.53 0.85 2.70 >0.05  
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2.3.5 Traits that influenced bark stripping 

The phenotypic (0.34 to 0.71) and genetic (0.78 to 1.00; Type A) correlations between the various 

measures or ages of bark stripping were generally highly significantly positively correlated within a trial 

(Tables 2.6 – 2.8). The phenotypic and genetic correlations of bark stripping with growth traits—height 

and stem diameter—varied from positive to negative (Tables 2.6 – 2.8). In general, bark stripping was 

significantly negatively correlated with stem diameter at the phenotypic level and while this trend was 

still evident at the genetic level, these correlations were not significant. The association with height 

was more variable. At the phenotypic level the correlation was generally negative, but the genetic 

correlation tended to be negative in the older trials (Tables 2.6 & 2.7). The exception was the year 5 

bark stripping at Beulah which was significantly positively correlated with height (rg = 0.33 ± 0.34), 

possibly due to the tendency for rough bark height to negatively genetically correlate with height at this 

age (see below). In the younger Wilmot trial, the phenotypic correlation between bark stripping and 

height was evident at the onset of bark stripping (age 2 years) but this subsequently became 

significantly negative consistent with an adverse effect of bark stripping. In contrast, the genetic 

correlations between bark stripping and height were generally positive indicating that families that 

were initially faster growing had more bark stripping, although this was only significantly greater than 

zero in the case of 3year bark stripping and 2-year height. 

 

In the older trials, bark stripping was phenotypically significantly negatively correlated with year 5 bark 

thickness, the presence of rough bark and the rough bark height, with one exception (Payanna bark 

stripping at age 4 years versus 5-year rough bark height, possibly because there were very few trees 

with rough bark at age 4) (Tables 2.6 & 2.7). This negative association was also evident at the genetic 

level, with significant negative correlations of year 5 bark stripping with bark thickness (rg = -0.48 ± 

0.22), rough bark (rg = -0.47 ± 0.19) and rough bark height (rg = -0.37 ± 0.17) but only in Payanna 

(Table 2.7), suggesting that these traits influence the level of bark stripping at the phenotypic and 

genetic levels. Compared to Beulah, we noted a rapid increase in the amount of rough bark between 4 

and 5 years (77% of the trees in Payanna had rough bark in year 5 compared to 42% at Beulah), 

emphasizing importance of this trait in minimizing bark stripping but this depends on its extent in the 

population. In the younger Wilmot trial, rough bark had not developed at the time of bark stripping. 

However, in this case, both the 2 and 3 year bark stripping and 2 year bark strip height were highly 

significantly positively correlated with stem access at the phenotypic (0.31 to 0.42) and genetic (0.87 

to 1.00) levels (Table 2.8). 
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The genetic correlation between bark stripping for year 2 and 3 and height or DBH for year 5 in Wilmot 

were negative suggesting a tendency for bark stripping to reduce performance. A negative genetic 

correlation was detected between year 5 diameter and bark stripping for year 2 (rg = -0.84 ± 0.16) and 

year 3 (rg = -0.77 ± 0.22). Similarly, a nonsignificant negative correlation between the first height 

increment (ΔHt2-3) and bark stripping for year 2 (rg = -0.35 ± 0.27) and year 3 (rg = -0.26 ± 0.29) was 

detected, indicating a reduction in performance in the initial years of bark stripping with recovery in the 

later years. Phenotypic correlations were however mostly lower than genetic correlations suggesting 

that the use of phenotypic correlations as surrogates for genetic correlations to evaluate traits will 

result in the underestimation of potential gains from indirect selection.  
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Table 2.6: Phenotypic (above diagonal) and genetic (below diagonal) correlations of traits assessed at the Beulah trial. The significance of the difference of the genetic 

correlations from zero was tested using two-tailed likelihood ratio tests, while the test that the Pearson’s phenotypic correlations were not equal to zero was performed in R 

using the function cor.test. Significance levels, ***= p <0.001, **= p <0.01, *= p <0.05. NA not applicable as only assessed on a specific cohort of individuals 

 

  Bark 

stripping 

(year 4) 

Bark 

stripping 

(year 5) 

Height (Year 4) Height (year 5) Bark thickness (year 5) DBH (year 5) Rough bark 

(Year 5) 

Rough bark height    

(year 5) 

Bark stripping (year 4)  0.42 (0.02) *** -0.26 (0.02)*** -0.29 (0.02)*** -0.18 (0.02)*** -0.26 (0.02)*** -0.08 (0.02)*** -0.17 (0.03)*** 

Bark stripping (year 5) 0.78 (0.16)***  -0.32 (0.02)*** -0.40 (0.02)*** -0.25 (0.02)*** -0.42 (0.02)*** -0.25 (0.02)*** -0.25 (0.03)*** 

Height (year 4) -0.19 (0.25) -0.09 (0.02) 
 

0.86 (0.01)*** 0.49 (0.02)*** 0.79 (0.01)*** 0.31 (0.02)*** 0.13 (0.03)*** 

Height (year 5) -0.09 (0.27) 0.33 (0.34)  0.98 (0.04)*** 
 

0.50 (0.02)*** 0.80 (0.01)*** 0.33 (0.02)*** 0.10 (0.03)** 

Bark thickness (year 5) -0.24 (0.28) -0.37 (0.29) 0.24 (0.25) 0.03 (0.33) 
 

0.57 (0.02)*** 0.34 (0.02)*** 0.34 (0.03)*** 

DBH (year 5) -0.26 (0.02) -0.04 (0.37) 0.78 (0.12)* 0.73 (0.15) 0.40 (0.30)  0.33 (0.02)*** 0.17 (0.03)*** 

Rough bark (year 5) -0.27 (0.22) -0.25 (0.22) 0.12 (0.21) -0.05 (0.24) 0.31 (0.23) 0.21 (0.27)  NA 

Rough bark height (year 5) -0.39 (0.27) -0.52 (0.26) 0.02 (0.01) 0.02 (0.018) 0.10 (0.02) 0.37 (0.09)* NA   
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Table 2.7: Phenotypic (above diagonal) and genetic (below) correlations of the traits that were assessed in Payanna trial. The significance of the difference of the genetic 

correlations from zero was tested using two-tailed likelihood ratio tests, while the test that the Pearson’s phenotypic correlations were not equal to zero was performed in R 

using the function cor.test. Significance levels, ***= p <0.001, **= p <0.01, *= p <0.05. NA not applicable as only assessed on subset of individuals which had developed rough 

bark 

 
 

Bark stripping (year 4) Bark stripping 

(year 5) 

Height (year 4) Bark thickness 

(year 5) 

DBH (year 5) Rough bark 

(year 5) 

Rough bark height (year 5) 

Bark stripping (year 4) 
 

0.34 (0.02)*** -0.30 (0.02)*** -0.18 (0.02)*** 0.01 (0.02) -0.12 (0.02)*** 0.00 (0.02) 

Bark stripping (year 5) 0.91 (0.23)**  -0.28 (0.02)*** -0.21 (0.02)*** -0.11 (0.02)*** -0.29 (0.02)*** -0.17 (0.03)*** 

Height (year 4) -0.12 (0.34) -0.20 (0.24) 
 

0.36 (0.02)*** 0.22 (0.06)*** 0.23 (0.02)*** 0.19 (0.03)*** 

Bark thickness (year 5) -0.34 (0.51) -0.48 (0.22)* 0.24 (0.27) 
 

-0.02 (0.02) 0.26 (0.02)*** 0.29 (0.03)*** 

DBH (year 5) -0.34 (0.33) -0.40 (0.34) 0.89 (0.27)** 0.56 (0.42) 
 

0.02 (0.02) 0.32 (0.03)*** 

Rough bark (year 5) 0.05 (0.31) -0.47 (0.19)* -0.41 (0.28) 0.52 (0.25) -0.58 (0.57)  NA 

Rough bark height (year 5) -0.16 (0.25) -0.37 (0.17)* 0.05 (0.21) 0.70 (0.17)** 0.11 (0.37) NA 
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Table 2.8: Phenotypic (above diagonal) and genetic (below) correlations of the traits that were assessed in Wilmot trial. Significance of genetic correlations was tested as 

being different from zero using log likelihood tests, while the test that the Pearson’s phenotypic correlations were not equal to zero was performed in R using the function 

cor.test. Significance levels, ***= p<0.001, **= p <0.01, *= p <0.05, ΔHt2-3= Height (year 3) minus Height (year 2), and ΔHt3-5 = Height (year 5) minus Height (year 3). 

  Bark 
stripping 
(year 2) 

Bark stripping 
(year 3) 

Height  
(year 2) 

Height  
(year 3) 

Height  
(year 5) 

diameter at 10 
cm (year 2) 

DBH (year 5) Stem access 
(year 2) 

Bark strip 
height (year 2) 

ΔHt2-3 ΔHt3-5 

Bark stripping (year 2) 
 

0.71 (0.02)*** 040 (0.03)*** -0.24 (0.03)*** 0.43 (0.04)*** -0.23 (0.08)** -0.54 (0.02)*** 0.41 (0.02)*** 0.89( 0.02)*** -0.46 (0.02)*** 0.45 (0.04)*** 

Bark stripping (year 3) 1.00 (0.04)**  -0.82 (0.31)* -0.24 (0.03)*** 0.50 (0.04)*** -0.29 (0.55) -0.29 (0.03)*** 1.00 (0.09)*** 0.62 (0.02)*** -0.39 (0.03)*** 0.52 (0.04)*** 

Height (year 2) 0.56 (0.32) 0.00 (0.03) 
 

0.80 (0.02)*** 0.53 (0.02)*** 0.70 (0.06)*** 0.49 (0.02)*** -0.11 (0.03)*** 0.10 (0.03)*** 0.59 (0.03)*** 0.48 (0.03)*** 

Height (year 3) 0.12 (0.) 0.34 (0.41) 0.79 (0.17)*  0.69 (0.18)*** 0.65 (0.07)*** 0.81 (0.01)*** 0.40 (0.38) -0.17 (0.03) 0.75 (0.01)*** 0.63 (0.03)*** 

Height (year 5) 0.42 (0.26) 0.38 (0.32) 0.45 (0.28) 0.77 (0.16)**  -0.82 (1.60) 0.44 (0.30) 0.49 (0.27) 0.53 (0.23) 0.49 (0.02)*** 0.89 (0.01)*** 

Diameter at 10 cm (year 2) -0.05 (0.57) -0.27 (0.07)* 0.22 (0.55) -0.20 (0.62) 0.47 (0.05)***  0.72 (0.02)*** -0.20 (0.55) 0.03 (0.56) -0.12 (0.08)*** 0.34 (0.06)*** 

DBH (year 5) -0.84 (0.16)** -0.74 (0.24)* -0.44 (0.42) 0.49 (0.29) 0.90 (0.01)*** 0.75 (0.29)  -0.66 (0.24) -0.88 (0.15)** 0.62 (0.02)*** 0.72 (0.01)*** 

Stem access (year 2) 0.95 (0.10)*** 0.36 (0.03)*** -0.76 (0.25)* -0.28 (0.03)*** 0.50 (0.04)*** -0.24 (0.08)** -0.42 (0.03)*** 
 

0.42 (0.02)*** -0.34 (0.03)*** 0.50 (0.04)*** 

Bark strip height (year 2) 0.97 (0.02)*** 0.98 (0.02)*** 0.66 (0.28) 0.27 (0.33) 0.34 (0.03)*** -0.13 (0.08) -0.47 (0.02)*** 0.87 (0.13)***  -0.44 (0.03)*** 0.35 (0.04)*** 

ΔHt2-3 -0.35 (0.27) -0.20 (0.35) 0.38 (0.33) 0.89 (0.10)** 0.65 (0.22)* -0.15 (0.59) 0.68 (0.23) -0.18 (0.33) -0.25 (0.29)  0.53 (0.03)*** 

ΔHt3-5 0.47 (0.27) 0.38 (0.31) 0.33 (0.34) 0.53 (0.27) 0.94 (0.04)*** -0.99 (0.76) 0.19 (0.37) 0.47 (0.27) 0.55 (0.22) 0.44 (0.29)  

1 
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To test if the observed additive genetic variation in bark stripping could be fully explained by tree 

physical traits, linear models were run with traits that significantly correlated with bark stripping (i.e. 

height, stem access, rough bark and bark thickness) as covariates (Table 2.9). However, additive 

genetic variation in bark stripping was still significant after accounting for this covariation at the 

phenotypic level. In the younger Wilmot trial for example, after simultaneously including stem access 

as a covariate in the model for year 2 bark stripping, the additive genetic variation was still significant 

(LRT χ2 = 15.6, p<0.001) but heritability reduced from h2 = 0.09 ± 0.03 to h2 = 0.05 ± 0.02. Similarly, in 

Payanna and Beulah, the additive genetic variation for bark stripping was significant after accounting 

for covariation with selected traits (Table 2.9). The heritability in Beulah improved after fitting 

covariates but that of Payanna reduced.  

 

Table 2.9: Genetic estimates derived from models that accounted for covariation. Additive genetic variation 

(Va), h2(se) = narrow-sense heritability and its associated standard error (se) estimated with univariate spatial 

models. The significance of the additive genetic variation was tested with likelihood ratio tests (LRT). The LRT 

chi-square value (χ 2) associated with the additive genetic variation is also indicated. mv = missing values, ε = 

residual. The random term included the replicates, blocks within replicates and the additive genetic variation 

 

Model LRT χ 2 
[Va>0] 

P-value [Va>0] h2 ± se 

Beulah   
 

Bark stripping (year 4) = µ + height (year 4) + mv + 

random + spatial + ε 

18.00 <0.001 0.14 ± 0.05 

Bark stripping (year 5) = µ +bark thickness (year 5) + 

mv + rough bark height (year 5) + random + spatial + ε 

20.28 <0.001 0.17 ± 0.05 

Payanna   
 

Bark stripping (year 5) = µ + bark thickness (year 5) + 

mv + rough bark height (year 5) + random + spatial + ε 

21.96 <0.001 0.12 ± 0.04 

Wilmot   
 

Bark stripping (year 2) = µ + stem access (year 2) + mv 

+ random + spatial + ε 

15.60 <0.001 0.05 ± 0.02 

Bark stripping (year 3) = µ + height (year 2) + mv + 

random + spatial + ε 

11.90 <0.001 0.06 ± 0.02 
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2.3.6 Estimation of genetic gain 

Up to 37% reduction in future bark stripping was predicted based on family selection using the best 

linear unbiased prediction (BLUPs) (Figure 2.5). The highest predicted genetic gain was established in 

the younger, full-sib progeny at the Wilmot trial. The half sib-OP families at Payanna and Beulah gave 

relatively low genetic gain predictions. Selecting 20% of the least susceptible families in each trial 

resulted in an expected gain in reduction of bark stripping of 7.9%. at Beulah, 3.8% at Payanna and 

22.1% at Wilmot.  

 

Figure 2.5: Predicted genetic gain (%) in reduction in the average amount of bark stripping as a function of the 

proportion of families selected in the different sites. Estimates are based on family BLUPs for year 5 (2016) at 

(a) Beulah and (b) Payanna and at year 2 (2017) for (c) Wilmot. 

 

2.4 Discussion 

The current study used several field-based genetic trials established with a large number of families to 

show the existence of additive genetic variation in susceptibility to bark stripping damage among P. 

radiata families and that when well-expressed appears relatively stable across sites. Depending on 

plantation age, bark features and the presence of needles or branches covering the stem were an 

important determinant of the amount of bark removed from the trees by the marsupials. Importantly, 

these physical traits are under significant additive genetic control and can be enhanced through 

selection. Up to 22.1% reduction in bark stripping can be achieved by selecting 20% of the less 

susceptible families although the stability of the less susceptible families, when planted separately 

needs further testing. Whereas the highest gains were detected in the younger Wilmot trial, lower 

genetic gains in the older trials could result from the development of other features such as thick bark 

that reduce the damage and possibly the differentiation of damage between families. 
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The estimated narrow-sense heritability of bark stripping (0.06 to 0.14) was within the range of what 

has been reported for the damage of conifer bark from insect herbivores (0.02-0.40) (de la Mata et al. 

2017; King et al. 1997; Moreira et al. 2013b; Yanchuk et al. 2008; Zas et al. 2017; Zas et al. 2005). 

Similarly, it is in the range of the narrow-sense heritabilities reported for resistance to pathogens (h2 = 

0.05 to 0.69) in Australian P. radiata plantations (Li et al. 2018). Although heritability was also lower 

than what was observed for P. radiata damage by an insect defoliator Thaumetopoea pityocampa (h2= 

2.04 ± 1.29) in this case the estimate was inflated possibly by a very small sample size or hidden 

relatedness of the individuals used (Moreira et al. 2013b). Estimates were also markedly lower than 

what has been reported for mammalian browsing on the needles of Douglas fir (h2 = 0.73) (Silen et al. 

1986). Since P. radiata has not coevolved with the marsupials and animals have generally had a 

relatively minor impact on the natural P. radiata stands in California, its place of origin, the presence of 

genetic variation could be a by-product of variation in resistance traits to other native pests in 

California where P. radiata originates (Mead 2013).  

 

Within a particular site, results indicated stability of genetic variation in the different years depicted by 

the high genetic correlation of the damage between years. Phenotypic correlations were moderate but 

significant in most cases. This may show that the families damaged in one year are consistently 

damaged in the subsequent year or it may be an effect of confounding since year 2 scores included 

old damage. Although the plant traits that correlate with bark stripping are likely to change with age as 

depicted by the difference in bark traits at 4 and 5 years, the changes are possibly consistent among 

the families for each year. The stability of the genetic signal between periods of contrasting 

developmental stages, (for example at 2 years before rough bark development vs 5 years) is however 

not known. In the different years the genetic estimates are likely to be in part influenced by the amount 

of bark stripping. For most biotic stresses, differentiation between susceptibility categories becomes 

clearer with increase in damage intensity since high damage levels reduce the possibility of random 

escape from damage (Dieters et al. 1996; Dungey et al. 2009; King and Alfaro 2009; Zas et al. 2017). 

However, cumulative damage estimates are contingent upon survival of the trees and the rate of bark 

recovery after the initial damage. In the Wilmot site, for example, the cumulative bark stripping was 

lower possibly due to quicker recovery of the younger trees with low damage and the death of heavily 

damaged trees (but these factors were not assessed). The threshold damage to enable differentiation 

of the genotypes is also not known since susceptible individuals may appear resistant if they are 

located in areas of low bark stripping intensity and conversely the resistance in less susceptible 

genotypes can be overcome in regions of high intensity damage. Therefore, to correctly identify less 
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susceptible genotypes, selected families should be tested in areas of high bark stripping intensity. 

However, extreme browsing intensity may also lead to browsing of resistant families. 

 

Across sites, results showed that when genetic variation is well expressed the bark stripping in Beulah 

and Payanna, was strongly genetically correlated i.e. there was no evidence of G X E, reflecting the 

fact that genes influencing bark stripping and their expression is similar in the different environments. 

This suggests that the relative resistance of different families was not dependent on the environment 

and that the families that received relatively less bark stripping in Payanna were less bark stripped in 

Beulah and vice versa. Available studies that have shown strong positive correlations between the 

trials for damage by insect herbivores in Pinus radiata (Sasse et al. 2009) and in spruce (Alfaro et al. 

2008; Mottet et al. 2015; Zas et al. 2017) even when the pest was present of low density (Alfaro et al. 

2008). However, in the present case the high genetic correlations signalling low G X E were true for 

trials of the same age that had similar physical features to deter bark stripping, and how G X E is 

affected when the families are at different development stages needs to be tested.  

  

This study provides correlative evidence that physical traits play a role in moderating feeding 

preferences in the field. The role of the physical traits appears to vary depending on the age of the 

trees. In older trees (>3yrs) the physical traits of the bark (i.e. thick and rough bark) may offer 

protection against bark stripping. In the younger trees <3yrs, because the bark features are not well 

developed, the presence of obstructive needles and low branches are a significant explanatory factor. 

In Pinus radiata, bark thickness is positively correlated with age, height and DBH (Murphy and Cown 

2015). The negative association of bark stripping with rough bark development in Pinus radiata has 

been previously noted (Miller et al. 2014). Studies in other conifers have also indicated the importance 

of rough and thick bark (Jiang et al. 2005; Kuiters et al. 2006; Månsson and Jarnemo 2013; Nopp-

Mayr et al. 2011) and other physical features such as obstructive branches on the stem, in deterring 

mammalian herbivores (Månsson and Jarnemo 2013). Thick bark may be difficult to detach but has 

also been associated with high density of resin canals and gritty-textured sclereids (King et al. 2011; 

vanAkker et al. 2004). These traits often occur simultaneously but the relative importance of each trait 

is not known. In contrast, to the negative association observed for mammal damage, damage by 

insects has been positively correlated with rough bark in conifer species (Ferrenberg and Mitton 

2014), which highlights that resistance strategies may be herbivore specific. Rough bark supports 

wood-boring insects as the fissures are a safe place for oviposition or protection from natural enemies 

and environmental extremes. It is possible these organisms may be unpalatable to bark stripping 

animals which could further contribute to reducing susceptibility. The bark features showed substantial 



37 
 

genetic variation and with no genetic constraints to their selection indicated by the tendency for 

positive genetic correlations among themselves Similarly, the bark features showed no obvious G X E 

interaction. The low G X E in the bark traits may partly explain the low G X E for bark stripping.   

 

Height also genetically correlated with bark stripping although the trend contrasted in the trials of 

different ages. In the young population (Wilmot), the herbivores appeared to be attracted to faster 

growing trees in contrast to the two older plantations where faster growing trees were less damaged. 

Comparison of relative size of trees damaged by insect and mammalian herbivores in other P. radiata 

populations (Zas et al. 2008), other conifer (Mottet et al. 2015; Zas et al. 2005) and non-conifer (Mayle 

et al. 2009) species suggests that trees most often damaged are those which are larger, dominant and 

growing most rapidly. Damage to larger trees has been correlated with high sap volume, phloem 

thickness and sap sweetness (Kenward et al. 1996). Also, faster growing trees are known to invest 

less in defence (Ferrenberg et al. 2015). In young trees, bigger trees possibly give more bark per unit 

stripping than smaller trees and could possibly produce have more sugars. In the study populations 

however, bigger trees were also associated with more obstructive branches which may have 

countered the positive effect of height on bark stripping to a certain extent. However, it has also been 

suggested that fast growing trees should be able to recover more quickly than slow growing trees 

(Gianoli and Salgado-Luarte 2017) - an aspect of tolerance that needs further research for P. radiata 

bark stripping. For commercial P. radiata plantations intended for timber production, tolerance will 

however be less desirable since bark stripping exposes tissues to fungal attack with subsequent 

rotting which reduces timber quality (Cukor et al. 2019). Bark stripping may also reduce tolerance to 

freezing that may be associated with subsequent chemical changes (Fedderwitz et al. 2020). In 

contrast, results showed that in older conifer plantations animals prefer smaller trees possibly with 

less developed bark features, depicted in the tendency for positive correlation between rough bark or 

bark thickness with height and DBH. Selectivity of smaller trees by bark stripping mammals seems to 

be the norm in mature conifer plantations (Akashi and Terazawa 2005; Jiang et al. 2005; Månsson 

and Jarnemo 2013). However, the presence of residual variation that could not be explained by 

physical or growth traits suggests the possible involvement of chemical features in driving differences 

in bark stripping. This is yet to be tested. 

 

Assuming the family ranking for bark stripping is not expected to change in different environments as 

this study suggests, the genetic gain for resistance in bark stripping was estimated to be between 4-

19% when 20% of the most resistant families are selected for deployment. This is in the genetic gain 

range that has been estimated for herbivory in conifers (Silen et al. 1986). In Douglas-fir, based on 
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selecting 10% of the most resistant families against deer browsing, genetic gain was estimated at 11% 

(Silen et al. 1986). Similarly, against the pine weevil in Picea abies, genetic gain varied between 8-

50% (Zas et al. 2017). However, the genetic gain will be influenced by the proportion of the less 

susceptible families selected and applies to current field setting. Whether or not the less susceptible 

families retain their rank when grown separately needs to be tested.  

 

2.5 Conclusion 

Variation in bark stripping is under low but significant additive genetic control and when well 

expressed the genetic signal appears to be relatively stable across different environments. This 

provides an opportunity for selection for reduced susceptibility with potential genetic gains for 

deployment and breeding. Based on phenotypic and genetic correlations several physical plant traits 

were identified as likely contributing to the variation in bark stripping. Initial variation in damage may 

be affected directly by plant size and accessibility but later, factors like bark thickness and bark texture 

become important. However, the presence of unexplained genetic variation after accounting for these 

physical factors suggests other explanatory plant traits may be involved such as chemical traits.   
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Chapter 3: Variation in constitutive and induced chemistry in the needles, bark 

and roots of Pinus radiata 

 

3.0 Abstract 

The capacity to cope with pests and pathogens depends in part on the variation of defences within 

trees. In conifers, studies have shown extensive variation in allocation of secondary metabolites to 

above ground plant parts. Plant-wide variation in constitutive and induced chemistry that includes the 

chemistry of roots has rarely been studied, and few studies have also considered the distribution and 

role of primary metabolites like the sugars in defence or susceptibility. Here we examined the 

constitutive and induced variation of primary and secondary metabolites in the needles, bark and roots 

of Pinus radiata. A total of 81 compounds were examined. Results indicate differential constitutive 

qualitative and quantitative allocation of individual sugars, fatty acids, mono-, sesqui- and di- 

terpenoids as well as phenolics between the needles, bark and roots. Constitutively, the bark overall 

had more compounds and a higher amount of most secondary compounds. Within plant parts, the 

allocation of compounds in the roots differed from that of the needles and bark, for example, glucose 

dominated in the needles and bark and fructose dominated in the roots. Of the fully identified 

secondary compounds, monoterpenoids dominated in all the three plant parts but with different 

qualitative patterns. Following methyl jasmonate and artificial bark stripping treatments, a marked 

reduction in sugars but weaker changes in secondary compounds were detected in the needles and 

bark. Responses in the roots were minor but the few that were detected were mostly in response to 

the bark stripping treatment. Changes in correlations among chemicals within plant parts and between 

the same compound across the different plant parts were also detected after stress treatments. 

Overall, results showed that the constitutive composition in the roots differs from that of the bark and 

needles in P. radiata and inducibility is stronger in the primary than secondary metabolites. Differential 

response of the plant parts to treatments was also detected. This detailed assessment of P. radiata 

chemistry in the needles, bark and roots, before and after stress will potentially facilitate the 

identification of traits associated with susceptibility or resistance to mammalian bark stripping.  
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3.1 Introduction 

The chemistry of different parts of a plant may not be homogeneous given the different roles they play 

in plant-environment interactions. In conifers, differences in chemical composition and concentration 

between plant parts of individual trees of the same species have been well-studied from the 

perspective of defences (Moreira et al. 2012a; Tomlin et al. 2000). The main secondary metabolites, 

the terpenes and phenolics (Franceschi et al. 2005), have been implicated in resistance to various 

pests and pathogens in the needles and bark (Lundborg 2016; Moreira et al. 2012a; Reglinski et al. 

2017). The defences that are constitutive or induced locally at the site of damage or plant/tissue wide 

(i.e. systemically), can differ among plant parts (Franceschi et al. 2005; Iason et al. 2011; Moreira et 

al. 2013a; Moreira et al. 2012a). The time course of induced defences following herbivore cues or 

chemical elicitors such as methyl jasmonate has also been shown to differ for different compounds 

and between plant parts (Lewinsohn et al. 1991; Miller et al. 2005). Various theories explain the 

spatial and temporal distribution of chemistry in plants. However, within an individual, the optimal 

defence hypothesis predicts that defences will be concentrated in parts or tissues that are at higher 

risk of herbivory and/or tissues that are more valuable (McKey 1974). In conifers, more studies have 

focussed on above ground parts showing differential allocation of chemistry between needles, bark or 

xylem (Lewinsohn et al. 1991; Miller et al. 2005). However, plant-wide variation in constitutive and 

induced chemistry that includes the chemistry of roots has rarely been studied. 

 

Roots can be equally at risk from pests and pathogens as above ground parts, especially in the 

juvenile stages (Hernandez-Escribano et al. 2018; Moreira et al. 2012a; Senior et al. 2018) and 

consequently might also be well defended. Roots can also be involved in above-ground responses to 

stresses by their direct effects on water and nutrient acquisition, and through correlation, trade-offs or 

constraints with the bark and/or needles (Huber et al. 2005; Moreira et al. 2012b). However, few 

studies have investigated conifer root defences and the relationship between below and above ground 

defences is poorly understood (Moreira et al. 2012b; Poopat 2013). Results from these studies 

indicate that there is variability in root secondary chemistry, and this can change in response to 

different treatments. For example, in response to above ground treatment with methyl jasmonate, 

Poopat (2013) and  respectively showed changes in some root monoterpenes in Pinus edulis and root 

physiological traits in Pinus pinaster. Similarly, application of methyl jasmonate to the roots of 

Pseudotsuga menziesii caused significant changes in the above ground tissues (Huber et al. 2005). In 

Pinus radiata, a link between below and above ground defences has been signalled by the elevated 

above ground resistance to stem infections following root exposure to Fusarium circinatum which 

causes pitch canker (Swett and Gordon 2017). Root defences are particularly relevant given the 
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importance of chemical communication at the root-soil interface (Senior et al. 2018), the effects of 

plant-derived metabolites on the soil microbiome assemblage (Senior et al. 2018), and the possible 

influence of this microbiome on plant resistance (Mhlongo et al. 2018).  

 

While secondary metabolites are often implicated in plant defence, there is increasing evidence that 

sugars, such as glucose, fructose and sucrose, play direct and indirect roles in tolerance and 

resistance in many herbivore-plant systems. Sugars are the primary chemical substrates for structural 

material in plants other than lignin, but as part of the pool of non-structural carbohydrates (Hartmann 

and Trumbore 2016) they provide energy for defence responses and may also act as signal molecules 

(Schwachtje and Baldwin 2008; Tauzin and Giardina 2014). The biosynthesis of terpenes has a 

metabolic cost (Gershenzon 1994), in which case, a high supply of sugars should lead to increased 

resistance (Clancy 1992). A positive correlation between primary and secondary chemistry has also 

been shown in other conifers (Sampedro et al. 2011; Villari et al. 2014). Studies also indicate that 

reallocation of sugars in stressed plants is a major consequence of the induced response to herbivory. 

Reduction of sugars in the stem tissues following application of methyl jasmonate was for example 

reported in P. pinaster (Sampedro et al. 2011), which may explain the increase in biomass in fine 

roots (Moreira et al. 2012b). In other trees, evidence of herbivore-induced resource reallocation to 

roots in response to herbivory, including increased transport of sugars, has been demonstrated (Babst 

et al. 2008). However, the direction of resource movement will depend on the kind of herbivory (Frost 

and Hunter 2008).  Nevertheless, roots are a key sink for sugars (Babst et al. 2005), and this sink of 

non-structural carbohydrates is important for enhancing tolerance (Zhou et al. 2015). The importance 

of sugars in defence may also be linked to their potential as a food source for herbivores, in which 

case they may attract herbivores in contrast to their positive roles in resistance and tolerance. 

Although no studies show that sugars alone are sufficient to differentiate resistant and susceptible 

hosts, there is a clear indication that sugars play a role in host selectivity (Kurek et al. 2019; Snyder 

1992). Few studies have also considered the distribution of primary metabolites like the sugars in 

conifers (Cranswick et al. 1987). 

 

The conifer Pinus radiata (D. Don, Pinales: Pinaceae) is native to California (Axelrod 1988) and is one 

of the most widely planted commercial timber trees in temperate regions of the world, mainly because 

of its fast growth rate and wood quality (Burdon et al. 2017). However, the needles, bark and roots of 

P. radiata are attacked by numerous insects, fungi and animals (Hernandez-Escribano et al. 2018; 

Mead 2013; Miller et al. 2014; Reglinski et al. 2017), with up to 600 pests and pathogens recorded 

(Brockerhoff and Bulman 2014). While the constitutive and induced chemistry of Pinus radiata needles 
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and bark have been reported (Bonello et al. 2001; Moreira et al. 2012a), there are no comparative 

studies which include roots. There is also limited understanding of the timing of induction across plant 

parts. Of particular interest is the response of bark chemistry as bark stripping by mammalian 

herbivores has become a major problem in many Pinus species (Arhipova et al. 2015), including in P. 

radiata plantations in Australia (Miller et al. 2014; Page et al. 2013). The chemical defences of P. 

radiata against bark stripping by mammals have not yet been investigated. In other conifer species, 

very few studies have documented defences against mammalian herbivores and the role of terpenes 

and phenolics remains unclear (Bucyanayandi et al. 1990; Ilse and Hellgren 2007; Snyder 1992; 

Zhang and States 1991). In P. radiata, a single study has implicated sugars. Page et al. (2013) 

attributed bark stripping to higher sugars in the bark compared to surrounding food sources. However, 

the interaction of sugars with secondary compounds to explain the observed variation in mammalian 

bark stripping has not yet been investigated.  Here we examined the induced chemical responses to 

bark stripping in P. radiata and compared these responses to the comparatively well-documented 

responses to methyl jasmonate. We asked: 1) Are there qualitative and quantitative differences in 

constitutive primary and secondary chemistry between the needles, bark and roots of Pinus radiata?, 

2) What chemical changes occur in the different plant parts following artificial bark stripping and above 

ground application of methyl jasmonate?, and 3) do the amounts of compounds correlate between and 

within plant parts? 

 

3.2 Materials and Methods 

3.2.1 Experimental design 

In 2015, 6-month-old seedlings of 18 full-sib families (each with at least 4 seedlings) of Pinus radiata 

(D. Don) originating from the Radiata Pine Breeding Company deployment population were obtained 

from a commercial nursery. Seedlings were transferred into 145 mm x 220 mm pots containing 4L of 

basic potting mix (composted pine bark 80% by volume, coarse sand 20%, lime 3 kg/m3 and dolomite 

3 kg/m3) and raised outside in a fenced area (to protect against animals) at the University of 

Tasmania, Hobart. At 2 years of age, the 18 families were randomly allocated to three treatment 

groups (methyl jasmonate-MJ, artificial bark stripping-strip and control) each with 6 families (n=6 

seedlings per treatment). Within each family and treatment, the individuals from were again randomly 

allocated to different sampling times (T0-T4). T0 represents the time immediately before treatment 

applications. T1, T2, T3 and T4 represents respective sampling times at 7, 14, 21 and 28 days after 

treatment (MJ and strip) application. While all T0 seedlings, irrespective of group allocation were not 

treated, all the seedlings allocated to control were not treated all through the experimental period. MJ 
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was applied to seedlings of 6 families (n=6), strip treatments were applied to another 6 families (n=6), 

and the remaining 6 families were kept as controls (Figure 1). 25mM MJ (Moreira et al. 2013a) was 

applied by spraying the stem and needles with a fine mist from a hand sprayer until ‘just before run-

off’. The treated seedlings were sprayed in a well-ventilated area away from untreated seedlings to 

avoid cross contamination (Moreira et al. 2013a). For strip treatment, plants were artificially stripped 

by removing a 30 cm vertical strip, beginning 2 cm from the ground and covering 50% of the stem 

circumference, representative of the common upper threshold for browsing observed in natural field 

conditions. The three treatment groups (control, strip and MJ) were arranged in a randomized block 

design of 3 blocks in a shade house, each block comprising a treatment plot of two families (Figure 

3.1). Seedlings of each family were linearly arranged in a family plot. The treatment plots were 

separated within each block to minimise any interference which may arise from the MJ and bark strip 

treatments. 

 

Figure 3.1: Experimental lay out in the shade house. a) At T0, seedlings were destructively harvested just 

before treatment applications. At 7(T1), 14(T2), 21(T3) and 28(T4) days after treatment, one seedling from each 

family (total number of seedlings per sampling time =18, equivalent to the number of families, and n= 6 are the 

seedlings per treatment) were destructively harvested. b) Shows the experimental design of the treatments. 

Each set of squares is a table where we placed seedlings and represents a replicate block. Each row 

represents a different family. Each treatment plot comprised two family plots in which seedlings of the same 

family were arranged linearly in a row and a seedling sampled at random for studying temporal changes in 

chemistry. Each square represents a seedling and the number represents the order in which they were 
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sampled. Squares of the same colours received the same treatment i.e. yellow = MJ treated, blue = strip and 

green = control. The blank squares represent missing individuals. 

 

3.2.2 Sample processing and phytochemical extractions 

Each family had a minimum of 4 seedlings from which one seedling was randomly sampled weekly 

from T0-T4 (Figure 3.1). T0 represents the time immediately before treatment applications. T1, T2, T3 

and T4 represents respective sampling times at 7, 14, 21 and 28 days after treatment application.  

For constitutive estimates, one seedling from each family (n=18; 3 treatments x 6 families) was 

destructively harvested just before application of treatments (T0). Thereafter, one seedling from each 

family (n=18 per time; 3 treatments x 6 families) were destructively harvested at T1, T2, T3 and T4 to 

investigate induced changes in chemistry (Figure 3.1). At harvesting the seedling was divided into 3 

parts; the upper part with most needles for needle collection, the middle stem for bark collection and 

the stump in the soil for root harvesting. Because of the small size of the trees (average height = 130 

cm), most of the needles, bark and roots on the plant were collected. Needles were cut off the upper 

stem using scissors. From the middle stem, the bark was carefully peeled off avoiding the wood using 

a knife. The knife and scissors were cleaned with ethanol after every harvest to avoid cross 

contamination. For the roots, each stump was carefully removed from the pot and soil gently 

separated from the roots. The roots were further shaken and rinsed in water to remove any remaining 

soil and both fine and coarse roots were cut from the stump using garden clippers that were cleaned 

between samples. Needles, bark and roots from each seedling were kept separate and immediately 

put in a cooler and transported to a −20°C freezer for storage until chemical extraction.  

 

Chemical extractions (targeting terpenes, phenolics and sugars) were undertaken randomly and 

separately from each of the three plant parts (needles, bark and roots) from each seedling sampled. 

Dichloromethane (DCM) and acetone were used to extract polar and semipolar components 

respectively (Jones et al. 2002; Sasidharan et al. 2011). For DCM-extracted compounds, frozen 

material was cut into smaller sizes and 1.5 g of tissue was weighed and extracted in 10 ml of 99.9% 

dichloromethane (Jones et al. 2002). An internal standard (n-heptadecane) was added to 

dichloromethane at the concentration of 100 ppm. Acetone extracts were made from 50 g of freeze 

dried, ground material in 10 ml of 95% acetone, and sugars were extracted from 50 g of freeze dried, 

ground material in 10 ml of hot water (Jones et al. 2002). Rutin was used as the internal standard for 

the acetone extracts and final concentration of 0.2mg/L was added to each sample. Acetone extracts 

were then reconstituted by mixing 600 µl of the extract with 600 µl of 98:2 acetonitrile/water and then 

1ml of each extract was transferred into a vial and stored at –20°C until analysis. An extra sample of 
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each tissue per individual was weighed, dried in the oven at 110°C for 72 hrs and reweighed to 

convert samples from wet to dry weights. The DCM extracts that comprised the mono-, sesqui- and 

diterpenoids and volatile phenolic compounds were then analysed by gas chromatography-mass 

spectrometry (GC-MS). However, the diterpenoid resin acids in the GC-MS were quantified by the 

ultra-high-performance liquid chromatography-mass (UHPLC-MS). The acetone extracts that 

comprised the diterpenoid resin acids and fatty acids were analysed in the defrosted state by the 

UHPLC-MS. The sugars were also quantified by the UHPLC-MS. 

 

3.2.3 GC-MS analyses  

Gas chromatography-mass spectrometry (GC-MS) analyses were carried out on a Varian 3800 GC 

coupled to a Bruker-300 triple quadrupole mass spectrometer, using helium carrier gas at 1.2 mL/min 

in constant flow mode. The column was an Agilent DB-5 column (30 m x 0.25 mm internal diameter 

and 0.25 µm film). Injections of 1 µL were made using a Varian CP-8400 autosampler and a Varian 

1177 split/splitless injector in split mode with a 4:1 split ratio.  The injector temperature was 250ºC. 

The column oven was started at 60ºC then ramped to 290ºC at 15ºC/min with a 1-minute hold at the 

final temperature. The ion source was held at 220ºC, and the transfer line at 290ºC. Electron 

ionisation mass spectra at 70eV were acquired over the range m/z 35 to 400 over 130 ms, with 

additional Selected Ion Monitoring (SIM) channels in 4 different time windows, all with 15 ms dwell 

time per channel. Window 1 from 0 to 8 minutes included m/z 41, 68, 69, 71, 93, 104, 135, 148, 151, 

178, window 2 from 8 to 9.7 minutes included m/z 81, 107, 121, 162, window 3 from 9.7 to 14.5 

minutes included m/z 69, 91, 109, 137, 177, 229.1, 239.2, 240.2 and window 4 from 14.5 minutes to 

the end included m/z 81, 109, 134 and 221.1. These ions were chosen based on initial full scan 

analyses to select compounds to target. Peak areas of relevant characteristic ions were measured 

using Bruker Workstation MS Data Review version 7.0, then scaled up to the equivalent total ion 

current based on measurements of the proportion the diagnostic ion was of the full spectrum (based 

on a good quality spectrum). All adjusted peak areas were finally expressed as ratios of the total ion 

current for each compound to the internal standard, n-heptadecane. The preliminary identification of 

compounds was based on the comparison of the retention time and mass spectra with the National 

Institute of Standards and Technology mass spectra library (NIST 2014). Most compounds gave ions 

that were structurally characteristic. The DCM components were expressed as milligrams of 

heptadecane equivalents (HE) per gram of dry weight of the sample (mg HE/g dw).  

 

3.2.4 LC-MS analyses  
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To analyse the acetone extracts, 12 µL aliquots were injected using a Waters Acquity H-series 

UHPLC coupled to a Waters Xevo triple quadrupole mass spectrometer operating MassLynx 4.1 

software. A Waters Acquity UHPLC BEH C18 column (2.1 x 100 mm x 1.7 micron particles) was used, 

with 1% acetic acid (Solvent A) and acetonitrile (Solvent B) at a flow rate of 0.35 mL/min and, after an 

initial hold for 30 seconds at 85% A:15% B, a linear gradient was followed to 45% A:55% B at ten 

minutes, then a further linear gradient to 5% A:95% B at 15 minutes with a one minute hold at the final 

value, before re-equilibration to starting conditions for 4 minutes. The mass spectrometer was 

operated in negative ion electrospray mode. The ion source temperature was 150°C, the desolvation 

gas was nitrogen at 950 L/hr, and the desolvation temperature was 450°C and needle voltage 2.7 kV. 

Based on some trial full scan analyses, a range of target ions were included in Selected Ion 

Monitoring (SIM) mode with dwell time of 27 ms per channel, as well as a full scan from m/z 120 to 

1200 over 250 ms. The SIM channels chosen (with cone voltages in brackets) were 277 (20), 285(25), 

289 (25), 297 (C19 fatty acid standard)(25), 303(25), 317(30), 319(30), 333 (30), 349 (30), 365 (30), 

405(30), 465(35), 481 (35), 495 (40), 561 (30), 575 (30), 577 (30), 579 (30), 609.1 (rutin standard) 

(40), 709.2 (40), 739.2 (40), 863.2 (45). Data were analysed with MassLynx and TargetLynx software. 

The LC-MS analytes were expressed as milligrams of rutin equivalents (RE) per gram of dry weight of 

the sample (mg RE/g dw). 

 

To further characterise the diterpenoid resin acids, selected dichloromethane and acetone extracts 

were evaporated to dryness. The residue was redissolved in methanol/ chloroform/ HCl (10:1:1) and 

heated at 80oC for 1 hr. The methylated diterpenoid resin acids were then extracted with 

hexane/chloroform (4:1) and the resulting extract analysed by GC-MS. However, to verify the retention 

times for final identification of the resin acids by UHPLC-MS, standards namely; abietic acid, 

neoabietic acid, dehydroabietic acid, palustric acid, levopimaric acid, pimaric acid and isopimaric acid 

were purchased from Santa Cruz Biotechnology and analysed by UHPLC-MS. 

 

For sugars, 1 µL aliquots were injected using the instrument described above for the acetone extracts. 

A Waters Acquity UHPLC BEH Amide column (2.1 x 50 mm x 1.7-micron particles) was used, with 

0.4 % ammonia in water (Solvent A) and acetonitrile (Solvent B) at a flow rate of 0.37mL/min, with a 

gradient from 20% A:80% B to 28% A:72% B at 2 minutes, before immediate re-equilibration to initial 

conditions for 2.5 minutes. The mass spectrometer was operated in negative ion electrospray mode, 

and selected ion monitoring was used to detect the specific sugars, which were quantified by external 

calibration. The ion source temperature was 150°C, the desolvation gas was nitrogen at 1000 L/hr, 

and the desolvation temperature was 450°C and needle voltage 2.7 kV. The [M-H]- ion was monitored 
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for monosaccharides and inositol at m/z 179.1 and for sucrose and other disaccharides at m/z 341.1. 

Cone voltages were 17 V for monosaccharides and 24 V for disaccharides. Standard curves were 

created over the range 0 to 500 ppm with standards at 0, 10, 25, 50, 100, 250 and 500 ppm. Non-

linear (second-order) equations were used for sucrose (typical R2= 0.99996) while linear fits were 

used for the monosaccharides (typical R2 = 0.9992).  Due to potential drift in MS response, the full 

standard curve was repeated after every tenth sample, and a 250 ppm QC was run in the middle of 

each set of ten. Under these conditions, fructose eluted at 1.11 minutes, glucose at 1.38 minutes, 

sucrose at 2.09 minutes and inositol at 2.49 minutes. In a typical large set of analyses, with 18 250 

ppm QC samples run, the average values reported for fructose, glucose and sucrose were 249 ppm, 

248 ppm and 250 ppm respectively, with relative standard deviations of 2.0%, 1.5% and 1.8% 

respectively. Accurate mass data for molecular formula assignment of major unknowns were acquired 

by direct infusion on a Thermo Orbitrap mass spectrometer operating at a resolution of 15,000. 

 

Compounds that were quantified by the GC-MS were summed according to functional groups and 

expressed in their relevant units. Therefore, in addition to individual compounds, analysis was made of 

total compound groups i.e. total monoterpenoids, sesquiterpenoids, GC-MS diterpenoids and 

phenolics. In addition, because LC-MS sugars were quantified in absolute amounts, total sugars were 

also derived as the sum of individual sugars. The rest of the compounds analysed by the LC-MS i.e. 

the fatty acids and the LC-MS diterpenoids were not summed, except for one group of resin acids 

(C20H30O2 resin acids [41]) that eluted together that was considered in the total compound groups. All 

amounts were expressed relative to the internal standard except the sugars that were measured in 

absolute amounts. The terpenes and phenolics are broadly categorised under secondary metabolites 

while the sugars as well as fatty acids are primary compounds. All individual compounds that were 

identified have been given a unique identifier based on Supplementary Table 10 for ease of location in 

the tables. 

 

3.2.5 Statistical analyses  

All statistical analyses were conducted using the software R (version 3.6.0) (R Core Team 2018). 

Principal components analysis (PCA), using FactoMinerR version 1.41 (Lê et al. 2008) was used to 

summarise the overall difference between samples from the three plant parts, to understand the 

constitutive chemistry (T0 samples) contributing to the variation and visualize differences between 

plant parts. The PCA was based on the correlation matrix among all identified chemicals compounds. 

Differences between plant parts along each principal component were tested with the Kruskal–Wallis 

(KW) one-way analysis of variance since the normality assumption did not hold. Comparisons 
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between plant parts were undertaken for the first 13 principal components (PCs) and significance was 

set at p-value of 0.05/39 (13 PCs X 3 parts) = 0.001 following Bonferroni adjustment.  

 

To further characterize the differences in the plant parts, arithmetic means and standard errors (se) 

were calculated for all compounds that were detected. For compounds detected in more than one 

plant part, differences among plant parts were tested with Kruskal–Wallis (KW) one-way analysis of 

variance and where significant results were obtained a Dunn’s test (Dn) was performed to identify the 

parts which were significantly different. Bonferroni adjustments (Bf) were made to account for multiple 

tests for individual compounds. Significant p-values were considered at 0.05/n, where n is the number 

of statistical tests (McDonald 2009), for example a p-value of 0.05/48 = 0.001 was considered 

significant for tests between plant parts for individual monoterpenoids, where 48 = 16 monoterpenoids 

X 3 plant parts.  

 

To further consider relationships between individual constitutive compounds between plant parts, 

Spearman’s rank correlations were used. The tests were performed on all the compounds that were 

detected in more than one plant part and unadjusted p-values were reported. To have an idea of 

correlations within plant parts, Spearman’s rank correlations were tested for only the compound 

groups (total mono-, sesqui- and GC-MS diterpenoids, sugars as well as the LC-MS resin acid group) 

 

To detect induced changes, the mean amounts of compounds after treatment (induced; T1-T4) were 

compared. Induced changes for each time were detected by comparing the MJ and strip treatments to 

the control for that time (Figure 3.1) (Morris et al. 2006). Spearman’s rank correlations were also 

tested for induced chemistry to detect whether there are any shifts in the correlations following 

treatment. Between plant parts, the correlations between plant parts for all compounds that were 

detected in more than one plant part were assessed from T1 – T4 (but for only methyl jasmonate 

induced chemistry for simplicity of presenting the results).  Within plant parts, Spearman’s rank 

correlations were tested between total compound groups at T1 (7 days after treatment) only. Absolute 

p-values are reported for the correlations.  

 

3.3 Results 

Across all samples, a total of 81 compounds or compound groups were detected. Full or partial 

identification was achieved for 52 of these, which included 15 monoterpenoids, 20 diterpenoids, 3 

sesquiterpenoids, 7 phenolic compounds, 4 sugars and 3 fatty acids (Table 3.1). The 28 unidentified 

compounds/groups had molecular weights ranging between 104 – 770, and where group allocation 
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was possible these included terpenes and sugars (Table 3.1). The major C20H30O2 
[41]

 diterpenoid resin 

acids (Table 3.1) that had very close retention times by LC - MS were measured as a group. All the 81 

compounds were given a unique number for ease of identification in the tables. 

 

3.3.1 Constitutive differences between plant parts 

Overall differences 

Of the 81 compounds/groups, 62 compounds were detected in the bark, 45 in the needles and 35 in 

the roots (Table 3.1). While 20 of these compounds were detected in all the three plant parts, 22, 13 

and 5 compounds were detected only in the bark, needles and roots respectively (Supplementary 

Figure 3.1; Table 3.1). The constitutive (T0) data for all plant parts, was reduced to 13 principal 

components that had eigen values greater than one and these explained 90.3% of the total variation. 

PC1, PC2 and PC3 explained 37.2%, 20.2% and 7.3% of the chemical variation, respectively. The 

three plant parts were clearly differentiated in the two-dimensional space defined by the first (PC1) 

and second (PC2) principal components (Figure 3.2).   
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Figure 3.2: PC1 vs PC2 separating the needle, bark and root samples of Pinus radiata seedlings based on 

their constitutive chemistry. The principal component analysis was based on all compounds detected at T0. The 

three plant parts were clearly differentiated in the two-dimensional space defined by the first (PC1) and second 

(PC2) principal components. PC1 and PC2 respectively explained 37.2% and 20.2% of the chemical variation. 

PC1 strongly differentiated the needles and bark, with bark samples having high values relative to the needles 

(p <0.001; Dn, Bf) and the roots (p <0.01; Dn, Bf). PC1 did not differentiate between needles and roots. 

Increasing values along PC1 were mainly associated with unknown diterpene Mol Wt 272 [38], unknown m/z 109 

B [34], vanillin [74], unknown m/z 109 A[33] and citronellic acid [7] (top 5 compounds). The root samples were 

strongly differentiated from the needle samples along PC2 (p <0.001; Dn, Bf), with the bark samples 

intermediate and marginally discrete from the roots (p <0.05; Dn, Bf) but not from the needles. PC2 values were 

higher in the roots than the bark (p <0.05; Dn, Bf). Increasing values in the needles along PC2 were mainly 

associated with palmitic acid[85],, unknown Mol Wt 770 [98], unknown Mol Wt 740 B [97], unknown C20H30O6 A 

[52], unknown C20H30O2 A [47] (top 5 compounds). The third principal component explained 7.3% of the 

variance further separated the roots from the bark (p <0.05; Dn, Bf) and needles (p <0.05; Dn, Bf) but not 

needles from bark. Roots had higher values on PC3 that was mainly associated with glucose [77], copalol [24], 

agathadiol [22], unknown m/z 109 A [33] and β-pinene [4] (top 5 compounds). The other principal components did 

not provide further resolution between the three plant parts. The numbers in parentheses are the identifiers to 

enable quick location of the compounds in the tables. 
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Differences between plant parts for total compound groups 

Plant parts differed in the amounts of total compound groups. These differences are summarised in 

Figure 3.3. In summary, while total monoterpenoids were lower in the roots, they were not significantly 

different among plant parts after Bonferroni (Bf) adjustment. Total GC-MS diterpenoids were lower in 

the roots than the bark (p <0.01; Dn, Bf) and needles (p <0.001; Dn, Bf) but were not significantly 

different between needles and bark. Sesquiterpenoids were not detected in the roots and were not 

significantly different between the bark and needles. The amount of total phenolics were almost 

absent in the roots hence were lower than in the bark (p <0.001; Dn, Bf) and needles (p <0.01; Dn, 

Bf). Needles and bark also differed in total phenolics (p <0.05; Dn, Bf). Total sugars were lower in the 

roots than in the needles or bark (p <0.001; Dn, Bf) with no difference between needles and bark. The 

LC-MS C200H30O2 resin acids [41] that eluted as a group were higher in the bark (p <0.001; Dn, Bf) than 

the needles, with the roots intermediate and not significantly different from the bark or the needles. Of 

the secondary compounds identified by the GC-MS, the total monoterpenoids were higher than 

diterpenoids, sesquiterpenoids and phenolics in all the three plant parts. The total sesquiterpenoids 

were the smallest fraction of the total identified GC-MS terpenoids. 

 

Differences between plant parts for dominant individual compounds  

Within total compound groups, there were some individual compounds that were dominant, and these 

varied with plant part (Table 3.1, Figure 3.4). The monoterpenoids were dominated by β/α -pinene [1,4] 

followed by β-phellandrene [3] in all the three plant parts (Figure 3.4). The GC-MS diterpenoids were 

dominated by agatholal [23] and agathadiol [22] both in the bark and needles and by methyl 

levopimarate [27] in the roots. The sesquiterpenoids in the needles were dominated by the unknown 

sesquiterpenoid alcohol [21] and those in the bark dominated by trans-farnesol [20]. No sesquiterpenoids 

were detected in the roots. The phenolics were dominated by trans-coniferyl alcohol [73] in the needles 

and the bark. Ethyl 4-ethoxybenzoate [62] was the only phenolic compound detected in the roots. 

Glucose [77] dominated the sugars in the needles and bark, but fructose [76] dominated in the roots 

(Figure 3.4). However, sucrose was not detected in the needles. Of the fatty acids, palmitic acid [85] 

dominated in the needles and linoleic acid [83] in the needles and the roots. Overall, based on the 

dominant compounds the needles and the bark had a more similar chemical profile relative to the 

roots. 



52 
 

 

Figure 3.3: Relative amounts (mg/g±SE) of total: a) monoterpenoids, b) GC-MC diterpenoids, c) 

sesquiterpenoids, d) phenolics, e) sugars and f) C20H30O2 resin acids in the bark, needles and roots of Pinus 

radiata seedlings at T0. No sesquiterpenoids were found in the roots. Different letters adjacent to the plot 

indicate significant differences (p < 0.05) between plant parts based on Dunn's multiple comparisons test for 

post hoc evaluations with Bonferroni adjustments. The resin acid group was not derived by summation of 

individual resin acids quantified by the LC-MS. This group represents a group of LC-MS resin acids that eluted 

together. The terpenes and phenolics are expressed as mg heptadecane equivalents (HE)/g dw and resin acids 

are expressed as mg rutin equivalents (RE)/g dw, as no absolute quantitation was carried out on these 

analytes. The absolute amounts of sugars are quantified in mg/g dw. 
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Figure 3.4: Mean constitutive amounts of the dominant individual: a) monoterpenoids, b) diterpenoids, c) sesquiterpenoids, d) phenolics, e) sugars and f) fatty acids at T0, 

showing differences in the dominant compounds of the bark, needles and roots of Pinus radiata. The terpenes and phenolics are expressed as mg heptadecane equivalents 

(HE)/g dw and fatty acids are expressed as mg rutin equivalents (RE)/g dw, as no absolute quantitation was carried out on these analytes. The absolute amounts of sugars are 

quantified in mg/g dw.
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Table 3.1: Mean and standard error (se) of the relative constitutive (T0) amounts of all the identified secondary and primary metabolites in Pinus radiata and the changes that occurred after treatment in the needles [N], bark 

[B] and roots [R]) at different times. The GC-MS components (monoterpenoids, sesquiterpenoids, GC-MS diterpenoids and phenolics) are expressed as milligrams of heptadecane equivalents (HE) per gram of dry weight of 

the sample (mg HE/g dw) and the LC-MS analytes (LC-MS diterpenoids and fatty acids) are expressed as milligrams of rutin equivalents (RE) per gram of dry weight of the sample (mg RE/g dw). Sugars are expressed in 

mg/g dw. Compounds labelled “A”, “B”, “C” and “D” are isomers. The letters adjacent to the means relate to differences in the means, where different letters indicate that the means are significantly different, otherwise, they 

are not. Significance was set at p <0.05 based on Kruskal Wallis with Dunn test with Bonferroni correction. Changes after methyl jasmonate [MJ] or strip [S] treatments are also indicated where, ↑ and ↓ signify that the 

amount of compound increased or reduced respectively after treatment in the bark[B], needles[N] or roots[R]. For the induced changes, the unadjusted p-values based on Kruskal Wallis tests are indicated. Only induced 

changes associated with a p <0.05 are indicated but the bold values retained their significance after Bonferroni correction. T0 represents the time before treatment applications. T1, T2, T3 and T4 represents 1, 2, 3 and 4 

weeks after treatment application, respectively. All compounds were given a unique identifier based on Supplementary Table 10 (after Chapter 9), for ease of identification. The identifiers in this table are not sequential as 

some compounds indicated in Supplementary Table 10 were not identified in this data set 

 

  Mean ± se (T0)     

  Molecules Bark (n=18) Needles(n=18) Roots (n=18) T1 T2 T3 T4 

 total monoterpenoids 4.488±1.058a 3.152±0.743a 1.564±0.369a  ↑B MJ (0.02) ↑B MJ (0.01)  

 total GC-MS 
diterpenoids 

0.705±1.662a 1.391±0.328a 0.085±0.020b ↑R MJ (0.04) ↑B MJ (0.04) ↓R S (0.008)  

 total sesquiterpenoids 0.080±0.019a 0.073±0.017a      

 total phenolics 0.069±0.016a 0.016±0.004b 0.000±0.000c  ↓N MJ (0.03); ↓N S (0.03)   

 total sugars 55.350±4.689a 59.668±4.657a 28.083±2.408b ↓B MJ (0.0008), S (0.03); 
↓N MJ (0.0007) 

↓B MJ (0.0004); ↓B S (0.02); 
↓N MJ (0.002) 

↓B MJ (0.006); ↓N (0.03) ↓B MJ (0.008) 

  Monoterpenoids               

1 α-pinene 0.824±0.204a 0.699±0.171a 0.394±0.038a     ↑B MJ (0.003); ↑B S (0.02); 
↓R S (0.04) 

↓R S (0.01) 

2 α -terpineol 0.001±0.000     ↑B MJ (0.01)       

3 β-phellandrene 0.147±0.049a 0.218±0.091a 0.023±0.006a   ↑B MJ (0.01)     

4 β-pinene 2.640±0.594a 2.004±0.676a 0.974±0.078a   ↑BMJ (0.01) ↑B MJ (0.006) ↑N MJ (0.03) 

5 camphene 0.014±0.003a 0.011±0.004a   
 

↑B MJ (0.02) ↑B MJ (0.002); ↑B S (0.008)   

6 citronellal 0.072±0.021             

7 citronellic acid 0.023±0.006             

8 citronellol 0.144±0.039             

9 γ-terpinene 0.009±0.003             

10 limonene 0.124±0.037a 0.213±0.068a 0.011±0.001b         

11 linalool 0.003±0.001         ↑B MJ (0.003) ↑B MJ (0.04) 

12 myrtenoic acid     0.002±0.000         

13 sabinene 0.346±0.117a 0.006±0.002b 0.105±0.018a     ↑N S (0.02)   

14 terpinene-4-ol 0.011±0.003             

15 terpinolene 0.130±0.047a   0.055±0.008a       ↓R MJ (0.04) 

16 unknown Mol Wt 150 0.011±0.004a 0.004±0.003b           
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  Sesquiterpenoids               

17 bicyclogermacrene 0.006±0.001a 0.009±0.002b           

20 trans-farnesol 0.041±0.021a 0.015±0.003a           

21 unknown 
sesquiterpenoid alcohol 

0.033±0.015a 0.049±0.014a           

                  

  GC-MS diterpenoids               

22 agathadiol 0.243±0.057a 0.739±0.120a           

23 agatholal 0.305±0.072a 0.510±0.145a         ↑N MJ (0.01) 

24 copalol   0.136±0.066           

25 levopimaral 0.023±0.006a   0.024±0.003a   ↑B MJ (0.02); ↑B S (0.03) ↓R S (0.02)   

26 methyl dehydroabietate 0.023±0.005a 0.006±0.001a 0.018±0.004a     ↑B MJ (0.03); ↓R S (0.01) 
 

27 methyl levopimarate 0.082±0.019a   0.043±0.010a   ↑B MJ (0.006) ↑B S (0.01) ↑B MJ (0.04); ↑B MJ (0.03); 
↓R S (0.02), MJ (0.02) 

  

28 unknown C19H26 0.029±0.007         ↑B MJ (0.02)   

                  

  LC-MS diterpenoids               

29 dehydroabietic acid 4.050±0.287a 0.897±0.116b 1.727±0.093b       ↑B MJ (0.04) 

30 unknown diterpene-1 0.213±0.203             

31 unknown diterpene-2     0.154±0.037     ↓R s (0.01)   

32 unknown diterpene-3 1.218±0.415a 0.000±0.000b 0.047±0.011a         

33 unknown m/z 109 A 0.056±0.014a   0.017±0.001a   ↑B MJ (0.006); ↑B S (0.01) ↑B MJ (0.03); ↑B S (0.03); 
↓R S (0.01) 

  

34 unknown m/z 109 B 0.120±0.023a 0.016±0.004b       ↓R s (0.01)   

35 unknown m/z 121     0.030±0.011     ↓R MJ (0.01)   

36 unknown m/z 134 0.486±0.086       ↑B MJ (0.005)     

37 unknown m/z 239   0.027±0.007a 0.001±0.000a  ↓R S (0.03)       

38 unknown Mol Wt 273 0.020±0.005         ↑B MJ (0.02) 
 

39 unknown C20H30O2 A     0.602±0.052         

40 unknown C20H30O2 B   0.760±0.106           

41 C20H30O2 resin acids 2.603±0.613a 1.576±0.372b 2.016±0.475ab    ↑B S (0.03) 

42 unknown Mol Wt 304 A   0.003±0.001         ↑N MJ (0.03) 

43 unknown Mol Wt 304 B   0.106±0.016   ↓N MJ (0.008) ↑N MJ (0.04)     

44 unknown Mol Wt 304 C 0.204±0.028             

45 unknown Mol Wt 316 3.494±0.337     ↑B S (0.006)   ↑B MJ (0.009) ; ↑B S (0.01) ↑B S (0.02); ↑B MJ (0.03) 

46 unknown C20H30O3   3.512±0.365a 0.565±0.083b 1.829±0.106a ↑B S (0.01) ↓R S (0.04) ↑B MJ (0.009); ↑B S (0.01); 
↓R S (0.03) 

↑B MJ (0.02); ↑B S (0.02) 

47 unknown C20H32O3 A  1.587±0.203a 1.389±0.243a 1.172±0.094a ↑B S (0.04)     ↑B S (0.01); ↑N MJ (0.04) 

48 unknown C20H32O3 B    0.087±0.028        ↑N S (0.04)  ↑N S (0.04) 

49 unknown C20H32O3 C    1.042±0.169         ↑B S (0.01); ↑B MJ (0.02) 
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50 unknown C20H30O4 10.994±1.002a 1.201±0.165b 1.858±0.100b ↑B S (0.03) ↓R MJ (0.01); ↓R S (0.01); ↑B S (0.02); ↑N S (0.04); 
↓R S (0.03) 

↑B MJ (0.02); ↑B S (0.02); 

51 unknown C20H30O5 2.768±0.287a   0.076±0.014b     ↑B MJ (0.008); ↓R MJ (0.04)   

52 unknown C20H30O6 A 0.144±0.035         ↑B MJ (0.02) ↑B S (0.005) 

53 unknown C20H30O6 B   0.191±0.051          ↑N MJ (0.04) 

54 unknown C20H30O6 C 1.37±0.071     ↑B S (0.02)   ↑B MJ (0.004), ↑B S (0.01) ↑B MJ (0.01) 

                  

  phenolics               

56 anethole 0.001±0.000     ↑B MJ (0.004) ↑B MJ (0.01) ↑B MJ (0.003)   

62 ethyl 4-ethoxybenzoate 0.002±0.000a   0.0002±0.000a   ↓N MJ (0.03); ↓N S (0.03)     

65 methyl eugenol 0.001±0.000         ↑B MJ (0.03)   

68 pinosylvin dimethyl 
ether 

0.006±0.003             

70 raspberry ketone 0.019±0.004a 0.001±0.001b           

73 trans coniferyl alcohol 0.029±0.006a 0.015±0.006a   ↓B MJ (0.03)       

74 vanillin 0.010±0.002     ↑B MJ (0.04)   ↑B MJ (0.006)   

                  

  Sugars               

76 fructose 18.764±1.821ab 23.522±2.054a 14.658±1.319b ↓B MJ (0.001); ↓N MJ 

(0.001) 
↓B MJ (0.0004); ↓B S (0.02); 

↓N MJ (0.003) 
↓B MJ (0.006); ↓N MJ (0.04) ↓R s (0.04) 

77 glucose 32.888±2.887a 30.250±2.911a 10.802±0.933b ↓B MJ (0.0003), S (0.02); 
↓N MJ (0.0005) 

↓B MJ (0.0004); ↓B S (0.02); 
↓N MJ (0.002) 

↓B MJ (0.002) ↓B MJ (0.005);  
↓N MJ (0.04) 

78 inositol 2.466±0.470a 5.896±0.530b 1.830±0.275a ↓N MJ (0.02) ↓N MJ (0.002) ↓B S (0.03); ↓N MJ (0.002)   

79 sucrose 1.230±0.327a   0.793±0.147a ↓B MJ (0.03), S (0.01) ↓B MJ (0.0002); ↓B S (0.01) ↓B MJ (0.007); ↓R MJ (0.03) ↓B MJ (0.008) 

80 unknown disaccharide A 0.013±0.009a 0.003±0.003a 0.169±0.019b ↑N MJ (0.03); ↑R S (0.01)  ↑R S (0.04) 
 

  

81 unknown disaccharide B 0.162±0.025a 0.109±0.013a 0.027±0.010b ↓B MJ (0.04); ↓N MJ (0.001) ↓B MJ (0.04); ↓N MJ (0.001) ↓B MJ (0.002); ↓N MJ (0.002)  

82 unknown 
monosaccharide 

1.133±0.224a 0.278±0.113b           

                  

  fatty acids               

83 linoleic acid 0.908±0.059a 1.139±0.092a 0.285±0.022b ↓B MJ (0.02); ↓N MJ (0.008) ↓B MJ (0.004) ↓B MJ (0.009); ↓B S (0.006)   

84 linolenic acid 0.514±0.081a 1.778±0.254a 0.095±0.008b ↓N MJ (0.003)   ↓B MJ (0.04); ↓B S (0.01) ↑R S (0.04) 

85 palmitic acid 0.427±0.033a 2.162±0.085b 0.143±0.021c ↓N MJ (0.003)     ↑R MJ (0.007) 

                  

  Unknowns                

 86 unknown m/z 104 0.002±0.001             

 87 unknown m/z 111     0.005±0.002         

 88 unknown m/z 162 0.027±0.005             

 89 unknown m/z 272   0.107±0.008       
 

↑N S (0.04) 

 90 unknown Mol Wt 274 0.854±0.073a   0.142±0.009b ↑B S (0.02) ↓R MJ (0.02); ↓R S (0.02) ↓R S (0.03); ↑B MJ (0.02); ↑B 

S (0.02);  
↑B MJ (0.03) 
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 91 unknown m/z 302   0.816±0.192   ↓N S (0.03)       

 92 unknown Mol Wt 358   0.098±0.021        ↑N S (0.04)   

 93 unknown Mol Wt 362   0.096±0.025           

 94 unknown Mol Wt 406 A 0.175±0.013a   0.266±0.024a ↑B S (0.04) 
 

    

 96 unknown Mol Wt 740 A 0.098±0.017             

 97 unknown Mol Wt 740 B   0.188±0.021         ↑N S (0.003) 

 98 unknown Mol Wt 770   0.092±0.01         ↑N S (0.01) 

1 
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3.3.2 Constitutive correlations  

Between plant parts for total compound groups 

To examine the degree to which the amounts of compounds in the needles, bark and roots are 

correlated, Spearman rank correlations (rs) of the variation in constitutive chemistry (T0) between plant 

parts are shown in Table 3.2. The amounts of sesquiterpenoids in the needles and bark positively 

correlated among individuals (rs = 0.55, p <0.05). Total phenolics also correlated between the needles 

and the roots (rs = 0.48, p <0.05). No other significant correlation was detected for compound groups 

between plant parts.  

 

Between plant parts for individual compounds 

For individual compounds between plant parts for T0, only 5 significant correlations were detected 

(Table 3.2). Three of these involved positive correlations between amounts of limonene [10], 

bicyclogermacrene [17] and unknown sesquiterpenoid alcohol [21] in the needles and the bark (rs = 0.57 

to 0.64). The other significant positive correlation was the amount of glucose [77] in the needles and 

roots (rs = 0.54, p <0.01). The only significant negative correlation detected was linoleic acid [83] levels 

in the bark and needles (rs = -0.53, p <0.05) (Table 3.2). 

  

Within plants parts for total compound groups 

Within plant parts, Spearman rank correlations focussed on total compound groups (Table 3.3). For 

these groups, high and mostly positive correlations were detected. In the bark, the amount of total 

monoterpenoids positively correlated with total phenolics (rs = 0.92, p <0.001) and with total GC-MS 

diterpenoids (rs = 0.97, p <0.001). In the needles, high positive correlation was detected between total 

monoterpenoids and sesquiterpenoids (rs = 0.90, p <0.001) and the GC-MS diterpenoids (rs = 0.83, p 

<0.001). In the roots, the only significant correlation detected was between total monoterpenoids and 

GC-MS diterpenoids (rs=0.62, p <0.01). 
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Table 3.2: Spearman rank correlations between the bark [B], needles [N] and roots [R] of individual and total compounds that were identified in more than one plant part. 1 

Correlations were estimated before treatment (T0). Induced correlations from T1-T4 were estimated for only methyl jasmonate samples, for simplicity of illustrations. T1, T2, T3 2 

and T4 represents 1, 2, 3 and 4 weeks after treatment application, respectively. The unadjusted p-values that the correlations are different from zero are indicated as * p <0.05, 3 

** p <0.01 and *** p <0.001. All compounds were given a unique identifier based on Supplementary Table 10 (after Chapter 9), for ease of identification 4 

 5 

   T0     

  Compound/Part B/N B/R N/R T1 T2 T3 T4 

  compound groups                     

  total monoterpenoids 0.29   -0.08   0.06           

  total GC-MS diterpenoids 0.12   -0.10   0.38           

  total sesquiterpenoids 0.55 *         0.83(B/N)*       

  total phenolics -0.36   0.06   0.48 *         

  total sugars 0.49   0.43   0.94 **          

  Individual compounds                     

1 α-pinene 0.31   -0.14   0.18         
 

3 β-phellandrene 0.30   0.28   0.14   1.0 (B/R)*** ; 
0.9(B/N)*; 
 0.9(R/N)* 

0.9 (R/N)*   0.75 
(B/R)** ;  
0.56 (B/N)* 

4 β-pinene 0.28   -0.03   -0.07           

5 camphene 0.21                   

10 limonene 0.64 ** -0.20   -0.18           

13 sabinene 0.37   -0.14   0.05   0.94 (R/N)**       

15 terpinolene     -0.04               

16 unknown Mol Wt 150 -0.08                   

17 bicyclogermacrene 0.57 *                 

20 trans-farnesol 0.41                   

21 unknown sesquiterpenoid 
alcohol 

0.61 **                 

22 agathadiol 0.13                   
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23 agatholal 0.19                   

25 levopimaral     0.01               

26 methyl dehydroabietate 0.13   0.16   0.38           

27 methyl levopimarate     0.09              1.00 
(B/R)*** 

29 dehydroabietic acid 0.12   -0.14   0.2           

32 unknown diterpene-3 0.21   0.66 ** -0.07           

33 unknown m/z 109 A     0.25               

34 unknown m/z 109 B 0.15                   

37 unknown m/z 239         -0.27           

41 C20H30O2 resin acids 0.11   0.05   0.46   0.94 (B/R)**      0.90(B/R)* 

46 unknown C20H30O3   -0.26   0.36   0.13           

47 unknown C20H32O3 A  0.14   0.48   -0.42       0.58 (B/N)**  0.66 (B/N)* 

50 unknown C20H30O4 0.09   0.03   0.25         -
1.00(N/R)*** 

51 unknown C20H30O5     -0.06       0.84 (B/R)*   -0.88(B/R)*   

62 ethyl 4-ethoxybenzoate     -0.24       0.83 (B/R)* -0.88(B/N)*     

70 raspberry ketone 0.23           0.48 (B/N)*       

73 trans-coniferyl alcohol -0.28                   

76 fructose -0.37   0.08   0.49          -0.90 
(N/R)* 

77 glucose 0.66   0.43   0.77           

78 inositol 0.09   -0.26   0.54           

79 sucrose     -0.14               

80 unknown disaccharide A -0.20  -0.13  -0.65      

81 
unknown disaccharide B 

0.49  -0.15  -0.88 *    0.89 
(N/R)*** 

82 unknown monosaccharide 0.42          

83 linoleic acid -0.53 * 0.02   0.06     0.98 
(B/R)*** 
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84 linolenic acid -0.26   -0.25   -0.21           

85 palmitic acid -0.27   -0.18   0.04     -0.94 
(B/R)** 

  -0.9 (B/N)* 

90 unknown Mol Wt 274     -0.09               

93 unknown Mol Wt 406 A     0.07               

 

 

Table 3.3: Spearman’s rank correlations of the constitutive (T0) amounts of total compound groups within the bark [B], needles [N] and roots [R]. The unadjusted p-values that 

the correlation is different from zero are indicated as * p <0.05, ** p <0.01 and *** p <0.001.  No sesquiterpenoids were detected in the roots 

 

    Total monoterpenoids 
  

Total GC-MS 
diterpenoids 

  

Total 
sesquiterpenoids 
  

Total phenolics 
  

Total sugars 
  

Total GC-MS diterpenoids B 0.97 ***                 
  N 0.83 ***                 
  R 0.62 **                 
Total sesquiterpenoids B 0.62 ** 0.55 *             
  N 0.90 *** 0.77               
  R NA   NA               
Total phenolics B 0.92 *** 0.89 *** 0.55 *         
  N 0.19   0.15   0.25           
  R -0.07   -0.05   NA           
Total sugars B -0.11   -0.11   -0.26   -0.10       
  N -0.19   -0.01   -0.09   -0.03       
  R 0.30   0.32   

 
  0.18       

C20H30O2 resin acids B 0.32  0.28  0.52 * 0.30  -0.41  
 N 0.43  0.46  0.45  0.08  0.17  
 R -0.21  -0.27  NA  -0.10  -0.07  

 



62 
 

3.3.3 Induced responses 

Total compound groups 

To understand how the total compound groups responded to treatment, pair-wise Kruskal Wallis tests 

comparing the MJ and strip treatments to the controls at each point in time revealed minor changes in 

secondary compounds (Table 3.1). While non -significant changes were detected in the bark and 

needles for total monoterpenoids and phenolics, no response was detected in the total, sesqui- and 

diterpenoids at any time of measurements (Table 3.1), for both MJ and strip treated plants. The GC-

MS diterpenoids was the only total compound group that non-significantly responded to treatment in 

the roots at T3 in bark stripped samples (Table 3.1).  

 

Contrary to the lack of significant change in secondary compounds after treatment, the amount of total 

sugars was significantly reduced in the needles (p <0.001; Dn, Bf) and bark (p <0.001; Dn, Bf), but not 

in the roots. The reduction occurred only in the MJ treated plants at T1 and T2. In the strip-treated 

plants, the reduction in total sugars was noted but was not significant after Bonferroni correction 

(Figure 3.5)..  

 

The time progression of total compound groups appeared to differ between total compound groups, 

plant parts and treatments (Figure 3.5), for instance total sugars reduced after MJ treatment in all 

plant parts at all time points but tended to increase at some points following stripping. Overall, for the 

secondary compound groups, while an overall increase in amounts was detected over time in the bark 

for the total monoterpenoids, GC-MS diterpenoids and total phenolics, an overall reduction was 

observed in the needles and roots (Figure 3.5a and b). However, it was observed that in the case of 

the GC-MS diterpenoids, a reduction in the needles was followed by almost an equivalent increase of 

the total compounds in the bark at each time point, while for the monoterpenoids and phenolics 

reduction at T2 in the needles was followed by an increase in the amounts of these compounds at T3, 

which could signal translocation of metabolites from the needles to the bark. The LC-MS C20OH3002 

resin acids [41] was the only total compound group that notably changed over time by reducing in 

amount for both MJ and strip-treated plants at T2 (Figure 3.5), but these changes were not 

significantly different between the treated and control samples. The total sugars were generally 

reduced after treatment for both MJ and strip induced chemistry. Comparing the treatments, 

differences were noted in the bark especially for the total monoterpenoids and GC-MS diterpenoids 

that increased over time in MJ-treated plants (Figure 3.5a) but reduced in the strip-treated plants 

(Figure 3.5b), compared to the control. Although these changes were non-significant, this suggests 

that bark stripping may cause different chemical responses relative to other stressors.  
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Figure 3.5: Average progressive change in the amounts of total compounds in a) methyl jasmonate (MJ ) and b) bark strip-treated plants relative to the controls in the bark, 

needles and roots of Pinus radiata seedlings. At each time point, induced changes were detected by comparing the mean values for the MJ and control treatments (mean of 

treatment – mean of control) for a specific time. The comparisons were undertaken at each sampling time: T0 - before treatment applications, then, T1, T2, T3 and T4, which 

are respectively 7, 14, 21 and 28 days after treatment application. The terpenes and phenolics are expressed as mg heptadecane equivalents (HE)/ g dw, while the resin acids 

are expressed as mg rutin equivalents (RE)/g dw, as no absolute quantitation was carried out on these analytes. The absolute amounts of sugars are quantified in mg/g dw. 
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Individual compounds  

To detect the induced changes at individual compound level, results showed that similar to the non-

significant changes in total monoterpenoids and total phenolics, individual monoterpenoids (α-

terpineol, α-pinene, camphene, linalool) and phenolics (vanillin and anethole) responded to treatment 

especially in the MJ treated bark samples at different times but were marginally non-significant after 

Bonferroni adjustment (Table 3.1). Several unknown diterpenoids: unknown C200H30O6 C [54], 

unknown C200H30O3 [46] and unknown m/z 316 [45] in the bark also reduced with similar magnitude 

(Table 3.1). However, compounds in the roots responded to bark stripping more than MJ treatment. In 

the roots, α-pinene[1], methyl levopimarate [27], levopimaral [25], methyl dehydroabietate [26] and several 

unknowns; the diterpenoids unknown C20H30O3
 [46] and unknown C20H30O4 [50], unknown Mol Wt 274 

[90], unknown C19H26 [28] and unknown m/z 109 A [33] increased in bark stripped but not MJ treated 

samples but were marginally not significant after Bonferroni adjustment (p <0.1). This may indicate 

some level of specificity in plant responses to bark stripping relative to other stressors like MJ. Almost 

all the amounts of secondary compounds that reduced in the roots increased in the bark and/or 

needles, which may suggest a translocation from the roots to the bark or needles. 

 

Stronger changes were however, detected in individual sugars. In the bark of MJ treated plants, 

fructose [76] and glucose [77] reduced significantly at T1-T2.  Glucose [77] and the unknown disaccharide 

[81] also reduced significantly at T3. In the bark of strip-treated plants, non-significant reduction in 

glucose and fructose were noted at T1 and T2. In the needles, fructose [76] and glucose [77] reduced in 

the MJ treated plants at T1 and T2. Inositol in the needles also reduced at T2 (p <0.01; Dn, Bf). The 

unknown disaccharide [81] also reduced in the needles from T1-T3. The responses of individual sugars 

in the roots were not evident although sucrose reduced in the roots of MJ treated plants at T3, but the 

changes were not significant after p-adjustment. The individual fatty acids were more responsive in 

the needles than in the bark (Table 3.1). However, linoleic acid [83], reduced in the bark of strip-treated 

samples at T3 and in the roots palmitic acid increased non significantly in the MJ treated plants at T4 

(Table 3.1, Figure 3.5).  

 

As observed with the total compound groups, the induced responses and time progression of the 

individual compounds also varied between individual compounds, plant parts and treatments. For 

individual compounds that were identified in at least two plant parts, this is illustrated in 

Supplementary Figure 3.2. Secondary compounds for example generally increased in the bark but 

reduced in the needles and the roots following MJ treatment (Supplementary Figure 3.2). In contrast, 

following strip treatment, an overall reduction in secondary compounds was observed in all the plant 
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parts with a few exceptions for example the diterpenoids- levopimaral [25], methyl dehydroabietate [26] 

and methyl levopimarate [27] that increased in the bark following both MJ and strip treatments. Also, 

the sugars returned to normal levels faster in the strip than in the MJ treated plants. Overall, MJ 

caused greater responses than bark stripping in the bark and needles.  

 

Spearman’s rank correlations after treatment 

Between plant parts 

To detect the influence of treatments on the correlations, Spearman’s rank correlations after treatment 

showed more significant correlations for total compound groups and individual compounds between 

plant parts. Induced positive correlations were for example detected between the total 

sesquiterpenoids of the needles and the bark and the resin acids of the bark and the roots (Table 3.2). 

For individual compounds, the bark and the needles mostly exhibited positive correlations after 

treatment except for the negative correlation of alpha-pinene and palmitic acid at T4 (Table 3.2) 

 

Within plant parts 

Within plants Spearman’s rank correlations after treatment were performed only for compound groups 

at T1. Results showed that more correlations that were not detected at T0 became evident, for 

example significant negative correlation between total monoterpenoids and total phenolics in the 

needles. In contrast, some correlations detected at T0 were not significant after treatment, for example 

the correlation between the monoterpenoids and diterpenoids in the roots was not significant after 

treatment. Instead, in the roots a positive correlation was detected between the monoterpenoids and 

the resin acids in both the MJ and strip-induced chemistry. More significant correlations were detected 

with MJ- induced chemistry than strip-induced chemistry (Tables 3.4 a and b).
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Table 3.4: Spearman’s rank correlations of compound groups within plant parts at T1 in a) MJ-treated and b) strip-treated plants. P values were set as p <0.05*, p <0.01** and 

p <0.001***. The values were not Bonferroni adjusted 

 

a) MJ-treated plants   
Total 
monoterpenoids 

Total GC-MS 
diterpenoids 

Total 
sesquiterpenoids 

Total phenolics Total 
sugars 

Total GC-MS diterpenoids B 0.94 ** 
       

  N 0.94 ** 
       

 
R -0.14 

        

Total sesquiterpenoids B 0.54 
 

0.60 
      

 
N 0.83 * 0.89 * 

     

 
R NA 

        

Total phenolics B 0.43 
 

0.37 
 

-0.26 
    

 
N -0.83 * -0.77 

 
-0.54 

    

 
R 0.09 

 
0.31 

 
NA 

    

Total sugars B 0.71 
 

0.60 
 

0.09 
 

0.43 
  

 
N -0.71 

 
-0.60 

 
-0.43 

 
0.89 * 

 

 
R -0.54 

 
-0.09 

 
NA 

 
-0.66 

  

C20H30O2 resin acids B -0.09 
 

0.03 
 

0.71 
 

-0.37 
 

-0.60  
N 0.54   0.60   0.83   -0.37   -0.14  
R 0.83 * -0.31   .NA   -0.20   -0.31 
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b) strip-treated plants 

 
  

Total 
monoterpenoids 

Total GC-MS 
diterpenoids 

Total 
sesquiterpenoids 

Total phenolics Total 
sugars            

           

Total GC-MS diterpenoids B 0.09 
        

 
N 0.77 

        

 
R 0.14 

        

Total sesquiterpenoids B 0.81 
 

0.32 
      

 
N 0.71 

 
0.94 ** 

     

 
R NA 

 
NA 

      

Total phenolics B -0.31 
 

-0.09 
 

0.14 
    

 
N 0.03 

 
-0.14 

 
-0.31 

    

 
R 0.61 

 
0.49 

      

Total sugars B -0.31 
 

0.77 
 

-0.03 
 

-0.09 
  

 
N 0.60 

 
0.37 

 
0.26 

 
-0.31 

  

 
R 0.27 

 
0.11 

 
.NA 

 
0.54 

  

C20H30O2 resin acids B 0.49   0.03   0.09   -0.49   0.71  
N 0.83 * 0.09   0.46   -0.54   -0.14  
R 0.83 * -0.14   .NA   0.64   -0.26 

1 
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3.4 Discussion 

This study showed that: (i) P. radiata harbors a diversity of primary and secondary compounds that 

occur in one or other plant part and that the chemical profile between bark, needles and roots is quite 

different; (ii) the chemical compounds in the roots responded to above-ground treatment with methyl 

jasmonate and artificial bark stripping but the progression of the changes over time differed for the 

chemical compounds, plant parts and treatments; and that (iii) mostly positive correlations between 

the amounts of compounds occur within and between plant parts. To date, comparatively few studies 

have examined plant wide variation in chemistry across plant parts and this is the first study to 

examine the secondary compound composition of roots in P. radiata and how it varies to other plant 

parts. Results have shown that P. radiata roots have high numbers and amounts of both primary and 

secondary metabolites, with unique compounds also being recorded. However, the number of 

compounds detected in the roots was less than that detected in the bark and the needles. The 

allocation patterns of the amount of compounds in the roots vs bark and needles also varied 

depending on the class of chemical compounds, for example, with the sugars, fructose dominated in 

the roots while glucose dominated in the bark and the needles.  

 

The temporal and spatial variation in the amount of secondary metabolites in a plant is thought to be 

shaped by organisms that interact with the plant and the nature of the interactions (Franceschi et al. 

2005; McKey 1979). According to the optimal defence theory, secondary metabolites that act as 

defences will be concentrated in parts or tissues that are at higher risk of herbivory and/or tissues that 

are more valuable (McKey 1974). In this present study, the higher number of compounds in the bark 

may imply that the bark is more protected since it is nutrient rich and sought by many herbivores 

(Felicijan et al. 2015; Franceschi et al. 2005). In addition, bark damage may have a stronger impact on 

plant fitness as it increases the risk of secondary infection to the wood (Franceschi et al. 2005; Welch 

et al. 1988) and this can reduce the mechanical, hydraulic, and physiological integrity of a tree. 

Additionally, severe bark stripping can lead to complete ring-barking of the tree and tree death. 

Studies also show that Pinus radiata can easily compensate for a relatively high level of defoliation 

(Eyles et al. 2011; Lombardero et al. 2016), which may explain why the number and amount of 

secondary compounds was lower in the needles compared to the bark. Similar patterns have been 

detected in other P. radiata populations (Apetrei et al. 2011; Lundborg 2016). The lower amounts of 

mono and di-terpendoids and phenolics in the roots and the absence of sesquiterpenes altogether, 

implies that this plant part is not attacked by pests and pathogens to the same degree as the above 
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ground parts. However, currently, there are no exhaustive surveys of aboveground versus 

belowground herbivory in most conifers.  

 

In regards to specific individual secondary compounds, some compounds were unique or were 

expressed more in one plant part than the other parts. Although the compounds that have been well 

described in terms of their involvement in defence activities in conifers such as α/ β-pinene, camphene 

and limonene were found in all three plant parts, several monoterpenoids, diterpenoids and phenolics 

were below detection levels in the needles and the roots. Of note was the missing sesquiterpenoids in 

the roots. The role of sesquiterpenoids in pest-conifer relationships is not well established but their 

potential exploitation as precursors for insect hormones and also as signals to attract insect 

parasitoids in tri‐trophic interactions (Celedon and Bohlmann 2019) is consistent with the reduced 

exposure of roots to pests. We demonstrated an overlap in presence and quantity of some 

compounds between plant parts and this may be beneficial where some pathogens and herbivores 

are non-specific in plant part preferences; for instance, the pitch canker affects both below and above 

ground parts (Mead 2013). Conversley, different tissues may be attacked by different herbivores and 

pathogens and plant part specific profiles in compounds may cater to this, for example, bark-eating 

herbivores rarely overlap with leaf herbivores (Leimu and Koricheva 2006). All identified compounds 

have been previously reported in conifers (Salem et al. 2014; Zhang et al. 2016a), and most in Pinus 

radiata (Cool and Zavarin 1992). However, in this work many unidentified diterpenoids were also 

important in differentiating the needles, bark and roots and require further investigation.  

 

The constitutive amount of total and individual sugars and fatty acids was highest in the needles, in 

this study, which is consitent with other studies in P. radiata (Cranswick et al. 1987) and other conifer 

species (Dobbelstein et al. 2019; Piper et al. 2017). Interestingly, we did not detect any sucrose in the 

needles. Sucrose is the end product of photosynthesis and the primary sugar transported in the 

phloem of most plants and is expected to be higher than gulcose and fructose (Tauzin and Giardina 

2014). Its absence may suggest that the needles were not photosynthetically very active at the time of 

sample collection or that sucrose is inherently lower than the other sugars in P. radiata. Cranswick et 

al. (1987) also showed that sucrose was relatively low compared to glucose or fructose in P. radiata 

needles compared to the bark and the roots. Sugars in conifers are very prone to seasonal changes 

and, therefore, the amount detected in this study could possibly be affected by sampling time 

(Cranswick et al. 1987; Dobbelstein et al. 2019). The sampling in this study was done at the onset of 

winter (May-June), when photosynthetic activity of most plants is reduced. Generally, the distribution 

of non-structural carbon compounds (NSC); including glucose and fructose between 
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photosynthesizing needles and non- photosynthesizing plants parts has been viewed as a passive 

sink–source process resulting from imbalances between carbon supply and demand (Wiley and 

Helliker 2012). However, the results may also highlight compound-specific, environmental or even 

seasonal/age related accumulation of primary and secondary metabolites in Pinus radiata. 

 

Maintaining metabolite diversity may pose possible conflicts in resource allocation in the plant that 

manifest as negative correlations between pairs of traits that share a resource (Kant et al. 2015; 

Saeki et al. 2014). In the constitutive amounts, the results, however, showed limited trade-offs in 

resource investment between and within plant parts for individual primary and secondary metabolites, 

or between secondary compounds, except for one fatty acid - linolenic acid. Similar studies with pine 

species (Deslauriers et al. 2015; Sampedro et al. 2011; Villari et al. 2014) including P. radiata (Moreira 

et al. 2013b) have also not found strong evidence of trade-offs. For constitutive secondary 

metabolites, it has been suggested that trade-offs are not expected where resources are sufficient 

(Sampedro et al. 2011) and when reduction in herbivory is achieved by multiple defence traits (Pearse 

et al. 2018), for example in the juveniles of P. radiata that support diverse defoliating and bark-

specialized insects and mammals and root feeding insects and pathogens (Mead 2013; Moreira et al. 

2012a). Trade-offs are also uncommon for long-lived trees that need to defend themselves against a 

wide array of herbivores (Iason et al. 2011; Snyder 1993). Sometimes, trade-offs are disrupted in 

crops like P. radiata that have undergone breeding and cultivation that reduces pest and pathogen 

pressures in non-native habitats and subsequent investment in secondary compounds (Kempel et al. 

2011).  

 

Roots, bark and needles were differentially responsive to MJ and stripping 

This is the first study to show induced chemical responses in roots of Pinus radiata to above ground 

stressors. In response to treatment, roots mostly reduced the amounts of secondary metabolites and 

increased the sugars and fatty acids. Individual compounds in the roots responded more to artificial 

bark stripping than methyl jasmonate. Although the changes were non-significant after the Bonferroni 

adjustment, the results suggest that roots are more sensitive to mechanical damage than other kinds 

of above ground stresses. Overall, differential responses were detected between compound groups, 

plant parts, and treatments at each time period. Stronger responses were detected in primary 

compounds compared to secondary compounds, with a very strong overall reduction of sugars 

especially in the bark and the needles. The consistent reduction of glucose, fructose, sucrose and 

fatty acids at various times of measurement following the treatments suggests their significant 

involvement in induced stress responses. The reconfiguration of sugars following herbivory and similar 
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stress treatments could result from diminished photosynthesis, which would decrease the overall pool 

of energy reserves as a result of damage to photosynthetic machinery, loss of photosynthetic tissue, 

and/or disruption of the vasculature affecting water and sugar transport, and/or from a diversion of 

resources (Gershenzon 1994; Huot et al. 2014; Schwachtje and Baldwin 2008). While the reduction in 

photosynthesis has been observed in P. radiata after methyl jasmonate treatment (Gould et al. 2008), 

this has been explained by the following premises:  

I. resistance traits are costly and frequently up-regulated after attack - the cost is reflected as 

trade-offs that manifest as negative correlations among chemical traits or between chemicals 

and growth, reproduction or storage; For this study, within plant parts, although there was a 

tendency for induced sugars to negatively correlate with secondary compounds, the 

correlations were not significant and so there is no evidence that defence is costly. This 

contrasted with similar studies in conifers that provide evidence that the biosynthesis of 

terpenes is energetically demanding and induction relies on phloem carbohydrate resources 

(Goodsman et al. 2013; Raffa et al. 2017; Roth et al. 2018). Instead of a carbohydrate‐based 

resource trade‐off, Machado et al. (2017) suggested hormonal antagonism to explain the 

reduction of sugars; However, sugars may also be used as carbon skeletons for replacement 

of lost tissues (Stein and Granot 2019). 

II. resources are translocated to areas inaccessible to herbivores to support the physiological 

adjustments for subsequent recovery- an aspect of tolerance that has been implicated in other 

Pinus species (Moreira et al. 2012b; Sampedro et al. 2011). However, this was not strongly 

supported by this study because the unknown disaccharide increased nonsignificantly in the 

roots;  

III. sugars function as signals in defence pathways, where sugar signals can reportedly be 

generated either by carbohydrate concentration and relative ratios to other metabolites, such 

as C:N or by flux through sugar-specific sensors and/or transporters (Eveland and Jackson 

2012). Although it was noted that the ratio of total monoterpenoids to total sugar increased 5-

fold in MJ treated samples (data not shown), the detailed analysis was out of scope for this 

chapter; 

IV. induced changes in primary metabolism could themselves be defensive, but whether sugars 

have a direct defensive role needs to be tested in Pinus radiata. The direct role of sugars in 

defence has been demonstrated in Pseudotsuga menziesii, where sucrose increased the 

resistance of the trees to western spruce budworm (Choristoneura occidentalis) (Clancy 

1992). Similarly, in most fungal pathogen–plant systems, a high level of sugars in plant 

tissues enhances plant resistance (Morkunas and Ratajczak 2014). However, indirectly, the 
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reduction in sugars that was observed in this study may reduce forage quality for herbivores 

or flow into the root-soil interface to attract beneficial soil microbes as an indirect defence 

response (Schwachtje and Baldwin 2008; Zhou et al. 2015).  

 

Few other studies in conifers have directly demonstrated a reduction in sugars following real herbivory 

or MJ application (Roth et al. 2018) while some work has shown a change in the physiological 

functions of affected/treated plants with implications for sugar levels (Gould et al. 2008; Ralph et al. 

2006; Roth et al. 2018). The reduction in sugars contradicts observations with Pinus pinaster that did 

not show any response in bark sugars following methyl jasmonate treatment (Sampedro et al. 2011) 

and in Fagus sylvatica bark that showed an increase in glucose and fructose after bark stripping 

(Saint-Andrieux et al. 2009). Sometimes, responses of sugars will depend on the amount of bark 

removed from the plant, for example girdling experiments show an accumulation in leaves and bark 

above the girdle and a strong decline in soluble sugar and starch concentrations in organs below the 

girdle (roots) (Li et al. 2003).  

 

The strong reduction of fatty acids in the needles and the bark following treatments in this and similar 

studies (López-Goldar et al. 2018) shows that they may have a role in plant defences, because fatty 

acids can be precursors to the formation of secondary compounds (Kachroo and Kachroo 2009). 

Additionally, direct defence properties of specific fatty acids against the fungus Dothistroma pini in the 

needles of Pinus radiata have been documented (Franich et al. 1983).  

 

For secondary compound groups and individual compounds, relatively weak up- and down-ward 

responses of individual mono- and diterpenoid compounds in the bark, needles or roots following both 

bark stripping or methyl jasmonate treatments were detected. The sesquiterpenoids did not respond to 

either bark stripping or MJ application. This contrasted with results from Moreira et al. (2013a) who 

detected significant changes in individual terpenoids of the bark after 5 days of treatment with the large 

pine weevil and the pine processionary caterpillar in P. radiata and P. pinaster. Therefore, differences 

in induction within and between populations may reflect the timing of assessment and the nature of the 

treatments to which the plants are subjected. Nevertheless in this study, the patterns of induced 

changes differed between plant parts. While an overall increase in amounts of compounds was detected 

over time in the bark, an overall reduction was observed in the needles and roots. The patterns seemed, 

in part, to reflect reallocation of compounds from the needles to the bark since the reduction in the 

needles was synchronized with the increment in the amount of compounds in the bark at the same time 

point or the subsequent time point. It was also noted that most compounds that tended to reduce in the 



73 
 

roots mostly increased in the bark. The negative correlations of compounds between plant parts after 

treatment may also suggest reallocation of the involved compounds. Metabolite reallocation following 

stress have been suggested in conifers (Hammerbacher et al. 2011; Wu et al. 2017). Especially for 

phenolics, studies indicate that induced accumulation can be due to rapid translocation (Hammerbacher 

et al. 2011). For terpenoids, although passive changes have been indicated in the constitutive form, it 

has been suggested that all stress-induced terpenes are entirely of a de novo nature (Wu et al. 2017). 

 

The responsive compounds that included particularly the monoterpenoids and phenolics are normally 

thought to increase defence against stresses (Karban and Myers 1989). The monoterpenoids (e.g. α-

pinene, linalool and camphene) that marginally increased following treatment in this study have been 

extensively studied in insect/plant systems as feeding deterrents, pheromone precursors and synergists, 

and also as feeding attractants at low concentrations (Erbilgin et al. 2017; Miller and Borden 2000). 

However, the roles of these compounds as induced defences against mammalian herbivores has been 

poorly studied and volatiles may be important in mammals that use olfactory cues in determining forage 

quality, such as marsupials (Stutz et al. 2017). The roles of phenolics and diterpenoids in defence 

against major herbivore groups in conifers has not yet been thoroughly investigated (Sunnerheim-

Sjöberg and Hämäläinen 1992; Vourch et al. 2002; Whitehill and Bohlmann 2019). The importance of 

phenolics has been often studied in relation to abiotic stress, where they play important role in several 

physiological processes to improve the tolerance and adaptability of plants under suboptimal conditions 

(Close and McArthur 2002; Sharma et al. 2019). Some unidentified compounds significantly responded 

to the treatments suggesting that they could have a direct, additive or synergistic defence role, possibly 

in less studied herbivores. 

 

 Induced responses following real or artificial herbivory have been widely reported in conifers. Within 

Pinus radiata, most studies have reported significant increase in total or individual terpenes and 

phenolics following herbivory (Gould et al. 2009; Lundborg et al. 2019; Moreira et al. 2012a; Zas et al. 

2014), with a few exceptions (Lombardero et al. 2013). The differences in timing of expression of 

different compounds in the needles and the bark were similar to other observations in P. radiata 

(Reglinski et al. 2017) and other Pinus species (Raffa and Smalley 1995; Reglinski et al. 2017). The 

expression of compounds at different times is thought to be related to the associated costs of expression 

(Bonello et al. 2006). While bark stripping can elicit a response in Pinus radiata, the quantitative 

responses at each time point were weaker than those from methyl jasmonate treatment. Other studies 

have also reported similar results in P. radiata (Gould et al. 2009). In other conifer species, studies 
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showed limited induction in needles or bark following artificial wounding (Hudgins 2003; Pham et al. 

2016).  

 

After treatment, this study detected more significant correlations of compounds within and between 

plant parts compared to the chemistry before treatment. The negative correlations are usually 

attributed to resource limitations especially in this case where the traits involved rely on a common 

pool of resources (Sampedro et al. 2011). Whether the observed trade-offs are genetic or can 

translate into reduced growth remains to be tested. Gould et al. (2008) also showed that in P. radiata 

the costs of expressing defences may be short lived and easily compensated for and are expressed 

only under nutrient deficiency (Sampedro et al. 2011). Hence further understanding the genetic basis 

of these trade-offs should provide a foundation for the development of breeding strategies. However, 

the induced responses of methyl jasmonate were more visible in the bark than in the needles or roots, 

which was contrary to the theory of trade-offs between constitutive and induced chemical defences 

that has been documented in pine trees (Moreira et al. 2014; Sampedro et al. 2011).  

 

3.5 Conclusion 
 

This study has shown that plant parts harbour unique assemblages of compounds. The allocation of 

compounds to the roots differs from that of the needles and bark. The results showed strong changes 

in sugars and fatty acids that has not be documented in most conifers and limited induction of 

secondary compounds. The importance of sugars and fatty acids in conifer defences need a more 

comprehensive investigation. This detailed assessment of P. radiata chemistry in the needles, bark 

and roots, before and after stress will potentially facilitate the identification of related defence traits. 

However, incorporating the effect of genetics and age for target herbivore species will further our 

understanding of Pinus radiata defences, and their potential in the management of browsing 

herbivores. 
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Supplementary Figure 3.1: Number of compounds detected in the bark, needles and roots of Pinus radiata at 

T0 (before treatment). 
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a) Monoterpenoids 

Monoterpenoids - MJ 

 
 

Monoterpenoids - strip 
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b) Sesquiterpenoids  

 

Sesquiterpenoids - MJ 

 
 

 

 Sesquiterpenoids – strip 
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c) Diterpenoids 
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d) Phenolics 

 

Phenolics - MJ 

 
 

 

Phenolics – strip 
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e) Sugars  
Sugars - MJ 

 
Sugars – strip 
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f) Fatty acids 

Fatty acids - MJ 

 
Fatty acids – strip 

 
Supplementary Figure 3.2: Time progression and average change in the amount of individual compounds that were identified in at least two plant parts and their response to 

treatment relative to the control in the bark, needles and roots of Pinus radiata seedlings.  At each time point, induced changes were detected by comparing the mean values 

for the treated and control samples (mean of treatment – mean of control) for a specific time. The comparisons were undertaken at each sampling time: T0 - before treatment 

applications, then, T1, T2, T3 and T4 which are respectively 7, 14, 21 and 28 days after treatment application.  
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CHAPTER 4: Chemical traits that predict susceptibility of Pinus radiata to 

marsupial bark stripping  

 

4.0 Abstract 

Herbivory is determined by a balance between primary metabolites that are the sources of nutrition and 

secondary metabolites that act as defences. Identifying the compounds that influence herbivory may be 

a useful tool in the management of forest systems. This study aimed to detect and identify both 

constitutive and induced compounds that are associated with genetic differences in susceptibility of 

Pinus radiata to bark stripping by marsupials. An untargeted profiling of 83 primary and secondary 

compounds of the needles and bark samples from seedlings of 21 susceptible and 21 resistant families 

was undertaken. These were among the most and least damaged families, respectively, identified 

within a trial of 74 families that were exposed to natural field bark stripping by marsupials. Experimental 

field plants were protected from bark stripping by marsupials and were subjected to artificial bark 

stripping treatment to examine induced chemistry compared to unstripped control plants which were 

also used to examine constitutive chemistry between resistant and susceptible families. Machine 

learning (random forest), partial least squares plus discriminant analysis (PLS-DA) and principal 

components analysis with discriminant analysis (PCA-DA) as well as univariate methods were used to 

identify the most important total compound groups and individual compounds differentiating the 

resistant and susceptible families. In the bark, the constitutive amount of two sesquiterpenoids - 

bicylogermacrene and an unknown sesquiterpenoid alcohol - were shown to be of higher levels in the 

resistant families, whereas the constitutive sugars; fructose and glucose as well individual phenolics 

were higher in the more susceptible families. The chemistry of the needles was not useful in 

differentiating the resistant and susceptible families. After artificial bark stripping, the terpenes, sugars 

and phenolics responded in both the resistant and susceptible families by increasing or reducing their 

amounts that levelled the differences in the amounts of the compounds between the different resistant 

and susceptible classes at the constitutive level. Overall, based on the families with extreme values for 

less and more susceptibility, differences in the amounts of secondary compounds were very subtle and 

susceptibility may outweigh defence in this non-native tree herbivory system.  
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4.1 Introduction 

Host plant resistance may be influenced by constitutive and induced primary and secondary chemical 

compounds, as well as morphological, physical and life history characteristics (Carmona et al. 2011; 

Mumm and Hilker 2006). Identifying which plant traits drive differences in herbivore damage is a key 

challenge in understanding plant-herbivore interactions. In conifers, differences between herbivory 

resistant and susceptible genotypes have been associated with variation in constitutive physical traits 

including outer bark, exudation of oleoresin from wounds, resin ducts, specialized phloem parenchyma 

cells and induced anatomical responses (Franceschi et al. 2005; Whitehill et al. 2019). Chemical traits 

also play a role, where constitutive and induced terpenoids and phenolics have been identified as the 

most important secondary chemical groups in conifers (Keeling and Bohlmann 2006). Their roles as 

toxins, digestion inhibitors, deterrents, host recognition cues or precursors to physical defence systems 

in both the bark and needles has been documented for major herbivore groups ranging from insects to 

mammals (Farentinos et al. 1981; O'Reilly-Wapstra et al. 2007; Snyder 1992). However, studies show 

tremendous variation in the expression of these traits between species (Raffa et al. 2017), genotypes 

(Moreira et al. 2013a) and tissues (Chapter 3 ; Moreira et al. 2012a). The response to specific defences 

by different herbivores is also variable (Iason et al. 2011; Vourc'h et al. 2002b).  

 

While the role of secondary compounds in defence of conifers has been a focus of previous studies, the 

role of primary compounds in directly differentiating susceptibility classes has not been as widely 

investigated (Clancy 1992; Zou and Cates 1994). Available evidence suggests that overall 

attractiveness to herbivores is determined by the balance between secondary and primary compounds 

in plants (Agrawal and Weber 2015; Kimball et al. 1998; Kurek et al. 2019; Snyder 1992). Sugars can 

for example be an attractant to herbivores (Felicijan et al. 2015; Kurek et al. 2019) although it has also 

been suggested that a high supply of sugars may increase resistance by enhancing the formation of 

terpenes, which have a high metabolic cost (Gershenzon 1994). The role of primary compounds as 

precursors to secondary compounds and as sources of energy and stored reserves for compensatory 

regrowth after damage is relatively well known, as is their signalling role (Goodsman et al. 2013; Raffa 

et al. 2017; Roth et al. 2018; Schwachtje and Baldwin 2008). Hence, to accurately predict variation in 

resistance, a detailed characterization of both the constitutive and induced primary and secondary 

chemical profile of a species is needed. 

 

Despite our general understanding of chemical defences in conifers, most of the reported studies are 

associated with insects (Phillips and Croteau 1999). Little is known about how specific defence 

mechanisms act against mammalian herbivores. The impacts of defences may differ between 
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vertebrate and invertebrate herbivores reflecting differences in physiological adaptations, body sizes, 

herbivore-associated cues and the amount of tissues removed by the herbivore (Boyle 1999; Raffa 

2014). In conifer–insect systems for example, monoterpenes have been shown to exert major defence 

roles (Raffa and Smalley 1995; Seybold et al. 2006) since they are exploited as primary chemical cues 

and/or precursors for the aggregation pheromones of insects. This may not be the case for mammalian 

herbivores that mostly rely on visual cues (Stutz et al. 2017). Also, in contrast to insect species that 

complete their life cycle in a single host, for example the well-studied conifer bark beetles (Schowalter 

2012), mammalian bark browsers that readily adjust foraging behaviour on spatial and temporal criteria 

may be less affected by chemical defences (Gill 1992; Miller et al. 2014; Rea et al. 2014). While a few 

studies provide some evidence of the importance of conifer terpenes and phenolics on mammalian 

browsing (Farentinos et al. 1981; Snyder 1992), most instances of resistant traits have been 

circumstantial, with limited experimental evidence. 

 

Pinus radiata is native to California but is a major plantation tree species in Australia that experiences 

significant bark stripping by kangaroos and wallabies (Miller et al. 2014; Page et al. 2013). In several 

Australian P. radiata family trials, variation in bark stripping was only partially associated with physical 

structures, suggesting that chemical traits may also be important (Chapter 2 ; Miller et al. 2014). While 

no specific compounds have been reported to differentiate resistant and susceptible genotypes for most 

P. radiata herbivores, the constitutive and induced chemical compounds in the bark and needles that 

can potentially be involved in defence have been documented (Chapter 3 ; Lundborg 2016; Moreira et 

al. 2013a; Moreira et al. 2012a; Reglinski et al. 2017). Page et al. (2013) also indicated that seasonal 

increase in P. radiata bark stripping by the marsupials may be driven by higher levels of sugars in the 

P. radiata bark relative to other winter forages, but no genetic-based intraspecific differences within P. 

radiata populations were documented. To my knowledge, whether primary compounds contribute to 

genetic variation in bark stripping has not been tested in conifer species. 

 

The present study investigated the chemical compounds associated with family differences in the 

susceptibility of P. radiata to bark stripping. This study aimed to determine: 1) the constitutive 

compounds in bark and the needles that differentiate relatively least damaged (hereafter referred to as 

resistant) and relatively most damaged (hereafter referred to as susceptible) families; 2) how the bark 

and needle chemistry of the resistant and susceptible plants respond to artificial bark stripping and 3) 

whether the resistant and susceptible families can be classified based on the induced bark and needles 

chemistry.  
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4.2 Materials and methods 

4.2.1 Field trials 

The genetic field trial used for this study is the same decribed in Chapter 2. The trial was established at 

Wilmot in Tasmania, Australia (-41.4542710N, 146.1068010E, 580 m ASL) in 2015. Plant material was 

sourced from the New Zealand Radiata Pine Breeding Company. This material comprised 74 full-sib 

families that were planted in the field in an incomplete randomised block design of 26 replicates and 3 

incomplete blocks within each replicate that were planted in a square of rows and columns. The families 

were represented in each replicate as single tree plots and four filler positions were planted with 

deployment seedlots. The families were from 55 parents and 54 grandparents that were selected for 

vigour, stem form and branch characteristics. The field trial was fenced to prevent browsing. In 2017 

(25 months after planting), the gates were opened during winter for about two months to allow browsers 

access. To exclude browsers from some of the trees for the induction experiment (Experiment 2, 

below), six of the 26 replicates were further fenced. These six replicates are hereafter referred to as the 

‘protected replicates’ and were spread randomly throughout the trial. The remaining 20 replicates were 

freely accessible to browsing for 2 months for characterisation of the variation in mammalian bark 

stripping between families to determine the relatively resistant and susceptible families. The major 

herbivore responsible for bark stripping in Tasmanian plantations of P. radiata is the Bennett’s wallaby 

(Macropus rufogriseus subspecies rufogriseus). The density of the Bennett’s wallaby within the mid-

North of Tasmania where the genetic trial is situtated was estimated at 32.0 animals/km2 (DPIPWE 

2019). 

 

4.2.2 Experiment 1: Characterization of resistant and susceptible families 

At 25 months, in the 20 replicates that were accessible to browsers, the amount of bark removed from a 

tree relative to the stem circumference was scored on a scale of 0 - 5; 0 = no damage, 1 = <25%, 2 = 

25 - 50%, 3 = 50 - 75%, 4 = >75%, 5 = 100% damage (completely ring barked). Except for scores = 0 

and 100, the rest of the scores were converted to mid-point values for final analyses (Chapter 2). When 

trees exhibited bark stripping, the length of the strip was also scored on a scale of 1-7. where 1 = ~10 

cm, 2 = ~ 20 cm and so on.The height of all trees in all replicates was also measured at the same time 

(height 1). At ~ 30 months, all 26 replicates were exposed to natural browsing, and ~2 months later, 

after this second episode of browsing another height measurement was taken (height 2).  

 

To select the families that were more susceptible or less susceptible to mammalian bark stripping, best 

linear unbiased predictions (BLUPs) of family variation in bark stripping were estimated using linear 

mixed models described in Chapter 2. The general model is represented below 
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y = Xβ + Zu + e,                                       

where y is a vector of the responses (bark stripping), β is a vector of fixed effects (overall 

mean), X and Z are design matrices associated with the fixed and random effects, u is the vector of 

random effects (replicates, incomplete blocks within replicates and family), and e is a vector of random 

residuals. Restricted maximum likelihood (REML) estimates of (co)variance parameters and their 

standard errors were obtained by using the average information REML algorithm implemented in the 

ASREML-R version 4.1 (Butler et al. 2009).  

 

Based on the family BLUPs, 21 of the least damaged (resistant) and 21 of the most damaged 

(susceptible) families (42 families in total) were selected from the 74 families represented in the trial for 

further investigation. Families were chosen to maximise the differences in bark stripping BLUPs, but at 

the same time maintaining parental diversity in each population so that differences are not biased by a 

few parents. Therefore, some families with extreme values were not included if the parents were 

already well-represented. In total, 17 and 22 parents were represented in the selected resistant and 

susceptible families respectively, indicating a diverse representation of genotypes in each group.  

 

4.2.3 Experiment 2: Chemistry experimental design and phytochemical analysis 

Three weeks after the mammalian bark stripping assessment in Experiment 1, an experiment to assess 

constitutive and induced chemical differences between the susceptible and resistant families was 

initiated using all the individuals in the six protected replicates (n=393 trees). Half of the individuals 

sampled were subject to artificial bark stripping (treated trees) and half were untreated and used as 

controls. To apply the treatment, alternate plants in the six replicates were systematically treated 

regardless of family. The tree at one corner of each replicate was selected as a control tree, the next 

one in the column was selected for treatment and this pattern was consistently followed across the six 

replicates of the trial. The artificial bark stripping treatment (T0) was applied by removing a vertical strip 

of 15 cm of bark, starting 2 cm above the ground, and covering 30% of the stem circumference (Figure 

1). The dimensions were selected based on the most common browsing level observed in Experiment 

1. Three weeks after treatment (based on time of the biggest induced response observed in Chapter 3), 

bark and needle samples were collected from all control and treated trees. This bark sample was of 

similar size to the initial strip removed. It was taken from a similar height on both control and treated 

trees, being ~1 cm above the first strip on the treated trees, and was the bark strip used in the chemical 

analysis (Figure 4.1). All bark samples were collected from the north side of the stem. Needles were 

also sampled from each tree, ensuring mixture of young and old needles mostly at the top of the crown. 
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Samples were kept in a cool box until transportation to a -20⁰C freezer where they were stored until 

chemical extraction.  

 

Figure 4.1: Artificial bark stripping treatment and position of bark samples taken from 2-year old Pinus radiata in 

the Wilmot field trial.  

 

Chemical extractions were performed on only the 42 families identified as resistant and susceptible in 

Experiment 1. For each of the 42 families, two random samples were selected for extraction; one from a 

control and the other from a treated individual. Chemical extractions (targeting terpenes, phenolics and 

sugars) were undertaken separately from the needles and bark from each tree according to the 

methods described in Chapter 3 with the exception that (i) the dichloromethane (DCM) extraction was 

done in 5mL using 75mg of fresh material, and for the acetone extraction, nonadecanoic acid was used 

instead of rutin as an internal stardard at a concentration of 0.25mg/L. The sugars were extracted using 

hot water as previously described (Chapter 3). An extra sample of each plant part from each indivual 

was weighed, dried in the oven at 110°C for 72 hrs and reweighed to convert samples from wet to dry 

weights. The percentage water content was also expressed as the difference between the wet and dry 

weight of the sample divided by the wet weight. The extracts were stored at -18˚C until analysis. The 

DCM extracts were analysed by gas chromatography-mass spectrometry (GC-MS) while the acetone 

extracts and the sugars were analysed by ultra-high-performance liquid chromatography-mass 

spectrometry (UHPLC-MS). The GC-MS and UHPLC-MS conditions, as well as the procedure for 

identification and quantification of peaks, is detailed in Chapter 3. In addition to individual compounds, 

the total amounts of monoterpenoids, GC-MS diterpenoids, sesquiterpenoids, phenolics and sugars 

were derived by summing the respective individual compounds that belonged to each category 

(referred to as “total compound groups”). All quantified compounds were given a unique identifier 

(Supplementary Table 10) for ease of identification in the tables.  

 

 



88 
 

4.2.4 Statistical analysis  

Univariate and/or multivariate statistical methods are routinely used to rank and select the most 

important chemical compounds. Univariate methods such as analysis of variance consider each 

variable independently in contrast to multivariate approaches that consider several or all variables 

simultaneously, evaluating the joint distribution of some or all variables and estimating their relevance 

to the observed variation (Vinaixa et al. 2012). The most widely used multivariate methods for chemical 

data including the unsupervised principal component analysis and random forest, the supervised partial 

least squares- discriminant analysis, as well as univariate techniques, have been subject to detailed 

reviews (Chen et al. 2013; Saccenti et al. 2014). Random forest is a machine learning technique that 

uses multiple independent decision trees that are trained independently on a random subset of data to 

predict another set of independent samples (Breiman 2001). In understanding plant defences, 

multivariate techniques could be valuable since defence is usually achieved by multiple interdependent 

traits (Carmona et al. 2011). However, compared to univariate techniques, the implementation of 

multivariate techniques is computationally demanding and often difficult to interpret, and sometimes 

both techniques may give different results depending on parameterisation (Saccenti et al. 2014). 

Therefore, the implementation of both multivariate and univariate data analysis is strongly 

recommended to maximize the extraction of relevant information (Saccenti et al. 2014).  

 

To identify the most important total compound groups and individual compounds that differentiated the 

resistant and susceptible families based on constitutive (control samples) and induced (treated 

samples) bark and needle chemistry, the multivariate techniques - random forest (RF) (Breiman 2001), 

partial least squares plus linear discriminant analysis (PLS-LDA) (Preda et al. 2007) and principal 

component analysis-discriminant analysis (PCA-DA) (Jombart and Collins 2015) - were used. Random 

forest analysis was done using the ranger package (Wright and Ziegler 2015) while PLS-DA and PCA-

DA were executed using the pls and pca packages, respectively. All analyses were done in R v.3.6.0 (R 

Core Team 2018). Classification by the three methods was evaluated and compared through a 20 - fold 

cross-validation using a common standard error. The models were assessed according to the accuracy 

of classification, where accuracy was defined as the percentage of correct predictions to the total 

number of input samples. These models were fitted in two phases: 

(i) Estimation of model accuracy: this was done fitting separate models for each subsample of 

the data pertaining to specific pairwise comparisons. For comparing resistant versus 

susceptible families four such pair-wise comparisons were undertaken for each sample type:  

(1) bark-constitutive chemistry, (2) bark-induced chemistry, (3) needle-constitutive chemistry 
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and (4) needle-induced chemistry. Separate analyses were done using the total compound 

groups and individual compounds resulting in eight analyses. 

(ii) Variable importance: to select the variables of importance in differentiating the susceptible 

and resistant families, the chemistry from all subsamples were included as separate 

variables (individual needles and bark, total compound groups, constitutive and induced 

samples) in a single model (termed ‘combined analysis’). In this case, the same chemical 

compound and total compound group in each of the four sample types above were treated 

as separate variables in the model. This was done to allow variable importance (i.e the 

relative contribution to classification accuracy) to be compared across all subsamples (1- 4 

above) and compound type (individual compounds and total compound groups). All 

measures of importance were scaled to have a maximum value of 100, where 0 means that 

the variable does not contribute to the classification and 100 signifies the most important 

variable across all tissues (bark and needles) and treatments (constitutive and induced) and 

compound type. Five total compound groups (monoterpenoids, GC-MS diterpenoids, 

sesquiterpenoids, phenolics and sugars) were ranked by the models and are presented, but 

for the individual compounds only the 10 most important variables in either of the multivatiate 

methods are presented. 

 

Univariate analysis used the Kruskal–Wallis one-way analysis of variance (KW) in R v. 3.6.0 (R Core 

Team 2018) to test the differences in the amounts of the selected compounds between the resistant 

and susceptible families since the normality assumption did not hold for all compounds. No Bonferroni 

correction was applied. Arithmetic means and standard error (se) for the constitutive amounts of 

compounds in the bark and needles of the resistant and susceptible families were also calculated in R 

v. 3.6.0 (R Core Team 2018). 

 

To identify the most important total compound groups and individual compounds that responded to the 

artificial bark stripping treatment, the three multivariate methods; RF, PLS-DA and PCA-DA were used 

to identify the variables of importance for the resistant and susceptible families. To estimate model 

accuracy, separate models for each subsample of the data pertaining to specific pairwise comparisons 

were fitted. Pair-wise comparisons of the chemistry of control versus treated plants  were undertaken 

for: (1) the bark of resistant families, (2) the bark of susceptible families, (3) the needles of resistant 

families and (4) needles of susceptible families. Separate analyses were done using the total 

compound groups and individual compounds resulting in eight analyses. A combined analysis as 

described above, that included all samples was run so that the importance for all comparisons is 
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comparable. For the selected compounds, the amounts of compounds quantified in the control and 

treated samples were compared using Kruskal–Wallis (KW) one-way analysis of variance mentioned 

above and absolute p-values are reported.  

 

Differences between the resistant and susceptible families were also tested for the relative water 

content and tree height using Kruskal–Wallis (KW) one-way analysis of variance mentioned above. The 

height differences between the resistant and susceptible families and associated standard errors were 

tested separately for the six protected replicates and 20 unprotected replicates using Kruskal–Wallis 

(KW) one-way analysis of variance. Absolute p-values were reported for differences in water content 

and height.  

 

4.3 Results 

4.3.1  Identifying resistant and susceptible families based on field bark stripping 

Bark stripping by the marsupials occurred on 52% of the 1370 trees assessed in the 20 unprotected 

replicates. Overall, the amount of bark removed ranged from 0 to 100% of the stem circumference and 

averaged 49% of amount of damage when considering only the bark stripped trees. The average 

percentage of bark removed from the 21 most susceptible families (𝑥̅ = 31.76 ± 1.56 %) was 

significantly higher than for the 21 most resistant families (𝑥̅ = 18.35 ± 1.22 %) (KW, X2 = 27.30, p < 

0.001). On the damaged plants, the length of the strip of bark removed was almost two-fold longer in 

the susceptible (𝑥̅=1.43 ± 0.07 cm) than in the resistant (𝑥 ̅= 0.81 ± 0.05 cm) families (KW, X2 = 28.65, 

p < 0.001).  

 

For the unprotected trees in the 20 replicates, the susceptible families were significantly taller (𝑥̅ = 

150.70 ± 1.41 cm) than the resistant families (𝑥̅ = 144.63 ± 1.49 cm) (KW, X2 = 4.59, p < 0.05) for the 

first height measurement taken at the time of browsing assessment, suggesting a positive relationship 

between bark stripping and height. The height difference was in a similar direction in the six protected 

replicates, but not significant (susceptible 𝑥̅ = 168.75 ± 1.32 cm, resistant 𝑥̅ = 162.13 ± 1.26 cm; KW, 

X2 = 2.53, p = 0.11), possibly in part due to the reduced sample size. For the second height 

measurement, 6 months after exposure to bark stripping, the height of the susceptible and resistant 

families in the 20 browsed replicates increased by 40% and 39% respectively but did not differ (KW, X2 

= 2.82, p = 0.09) suggesting a reduction in growth rate for the susceptible families following bark 

stripping. The percentage water content of the bark of resistant (𝑥̅ = 66.88 ± 0.67 %) and susceptible 

families (𝑥̅ = 66.58 ± 0.50 %) did not differ (KW, X2 = 0.23, p = 0.63).  

 



91 
 

4.3.2 LC-MS and GC-MS analysis of compounds in the bark and needles  

Chemical assessment of terpenes, phenolics and sugars in the bark and needles of Pinus radiata 

detected a total of 83 compounds or compound groups. Of these, 14 monoterpenoids, 20 diterpenoids, 

18 phenolic compounds, 5 sesquiterpenoids, 5 sugars and 3 fatty acids were fully or partially identified 

while 18 compounds remained unidentified. Some compounds were found in either the bark or needles 

and consequently 65 compounds were identified in the bark and 65 compounds in the needles. The 

means of all the constitutive compounds in the bark and needles of resistant and susceptible families 

are listed in Supplementary Table 4.1. 

 

4.3.3 Classification of resistant and susceptible families based constitutive bark chemistry 

(i) Model accuracy 

Using constitutive bark chemistry (control samples), classification into resistant or susceptible families 

was associated with moderate accuracy, where 61 - 68% of the individuals were correctly classified 

based on total compound groups and 62 - 72% of the individuals were correctly classified based on 

individual compounds (Table 4.1). Partial least squares plus linear discriminant analysis (PLS-LDA) had 

the highest accuracy for most comparisons compared to principal component analysis-discriminant 

analysis (PCA-DA) and random forest (RF). 

 

Table 4.1: Accuracy (%) associated with the classification of individuals into resistant and susceptible classes 

based on constitutive (control) total compound groups and individual compounds in the bark for three multivariate 

methods. Total compound groups were derived by summing the individual compounds in each category (see 

methods).  The multivariate methods were partial least squares plus linear discriminant analysis (PLS-LDA), 

random forest (RF) and principal component analysis-discriminant analysis (PCA-DA). Accuracy was defined as 

the percentage of correct predictions to the total number of samples tested. Identification of resistant and 

susceptible families based on field bark stripping assessments 

 

 Total compound groups Individual compounds 

PLS-DA 68 72 

RF 61 70 

PCA-DA 65 62 

 

(ii) Important variables  

Total compound groups 
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Based on constitutive chemistry (control samples) in the bark, the three multivariate models ranked total 

phenolics as the most important compound group classifying or differentiating the resistant and 

susceptible families, followed by sugars (Figure 4.2).  

 

Figure 4.2: Ranking of total compound groups according to their importance in the models in differentiating the 

resistant and susceptible families based on constitutive bark chemistry. The importance for each compound was 

ranked according the relative contribution to the accuracy of classifications in a combined analysis, where 0 = 

variable was not important and 100 = variable was most important. PLS = partial least squares – linear 

discriminant; RF = random forest; PCA = principal component – discriminant analysis. 

 

The univariate tests of the constitutive levels of total compound groups showed that susceptible families 

were 2 - fold higher in total constitutive phenolics than the resistant families (KW, X2 = 7.04, p<0.01) 

(Table 4.2, Figure 4.3). No significant differences were detected for the other total compound groups 

(i.e. sugars, mono-, sesqui-, diterpenoids and C20H30O2 resin acids; Supplementary Table 4.1). 

 

Figure 4.3: Mean ± standard error of the constitutive (control) and induced (treated) amount of total phenolics for 

the resistant and susceptible families. Total phenolics were derived by summing the individual compounds. The 

amount of phenolics are expressed as micrograms of heptadecane equivalents (HE) per gram of dry weight of 
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the sample. The Kruskal-Wallis test indicated that the four means were significantly different (p < 0.05) and 

means with different letters are significantly different at the at the p < 0.05 level, based on Dunn’s test. 

 

Individual compounds 

Using constitutive bark chemistry (control samples), for individual compounds, the three multivariate 

models identified the following primary (sugars and fatty acids) and secondary compounds (phenolics 

and terpenoids) as most important in differentiating the resistant and susceptible families (Figure 4.4):  

− two sugars – fructose [76] and glucose [77]; 

− one fatty acid - linolenic acid [84];  

− three phenolics - phenyl ethanol [67], trans-ferulic acid [72] and benzene acetic acid [57];  

− a monoterpenoid - citronellal [6]; 

− two sesquiterpenoids – bicyclogermacrene [17] and an unknown sesquiterpenoid alcohol [21];  

− two diterpenoids - unknown C20H32O3 B [48], unknown C20H30O6 D [55]; and 

− a compound of unknown group - unknown m/z 104 [86].  

 

The constitutive levels of glucose, benzene acetic acid and bicyclogermacrene in the bark were ranked 

as the most important of all variables respectively by the random forest (scoring 100) , partial least 

squares (scoring 91) and by principal component analysis (scoring 100) (Figure 4.4). 

 

  

Figure 4.4: The most important compounds selected to differentiate the resistant and susceptible families for the 

constitutive (control) bark chemistry (i.e. those among top 10 in each analysis are presented). The importance for 

each compound was ranked according the relative contribution to the accuracy of classifications in the combined 

analysis, where 0 = variable not important and 100 = variable was most important.  PLS = partial least squares – 
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linear discriminant; RF = random forest; PCA = principal component – discriminant analysis. The numbers in 

parentheses are identifiers given to each compound for ease of location in the tables. 

 

Univariate tests for the constitutive amounts of the most important individual compounds in the bark 

showed that the terpene compounds bicyclogermacrene [17] and the unknown sesquiterpenoid alcohol 

[21] had significantly higher amounts in the resistant families (Figure 4.5, Table 4.2). Both compounds 

were more than 3-fold higher in the resistant than susceptible families. The amounts of trans-ferulic acid 

[72], phenyl ethanol, [67] citronellal [6], linolenic acid [84] and the unknown C20H30O6 D [55] did not 

significantly differ between the resistant and susceptible families, while the amounts of the remaining 

compounds were higher in the susceptible families. Fructose [76] and glucose [77], for example were 1.2 

times higher in the susceptible than in the resistant families (Figure 4.5, Table 4.2). The unknown 

diterpenoid [48], benzene acetic acid [57] and the unknown compound [86] were respectively 2.9, 2.4 and 

2.1 -fold higher in the susceptible than the resistant families. 

 

 

Figure 4.5: Mean ± standard error of constitutive sugars (fructose and glucose) that were higher in the 

susceptible families and sesquiterpenes (bicyclogermacrene and unknown sesquiterpenoid alcohol) that were 

higher in resistant families. The sugars are expressed in absolute amounts. The amount of terpenes are 

expressed as micrograms of heptadecane equivalents (HE) per gram of dry weight of the sample. Means with 

different letters within a compound are significantly different between resistant and susceptible families at the 

p<0.05 level the based on Kruskal-Wallis pair-wise comparisons. 
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Table 4.2: Mean ± standard error (se) of the constitutive amounts of individual compounds and total compound 

groups in the bark identified to be important in differentiating resistant [R] and susceptible [S] families (Figures 

4.2, 4.4). Unadjusted Kruskal-Wallis p-values are indicated. The amount of terpenoids [T] and phenolics [P] are 

expressed as micrograms of heptadecane equivalents per gram of dry weight of the sample. The amounts of 

fatty acids [F] and unknown compounds [U] are indicated as micrograms of nonadecanoic acid equivalents per 

gram of dry weight of the sample. The sugars [S] are expressed in absolute amounts (µg/g dw). The unadjusted 

p-value of the difference in the amounts between resistant and susceptible families is based on Kruskal Wallis 

test. Resistant and susceptible families were identified based on field bark stripping assessments. All compounds 

were given a unique identifier based on Supplementary Table 10 (after Chapter 9), for ease of identification 

 

ID Compound Group Constitutive amount 

in resistant families 

(𝒙̅ ± se) 

Constitutive amount 

in susceptible 

families (𝒙̅ ± se) 

P-

value 

6 citronellal T 60.97 ± 10.94 52.42 ± 20.28 0.170 

7 citronellic acid T 22.27 ± 3.75 19.38 ± 2.82 0.753 

17 bicyclogermacrene T 3.73 ± 0.85 1.20 ± 0.40 0.003 

21 unknown sesquiterpenoid 

alcohol 

T 9.17 ± 2.26 3.43 ± 1.14 0.019 

48 unknown C20H32O3 B T 468.08 ± 59.41 1368.2 ± 451 0.017 

55 unknown C20H30O6 D T 3739.48±576.56 4712.55±767.28 0.148 

57 benzene acetic acid P 23.76 ± 4.63 57.4 ± 10.61 0.023 

67 phenyl ethanol P 1.88 ± 0.86 8.86 ± 3.57 0.052 

72 trans-ferulic acid P 40.05 ± 5.99 65.7 ± 9.99 0.068 

76 fructose S 13538.19 ± 895.89 16159.82 ±948.77 0.037 

77 glucose S 15197.83 ± 917.81 18736.28 ± 894.95 0.011 

84 linolenic acid F 6808.79 ± 369.06 7849.75 ± 470.88 0.116 

86 unknown m/z 104 U 1.28 ± 0.39 2.71 ± 0.78 0.045 

 total phenolics P 48.28±6.37 95.96±13.16 0.008 

 total sugars S 41728.11±2247.20 47802.10±2215.30 0.085 

 

4.3.4 Classification of resistant and susceptible families based constitutive needle chemistry 

 

(i) Model accuracy 

The classification of families into resistant and susceptible based on constitutive needle chemistry 

(Table 4.3), was associated with less accuracy compared to the models based on bark chemistry 
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(Table 4.1). The accuracy for the needles never exceeded 59% which indicates that needle chemistry is 

not an accurate predictor of bark damage.  

 

Table 4.3: Accuracy (%) associated with the classification of individuals into resistant and susceptible classes 

based on constitutive (control) total compound groups in the needles for three multivariate methods. Total 

compound groups were derived by summing the individual compounds in each category (see methods). The 

multivariate methods were partial least squares plus linear discriminant analysis (PLS-LDA), random forest (RF) 

and principal component analysis-discriminant analysis (PCA-DA). Accuracy was defined as the percentage of 

correct predictions to the total number of samples tested. Identification of resistant and susceptible families 

based on field bark stripping assessments 

 Total compound groups Individual compounds 

PLS-DA 46 48 

RF 38 59 

PCA-DA 33 44 

 

(ii) Important variables  

Total compound groups 

Using constitutive needle chemistry, the contribution of the total compound groups to the models was 

very low but the total sugars followed by sesquiterpenoids were the most important in differentiating the 

resistant and susceptible families with an importance value of <40 (Figure 4.6). The univariate tests 

showed no significant differences between the resistant and susceptible families in the constitutive 

amounts of any total compound groups including the sugars (Supplementary Table 4.1). 

 

Figure 4.6: Ranking of total compound groups according to their importance in the models in differentiating the 

resistant and susceptible families based on constitutive needle chemistry. The importance for each compound 

was ranked according the relative contribution to the accuracy of classifications in a combined analysis, where 0 
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= variable was not important and 100 = variable was most important. PLS = partial least squares – linear 

discriminant; RF = random forest; PCA= principal component – discriminant analysis. 

 

Individual compounds 

Based on constitutive needle chemistry, the most important individual compounds that differentiate the 

resistant and susceptible families were topped by compounds of unknown groups [97][86] , an unknown 

diterpenoids [48] and a sugar – inositol [78] but these never exceeded the importance value of 75 

(Supplementary Figure 4.1). There was limited overlap of the important compounds for different 

models. The important compounds based on constitutive needle chemistry were mostly different from 

those that were most important in the bark (Supplementary Figure 4.1). Some of the selected 

compounds were unique to the needles (i.e. sesquiterpenoid-caryophyllene[18], phenolic-chavicol[58], 

unknown diterpenoid - C20H30O6 B[53] and compounds of unknown group- unknown m/z 358[92] and 

unknown m/z 740 B[97]). This shows that important compounds selected either in the needles or the 

bark reflect the uniqueness of chemistry in each plant part. 

 

Univariate tests on individual compounds showed no differences between the resistant and susceptible 

families in constitutive needle chemistry (Supplementary Table 4.1) except for the unknown m/z 104[86]. 

The constitutive amount of this compound in the needles was two-fold higher in the susceptible than in 

the resistant families (KW, X2 = 4.7, p = 0.03) (Supplementary Table 4.1).  

 

4.3.5 Differential induction of resistant and susceptible families to artificial bark stripping 

To understand how the resistant and susceptible families responded to treatment, bark and needle 

chemistry from treated and control samples was compared separately for the resistant and susceptible 

families. 

 

(i) Model accuracy 

Models for classifying the treated from untreated samples were associated with relatively high accuracy 

in both the susceptible and resistant families based on bark chemistry (maximum of 77%) but accuracy 

was lower based on the needle chemistry (maximum of 67%) indicating limited systemic effects of bark 

stripping (Table 4.4). 
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Table 4.4: Accuracy (%) associated with the classification of individuals into control or treated based on total 

groups in the bark and the needles of resistant and susceptible families for three multivariate methods. Total 

compound groups were derived by summing the individual compounds in each category (see methods). The 

multivariate methods were partial least squares plus linear discriminant analysis (PLS-LDA), random forest (RF) 

and principal component analysis-discriminant analysis (PCA-DA). Accuracy was defined as the percentage of 

correct predictions to the total number of samples tested. Identification of resistant and susceptible families 

based on field bark stripping assessments 

 

 Resistant Susceptible 
 Total compounds Individual Total compounds Individual 

Bark chemistry     

PLS-DA 70 77 71 62 

RF 68 60 71 69 

PCA-DA 72 65 73 66 

Needle chemistry 
    

PLS-DA 67 63 44 37 

RF 40 48 48 53 

PCA-DA 60 41 36 44 

 

(ii) Important variables 

Total compound groups 

Multivariate models showed that in the bark, the total phenolics were more important in differentiating 

treated and control samples in the resistant families followed by monoterpenoids (Figure 4.7a). 

However, the importance levels never exceed 65 and were rarely consistent in the three multivariate 

analyses. By contrast, in the susceptible families, the sugars consistently ranked as the most important 

variables (scoring 100 for all the three models) and the total phenolics were of little importance, 

highlighting differences in responses to treatment between the resistant and susceptible families 

(Figure 4.7b). In the needles, the importance of all total compound groups was low, consistent with 

no/weak responses of needle chemistry to treatment (Figure 4.7c, d). Even then, sugars and phenolics 

were the most important compound groups in differentiating treated samples. 

 

Univariate comparisons for the total compound groups showed that artificial bark stripping caused a 

significant increase in total phenolics and a decrease in the total monoterpenoids in the bark of 

resistant families (Table 4.5). In the bark of susceptible families, bark stripping caused a decrease in 
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total sugars (Table 4.5) supporting a difference in induced responses between resistant and susceptible 

families. No significant changes were detected in other total compound groups in the bark or any total 

compound group in the needles.  

 

Individual compounds 

The individual compounds that were important in differentiating treated from control samples in the bark 

and the needles of resistant and susceptible families are shown in Supplementary Figure 4.2. For both 

the bark and the needles, the top compounds identified by each model were mostly individual phenolics 

and sugars suggesting that these were more responsive to treatment. The selected compounds were 

mostly different in the resistant and susceptible families highlighting differences in responses to 

treatment.  

 

Univariate tests for individual compounds showed a significant reduction in the amount of fructose and 

glucose in the bark (p <0.001), but only in the susceptible families resulting in levels comparable to the 

resistant families (Figure 4.8, Table 4.5). Phenyl ethanol [67] and benzene acetic acid [57] marginally 

increased in the treated bark of the resistant but not the susceptible families. In the bark, the terpenoid 

compounds - α-pinene [1], citronellal [6] and citronellol [8] reduced in the resistant families, while the sugar 

inositol [78] reduced in both resistance classes (Table 4.5). Changes in the needles that denote systemic 

responses to artificial bark stripping were only marginally significant (p <0.05) and involved an increase 

in linolenic acid [84] (R) and a decrease in coniferyl alcohol [59] (R and S) and trans-ferulic acid [72] (R) 

(Table 4.5).  
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Figure 4.7: Ranking of total compound groups according to their importance in differentiating the control and 

treated plants in the resistant and susceptible plants in the a) bark and b) needles. The importance for each 

compound was ranked according the relative contribution to the accuracy of classifications in the combined 

analysis, where 0 = variable not important and 100 = variable was most important. PLS = partial least squares – 

linear discriminant; RF = random forest; PCA = principal component– discriminant analysis. 
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Figure 4.8: Mean ± standard error of constitutive amount of sugars; (a) fructose and (b) glucose that were higher 

in the susceptible families before treatment (control) but were reduced to levels in the resistant families after 

treatment. The sugars are expressed in absolute amounts. Different letters on each graph indicate significant 

differences in mean amounts at the p < 0.05 level (unadjusted) based on Kruskal-Wallis tests of the four panels 

on each graph 
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Table 4.5: Compounds and total compound groups in the bark [B] and needles [N] that responded to the 

artificial bark stripping treatment in the resistant [R] and susceptible [S] families. The Kruskal-Wallis (KW) chi-

square value (x2) and unadjusted p-values for the difference between the constitutive and induced amounts of 

each compound are shown, as well as the direction of change in the bark stripped treatment compared to the 

control (+ = increase, - = decreased after treatment). Compounds that were selected by the models but did not 

show any significant changes after treatment based on KW are not listed. Significance was set at p <0.05. 

Identification of resistant and susceptible families based on field mammalian bark stripping assessments. All 

compounds were given a unique identifier based on Supplementary Table 10 (after Chapter 9), for ease of 

identification 

 

Identifier Compound KW 
chi-

square 

P-value 
(unadjusted) 

Direction Part Category 

 Terpenoids      
1 α-pinene 5.2 0.021 - B R 
6 citronellal 7.5 0.006 - B R 
8 citronellol 4.6 0.031 - B R 
 total monoterpenoids 4.3 0.038 - B R 
43 unknown m/z 304 B  4.9 0.028 + B S 
48 unknown C20H32O3 B 

 
6.7 0.010 - B S 

 phenolics      
57 benzene acetic acid 4.6 0.031 + B R 
59 coniferyl alcohol 4.3 0.038 + B R 
  6.1 0.010 - N R 
  4.0 0.040 - N S 
65 methyl eugenol 8.3 0.004 + B S 
67 phenyl ethanol 4.4 0.035 + B R 
72 trans-ferulic acid 4.4 0.031 - N S 
 total phenolics 6.5 0.011 + B R 
 sugars      
76 fructose 12.3 0.000 - B S 
77 glucose 14.4 0.000 - B S 
78 Inositol 4.6 0.031 - B R 
  5.8 0.016 - B S 
 total sugars 15.9 0.000 - B S 
 fatty acids      
84 linolenic acid 5.4 0.020 + N R 
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4.3.6 Classification of resistant and susceptible families based in induced chemistry 

(i) Model accuracy 

To test whether the resistant and susceptible families could be classified based on induced bark and 

needle chemistry (treated samples), comparatively lower accuracy was obtained for models developed 

with total compound groups and individual compounds (maximum = 58) (Table 4.6) compared to 

models based on constitutive chemistry (maximum = 72) (Table 4.1). Although the results above have 

shown responses to treatment of the resistant and susceptible families, these induced changes 

diminish the chemical differences between resistant and susceptible families and consequently explain 

the low accuracy associated with the classification. 

 

Table 4.6: Accuracy (%) associated with the classification of individuals into resistant and susceptible classes 

based on induced (control) total compound groups and individual compounds in the bark and the needles for 

three multivariate methods. Total compound groups were derived by summing the individual compounds in each 

category (see methods). The multivariate methods were partial least squares plus linear discriminant analysis 

(PLS-LDA), random forest (RF) and principal component analysis-discriminant analysis (PCA-DA). Accuracy was 

defined as the percentage of correct predictions to the total number of samples tested. Identification of resistant 

and susceptible families based on field mammalian bark stripping assessments 

 

 Induced bark chemistry Induced needle chemistry 

 Total compound 

groups 

Individual 

compounds 

Total compound 

groups 

Individual 

compounds 

PLS-DA 45 58 51 47 

RF 37 50 52 42 

PCA-DA 32 34 57 45 

 

(ii)  Important variables 

Total compound groups 

For induced bark chemistry, total monoterpenoids were the most important in differentiating susceptible 

and resistant families but their importance was lower compared to the classification based on 

constitutive chemistry (Figure 4.8). Total phenolics were more important based on the induced needle 

chemistry. In both cases the importance values did not exceed 63. 
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Figure 4.8: Ranking of total compound groups according to their importance in differentiating the resistant and 

susceptible families based on induced (a) bark and (b) needle chemistry (treated). The importance for each 

compound was ranked according to the relative contribution to the accuracy of classifications in the combined 

analysis, where 0 = variable not important and 100 = variable was most important. PLS = partial least squares – 

linear discriminant; RF = random forest; PCA = principal component– discriminant analysis. 

 

Individual compounds 

The important individual compounds in differentiating the resistant and susceptible families based on 

treated samples (induced bark and needle chemistry) were similarly summarised (Supplementary 

Figure 4.3). In the bark, the monoterpenoid- β-pinene [4] and the phenolic compound - methyl eugenol 

[65] were on top of the selected compounds. The important individual compounds based on induced 

bark chemistry were largely different from those based on the constitutive bark chemistry except for the 

phenyl ethanol [67], benzene acetic acid [57], unknown C20H30O6 D [55] and unknown m/z 104 [86]. 

Similarly, in the needles, the important compounds were dominated by a sesquiterpenoid- 

caryophyllene [18]. However various phenolic compounds as well as sugars were important. Only a 

proportion of compounds [18],[59],[67],[84],[86],[92],[97] identified as important based on induced needle 

chemistry were represented in the models developed for constitutive chemistry (Supplementary Figure 

4.3). The important compounds identified by each of the multivariate analyses were generally non-

overlapping indicating randomness of the selections consistent with the low accuracy of the associated 

models (Table 4.6).  

 

Univariate tests on individual compounds showed no differences between the resistant and susceptible 

families in the induced chemistry of both the bark and the needles (KW test; data not shown) confirming 

that resistant and susceptible families are not well differentiated on induced chemistry.  
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4.4 Discussion 

Overall, three major findings emerged from this study. Firstly, constitutive chemistry is more important 

in classifying families that are resistant and susceptible to bark stripping than induced chemistry. The 

most important constitutive chemical groups or compounds in differentiating resistant and susceptible 

families were: (a) the total phenolics, as well as individual phenolic compounds that were higher in 

susceptible families; (b) the sugars- glucose and fructose were higher in the susceptible families, and 

(c) the sesquiterpenoids that were higher in resistant families. Secondly, induced bark chemistry was 

not important for the classification of the resistance classes, but differential induction was detected 

between the resistant and susceptible families, which may have implications on the attractiveness of 

the plants after the initial damage. Thirdly, needle chemistry differed little between resistance classes 

and barely responded to the bark stripping treatment. The differences between the resistant and 

susceptible family groups in our study reflect genetic-based differences as families are randomly 

distributed within multiple replicates of a common-garden field trial.  

 

Family variation in bark stripping damage is associated with differences in both the primary and 

secondary compounds. Individual sugars especially glucose and fructose found in the bark were 

identified as important predictors of susceptibility to bark stripping. Sugars being linked to herbivory is 

not surprising since the phloem is nutrient rich and sought by many herbivores. However, evidence of 

genetic-based intraspecific variation in herbivory being related to sugars has not been demonstrated in 

many conifers to date. In P. radiata, Page et al. (2013) attributed bark stripping to higher sugars in the 

bark compared to surrounding forages, although no intraspecific differences were studied. Other 

studies have also correlated differences in mammalian damage to differences in the sugars and other 

nutritional and mineral elements in coniferous (Tamura and Ohara 2005) and non-coniferous trees 

(Kurek et al. 2019; Saint-Andrieux et al. 2009) but not at the genetic level. The lack of genetic studies 

involving sugars could be related to the premise that traits coupled tightly with fitness show low or no 

genetic variation (Mousseau and Roff 1987) and thus the accumulation of non-structural carbon 

compounds (NSC); including glucose and fructose, in non-photosynthetic plant parts has been viewed 

as a passive sink–source process resulting from imbalances between carbon supply and demand 

(Wiley and Helliker 2012). However, the demonstration of genetic differences in sugar accumulation in 

P. radiata suggests that storage of NSC compounds is an actively regulated process and identifying 

genes that regulate the sugar allocation process may further enhance the understanding of bark 

stripping. Overall, since photosynthesis is the primary determinant of crop productivity, determining the 

genetic variation in physiological mechanisms underlying the variation in growth and storage of 

photosynthates between the resistant and susceptible families in P. radiata may further our 
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understanding of variation in bark stripping. The results of the present study contrast with studies which 

suggest that high levels of sugars in plant tissues may directly or indirectly enhance plant resistance 

(Clancy 1992; Morkunas and Ratajczak 2014; Zou and Cates 1994). In Pteudotsuga menziesii for 

example sucrose provided higher resistance against the budworm (Clancy 1992). Sugars have also 

been indirectly associated with defence as a source of energy or precursors to secondary compounds 

(Schwachtje and Baldwin 2008). 

 

Constitutive levels of total and some individual phenolics, especially benzene acetic acid were also 

predictors of susceptibility, with their amount higher in the susceptible families, consistent with 

observations in Pinus sylvestris (Sunnerheim-Sjöberg and Hämäläinen 1992). Although phenolics are 

largely considered to be defensive (Franceschi et al. 2005), evidence for the association of phenolics 

with mammalian browsing in conifers is inconsistent. While various studies have shown no effect of 

phenolics on needle and bark browsing (Hansson et al. 1986; Sauvé and Cǒté 2007), a number of 

studies have indicated that phenolics may increase resistance (Lindroth and Batzli 1984; Radwan 1972; 

Radwan and Crouch 1978). The association of phenolics with susceptibility in this study points to the 

possibility that phenolics may have an attractant rather than a defensive effect, especially in low 

concentrations. The phenolic compounds, benzene acetic acid and phenyl ethanol, that have higher 

levels in the bark of the susceptible families, have diverse medicinal properties (Bredsdorff et al. 2015; 

Madan et al. 2016) and may be beneficial to the marsupials. On bark stripping in P. radiata, Smith et al. 

(2020) for example suggested that non-preferred food sources, such as bark in small quantities, form 

part of a mixed diet, which may have positive effects on nutrition and digestion, as predicted by the 

nutrient balance hypothesis (Westoby 1978). The association of phenolics with susceptibility could also 

be related to the herbivores in question. Australian marsupials are reported to possess the capability to 

ingest and metabolise a range of secondary metabolites such as phenols and terpenes that would be 

toxic to many other herbivore species (Boyle 1999; El-Merhibi et al. 2007). Consistently, the present 

results provided little support for the role of monoterpenoids and diterpenoids in defence against 

marsupial bark stripping, despite various studies implicating these groups of compounds as defences 

against mammalian herbivores for both bark (Bucyanayandi et al. 1990; Pederson and Welch 1985; 

Snyder 1992; Zhang and States 1991) and needles (Iason et al. 2011; Vourc'h et al. 2002a). 

 

While constitutive levels of individual mono and di-terpenoids were not important in differentiating 

resistant and susceptible families, specific sesquiterpenoids (bicyclogermacrene and an unknown 

sesquiterpenoid alcohol) in the bark were shown to have significantly higher levels in resistant families, 

suggesting that they could be defensive against bark stripping. Bicyclogermacrene has been also 
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identified in the needles and bark of many conifer species (Amri et al. 2013; Lebouvier et al. 2013), 

evidence of a defence role has not been well demonstrated except in Pinus sylvestris where it was 

higher in the branches that were not attacked by the pine processionary moth (Achotegui-Castells et al. 

2013). While the specific defence roles of sesquiterpenes against herbivores remain largely unknown, 

their potential exploitation as precursors for insect hormones and as signals to attract insect parasitoids 

in tri-trophic interactions has been suggested for insect herbivores (Celedon and Bohlmann 2019). 

Even then, the differences in the amounts of sesquiterpenes between the resistant and susceptible 

families in this study were marginal suggesting that resistance could result from synergistic or additive 

interactions between different compounds rather than the effect of individual compounds (Scalerandi et 

al. 2018). Synergy has been demonstrated in P. pinaster where, genetic variation in resistance against 

the pine weevil was largely explained by the multivariate concentration and a blend of secondary 

metabolites, rather than by bivariate correlations with individual compounds (López-Goldar et al. 2018). 

Similar observations were made in Spodoptera litura (tobacco cutworm) where mixtures of trans-

anethole plus thymol, citronellal and α-terpineol had an almost ten times stronger effect on the mortality 

rate than would have been the case with simply an additive effect (Hummelbrunner and Isman 2001). 

Such interactions may need further investigation in conifers, and describing of the amount of bark eaten 

by the marsupials as a function of the amount of these secondary metabolites, whether linear or 

curvilinear as described by Moore and DeGabriel (2012) may also need further study.  

 

Resistant and susceptible families were distinguishable based on constitutive but not the induced bark 

chemical compounds. This is due to differential responses to treatment, highlighting the differences in 

preparedness to herbivory between the resistant and susceptible families. While the resistant families 

are more guarded constitutively, the susceptible families seem to respond strongly to percieved 

herbivory to attain a chemical profile similar to the resistant families. A key finding from the study is the 

rapid reduction of bark glucose and fructose levels in treated susceptible plants to levels comparable 

with the resistant families. If sugars are a major driver of bark stripping, this observation suggests that 

after the initial damage the likelihood of further stripping may be minimised by the reduced sugar 

content in the bark. This is similar to observations by Moreira et al. (2013b) on the resistance of P. 

radiata to the processionary moth where, damage to plants genetically differed significantly among pine 

families in the constitutive condition, but this genetic variation disappeared after methyl jasmonate 

induction (Moreira et al. 2013b). Even then, the moth consumed 20% less phloem in the treated plants 

but with no genetic variation of damage between families (Moreira et al. 2013b), but these observations 

were not associated with sugars. These results, however, contrasted the observation in P. pinaster 

where induced chemistry was more important in predicting differences in susceptibility to the pine 
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weevil (López-Goldar et al. 2018), potentially highlighting species specific herbivory responses. For 

bark stripping mammals, however, this will depend on how fast (in hours) the sugar reduction occurs 

and also how long the effects persist. Although earlier results (Chapter 3) indicated that sugar levels 

remained low for up to three weeks after the initial bark stripping, this time progression especially early 

reduction of the sugar levels needs to be understood in view of repeated browsing that has been 

observed in the field. It is also possible that chemical responses depend on the amount of bark 

removed from the trees such that trees that receive low intitial bark stripping may have lower chemical 

responses which may cause repeated bark stripping. On the other hand, ring barking may also cause 

an accumulation in needles and bark above the ring barked area as demonstrated in girdling studies (Li 

et al. 2003), and this may also increase the bark stripping. Therefore, the relationship between amount 

of bark removed and the chemical responses may need further investigation.  

 

In addition to the changes in the sugars described above, an induction of mainly the phenolics was also 

evident, with a general reduction in the amounts in the needles and an increase in the amounts of the 

bark. In the constitutive chemistry, phenolics were higher in the susceptible than the resistant families. 

After treatment, the phenolics reduced non-significantly in the susceptible families but increased 

significantly in the resistant families. This opposing response may suggest that phenolics play different 

physiological roles in stress responses of the resistant and susceptible families. In the resistant 

families, the increase in phenolics may augment resistance to herbivory (Roitto et al. 2009) as an 

adaptation to the pests and pathogens in the native habitats (Mead 2013). In the susceptible families 

however, the roles of phenolics may be more related to inducible stress cell division – used as 

precursors to replace lost tissues; and regulation of photosynthetic activity – aimed to reduce the 

amount of sugars (Hammerbacher et al. 2011). Studies that have examined the defence properties of a 

larger number of conifer phenolic compounds have also indicated that the role of phenolics is specific, 

where some are defensive while others have been associated with susceptibility (Danielsson et al. 

2011; Ganthaler et al. 2017)   

 

Defence-growth trade-offs were also implicated by the study. Although the height difference between 

the resistant and susceptible families was not significant in the families where chemistry was assayed 

(protected replicates), possibly due to small sample size, we noted an overall reduction in height in 

resistant families in the unprotected families with larger sample size. The higher amount of 

sesquiterpenoids in more resistant, slower growing families is consistent with the defence-growth trade-

off theory that suggests accumulation of defence compounds in slow growing trees (Ferrenberg et al. 

2015). Although theories explain the trade-offs in terms of resource allocation (Coley et al. 1985), the 
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patterns of intraspecific variation observed in this study, where preference for constitutive investment in 

some families and the simultaneous preference for induction in other families in the same environment 

do not clearly fit the theoretical predictions. In this case, genetics is a strong factor in explaining the 

intraspecific chemical variation and therefore, examining how genetics interacts with the environment to 

shape chemical variation is important for further understanding of the evolution of metabolites and their 

inclusion in P. radiata breeding programmes. However, the premise of reduced growth following 

increased storage of non-structural carbohydrates like glucose (Wiley and Helliker 2012) is inconsistent 

with the results of this study that showed a positive relationship between amounts of sugars and height, 

where susceptible families that had more sugars in the bark grew faster than the resistant families. 

 

Multivariate and univariate techniques generally depicted the same patterns in terms of ranking the 

compounds. Univariate techniques also have extra information such as the amount of the compounds 

and the direction of the effect. Multivariate techniques were associated with high accuracy where the 

absolute differences in amounts of compounds were larger. Comparing the multivariate techniques, the 

premise that non-linear machine learning methods such as random forest (RF) provide superior 

generalised predictive ability for metabolomics data when compared to linear alternatives, such as 

partial least squares discriminant analysis (PLS-DA) was not supported. Various studies on plant 

metabolomics show that random forest has performed poorer than PLS (Lee et al. 2018; Mendez et al. 

2019). However, it has been suggested that non-linear machine learning algorithms may perform better 

with larger data sets (Gromski et al. 2015; Mendez et al. 2019). The linear methods  could also be 

better in analyzing highly collinear and noisy data (Gromski et al. 2015). Therefore, linear methods like 

PLS may be recommended where small samples are involved. Specifically, however, random forests 

can tend to overfit some data distributions consequently reducing performance of the model. Therefore, 

defining the most optimum model parameters may improve the performance of random forests 

(Gromski et al. 2015). 

 

4.5 Conclusion 

Variation in bark stripping is associated with consititutive differences in sesquiterpenoids, sugars and 

phenolics, and would appear to be an interplay between defence and attractant compounds of the bark. 

Specific bark sesquiterpenoids are better predictors of constitutive resistance to marsupial damage 

than other terpenoid groups. Phenolics and particularly sugars predict increased susceptibility both as 

total compound groups and for specific compounds. Induced chemistry did not directly differentiate 

between resistant and susceptible families, suggesting the main variation in bark stripping was due to 

consitutive chemistry of the bark. The main induced response involved the susceptible plants becoming 
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more like the resistant plants in their chemistry – particularly the sugars. Studies on the mechanisms 

and function of selected individual compounds, including possible synergies, are required to further our 

understanding of Pinus radiata defences against mammalian herbivores. Understanding the genetic 

architecture of the traits will enable their selection in breeding programmes. 
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Supplementary Table 4.1: Constitutive amounts of compounds (± se) in the resistant [R] and susceptible [S] families. The amounts of terpenes and phenolics were expressed as 

micrograms of heptadecane equivalents per gram of dry weight of the sample. The amounts fatty acids and unknown compounds are indicated as micrograms of nonadecanoic 

acid equivalents per gram of dry weight of the sample. The sugars are expressed in absolute amounts (µg-1 dw). The amounts in bold were significantly different between 

susceptible and resistant families based on the Kruskal-Wallis test. The bold values show that amounts were different and significance levels were set at p<0.05. The p-values are 

indicated in Table 4.1. The absence of a value indicates that the compound was not detected. Ethyl phenol and 4-ethyl guaiacol were detected only in the bark of susceptible 

families at the constitutive level. All compounds were given a unique identifier based on Supplementary Table 10 (after Chapter 9), for ease of identification. The identifiers in this 

table are not sequential as some compounds indicated in Supplementary Table 10 (after Chapter 9) were not identified in this data set 

 

 

 
 

Bark Needles 

 monoterpenoids R S R S 

1 α-pinene 985.31±131.09 828.12±139.46 27.72±5.67 30.58±5.10 

2 α-terpineol 32.4±4.33 32.1±4.78 5.44±0.79 4.84±0.54 

3 β-phellandrene 89.85±16.17 98.28±17.04 7.58±1.58 9.31±1.72 

4 β-pinene 1939.23±217.40 1797.65±234.75 91.63±23.20 83.7±12.36 

5 camphene 8.73±1.06 7.67±1.13 0.36±0.08 0.38±0.05 

6 citronellal 60.97±10.94 52.42±20.28     

7 citronellic acid 22.27±3.75 19.38±2.82 0.45±0.07 0.41±0.06 

8 citronellol 67.05±10.31 49.41±9.64 0.54±0.12 0.45±0.08 

9 γ-terpinene 6.29±1.96 7.91±3.39 0.16±0.04 0.19±0.04 

10 limonene 77.58±18.71 58.02±9.76 10.9±3.54 13.93±2.87 

11 linalool 8.87±2.05 8.79±2.45 0.08±0.03 0.06±0.03 

13 sabinene 179.4±72.71 225.58±102.93 0.25±0.06 0.64±0.40 

14 terpinene-4-ol 28.47±7.25 38.64±15.72 0.96±0.12 1.06±0.18 
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15 terpinolene 94.2±41.67 94.56±42.83 0.28±0.05 0.32±0.06 

16 unknown mol Wt 150 3.04±0.61 4.43±1.45 0.06±0.01 0.09±0.03 

           

 sesquiterpenoids         

17 bicyclogermacrene 3.73±0.85 1.2±0.40 1.31±0.28 1.59±0.28 

18 caryophyllene     3.25±0.83 4.73±0.98 

19 γ-elemene     0.86±0.19 0.99±0.18 

20 trans-farnesol 92.81±70.18 25.00±5.20 4.91±0.61 4.08±0.57 

21 unknown sesquiterpenoid alcohol 9.17±2.26 3.43±1.14 3.13±0.72 3.46±0.67 

 GC-MS diterpenoids         

22 agathadiol 452.89±73.71 690.47±195.59 60.71±8.30 76.9±18.07 

23 agatholal 309.76±46.34 439.13±104.22 50.7±6.14 53.47±9.40 

24 copalol 39.34±7.47 39.72±8.76 13.3±2.40 11.17±2.38 

25 levopimaral 13.52±2.54 11.2±1.76     

26 methyl dehydroabietate 12.58±1.87 11.64±1.24 1.28±0.40 1.27±0.20 

27 methyl levopimarate     0.8±0.21 0.99±0.31 

 LC-MS diterpenoids         

29 dehydroabietic acid 24442.49±2162.37 25673.56±2050.45 11221.69±734.77 11627.06±721.21 

32 unknown diterpene-3 242.23±54.01 177.22±44.46     

33 unknown m/z 109 A 17.77±2.32 16.94±2.53 0.96±0.25 1.19±0.37 

34 unknown m/z 109 B 21.19±4.98 20.01±3.01 1.38±0.30 1.95±0.46 

37 unknown m/z 239 6.78±1.53 6.26±0.76 1.86±0.29 2.1±0.32 

38 unknown Mol Wt 272 15.77±8.30 7.68±1.13 1.33±0.19 1.69±0.30 

39 unknown C20H30O2 A 
  

3030.39±507.80 3308.57±465.02 
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40 unknown C20H30O2 B 
  

8420.81±435.08 8449.47±453.92 

41 C20H30O2 resin acids 25396.23±1573.16 24917.33±1290.34 18677.6±1770.91 20015.39±1360.72 

42 unknown m/z 304 A 144.11±22.31 117.95±17.00     

43 unknown m/z 304 B 
  

1730.46±117.66 1918.6±148.71 

45 unknown m/z 316 14661.66±1655.38 13732.81±1365.94     

46 unknown C20H30O3    27227.17±2944.18 27003.59±2404.41 9456.52±971.45 9719.52±775.34 

47 unknown C20H3203 A 18633.86±1907.07 23443.21±2894.35 22973.88±2201.10 22799.7±2474.18 

48 unknown C20H3203 B 468.08±59.41 1368.2±451 1263.68±371.03 2791.28±1002.14 

49 unknown C20H3203 C 
  

20267.68±2147.54 18611.66±2203.79 

50 unknown C20H3004 61811.5±5566.7 64458.76±4990.16 39497.05±3365.43 41769.93±3218.07 

51 unknown C20H3005 11957.42±1604.43 12153.43±1334.87     

52 unknown C20H30O6 A 215.77±27.32 210.97±27.81     

53 unknown C20H30O6 B     7000.45±903.77 6881.16±677.54 

54 unknown C20H30O6 C 6527.7±804.83 7454.21±898.88     

55 unknown C20H30O6 D 3739.48±576.56 4712.55±767.28     

 phenolics         

56 anethole/estragole 1.79±0.20 1.92±0.29 2.13±0.59 1.67±0.50 

57 benzene acetic acid 23.76±4.63 57.4±10.61 77.36±12.26 75.62±10.71 

58 chavicol     6±2.33 5.79±1.32 

59 coniferyl alcohol 4.64±0.66 4.54±0.42 1.6±0.23 1.93±0.26 

60 eugenol     2.52±0.79 3.5±1.11 

61 ethyl phenol   0.53±0.44     

63 4-ethyl guaiacol   3.86±3.36     

64 isoeugenol     4.63±1.08 4.64±1.07 
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65 methyl eugenol 0.18±0.04 0.17±0.04     

66 p-Menth-1-en-7,8-diol 12.23±0.98 11.36±1.05     

67 phenyl ethanol 1.88±0.86 8.86±3.57 3.37±0.48 4.53±0.96 

68 pinosylvin dimethyl ether 2.73±0.66 5.42±2.77     

69 piperitone     1.8±0.41 2.14±0.75 

70 raspberry ketone 7.11±1.15 10.87±2.05 3.49±0.53 3.12±0.32 

71 thymol 9.09±1.47 8.01±1.7 1.01±0.34 0.72±0.14 

72 trans-ferulic acid 40.05±5.99 65.7±9.99 1.47±0.26 1.26±0.15 

74 vanillin 4.47±0.31 4.33±0.27 0.65±0.09 0.75±0.12 

75 zingerone     9.7±1.23 8.35±0.70 

 sugars         

76 fructose 13538.19 ± 895.89 16159.82 ±948.77 23265.12±1278.92 24232.10±1413.42 

77 glucose 15197.83 ± 917.81 18736.28 ± 894.95 25374.16±1520.41 26730.87±1369.46 

78 inositol 12382.38±1215.36 12247.40±980.40 7820.02±301.22 8425.61±334.02 

79 sucrose 2.83±0.01 2.06±0.00 90.53±19.98 80.53±16.70 

80 unknown disaccharide     276.55±62.58 240.48±57.50 

81 unknown monosaccharide 606.87±97.57 656.52±134.88     

 fatty acids         

82 linoleic acid 16356.86±982.02 16809.72±985.13 11255.66±711.71 12481.71±823.26 

83 linolenic acid 6808.79±369.06 7849.75±470.88 27692.04±1123.94 29992.07±1410.38 

84 palmitic acid 16222.82±823.76 15832.8±764.60 17526.74±615.29 18267.19±723.25 

 unknowns         

85 unknown m/z 104 1.28±0.39 2.71±0.78 0.27±0.10 0.49±0.13 

88 unknown m/z 272     781.77±58.6 742.04±69.59 
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89 unknown m/z 274 1131.95±124.29 1273.18±121.01     

90 unknown m/z 358     1194.28±156.75 941.52±109.98 

91 unknown m/z 362     1134.06±128.18 1022.41±139.97 

92 unknown m/z 406 A 523.01±57.35 490.91±46.55     

93 unknown m/z 406 B 5111.61±439.65 5900.64±569.80     

95 unknown m/z 740 B     2109.65±163.91 2755.18±363.27 

           

 compound groups         

 total monoterpenoids 3615.87±390.91 3334.34±515.22 146.39±34.22 145.98±20.08 

 total GC-MS diterpenoids 828.08±123.17 1192.17±307.02 126.79±16.39 143.81±29.29 

 total sesquiterpenoids 153.14±69.43 105.28±13.24 16.54±2.31 18.04±2.08 

 total phenolics 48.28±6.37 95.96±13.16 115.91±13.35 115.58±12.37 

 total sugars 41728.11±2247.20 47802.10±2215.30 56826.38±2771.34 59709.59±2681.51 

1 
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Supplementary Figure 4.1: The most important compounds selected to differentiate the resistant and 

susceptible families based on constitutive (control) needle chemistry. The importance for each compound was 

ranked according the relative contribution to the accuracy of classifications in the combined analysis, where 0 = 

variable not important and 100 = variable was most important. PLS = partial least squares – linear discriminant; 

RF = random forest; PCA = principal component – discriminant analysis.
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Supplementary Figure 4.2: The most important compounds selected to differentiate the control and treated plants in the bark of resistant (a) and susceptible (b) families and in 

the needles of resistant (c) and susceptible (d) families resistant and susceptible families. The importance for each compound was ranked according the relative contribution to the 

accuracy of classifications in the combined analysis, where 0 = variable not important and 100 = variable was most important. PLS = partial least squares – linear discriminant; RF 

= random forest; PCA = principal component – discriminant analysis. 
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Supplementary Figure 4.3: The most important compounds selected to differentiate the resistant and susceptible families based on induced (treated) a) bark and b) needle 

chemistry. The importance for each compound was ranked according the relative contribution to the accuracy of classifications in the combined analysis, where 0 = variable not 

important and 100 = variable was most important. PLS = partial least squares – linear discriminant; RF = random forest; PCA = principal component– discriminant analysis. 
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CHAPTER 5: Developing near infrared spectroscopy (NIRS) models for predicting 

chemistry and responses to stress in Pinus radiata (D. Don) 

 

5.0 Abstract 

The incorporation of important chemical traits in breeding programmes requires the estimation of 

genetic parameters especially the levels of additive genetic variation and this requires a large number 

of samples from pedigreed populations. Conventional wet chemistry procedure for chemotyping are 

slow and expensive and are not a practical option. In this study, the near infrared spectral properties of 

the needles, bark and roots before and after exposure to stress treatments were investigated as an 

alternative approach. The aim was to test the capability of near infrared (NIR) spectroscopy to (i) 

discriminate samples exposed to artificial bark stripping and methyl jasmonate assessed 7, 14, 21 and 

28 days after treatment from untreated samples and (ii) quantitatively predict individual chemical 

compounds in the three plant parts. Using principal components analysis (PCA) on the spectral data, 

we were able to differentiate between treated and untreated samples for the individual plant parts. 

Based on partial least squares-discriminant analysis (PLS-DA) models, the best discrimination of 

treated from non-treated samples with the smallest root mean square error of prediction was achieved 

in the fresh needles (RMSECV, 0.24, R2 = 0.81) and fresh inner bark (R2 = 0.79, RMSE = 0.25) for 

methyl jasmonate treated samples after 14 days and 21 days respectively after treatment. For the strip 

treatment, the smallest error of prediction was achieved 21 days after treatment (R2 = 0.69, RMSE = 

0.30) in the bark. Calibrations developed for individual chemical compounds correlating the NIR spectra 

with chemistry data using partial least squares (PLS) regression gave models with high coefficient of 

determination for fructose (R2 = 0.84, RPD = 1.5, PRL = 0.71, RER = 7.25) and glucose (R2 = 0.83, 

RPD = 1.9, PRL = 1.14, RER = 8.50) as well as two unknown diterpenoids (both R2 = 0.72, 0.75, RER 

= 10.76, 11.29). Overall, the results indicated the ability to separate stressed and unstressed plants 

with NIR spectroscopy and to accurately predict glucose, fructose and diterpenoids levels and to 

provide proximate values for several fatty acids, mono- and diterpenoids and phenolics, which provides 

an optimistic outlook for the use of NIRS-based models for the larger-scale prediction of the P. radiata 

chemistry needed for quantitative genetic studies.  
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5.1 Introduction 

The use of natural resistance to minimize herbivory is a desirable alternative to existing costly and less 

effective techniques. To achieve this necessitates genetic selection of resistant genotypes but this 

requires phenotyping large sample sizes to gain sufficient power and resolution (Mir et al. 2019; Singh 

et al. 2019). In conifer-herbivory relationships, resistance has been attributed to physical properties and 

secondary chemical compounds especially the constitutive and induced terpenes and phenolics 

(Franceschi et al. 2005; Moreira et al. 2012a). Recent studies have also indicated the role of primary 

chemical compounds as influencing herbivory – either as attractants or indirectly contributing to 

defence (Goodsman et al. 2013; Page et al. 2013; Raffa et al. 2017; Roth et al. 2018; Schwachtje and 

Baldwin 2008). Common methods that have been used to characterize the resistance traits include 

histological and morphological examination, thin layer chromatography, high-performance liquid 

chromatography, gas chromatography, liquid chromatography–mass spectrometry and gas 

chromatography–mass spectrometry (Danielsson et al. 2011; Whitehill et al. 2016). Most of these 

methods are time-consuming, labour-intensive and expensive. This has constrained most studies to the 

phenotypic level, limiting our understanding of defences at the genetic level (Jannink et al. 2010). The 

incorporation of genetically controlled chemical traits in resistance breeding programmes will depend on 

the availability of genetic variation (Falconer and Mackay 1996) but quicker and cheaper methods of 

determining genetic variation are required. 

 

Novel high-throughput phenotyping approaches such as near-infrared spectroscopy (NIRS) are fast, 

non-invasive, low-cost, and environmentally safe analytical methods, that have become well-

established for measuring plant physico-chemical constituents. NIRS has also emerged as a potential 

method for assessing the effects of a wide range of plant biotic and abiotic stressors, including 

herbivory (Coops and Stone 2005; Radeloff et al. 1999). Most stresses influence or are influenced by 

primary and secondary organic compound composition with functional groups - C-H, N-H, S-H and O-H 

- that have specific absorbance patterns in the NIR region (4000 -14000 cm-1). These patterns can be 

qualitatively and quantitatively analysed for specific physiological states of the plants (Araus and Cairns 

2014; Couture et al. 2016). There are examples in conifers and other tree species where NIRS has 

been used to predict herbivore damage, assess phytochemical variability, predict terpenoids and 

phenolics and predict palatability and nutrition levels (Couture et al. 2016; O'Reilly-Wapstra et al. 

2013a; Quentin et al. 2017; Radeloff et al. 1999; Villamuelas et al. 2017). The applicability of NIRS for 

these uses depends on: 1) the presence of distinct physico-chemical differences between different 

levels of the condition under investigation (e.g. different susceptibility classes), 2) the ability of NIRS to 

generate characteristic spectra of these differences, and 3) the availability of calibration data that can 
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be well correlated with the spectra for quantitative predictions. Given the commercial interest in Pinus 

radiata and the significant impact of herbivore damage in plantations, it would be an advantage to use 

NIRS as a rapid, high-throughput phenotyping tool in an array of applications, including herbivory 

resistance breeding and deployment.  

 

In Pinus radiata, the constitutive and induced chemistry has been characterised in the needles and bark 

(Moreira et al. 2012a; Reglinski et al. 2017) and roots (Chapter 3) using conventional wet chemistry 

techniques, as well as the physical traits (Chapters 2). Except for Moreira et al. (2012a) who 

demonstrated genetic control for total compounds, the genetic control of the individual traits has not 

been documented. NIRS could potentially be used to quantify the individual chemical compounds 

associated with observed differences in herbivory for a larger data set to provide genetic estimates. 

While spectroscopic techniques to identify damaged P. radiata plants has been utilised (Coops and 

Stone 2005), NIRS has rarely been used to examine the relationship between chemistry and damage 

by herbivores. However, NIRS has been used successfully in P. radiata in the field of wood science 

where wood properties such as lignin, monosaccharide composition (Fahey et al. 2018), physical wood 

properties (McLean et al. 2014; Schimleck et al. 2002) and bark extractives (Schimleck and Yazaki 

2003) have been successfully predicted. In the present study, the suitability of NIRS as a classification 

and prediction tool in P. radiata was tested, specifically its ability to: 1) differentiate plant parts - needle, 

bark and root samples - based on their differences in spectra; 2) differentiate samples exposed to 

stress by simulated bark stripping and methyl jasmonate application from untreated control samples; 

and 3) quantitatively predict primary and secondary compounds in the needles, bark and roots. 

 

5.2 Materials and methods 

5.2.1 Experimental design 

The plant material, experimental design and wet chemical analytical methods were described fully in 

Chapter 3. In brief, seedlings of 18 full-sib families of Pinus radiata were raised outside in a fenced area 

(to protect against animals) at the University of Tasmania, Hobart. At 2 years of age, 6 families were 

selected for treatment with either 25 mM methyl jasmonate (MJ) spraying or artificial bark stripping. The 

other 6 families were not treated (control plants). The three experimental groups (control, strip and MJ) 

were replicated 3 times and arranged in a randomized block design of 3 blocks in a shade house. One 

individual per family was then destructively harvested just before treatment application (T0), then 7 

(T1), 14(T2), 21(T3) and 28(T4) days after treatment application collecting needles, bark and root 

samples separately. Most of the needles, bark and roots on the plant were collected according to the 

methods in Chapter 3. NIRS scanning of the fresh needle and bark samples was done immediately 
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after collecting the samples. After scanning, the sample was divided into two; one subsample for freeze 

drying and grinding for analysis of dried-ground samples and the other for reference wet chemistry 

analysis below.  

 

5.2.2  Reference chemistry analysis  

Quantitative chemical predictions require calibration against reference data that has been obtained 

following standard methods for example conventional wet chemistry techniques. To obtain the 

reference chemistry, we used wet chemistry methods as described in Chapter 3. In summary, 

extractions from the needles, bark and roots targeting terpenes and phenolics were made using 

dichloromethane (DCM) and acetone with respectively n-heptadecane and rutin as the standards 

(Jones et al. 2002; Sasidharan et al. 2011). Hot water was used to extract sugars. The DCM extracts 

that mainly comprised the volatile mono-, sesqui- and diterpenes and phenolics were analysed using 

gas chromatography-mass spectrometry (GC-MS). The acetone extracts containing mainly diterpenoids 

and fatty acids were analysed using ultra-high-performance liquid chromatography - mass spectrometry 

(UHPLC-MS) as well as the sugars. The DCM components were expressed as milligrams of 

heptadecane equivalents per gram of dry weight of the sample (mg HE/g dw) and the acetone analytes 

were expressed as milligrams of rutin equivalents per gram of dry weight of the sample (mg RE/g dw). 

The sugars were expressed in absolute amounts (mg/g dw). The mean and standard deviation of the 

amounts of each compound were calculated in the R software (version 3.6.0) (R Core Team 2018). 

Some samples were extracted in triplicates for estimation of laboratory error. The amounts of 

compounds quantified in the different plant parts were presented earlier and these include terpenes, 

phenolics, sugars, fatty acids and compounds that were not classified into the four classes (unknown 

compounds) (Chapter 3). All compounds were given an identifier (based on Supplementary Table 10) 

for ease of location in the tables. 

 

5.2.3 Spectra collection and pre-treatment 

Using a Bruker MPA Fourier Transform NIR spectrometer (Bruker, Germany) in the diffuse reflectance 

mode (12000 to 3800 cm-1), spectral data were collected from 85 fresh and 85 dried-ground needle, 85 

dried-ground root, 85 fresh outer bark, 85 fresh inner bark and 85 dried-ground bark samples. No 

spectral data were collected from fresh roots. Spectral data of fresh samples were obtained 

immediately after sample collection and again after the samples were freeze-dried and ground. 

Grinding of the freeze-dried samples was undertaken using a Cyclotec 1093 sample mill (FOSS, 

Denmark) that was cleaned between samples. The inner and outer sides of the fresh bark were 

scanned at 5 different points using a fibre optic probe resulting in an average spectrum per surface. 
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Bark thickness measurements of the samples were taken just before scanning using a Vernier calliper 

providing an average thickness of ~0.7mm. Fresh needles were cut into ~3cm pieces to allow 

homogeneity, then measured in a rotating sample cup through a glass bottom (9 cm diameter). The 

dried-ground bark, needles and roots were measured in 7 ml glass vials. Each spectrum was collected 

at 8 cm-1 and reflectance (R) data was stored as log (1/R). Background measurements were made after 

every after 2 hours. The OPUS (ver. 7.2; Bruker Optik GmbH, Germany) program was employed for the 

spectral data collection and to predict the most appropriate spectral pre-treatments. All qualitative and 

quantitative analyses were performed using the Unscrambler® X software (CAMO software version 

10.2, CAMO AS, Trondheim, Norway).  

 

Prior to the quantitative analysis, principal component analysis (PCA) based on a correlation matrix was 

used on the raw spectral data to eliminate spectral outliers based on Mahalanobis distance 

(Rousseeuw et al. 2006) and to observe any potential clustering of samples. PCA was performed 

separately for different comparisons of plant parts, treatments and time. To show the separation of 

plant parts, the PCA plot was generated using dried ground samples. The significance of the clustering 

along each PCA axis was tested using Kruskal–Wallis (KW) one-way analysis of variance in the R 

software (version 3.6.1) (R Core Team 2018). Partial least squares (PLS) was used to develop 

quantitative models using spectra and reference data (obtained from wet chemistry analysis methods or 

treatment groups). Full (also called leave-one- out) cross-validation  methods were applied due to a 

limited number of samples (Zornoza et al. 2008). Cross-validation entails a set of techniques that 

partition the dataset and repeatedly generate models and test their future predictive power. The 

partitioning can be performed in different ways. The general format is that of a “leave k-observations-

out” analysis. In such an analysis, the entire dataset is typically divided into k smaller observations. Full 

cross validation/leave-one-subject-out approach repeatedly splits the data but instead of creating k-

folds, the dataset is split according to the number of subjects in the dataset, where, one subject is 

randomly selected for the testing purposes while the other subjects are used for training the model. 

This procedure is repeated until all the subjects have been used as test dataset (Koul et al. 2018). For 

chemical predictions, factors that were automatically selected by the algorithm were retained in the final 

models. To predict treated from untreated samples, a maximum of 2 factors was selected to prevent 

overfitting (Gowen et al. 2011). In most cases, spectral data were transformed by pre-treatments before 

the calibration process to remove spectral differences that are not related to physico-chemical 

properties of the samples such as physical differences due to sample preparation (Rinnan et al. 2009). 

Scatter-correction methods and spectral derivatives are the most widely used pre-processing 

techniques (Rinnan et al. 2009).  
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The performance of the PLS model was evaluated according to the: root mean square error of cross-

validation (RMSECV), coefficient of determination (R2) of the plot between the predicted values and the 

reference values, the predictive to lab error (PRL) and the residual predictive deviation (RPD) - which is 

defined as the standard deviation of observed values divided by the RMSECV. Based on published 

criteria (Malley et al. 2004; Saeys et al. 2005), R2 values that range between 0.66 - 0.80 indicate 

approximate quantitative predictions, good prediction for R2 values between 0.81 - 0.90 and excellent 

for R2 > 0.90. Similarly, a residual predictive deviation (RPD) > 3 indicates an excellent prediction, 

between 2.5 - 3 predictions can be classified as good, 2 - 2.5 makes approximate quantitative 

predictions and an RPD < 2 is considered insufficient for applications. Other studies indicate that an R2 

of range 0.54 - 0.7 is acceptable and useful for initial screening studies (Malley et al. 2004; Quentin et 

al. 2017; Schimleck et al. 2003). PRL values ranging from 0.43 to 1.88 were established for amounts 

approaching laboratory precision but prediction errors within 2 times of the standard wet chemistry 

precision are sufficient for application (Yang et al. 2017). Similarly, the ratio of the range of the original 

data to RMSE (ratio error range -RER) was estimated. A minimum RER of 6.00 has been suggested as 

sufficient for detecting differences between classes of samples and for initial screening (Malley et al. 

2004). In addition to the models developed for each plant part, spectra from different plant parts were 

aggregated and analysed together to reflect the scenario of developing global models for predicting 

chemistry using NIRS. Only dried-ground roots, needles and bark samples were used. 

 

5.3 Results and discussion 

5.3.1 Characteristics of NIR spectra of the needles, bark and roots  

The spectral features of P. radiata needles, bark and roots were consistent with spectra from other 

coniferous species (Rautiainen et al. 2018; Toscano et al. 2017), where the critical peaks obtained are 

located in NIR region II (8500–5500 cm−1) and region III (5500–4000 cm−1) (Figure 5.1).  
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Figure 5.1: Representative averaged raw spectra of the needles, bark and roots of Pinus radiata derived from 

dried-ground samples. Spectra from wet samples (not shown) were very similar. 

 

The derivatised spectra highlighted several spectral features between 4000 to 4300 cm-1, 4700 to 5000 

cm-1 and 5500 to 6000 cm-1 and 7100 to 7262 cm-1 (Figure 5.2). These peaks have been assigned to 

various functional groups that are pertinent to the major compounds detected by wet chemistry. Major 

peaks between 4400 and 4000 cm-1 have been associated with diterpenoids (Invernizzi et al. 2018). 

These peaks are very well resolved because diterpenoids were found to be abundant in the P. radiata 

needles, bark and roots. However, other terpenoids have been assigned to peaks between at 4775 and 

5665 cm-1 (Invernizzi et al. 2018; Ma et al. 2019). The dominant peaks at ~5100 cm-1
 ,4760 cm−1 and 

4358 cm−1 are related to O-H functional groups in water and sugars (Invernizzi et al. 2018). Specifically, 

glucose, sucrose and fructose that were also identified in our samples have been related to peaks 

between 4398 and 4878 cm−1 (Rambla et al. 1997) and at 5186 cm−1 (Giangiacomo 2006). These 

peaks are strong as primary compounds are abundant in plants. The spectral region between 6000 and 

5500 cm−1 is related to a CH2 and CH3 of proteins and fatty acids (Beć et al. 2018; Grabska et al. 2017; 

Invernizzi et al. 2018). Phenolics that have major peaks between ~6000 - 7000 cm-1 (Beć et al. 2018; 

Ma et al. 2019; Schwanninger et al. 2011) were weakly displayed, which is consistent with the wet 

chemistry results that quantified very few phenolics in all the plant parts. Various terpenes, including 

mono-, sesqui- and diterpenes have been associated with peaks between 7000 cm−1 and 8000 cm−1 

(Ma et al. 2019). Weaker peaks were observed in the region 1 (12500 – 8500 cm−1) (data not shown), 

which is associated with second and third overtones of functional groups CH3 and CH2 in terpenes 
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(Schwanninger et al. 2011) and phenolics (Ferrer-Gallego et al. 2011). However, because of the 

overlapping feature of NIR spectra, the regions indicated are proxies and may overlap with peaks from 

other constituents. 

 

Figure 5.2: Second derivative using 13 smoothing points of the averaged spectra at T0 reflecting the major wave 

numbers contributing to Pinus radiata chemistry in the dried-ground needles, bark and roots.  

 

5.3.2 Qualitative classification of plant parts  

To inspect differences in spectra between plant parts, derivatised spectra collected from dried-ground 

needles, bark and roots of untreated plants at T0 (constitutive profile) were simultaneously analysed. 

The PCA plot (PC1 vs PC2) of the spectra indicated a spatial separation of the needles, bark and roots 

(Figure 5.3). Most spectral variance between the plant parts was explained by the first 4 principal 

components. PC1, PC2, PC3 and PC4 contributed 54.3%, 24.7%, 6% and 3%, respectively. PC1 

mainly separated the needles from the bark and the roots but PC2 significantly separated the bark from 

the roots.  
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Figure 5.3: PCA plot (PC1 vs PC2) of the derivatised spectra (2nd derivative, 11 smoothing points) collected from 

dried-ground samples of needles, bark and roots. Only spectral data collected at T0 (before application of 

treatments) are displayed. The X and Y axes were scaled by multiplying the scores with 103. 

 

To understand the chemistry that contributes to differentiating plant parts, averaged spectra at T0 of 

each part show differences in most wave numbers suggesting major differences in most chemical 

groups between the needles, bark and roots (Figure 5.2). Because NIRS is influenced by macro-

components, the major differences in plant parts could be related to the dominant macro molecules 

including lignin, cellulose, hemicellulose and non-cellulosic neutral polysaccharides (Tenhaken 2015) 

rather than the relatively smaller molecules that were targeted by wet chemistry. However, the 

differences detected in the spectra above are consistent with the trends that were observed from GC-

MS and LC-MS data on the same sample set (Chapter 3). Overall, the amount of compounds assigned 

as diterpenoids was lower in the roots than in the needles and the bark in the wave numbers between 

4150 - 4381 cm-1 (Figure 5.2) (Invernizzi et al. 2018). Yet, the amount of compounds in the wave 

numbers between 5060 – 5500 cm-1 (Figure 5.2; assigned to sugars) were lower in the roots than in the 

needles and the bark. Similarly, the amount of compounds in several wave numbers (Figure 5.2), for 

example the wave numbers between 5750 - 5573 cm-1 and 5997 cm-1 (assigned as diterpenoids) 

(Invernizzi et al. 2018), were higher in the bark.  

 

5.3.3 Spectral differences between treated and control samples  

Both PCA and PLS analyses separated the treated from control samples in the inner and outer fresh 

bark, the dry-ground bark, the fresh and dry needles and the roots suggesting chemical differences 



129 
 

between the control and treated samples. The best prediction contrasting treated and control samples 

was determined by high coefficient of determination (R2) and low root mean square error of cross 

validation (RMSECV) of partial least squares (PLS) models.  

 

For the bark collected from MJ treated plants, the best prediction in the bark was achieved at T2 (14 

days after treatment) for the dried-ground bark samples (RMSECV = 0.26, R2 = 0.78) and at T3 (21 

days after treatment) in the fresh inner bark samples (RMSECV = 0.25, R2 = 0.79) (Figure 5.4A). For 

the bark collected from the strip treated plants, better predictions were achieved at T3 for both the 

dried-ground bark (RMSECV = 0.41, R2 = 0.45) and the fresh inner bark (RMSECV = 0.30, R2 = 0.69) 

(Figure 5.4B). In the strip treated samples, however, prediction was associated with a higher error 

(Figure 5.4B) indicating weaker responses to treatment compared to samples from MJ treatment. 

Figure 5.5 is a PCA score plot of raw spectra collected from the inner bark at T3 illustrating separation 

in space of treated and untreated samples, suggesting that the chemistry of the treated samples differs 

from the control.  

 

For the needles and roots, the best prediction was achieved in the fresh needles (RMSECV = 0.24, R2 

= 0.81) and ground-dried roots (RMSECV = 0.38, R2 = 0.51) at T2 from MJ treated plants (Figure 5.4C, 

5.4D). The trends in the bark differed from those observed for the needles and roots (Figure 5.4C, 

5.4D) suggesting differences between plant parts in the temporal response to treatments. On the same 

populations large changes were detected in primary and secondary compounds after treatment, with 

differences in time progression of the compounds in the different plant parts (Chapter 3). The strongest 

quantitative changes were detected 14 and 21 days after treatment application. In other P. radiata 

populations, Reglinski et al. (2017) also observed peak expression of induced chemistry between 14 

and 21 days in the bark and between 21 and 28 days in the needles.  
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Figure 5.4: Partial least squares regression (PLS) root mean square error (RMSECV) associated with separating 

control bark, needle or root samples from; A) bark samples from MJ treatment, and B) bark samples from strip 

treatment, C) needle and root samples from MJ treatment and D) needle and root samples from strip treatment. 

No spectra were collected from fresh roots. Only two factors were used to avoid over fitting of the models. 

 

 

Figure 5.5: PC1 vs PC2 separates (a) methyl jasmonate - MJ and (b) strip treated samples and the controls. 

Results are based on the spectra collected from the inner bark three weeks (T3) after treatment application. 
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To identify the chemistry associated with the differences between the two treatments, regression 

coefficients of derivatised spectra showed that strip and MJ treated samples differed from the control 

samples especially in wave numbers between 5060 and 5500 cm-1 and between 4690 and 4950 cm-1 

(Figure 5.6) that have been assigned to sugars. This suggests that sugars show more pronounced 

responses to treatments compared to other compound groups, which is consistent with the 

observations from wet chemistry. The wet chemistry results showed major induced changes in the 

sugars after treatment with less pronounced changes in terpenes and phenolics (Chapter 3). Sugars 

have been shown to drastically reduce in these treated samples (Chapters 3, 4) which may be related 

to increase consumption of sugars to supply energy, reduced photosynthesis during stress or the use of 

sugars as precursors for secondary defence compounds (Schwachtje and Baldwin 2008). Other studies 

with P. radiata also indicate qualitative and quantitative changes in the secondary chemistry of the 

needles, bark and roots following artificial wounding and methyl jasmonate application (Keefover-Ring 

et al. 2016; Lombardero et al. 2013; Moreira et al. 2013a; Moreira et al. 2009). The secondary 

compounds that respond to stress are thought to have some defensive functions (Schwachtje and 

Baldwin 2008). 

 

In addition, the spectra variations indicated some treatment-specific responses. Based on the spectra 

collected from the inner bark, bark stripping caused responses at several wave numbers such as 

between 4316 cm-1 and ~5087 cm-1 that weakly responded in methyl jasmonate treated samples (Figure 

5. 6). This suggests that the nature of expressed chemistry is dependent on the type of stress to which 

plants are subjected, consistent with earlier results (Chapter 3). Bark stripping may cause different 

chemical responses from methyl jasmonate application since it causes direct tissue loss, exposure of 

the phloem to potential infections and desiccation. 
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Figure 5.6: Regression coefficients differentiating responses of P. radiata bark to methyl jasmonate (MJ) and 

bark stripping (strip). The model is based on spectral data collected from the fresh inner bark at T3.  

 

5.3.4 Quantitative prediction of individual compounds 

NIRS models were developed for all the 81 compounds/groups and total compound groups that are 

listed in Supplementary Table 5.1. The prediction accuracy varied considerably between individual 

compounds. Of the primary compounds, glucose [77] (R2 = 0.83, RPD = 1.9, PRL = 1.25, RER =8.50) 

and fructose [76] (R2 = 0.84, RPD = 1.5, PRL = 2.72, RER = 7.25) exhibited the highest predictive 

accuracy (Figure 5.7, 5.8 A & B). The total sugars also exhibited a very high prediction accuracy (R2 = 

0.89, RPD = 1.1, RER =14.12). Generally, non-structural carbohydrates such as sugars show high 

prediction potential in tissues of Pinus (Acquah et al. 2018; Fahey et al. 2018) and other tree species 

(Quentin et al. 2017; Ramirez et al. 2015; Rubert-Nason et al. 2013), possibly because they exist in 

very high quantities (Cranswick et al. 1987). The prediction of glucose in bark was slightly lower than 

what has been observed in P. radiata wood (Fahey et al. 2018), which may be related to the relatively 

higher amounts of sugars stored in the wood of P. radiata (Cranswick et al. 1987). The wave numbers 

that offered best prediction for both glucose (6051.6 to 4597 cm-1 ) and fructose (7501.8 to 4246.5 cm-1) 

are consistent with the wave numbers established for these sugars (Rambla et al. 1997). Other primary 

compounds including fatty acids also had promising R2 with higher RER values than sugars 

(Supplementary Table 5.1).  The low RPD values, lower than what has been established in other 

studies suggests skewness of the data (Malley et al. 2004; Quentin et al. 2017; Schimleck et al. 2003). 
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Figure 5.7: The coefficient of determination (R2) (a) and prediction relative to lab error (PRL) (b) for the NIRS models for the compounds listed in Supplementary Table 5.1.The 

back dots for each graph indicate individual estimates and the red dots in (b) indicate the average PRL for each compound group. Models with R2 > 0.5 can be confidently used for 

quantitative predictions as well as models with PRL~ 2.0.
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Of the secondary compounds, the highest prediction was achieved for unknown isomeric diterpenoids; 

unknown C20H32O3 C [49] (R2 = 0.75, RPD = 2.02, PRL = 3.72, RER = 11.29) and unknown C20H32O3 

A [47] (R2 = 0.72, RPD = 1.9, PRL = 4.73, RER = 10.76) (Supplementary Table 5.1 and 5.8 C & D). 

However, there are several compounds that had promising R2 that included limonene[10] (R2 = 0.60, 

RPD = 1.6, PRL = 0.45, RER = 24.16), dehydroabietic acid [29] (R2 = 0.54, RPD = 1.5, PRL = 2.99, RER 

= 6.4), unknown resin acid groups - unknown C20H30O3 [46] (R2 = 0.63, RPD = 1.6, PRL = 3.70, RER = 

51.35) and several other unknown diterpenoids (R2 = 0.60 - 0.68, RPD = 1.6 -1.8) (Supplementary 

Table 5.1). The relatively low R2 values in the present study for most individual compounds 

(Supplementary Table 5.1) contrast with other studies that have established very high values of 

prediction for terpenes, phenolics and other secondary compounds in other plant species (Couture et 

al. 2016; Juliani et al. 2006; Schulz et al. 2003). For example NIR models have been produced for 

cinnamon (Cinnamomum zeylanicum) and clove (Syzygium aromaticum) which have outstanding R2 > 

0.99 for all terpenes and phenolics (Juliani et al. 2006; Schulz et al. 2003). The amounts of secondary 

total compounds groups also exhibited low predictive accuracy (Supplementary Table 5.1, Figure 

5.10a) 

 

Various factors affect the predictive accuracy of the NIRS models and these include accuracy of the 

reference data and statistical distribution (Chu et al. 2005; Pérez-Marín et al. 2012). Most of the 

amounts of compounds were negatively skewed showing that there was limited representation of 

samples with higher relative amounts. This caused poor modelling of the amounts of the skewed 

compounds. The RER and RPD values have especially been indicated to be sensitive to skewed 

distributions (Malley et al. 2004). Figure 5.9 illustrates the statistical distribution of some well and poorly 

predicted compounds in this study. This suggests that increasing sample size to capture a wider range 

of values; including more higher values would enhance model performance. Consistently, compounds 

that were well predicted had a better spread of values in contrast to those that were poorly predicted 

that were more skewed (Figure 5.9). It has also been suggested that non-normal data may be better 

modelled with non-linear methods that were not tested in this study (Pérez-Marín et al. 2012).  
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Figure 5.8: Linear relationship between the amount of compounds measured by standard laboratory procedures 

and that predicted by NIRS of the top two predicted primary compounds: a) glucose, b) fructose (top row) and 

secondary (bottom row) compounds: c) unknown C20H32O3 B, d) unknown C20H32O3 A. The absolute 

amounts of sugars are quantified in mg/g dw. The unknown secondary compounds are expressed as mg rutin 

equivalents (RE)/g dw, as no absolute quantitation was carried out on these analytes.  

 



136 
 

 

Figure 5.9: Histograms showing the statistical distribution of compounds that had high and low R2 and 

respectively a better spread and a strong right skew. The absolute amounts of sugars; (a) glucose and (b) 

fructose are quantified in mg/g dw. The secondary compounds: (c) α-pinene and (d) citronellol are expressed as 

mg heptadecane equivalents (HE)/g dw, as no absolute quantitation was carried out on these analytes.  

 

In the present study, predictive accuracy partly depended on the plant part from which the spectra were 

collected and the nature of the samples. There was, for example, comparatively better prediction of 

sugars in the dried ground bark than in the fresh bark or needles and roots. In contrast, fatty acids and 

monoterpenes were better predicted in the dried-ground roots and the diterpenoids were better in the 

dry-ground needles (data not shown). Figure 5.10b illustrates the variation in predictability of primary 

compounds in the various P. radiata plant parts and the preparation of samples. While the amounts of 

compounds are known to vary between P. radiata needles, bark and roots (Cranswick et al. 1987; 

Moreira et al. 2012a) and consequently the model accuracy (Riley and Crider 2000), sample drying has 

been shown to improve predictions by eliminating the variability in the water content. This improves 

spectral specificity for constituents such as sugar which depends on O-H groups in NIR interactions 

(Rubert-Nason et al. 2013; Stuart 2004). Our results especially showed that drying and grinding 

reduced the percentage contribution of PC1 to the total variation and altered the significant spectral 

ranges for the various analyses. Grinding also produced homogeneous samples that reduced spectral 

differences due to spatial heterogeneity. 
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Figure 5.10: Differences in coefficient of determination (R2) in different plant parts and sample types for a) total compound groups and b) selected primary compounds.  
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In terms of developing global models for P. radiata chemistry, the combined analysis of the spectra 

from dried-ground roots, needles and bark improved predictability of some compounds like β-pinene [4] 

(R2 = 0.61, RPD = 1.61), α-pinene [1] (R2 = 0.40, RPD = 1.3) and sabinene compared to the part specific 

models that are presented in Supplementary Table 5.1. While the R2 of glucose [77] in a global model 

(R2= 0.81, RPD = 2.3) was similar to tissue specific models, global model accuracy slightly reduced for 

fructose [76] (R2 = 0.70, RPD =1.81), limonene [10] (R2 = 0.2, RPD = 1.12) and unknown C20H32O3 B [48] 

(R2 = 0.68, RPD = 1.75). This suggests that opting to amalgamate sample spectra for a global model 

will depend on target compounds. Apart from (Ramirez et al. 2015) who found optimal calibration for 

non-structural carbohydrates for samples originating from a broad range of plant species and tissue 

types, most studies show that heterogenous samples may lead to bias in validation and cross‐

validation results (Cécillon et al. 2009; Rubert-Nason et al. 2013).  

 

5.4 Conclusion 

This study demonstrates the potential to use Pinus radiata NIRS-based models to classify samples 

from different plant parts and differentiate samples from stressed and unstressed plant parts. NIRS 

models well-predicted sample glucose, fructose and selected terpenoids as well as provided proximate 

values for several fatty acids, monoterpenoids, diterpenoids and phenolics. Hence, NIRS models show 

potential to be useful in all aspects of natural herbivory prevention in other plant species, such as 

predicting chemistry for a larger number of samples for genetic studies. However, it is expected that the 

predictive accuracy could be improved if calibrations are developed with a larger sample size, and 

determining optimal sample sizes could be a subject for further investigation. Assigning wavelengths to 

secondary metabolites remains an important research goal in NIR spectroscopy. 
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Supplementary Table 5.1: Results of the cross-validated predictions for various chemical properties using partial least-squares (PLS) regression. For compounds detected in 

more than one plant part (Chapter 3), models were developed with spectra collected from all plant parts (bark, needles and roots) and state of samples (fresh and dry). However, 

only the best models (based on R2) achieved from specific plant parts are shown. The table shows coefficient of determination (R2) of the plot between the predicted values and 

the reference values, the root mean square error of cross-validation (RMSECV), the number of factors used in the model (rank), the residual predictive deviation (RPD) - which is 

defined as the standard deviation of observed values divided by the RMSECV, the predictive to lab error (PRL) and the ratio of the range of the original data to RMSE (ratio error 

range (RER). The best wave number range for the prediction as well as the pre-processing applied to the models are also indicated. Some compounds were not detected in the 

triplicates and hence have PRL=NA. The letters: “A’, “B” and “C” against compounds denote isomers. Compound identifiers (Id) were given to each compound for ease of location. 

The identifiers in this table are not sequential as some compounds indicated in Supplementary Table 10 (after Chapter 9) were not identified in this data set 

 

Id Compounds R2 RMSECV Rank RPD PRL RER Wave number range Pre-processing Plant part 
 

total compound groups  
         

 
total monoterpenoids 0.38 0.41 6 1.27 

 
6.61 6101.7-5449.9 multiplicative scatter correction 

(MSC) 
roots 

 
total GC-MS diterpenoids 0.30 1.22 2 1.05 

 
8.36 9403.3-6097.9 2nd derivative dry needles  

total sesquiterpenoids 0.21 0.11 3 1.08 
 

5.31 9403.3-7498; 6101.7-5449.9 no spectral processing dry bark  
total phenolics 0.43 0.13 5 1.26 

 
6.14 9403.3-7498; 6101.7-4597.5 2nd derivative dry bark  

total sugars 0.89 0.02 9 2.68 
 

14.12 7602.098-3802.972 MSC dry bark            

 
monoterpenoids 

         

1 α-pinene 0.35 0.65 13 1.20 4.01 6.55 6102-5450 SLS dry needles 

2 α-terpineol 0.28 0.00 2 1.20 0.34 10.77 8451-7498; 5778-5450 1st derivative dry bark 

3 β-phellandrene 0.34 0.13 4 1.20 1.05 15.59 9403-7749; 5026-4598 2nd derivative dry needles 

4 β-pinene 0.46 0.24 6 1.40 0.45 6.47 6102-5450 MSC roots 

5 camphene 0.24 0.01 4 1.20 3.49 5.83 9401.8-7498.3; 5774.1-5448.2 SLS fresh needles 

6 citronellal 0.15 0.06 1 1.10 5.16 7.39 8450-7497 2nd derivative outer bark 

7 citronellic acid 0.10 0.02 3 1.10 13.96 4.97 6826.8-4246.5 SLS inner bark 
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8 citronellol 0.16 0.22 12 1.10 25.72 4.41 9403-7497.9; 5777.7-5449.9 1st derivative inner bark 

9 γ-terpinene 0.04 0.01 1 1.00 NA 5.60 6101.7-5773 2nd derivative inner bark 

10 limonene 0.60 0.00 3 1.60 0.45 24.16 7502-5450;4601-4247 1st derivative + MSC roots 

11 linalool 0.12 0.01 2 1.10 1.21 8.56 8450.6-7497.9; 6101.7-5773.8 1st derivative inner bark  

12 myrtenoic acid 0.07 0.00 2 1.03 0.28 6.94 4601.4-4424 1st derivative + vector 
normalisation (SNV) 

dry roots 

13 sabinene 0.08 0.07 1 1.00 1.48 4.33 9403-7424.7; 4601.4-4424 1st derivative + SNV roots 

14 terpinene-4-ol 0.09 0.01 1 1.05 6.13 11.57 6101.7-5449.9 2nd derivative inner bark 

15 terpinolene 0.20 0.12 3 1.10 1.74 6.37 9403-5450 1st derivative + MSC dry bark 

16 unknown Mol Wt 150 0.15 0.02 8 1.08 35.13 6.09 8450.6-7497.9; 6101.7-5773.8 constant offset elimination inner bark            

 
sesquiterpenoids 

         

17 bicyclogermacrene 0.04 0.01 1 1.02 3.59 6.54 5774.1-5448.2; 4601.6-4424.1 MSC fresh needles 

20 trans-farnesol 0.12 0.08 9 1.07 6.88 5.13 9403.2-7497.9; 6101.7-5449.9; 
4601,3-4423.9 

constant offset elimination inner bark 

21 unknown 
sesquiterpenoid alcohol 

0.14 0.04 2 1.08 9.59 6.39 9401-6098.1 constant offset elimination fresh needles 

           

 
GC-MS diterpenoids 

         

22 agatholal 0.35 0.38 4 1.24 2.07 6.79 9403-6098; 5026-4598 2nd derivative dry needles 

23 agathadiol 0.19 0.30 5 1.11 1.59 5.90 9403-7749;5026-4598 MSC outer bark 

24 copalol 0.10 0.12 3 1.05 0.52 9.81 8451-7498.3;6100-5448.2; 4601.6-
4248.6 

MSC fresh needles 

25 levopimaral 0.17 0.01 5 1.09 1.34 5.92 6102-5450 SNV roots 

26 methyl dehydroabietate 0.38 0.04 2 1.27 1.73 8.57 9403.3-6097.9 1st derivative + SLS dry bark 

27 methyl levopimarate 0.38 0.01 6 1.27 1.10 6.39 7502-4247 2nd derivative roots 

28 unknown C19H26 0.65 0.07 12 1.69 NA 10.23 9403.2-7497.9 SLS inner bark            

 
LC-MS diterpenoids 

         

29 dehydroabietic acid 0.54 0.27 4 1.48 2.99 6.40 7501.8-5449.9 2nd derivative dry needles 
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30 unknown diterpene-1 0.39 0.33 4 1.28 9.94 7.18 6799.8-6097.9 MSC dry bark 

31 unknown diterpene-2 0.10 0.22 1 1.06 NA 4.69 5453.8-4246.5 2nd derivative dry roots 

32 unknown diterpene-3 0.04 1.46 1 1.02 10.12 4.69 7501.8-6097.8 1st derivative + MSC inner bark 

33 unknown m/z 109 A 0.28 0.08 5 1.18 2.50 6.53 6799.8-6097.9; 4601.4-4246.5 SNV dry bark 

34 unknown m/z 109 B 0.28 0.25 3 1.18 NA 5.89 7501.8-4597.5 2nd derivative inner bark 

35 unknown m/z 121 0.16 0.03 4 1.09 NA 5.96 9403-7498; 4601.4-4246.5 min-max normalisation dry roots 

36 unknown m/z 134 0.11 0.42 1 1.06 NA 16.86 7501.8-6097.8 1st derivative + MSC inner bark 

37 unknown m/z 239 0.22 0.00 6 1.13 NA 5.90 6101.7-5449.6; 4601.4-4246.5 1st derivative + SLS dry roots 

38 unknown Mol Wt 272 0.29 0.05 5 1.19 10.14 6.64 9403-7498; 5777-5450;4424-4247 1st derivative outer bark 

39 unknown C20H30O2 A 0.20 0.20 5 1.13 3.12 13.73 5778-5450; 4601-4247 SLS dry roots 

40 unknown C20H30O2 B 0.32 0.31 12 1.22 7.01 5.12 7502-4598 constant offset elimination dry needles 

41 C20H30O2 resin acids 0.57 0.63 10 1.13 3.12 7.43 5778-5450; 4601-4247 straight line subtraction (SLS) dry needles 

42 unknown m/z 304 A 0.14 5.56 3 1.08 NA 0.00 6100-5774.1; 4426.1-4248.6 constant offset elimination fresh needles 

43 unknown m/z 304 B 0.22 0.07 2 1.13 9.52 4.62 5349.6-4597.5 SNV dry needles 

44 unknown m/z 304 C 0.36 0.14 6 1.25 8.52 10.97 9403.3-7498; 5453.8-4597.5 1st derivative dry bark 

45 unknown m/z 316 0.16 0.94 1 1.09 7.69 8.02 9403-7498; 5778-5459 2nd derivative outer bark 

46 unknown C20H30O3    0.63 0.17 14 1.64 3.70 51.35 6102-5450 SLS dry needles 

47 unknown C20H32O3 A  0.72 0.44 5 1.90 4.37 10.76 7501.8-6097.9 1st derivative + SNV dry needles 

48 unknown C20H32O3 B  0.06 0.05 1 1.03 2.86 23.53 442-4246.5 1st derivative + SLS dry needles 

49 unknown C20H32O3 C  0.75 0.38 6 2.02 3.72 11.29 7501.8-6047.7 1st derivative + MSC dry needles 

50 unknown C20H30O4 0.60 0.42 10 1.58 3.40 6.01 6475.9-5449.9; 4424-4246.5 SLS dry needles 

51 unknown C20H30O5 0.53 0.93 5 1.45 NA 5.62 8451-7498 MSC outer bark 

52 unknown C20H30O6 A 0.28 0.07 10 1.18 NA 7.89 6101.7-5773.8 constant offset elimination inner bark 

53 unknown C20H30O6 B 0.43 0.08 6 1.32 1.67 11.40 7500.2-5448.2; 4601.6-4248.6 SLS fresh needles 

54 unknown C20H30O6 C 0.23 0.77 9 1.14 NA 7.55 9403.2-7497; 5777.7-5449.9; 
4601.3-4423.9 

constant offset elimination inner bark 

 
phenolics 

         

56 anethole 0.18 0.02 3 1.10 3.50 6.14 9403.2-8450.6; 6101.7-5449.9 SLS inner bark 
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62 ethyl 4ethyoxy benzoate 0.16 0.01 2 1.09 NA 31.57 8450.6-7497.9; 5777.7-5449.9 2nd derivative inner bark 

65 methyl eugenol 0.13 0 2 1.07 5.14 57.52 9403.2-7497.9; 6101.7-5773.8 1st derivative inner bark 

68 pinosylvin dimethyl ether 0.07 0.01 1 1.04 2.91 20.27 6475.9-5449.9 SNV dry bark 

70 raspberry ketone 0.21 0.05 3 1.12 6.48 5.33 9403.2-7748.6 1st derivative + SLS inner bark 

73 trans-coniferyl alcohol 0.24 0.03 4 1.12 5.22 6.37 9403-8450;4423-4246 SLS outer bark 

74 vanillin 0.41 0.02 3 1.30 5.43 7.36 4601.4-4246.5 no spectral processing dry bark  
sugars 

         

76 fructose 0.84 1.50 7 1.50 0.71 7.25 8450,6-7498; 6101.7-5449.9 SLS dry bark 

77 glucose 0.83 1.89 9 1.90 1.14 8.50 8450,6-7498; 6101.7-5449.9 SLS dry bark 

78 inositol 0.16 0.24 1 1.10 1.12 10.53 6101.7-5773.9; 4424-4246.5 SLS dry bark 

79 sucrose 0.44 0.28 6 1.30 1.42 7.69 5778-5450 2nd derivative dry bark 

80 unknown disaccharide A 0.26 0.00 10 1.16 0.00 5.79 9403.3-4246.3 1st derivative + MSC 
 

81 unknown disaccharide B 0.49 0.00 5 1.39 0.00 6.77 9403.3-8450.6; 4601.4-4246.5 SNV 
 

82 unknown 
monosaccharide 

22.35 0.00 6 1.13 0.00 6.37 6101.7-5449.9; 4601.4-4246.5 1st derivative + SNV 
 

 
fatty acids 

         

83 linoleic acid 0.43 0.35 7 1.3 2.11 6.19 7501.8-6097.9 min-max normalization dry needles 

84 linolenic acid 0.57 0.08 11 1.5 1.18 14.75 8450.6-7498;4601.4-4246.5 no spectral processing roots 

85 palmitic acid 0.61 0.72 4 1.6 5.17 21.08 8451-7498 no spectral processing roots  
unknowns 

         

86 unknown m/z 104 0.01 0.00 1 0.98 0.63 12.20 5025-4598 MSC outer bark 

87 unknown m/z 111 -0.10 0.01 1 1.00 0.75 4.36 5777.7-5449.9; 4424-4246.5 constant offset elimination dry roots 

88 unknown m/z 162 0.16 0.05 9 1.09 NA 6.98 7501.8-6097.8 constant offset elimination inner bark 

89 unknown m/z 272 0.15 0.03 1 1.09 0.27 4.83 5777.7-5449.9; 4601.4-4424 MSC dry needles 

90 unknown m/z 274 0.47 0.18 5 1.37 NA 11.01 9403.3-7424.7 SLS dry bark 

 91 unknown m/z 302 -0.66 0.56 1 1.00 NA 6.98 7500.2-6798.2 min-max normalization fresh needles 

92 unknown m/z 358 0.11 0.06 6 1.09 6.53 6.40 9401.8-8449; 5774.1-5448.2 min-max normalisation fresh needles 

93 unknown m/z 362 0.68 0.05 3 1.77 1.75 9.55 6800-6098 1st derivative +MSC dry needles 
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94 unknown m/z 406 A 0.40 0.09 2 1.29 0.31 6.60 7502-4247 no spectral processing roots 

96 unknown m/z 740 A 0.24 0.04 6 1.15 6.42 6.99 9403.3-7498; 6101.7-5349.6 SNV dry bark 

97 unknown m/z 740 B 0.34 0.08 3 1.24 4.58 2.92 6101.7-5349.6 SNV dry needles 

98 unknown m/z 770 0.08 2.44 2 1.04 NA 0.10 6799.8-6097.9; 5025.6-4597.5 2nd derivative dry needles 

1 
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CHAPTER 6: Additive genetic variation in Pinus radiata near infrared estimated 

bark chemistry and the chemical traits associated with variation in bark stripping  

 

6.0 Summary  

Secondary metabolites have been suggested as a major mechanistic link between genetic variation in 

herbivory levels of Pinus radiata. The potential to incorporate these chemical traits into 

breeding/deployment programmes in part depends on the presence of additive genetic variation for the 

relevant chemical traits. In this chapter, near-infrared spectroscopy was used to quantify the 

constitutive and induced levels of 65 compounds in the bark of trees from 74 full-sib families of P. 

radiata growing in a designed field trial, with between 3 and 6 trees per family. The trees sampled for 

chemistry were protected from browsing and induced levels were obtained by subjecting half of the 

trees to artificial bark stripping. The effect of this treatment on bark chemistry was assessed along with 

narrow-sense heritability, the significance of non-additive (family) genetic effects and the additive 

genetic correlations of compounds with marsupial bark stripping, that was observed in unprotected 

replicates of the field trial. The results indicated: (i) significant additive genetic variation, with low-

moderate narrow-sense heritability estimates for most compounds; (ii) while significant induced effects 

were detected for 50% of the chemicals, no significant genetic variation in inducibility was detected; and 

(iii) sugars, fatty acids and a diterpenoid positively correlated with bark stripping while a sesquiterpenoid 

negatively correlated with mammalian bark stripping. In the absence of browsing, a trade-off with height 

and with other chemical compounds (rg = -0.85±0.22, p <0.01) was detected for selecting higher 

amounts of the sesquiterpenoids. However, overall, results showed that there is potential to incorporate 

near infrared estimated chemical traits into breeding/deployment programmes. This is possible with the 

use of near-infrared spectroscopy for large-scale phenotyping and the present study has shown that 

quantitative genetic analyses of chemical traits produce associations with bark stripping that mostly 

conform with those obtained using standard wet chemistry procedures. 
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6.1 Introduction 

Defence against herbivory is achieved by constitutive and inducible physical and chemical traits that act 

directly or indirectly on herbivore feeding (Franceschi et al. 2005; Hudgins et al. 2004) and 

understanding their genetic architecture is of interest to the field of evolutionary ecology as well as plant 

breeding (Johnson 2011). In Pinus species and other conifers, physical traits include bark thickness 

and texture, constitutive and traumatic resin ducts and specialized phloem parenchyma cells 

(Franceschi et al. 2005; Hudgins et al. 2004). The chemical traits include secondary metabolites mainly 

terpenoids and phenolics, where higher amounts are linked to increased resistance to mammalian and 

insect herbivores in the needles and the bark (Chapter 4 ; Chiu et al. 2017; Iason et al. 2011; Zhang 

and States 1991). A few studies have also directly or indirectly associated the amounts of primary 

compounds with herbivory responses (Chapter 4 ; Gershenzon 1994; Tauzin and Giardina 2014; Tiffin 

2000). These chemical and physical traits, that are often present in basal levels in plants, increase or 

reduce following real or artificial herbivory (Miller et al. 2005; Raffa and Smalley 1995; Sampedro et al. 

2011). In Pinus species, both constitutive and induced traits have been shown to be under genetic 

control (Baradat and Yazdani 1988; Iason et al. 2011; Ott et al. 2011; Westbrook et al. 2015; Zhang et 

al. 2016a) and are potentially amenable to natural and artificial selection. However, for different traits, 

there is tremendous variation in the extent to which phenotypic selection on parents will impact on 

progeny, which is determined by the amount of additive genetic variation and hence narrow-sense 

heritability. Other factors being constant, traits with low heritability will respond more slowly than traits 

with higher heritability (Falconer and Mackay 1996).  

 

While the presence of sufficient additive genetic variation for traits is an important requirement, current 

theories on the evolution of plant resistance predict the existence of evolutionary trade-offs (negative 

genetic correlations) between resistance and fitness traits, or between individual traits that can 

constrain their selection in breeding programmes (Huot et al. 2014). Terpenes and phenolics are 

carbon-based and their production requires carbon resources, resulting in potential conflicts among the 

compounds or with other plant functions such as growth (Sampedro et al. 2010; Sampedro et al. 2011). 

When there is a genetic-basis in these trade-offs, improving resistance through selection and breeding 

could negatively impact growth or other defence traits, and vice versa. Mixed evidence for the existence 

of trade-offs in Pinus species has been documented (Sampedro et al. 2010; Sampedro et al. 2011) but 

generally trade-offs are not expected in environments that are resource‐rich as predicted by the 

resource availability hypothesis (Coley et al. 1985; Sampedro et al. 2011) and growth–differentiation 

balance hypothesis (Lorio 1986). Similarly, where multiple traits are required for effective defence, 

limited trade-offs will be observed among such traits (Carmona and Fornoni 2013).  
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In Pinus radiata, although genetic variation in herbivory has been documented for both mammals and 

insect herbivores (Chapter 2 ; Chapter 4 ; Moreira et al. 2013b), the associated defence mechanisms 

are not well established. A few studies have documented the involvement of physical structures such 

as thick bark, rough bark and obstructive branches on the stem in deterring herbivores (Chapter 2 ; 

Miller et al. 2014). Most recent studies have focussed on chemical defences and have found some 

relationships between the chemical defences and P. radiata herbivores (Moreira et al. 2013a; Moreira 

et al. 2013b; Sampedro et al. 2011) but the proportion of phenotypic variation explained by additive 

genetic variation has been estimated for only a few compound groups (Moreira et al. 2012a; Moreira et 

al. 2013b). Recently it was identified that sugars in the bark of P. radiata may contribute to susceptibility 

to mammalian herbivores (Chapter 4). There was little evidence of a relationship between needle 

chemistry and susceptibility to mammalian bark stripping (Chapter 4). Studies also indicate substantial 

response of P. radiata to both real and artificial herbivory and stress elicitors mostly by increasing the 

terpenes and phenolics and reducing the sugars (Chapter 3 ; Chapter 4 ; Moreira et al. 2013a; 

Reglinski et al. 2019). However, there is still limited support for the role of induced chemistry in 

deterring herbivores or its variation between families (Chapter 4 ; Moreira et al. 2013a). The presence 

of trade-offs between growth and chemistry and between different chemical traits has been 

demonstrated in P. radiata mainly at the phenotypic level (Chapter 3 ; Gould et al. 2008; Reglinski et al. 

2019). However, the existence of a genetic-basis for the trade-offs for individual compounds has not 

been investigated.  

 

This study examined additive genetic variation of primary and secondary metabolites in the bark of 

Pinus radiata using a field trial of full-sib families. The aims of this study were to; 1) examine the extent 

to which variation in P. radiata bark chemistry is under genetic control, 2) test whether there are genetic 

differences in the inducibility of bark chemical traits, 3) identify compounds that genetically correlate 

with mammalian bark stripping, and 4) examine correlations among selected chemical compounds and 

their correlation with growth. Because needle chemistry does not appear to be important in 

differentiating families which are resistant and susceptible to mammalian bark stripping (Chapter 4), this 

study focuses only on compounds quantified in the bark.  

 

6.2 Materials and methods 

6.2.1 Genetic trials 

The genetic field trial used for this study is decribed in Chapters 2 and 4. It was established at Wilmot in 

northern Tasmania (-41.4542710N, 146. 1068010E, 580 m ASL), Australia in 2015 using genetic 

material sourced from the New Zealand Radiata Pine Breeding Company (RPBC). The genetic material 
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comprised 74 full-sib (cross-pollinated; CP) families generated from 55 unique parents and 54 

grandparents which were planted out in the field in a randomised incomplete block design of 26 

replicates, three incomplete blocks per replicate and each family represented as a single-tree plot 

within each replicate. The field trial was fenced to prevent bark stripping by native mammals. The 

dominant native herbivore on site was the Bennett’s wallaby (Macropus rufogriseus subspecies 

rufogriseus). The density of the Bennett’s wallaby within the area was estimated at 32 animals/km2 

(DPIPWE 2018). In 2017 (when seedlings were 25 months of age), the gates of the trial were opened 

during winter for about two months to allow access to animals to do bark stripping. Six of the 26 

replicates were further protected using internal fencing to totally exclude the herbivores, to allow 

chemistry to be assayed in the absence of uncontrolled browsing (see chemistry experiment described 

below). The remaining 20 replicates were freely accessible to browsing and were used to assess the 

genetic variation in susceptibility to mammalian bark stripping.  

 

6.1.2 Experiment 1: Assessment of mammalian bark stripping 

The details of the bark stripping assessment are presented in Chapters 2 and 4. In brief, at 2 years of 

age, after ~2 months of exposure to mammalian bark stripping, the amount of bark removed by the 

marsupials was scored in the 20 replicates (n = 1550 plants), on a scale of 0-5; 0 = no damage, 1 = 

<25%, 2 = 25 - 50%, 3 = 50 - 75%, 4 = >75%, 5 = 100% damage (completely ring barked). At the same 

time the height of trees from all 26 replicates was measured. By this time, bark stripping had not 

differentially influenced the height of the different families as depicted from the non-significant 

tree*protection term (described later in the methods). The average height of the trees at the time of 

bark stripping assessment in the 20 unprotected replicates was 147.4 ± 0.90 cm and 163.7 ± 1.54 cm 

for trees in the 6 protected replicates. Browse scores were converted to mid-point values for data 

analyses, except for scores 0 and 100 (Chapter 2). The bark stripping scores used were spatially 

adjusted to minimize the spatial effects as detailed in Chapter 2. 

 

6.2.3 Experiment 2: Chemistry experimental design and chemical analysis 

Three weeks after the bark stripping assessment was conducted, an experiment was initiated to assess 

the constitutive and induced chemical differences among all the 74 families using trees in the 6 

protected replicates (n = 393 plants). Half of the plants were subject to artificial bark stripping (treated 

trees) at T0 and half were untreated and used as controls (more details of the sampling are presented 

in Chapter 4). The treatment was applied by removing a vertical strip of 15 cm of bark, starting 2 cm 

above the ground, and covering 30% of the stem circumference (Figure 6.1). The dimensions were 

selected based on the most common browsing level observed in Experiment 1. Three weeks after the 
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treatment was applied (Chapter 5), bark samples were collected from both the control and the treated 

trees. This second bark sample was collected from all the trees ~1 cm above the stripped part on the 

treated trees as illustrated in Figure 6.1. On the control trees, a bark sample of similar size was 

collected from a similar height as the one from the treated plants (Figure 6.1). All bark samples were 

collected from the north side of the stem. Samples were kept in a cool box until transportation to the 

laboratory for near infra-red spectroscopy (NIRS) scanning of fresh samples. After scanning, each 

sample was divided into 2 parts; one part was stored in a -20⁰C freezer until wet chemical extraction 

and the other was freeze-dried and ground using a Cyclotec 1093 sample mill (FOSS, Denmark) for 

NIRS scanning of dried-ground samples.  

 

Figure 6.1: Fifteen month-old Pinus radiata trees showing the artificial bark stripping treatment (lower left) and 

how bark was sampled for chemical analysis (upper strip removed) from treated (left) and untreated control 

(right) plants. The artificial bark stripping treatment was applied by removing a vertical strip of bark 15 cm long, 

starting 2 cm above the ground and covering 30% of the circumference. After 3 weeks a bark strip for chemical 

analysis was collected 1cm above the treated area of the treatment tree and at similar height for the control tree.  

 

6.2.4 Near infrared reflectance spectroscopy models and wet chemical analysis 

Assessment of chemistry is conventionally performed using wet chemistry procedures. However, the 

need for large sample sizes for genetic analysis puts a constraint on the use of wet chemistry given the 

associated cost and labour (Siesler and Ozaki 2002). The ability of NIRS to accurately predict the 

amount of primary and secondary compounds in P. radiata enabled fast, low cost and large scale 

chemotyping for this genetic study. Robust models for predicting P. radiata chemistry in the needles 

and the bark have been reported in Chapter 5.  

 

To predict the chemistry of P. radiata using NIRS, bark samples from all trees in the 6 protected 

replicates were scanned when fresh and when freeze dried and ground according to the methods in 

Chapter 5. The fresh bark samples were divided into two; the part closer to the original strip (proximal) 
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and one further from the strip (distal). For both the proximal and distal samples, spectra were collected 

from the inner and outer sides. Briefly, the fresh bark samples were scanned using an optic fibre 

reflective probe at five different points and the spectra averaged. The dry samples were scanned in 

diffuse reflective mode through the bottom of glass vials. Each spectrum was collected at 8 cm-1 using 

the OPUS (ver. 7.2; Bruker Optik GmbH, Germany) program and reflectance (R) data was stored as log 

(1/R). All qualitative and quantitative analyses were performed using the Unscrambler® X software 

(CAMO software version 10.2, CAMO AS, Trondheim, Norway).  

 

Principal component analysis (PCA) was carried out on the spectra of all samples, to enable selection 

of a subset (~0.3 of the total number of samples) of samples for wet chemical analysis (see below) for 

model calibration purposes. 150 samples that were representative of the spectral variation present in 

the entire sample set were selected. One hundred of these were used to develop the models based on 

cross-validation and 50 samples were used for external validation before predicting the unknown 

samples (n=243). Partial least squares regression (PLS) models of the spectral data and quantitative 

chemical data of the 150 calibration samples were developed to predict the amount of quantified 

chemical constituents in all the other samples. In most cases, spectral data were transformed by pre-

treatments before the calibration process (Rinnan et al. 2009). The performance of the PLS models 

was evaluated according to the root mean square error, coefficient of determination (R2) of the plot 

between the predicted values and the reference values and the number of factors used in the model. 

The better model of either the cross-validated or the externally validated model was used to predict the 

chemistry of the unknown samples. The metrics for the final predictive models for each compound or 

group of compounds can be found in Supplementary Table 6.1. 

 

Wet chemical extractions that targeted terpenes, phenolics and sugars were performed separately for 

the bark from each tree using three extraction solvents: dichloromethane (DCM), acetone and hot 

water, according to the methods documented in Chapter 3. DCM extracts comprised the volatile 

terpenoids and phenolics and the acetone extracts comprised the diterpenoids and fatty acids. The 

DCM extracts were analysed by gas chromatography-mass spectrometry (GC-MS) and the acetone 

extracts and the hot-water extracted sugars were analysed by ultra-high-performance liquid 

chromatography-mass spectrometry (UHPLC-MS). The preliminary identification of the compounds was 

based on the comparison of the retention time and mass spectra with the National Institute of 

Standards and Technology mass spectra library (NIST 2014). However, to verify the retention times for 

final identification of diterpenoid resin acids by UPLC-MS, standards of abietic acid, neoabietic acid, 

dehydroabietic acid, palustric acid, levopimaric acid, pimaric acid and isopimaric acid were purchased 

from Santa Cruz Biotechnology and analysed by UPLC-MS. The components were expressed as 
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equivalents to the respective internal standard, except for the sugars that were measured in absolute 

amounts. Some compound peaks that could not be resolved on chromatograms were reported as 

groups of compounds as shown in Supplementary Table 6.1. A unique number was given to each 

compound for ease of identification in the tables. Some samples were extracted in triplicates for 

estimation of lab-error to enable calculation of the NIRS predictive error relative to the lab error 

mentioned above (PRL). The compounds that were included in the final data analysis were selected 

based on 2 criteria. First was the ratio of the range of the original data to the RMSE (ratio error range 

(RER). A minimum RER of 6.00 has been suggested as sufficient for detecting differences between 

classes of samples and for initial screening (Malley et al. 2004). Secondly, among those that did not 

meet this criteria, further selection was done based on PRL and in this case, a PRL < 3.00 was 

selected based on suggestions that prediction errors within approximately twice the standard wet 

chemistry precision are sufficient for application (Yang et al. 2017).  

 

6.2.5 Estimation of additive genetic variation in chemical traits 

For all chemical traits, the presence of additive genetic variation was tested based on variance 

components generated by fitting univariate linear mixed models in ASReml v4.1 (Gilmour et al. 2015). 

The general linear mixed model is represented below 

y = Xβ + Zu + e,                                                                      (1) 

and in this study, y is a vector of the amounts of individual compounds, β is a vector of fixed effects (i.e. 

treatment-inducibility) and X and Z are design matrices associated with the fixed and random effects. u, 

is the vector of random effects and in the full model, the random effects included replicates, blocks 

within replicates, family (specific combining ability - SCA), tree (additive genetic effect) and the tree x 

treatment interaction (differential inducibility) that were assumed to be normally distributed. The model 

term, e is the vector of random residuals. The model was fitted using a three-generation pedigree file.  

 

The significance of the fixed treatment effect (inducibility) was tested using the Wald-F statistics 

(Gilmour et al. 2015). The significance of the random terms was sequentially tested in univariate 

models using likelihood ratio tests (LRT) starting with family (SCA), differential inducibility (tree x 

treatment) and then the additive genetic variation. Full models were compared with respective reduced 

models using one-sided likelihood ratio tests with one degree of freedom (Gilmour et al. 2015). 

Bonferroni's correction was applied to the p-values associated with SCA, inducibility, differential 

inducibility and additive genetic variation to reduce the chances of obtaining false-positive results (type I 

errors) when multiple tests are performed (McDonald 2009). The Bonferroni correction was applied 

within each compound group (monoterpenoids, diterpenoids, sesquiterpenoids, phenolics, sugars, fatty 
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acids or unknowns) by multiplying the p-value derived from the likelihood ratio tests (LRT) by the total 

number of compounds tested within each compound group. Significant p-values were considered at 

0.05/n, where n is the number of statistical tests (McDonald 2009), for example a p-value of 0.05/13 

=0.004 was considered significant for additive genetic variation of individual monoterpenoids, where 13 

= the number of monoterpenoids retained in the final dataset (Table 6.1).  

 

From univariate analyses, the individual narrow-sense heritability (ĥ 2) was estimated as the additive 

genetic variance divided by the sum of the additive genetic variance 𝜎̂𝑎
2 and the error variance as 

below: 

ℎ̂2 =
𝜎̂𝑎

2

𝜎̂𝑎
2+𝜎̂𝑒

2                                                                                        (2) 

The associated standard errors were estimated through “delta method” using ASReml (Gilmour et al. 

2015) based on Taylor expansion (Lynch and Walsh 1998). The variance components used for this 

heritability calculation were derived from the above model (Equation 1) excluding the family and the 

interaction terms since they were not significant for all compounds after Bonferroni correction (see 

results). 

 

6.2.7 Genetic correlations between chemistry and mammalian bark stripping 

To determine the relationship between genetic variation in specific chemical compounds and amount of 

mammalian bark stripping, genetic correlations were estimated in trivariate models. In each model, 

height, spatially adjusted bark stripping (Chapter 2) and one chemical compound were fitted as 

response variables. Height was the only trait that was assessed in all the 26 replicates and therefore 

acted as the bridging trait between the 20 unprotected replicates where mammalian bark stripping was 

scored and the 6 protected replicates where chemistry was assessed. The family term was not fitted at 

this stage. The terms “protected” and treatment were fitted as fixed effects. The fixed term “protected” 

was fitted for height to distinguish the 20 plots that were not protected and from which bark stripping 

was estimated from the 6 protected plots from which chemistry was estimated. The treatment term was 

fitted only to the chemical compound. The design terms (replicates and blocks) and additive genetic 

term were retained as random terms in the trivariate models. The unstructured variance-covariance 

structure was fitted for the tree term and a diagonal matrix for the replicates and blocks within 

replicates.  

.  

The genetic correlation rg between two traits measured was estimated as:  

𝑟𝑔 =
𝑐𝑜𝑣𝑎(𝑥,𝑦)

√𝜎𝑎𝑥
2 ⋅𝜎𝑎𝑦

2
                                                                                     (3) 
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where cova(x, y) is the additive genetic covariance between traits x and y, σ2
ax is the additive genetic 

variance components for trait x, and σ2
ay is the additive genetic variance components for trait y. The 

standard error for each genetic correlation was estimated using a Taylor series approximation in 

ASReml (Gilmour et al. 2015). To test if the additive genetic correlation was different from zero, a full 

trivariate mixed model with all the model terms that allowed covariance between bark stripping and the 

chemical compound was fitted and was compared with a model where the additive covariance was 

fixed to zero. A two-tailed LRT with one degree of freedom was used. No adjustment was applied to the 

p–values of the correlations for compounds that were associated with bark stripping in Chapter 4 as 

there were clear a priori reasons for specifically testing these compounds. However, for interpreting 

significance of any new correlations, Bonferroni's correction was applied within compound groups as 

indicated above. 

 

6.2.8 Genetic correlations among chemical compounds and height 

For the chemical compounds that had significant additive genetic correlations with mammalian bark 

stripping, the genetic correlation between chemical traits and height were estimated to test for genetic-

based trade-offs with growth. This was done using the trivariate models described above. Before this 

model was fitted and genetic correlation tests undertaken, a random tree*protected term was fitted in 

the trivariate model (model 3) and its significance tested using a one-tailed LRT. This aimed to test if 

the height of different families differentially responded to bark stripping by the time of assessment. 

However, there was no evidence for a significant tree*protected interaction effect on height (results not 

shown) suggesting that the height measured in the presence of browsing was likely unaffected by the 

browsing at the time of measurement (Chapter 2). Therefore, LRT for the genetic correlations 

proceeded with this term out of the model, by comparing a full model that allowed the covariation 

between height and the chemical compound to that where the covariation was fixed to zero.  

 

Bivariate models were used to test the genetic correlations among all compounds that had a significant 

genetic correlation with bark stripping. Bivariate models included the treatment as a fixed term that was 

fitted for both compounds. The tree and design terms were included as random terms. The 

unstructured variance-covariance structure was considered for all the random terms. Bonferroni's 

correction to the correlations was not applied at this stage. Pearson’s phenotypic correlations were also 

estimated in ASReml from bivariate models (Gilmour et al. 2015) and the test that the phenotypic 

correlations were different from zero was done using the cor.test function of R v 3.6.1. 
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 6.3 Results 

6.3.1 Predictions of chemical traits 

Near infrared spectroscopy models were developed for all 65 compounds quantified in the bark by wet 

chemical analysis (Supplementary Table 6.1). Better calibration models with higher R2 were mostly 

developed with the spectra collected from the dry ground bark compared to fresh bark with few 

exceptions (Supplementary Table 6.1). Therefore, the chemical predictions presented were derived 

using NIRS models developed with spectra collected from the dry ground bark.  

 

Based on dry ground samples, the predictive accuracy of NIRS models, determined by the RER, PRL 

and R2 varied considerably between compounds (Figure 6.2). Of the primary compounds, the sugars, 

glucose [77] (RER = 11.12, PRL = 1.76, R2 = 0.79) and fructose [76] (RER =10.55, PRL = 1.63, R2 = 0.77) 

showed the highest predictive power (Supplementary Table 6.1). Of the secondary compounds, the 

highest prediction was achieved for unknown diterpenoids; unknown C20H32O3 C [49] (RER = 12.52, 

PRL = 4.50, R2 = 0.83), unknown C20H30O3[46] (RER =14.79, PRL= 3.72, R2 = 0.83), unknown m/z 

316[45] (RER = 11.87, PRL = 2.97, R2 = 0.72) and unknown C20H30O5[51] (RER = 12.24, PRL = 4.59, 

R2 = 0.71) as well as monoterpenoids; α-pinene[1] (RER = 7.63, PRL = 0.81, R2=0.73) and β-pinene [4] 

(RER = 10.30, PRL =1.01, R2 = 0.73) (Figure 6.2). However, there are several compounds that had 

R2 > 0.50 and these included the sugar; inositol[78], fatty acids (linoleic acid[83] and linolenic acid[84]) and 

secondary compounds that included monoterpenes (camphene[5], citronellal[6]), and diterpenoids 

(agathadiol[22], agatholal[23], copalol[24] , levopimaral[25], dehydroabietic acid[29] and several unknown 

diterpenoids[33] [45] [50] [51] [52] [54]) as well as unknown compounds [90] [94] (Supplementary Table 6.1). The 

proceeding results however focussed on the 54 compounds that were retained (Table 6.1) after the 

selection criteria defined in the methods.  
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Figure 6.2: Dot plot of the distribution of the coefficient of determination (R2) for the NIRS PLS models for the 65 

chemical compounds identified in the bark. Each dot represents the one R2 estimate for a specific compound and 

these have been grouped by major compound groups. The figure also shows the compound that exhibited the 

highest R2 estimate in each major compound group. 

 

6.3.2 Inducibility of chemical traits 

Only 27 out of 54 compounds (50%) responded to treatment (Table 6.1) by increasing or reducing their 

amounts, but 39% (n = 21) retained their significance after Bonferroni adjustment. The strongest 

increment in the amount of compounds was detected for the phenolic compound; trans-ferulic acid [72] 

(∆+39.58%, p<0.001). In contrast, the sugars reduced following treatment, where inositol [78], fructose 

[76] and glucose [77] reduced by 23.64%, 22.19% and 18.51% respectively (Table 6.1). Only 6 out of 54 

(11%) compounds, comprising three monoterpenoids [1,5,7], a sesquiterpenoid [20] and two diterpenoids 

[24, 49] showed significant (p < 0.05) genetic differences in inducibility as indicated by the unadjusted p-

values of the tree by treatment interaction term (Table 6.1). However, these interactions were not 

significant after Bonferroni correction. There is thus little evidence to suggest the presence of genetic 

variation in chemical inducibility and this term was not included in the genetic models used to estimate 

heritabilities.  

 

6.3.3  Family (SCA) variation  

Based on unadjusted probabilities, 30% of the compounds showed significant (P<0.05) non-additive 

genetic variation (i.e. family variation) including several monoterpenoids [1,3,4,5,7,9,10], a sesquiterpenoid 
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[20], diterpenoids [32,33,41,52,54], a phenolic compound [67], a fatty acid [84] and a compound of unknown 

class [87]. However, the family term, after Bonferroni adjustment, was not significant for any of the 

compounds (Table 6.1) so the family term was also excluded from the models used to estimate 

heritability. 

 

6.3.4 Genetic variation in P. radiata chemistry  

Using univariate models minus the family term and the random interaction, significant, adjusted levels 

of additive genetic variation were evident for most of the selected chemical compounds, with narrow-

sense heritability values ranging between 0.00 - 0.48 and standard error between 0.02 - 0.13 (Figure 

6.3, Table 6.1). No evidence of significant additive genetic variation was found for compounds with 

heritability values lower than 0.09. Only 12 compounds including two monoterpenoids, a 

sesquiterpenoid, four diterpenoids, three phenolic compounds, a sugar and an unknown compound did 

not show significant additive genetic variation.  

 

Of the secondary compound groups, considering only compounds with significant additive genetic 

variation, the heritability of monoterpenoids (𝑥̅ = 0.27 ± 0.10) appeared to be consistently higher 

compared to sesquiterpenoids (𝑥̅ = 0.17 ± 0.08), diterpenoids (𝑥̅ = 0.25 ± 0.10) and phenolics (𝑥̅ = 

0.13 ± 0.06). Generally, the heritability for the terpenoids was higher than that of the sugars (𝑥̅ = 0.22 ± 

0.09) but not of fatty acids (𝑥̅ = 0.29 ± 0.10). There was no relationship between the univariate narrow-

sense heritability estimate and the NIRS predictive accuracy for the 54 selected compounds as 

indicated by (i) NIRS coefficient of determination (R2) and (ii) ratio of NIRS root mean square error 

(RMSE) relative to the laboratory error – PRL, and the range error ratio - RER (Figure 6.4). The 

standard error associated with the heritability estimates was in the same range irrespective of the NIRS 

model accuracy (Table 6.1). 
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Figure 6.3: Dot plot of the distribution of estimated narrow-sense heritabilities for selected chemical compounds 

in the bark. 54 chemical compounds that had RER > 6 or PRL < 3 were included in the plot. Each dot represents 

a heritability estimate. The figure also shows the compound that exhibited the highest heritability estimate in 

each group, where ukn = unknown sesquiterpenoid alcohol. 
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Figure 6.4: The linear relationship between heritability and the range error ratio (RER), ratio of NIRS root mean square error (RMSE) relative to the laboratory error (PRL) and 

NIRS coefficient of determination (R2). Only compounds listed in Table 6.1 are included 
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Table 6.1: Mean and standard deviation (SD) of compounds, the significance of fixed and random terms, narrow-sense heritability (h2) and genetic correlations from the univariate 

models fitted for the bark chemical components. For the various terms, the unadjusted probabilities are shown and bolded when significant following Bonferroni adjustment 

(p<0.05). The change that occurred in the different compounds following treatment (inducibility) is shown, where negative values (-) indicate reduction in the treated samples 

relative to the control and positive values indicate increase in the compounds relative to the control. The unadjusted likelihood ratio test (LRT) p-values associated with the 

significance of the random terms; differential inducibility (tree x treatment), family (specific combining ability) and tree (additive genetic variation) are also shown. The narrow-

sense heritability and standard error (se) and the genetic correlation plus standard error (se) of the individual chemical compound with mammalian bark stripping and height are 

also included. The unadjusted p-value for the LRT test from zero are indicated for the genetic correlations (se) of the chemical compounds with bark stripping. For the correlation 

with height, only compounds that significantly correlated with bark stripping after Bonferroni adjustment were tested and unadjusted p- values are indicated in Table 6.2. The GC-

MS components (monoterpenoids, sesquiterpenoids, GC-MS diterpenoids and phenolics) are expressed as micrograms of heptadecane equivalents (HE) per gram of dry weight 

of the sample (µg HE/g dw) and the LC-MS analytes (LC-MS diterpenoids and fatty acids) are expressed as micrograms of nonadecanoic acid equivalents (RE) per gram of dry 

weight of the sample (µg NE/g dw). Sugars are expressed in µg/g dw. All compounds were given a unique identifier based on Supplementary Table 10 (after Chapter 9), for ease 

of identification 

 

id Group 
 

fixed effect (treatment-
inducibility)  

LRT p-values (adjusted) for random terms 
 
  

genetic 
correlation 
with bark 

stripping(rg) 
± se 

P-value genetic 
correlation 
with height 
(rg ) ± se 

 
 mean±SD % 

inducibility 
Wald p-
value  

differential 
inducibility 

(tree*treatment) 

family additive 
genetic 
variation 

narrow-
sense 

heritability 
± se 

   

 monoterpenoids            

1 α-pinene 782.61±419.98 -4.26 0.666 0.021 0.040 <0.001 0.25±0.10 -0.20±0.29 0.498 0.02±0.33 

2 α-terpineol 29.49±18.71 -2.63 0.737 0.063 0.070 0.045 0.08±0.07 -0.17±0.42 1.000 -0.56±0.45 

3 β-phellandrene 80.19±39.76 -13.79 <0.001 0.258 0.021 <0.001 0.48±0.13 0.10±0.24 0.488 -0.02±0.29 
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4 β-pinene 1840.94±996.04 -0.36 0.913 0.103 0.007 <0.001 0.27±0.10 -0.01±0.28 1.000 -0.04±0.32 

5 camphene 7.81±3.84 10.67 0.036 0.038 0.024 <0.001 0.26±0.10 -0.12±0.29 0.671 -0.00±0.33 

6 citronellal 42.35±49.75 3.12 0.710 0.054 0.160 <0.001 0.18±0.09 -0.14±0.32 0.313 -0.32±0.36 

7 citronellic acid 18.72±8.97 2.62 0.608 0.028 0.034 <0.001 0.32±0.11 0.08±0.27 1.000 0.03±0.31 

8 citronellol 49.01±33.91 -5.68 0.287 0.058 0.054 <0.001 0.22±0.09 -0.13±0.29 1.000 -0.31±0.32 

9 γ-terpinene 5.87±3.63 5.26 0.430 0.376 0.026 0.001 0.16±0.08 0.29±0.28 1.000 0.04±0.35 

10 limonene 54.30±18.25 -1.24 0.562 0.189 0.008 <0.001 0.41±0.12 0.34±0.24 0.084 0.15±0.29 

13 sabinene 149.82±91.47 2.51 0.715 0.344 0.139 <0.001 0.15±0.09 0.16±0.31 0.403 -0.01±0.37 

15 terpinene-4-ol 26.88±16.59 -1.77 0.831 0.500 0.067 <0.001 0.23±0.09 0.32±0.27 0.260 -0.28±0.32 

16 unknown Mol Wt 150 3.52±1.85 0.00 0.931 0.212 0.000  0.010 0.10±0.07 0.22±0.34 1.000 -0.02±0.40 

  sesquiterpenoids                    

17 bicyclogermacrene 1.93±0.75 5.26 0.494 0.231 0.500 0.022 0.10±0.05 0.09±0.30 0.888 -0.14±0.34 

20 trans-farnesol 18.16±15.36 -18.27 0.008 0.018 0.018 0.004 0.14±0.08 0.08±0.35 0.752 -0.37±0.39 

21 unknown sesquiterpenoid 
alcohol 

4.37±1.68 9.52 0.003 0.444 0.500 0.001 0.20±0.09 -0.69±0.22 0.008 -0.85±0.22 

  GC-MS diterpenoids                    

22 agathadiol 550.26±506.94 18.94 0.054 0.123 0.186 0.003 0.21±0.10 -0.03±0.31 0.752 0.00±0.36 

23 agatholal 340.57±213.96 8.91 0.160 0.324 0.500 0.000 0.22±0.09 -0.12±0.29 0.708 0.18±0.33 

24 copalol 34.83±18.34 4.26 0.390 0.028 0.336 <0.001 0.29±0.10 -0.09±0.28 0.767 -0.20±0.32 

25 levopimaral 13.34±7.42 -5.63 0.196 0.354 0.389 <0.001 0.30±0.10 0.08±0.27 0.762 0.04±0.31 

26 methyl dehydroabietate 14.04±6.15 -14.01 <0.001 0.292 0.058 <0.001 0.34±0.11 0.22±0.25 0.298 -0.00±0.30 

  LC-MS diterpenoids                    

29 dehydroabietic acid 24704.5±5156.17 0.48 0.593 0.202 0.500 0.500 0.03±0.02 -0.27±0.37 0.462 0.39±0.39 

32 unknown diterpene-3 184.25±116.46 -21.14 <0.001 0.189 0.005 0.000 0.15±0.09 0.30±0.29 0.247 0.03±0.35 
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33 unknown m/z 109 A 17.44±10.98 -6.28 0.204 0.086 0.006 <0.001 0.33±0.11 0.07±0.27 0.675 -0.11±0.31 

34 unknown m/z 109 B 21.38±6.12 -2.31 0.166 0.500 0.139 0.001 0.19±0.09 0.52±0.24 0.030 0.77±0.26 

37 unknown m/z 239 6.63±2.33 -5.80 0.021 0.240 0.095 0.107 0.10±0.07 0.35±0.30 0.237 0.70±0.30 

38 unknown Mol Wt 272 7.79±2.91 -13.10 <0.001 0.254 0.071 0.002 0.15±0.07 0.34±0.28 0.237 0.30±0.34 

41 C20H30O2 resin acids 26090.98±6003.77 -5.00 0.020 0.075 0.034 0.022 0.15±0.07 -0.35±0.31 0.273 -0.43±0.35 

45 unknown m/z 316 13772.93±5570.38 4.12 0.257 0.224 0.259 0.001 0.21±0.09 -0.29±0.29 0.337 -0.05±0.34 

46 unknown C20H30O3    25954.20±9277.74 -4.85 0.129 0.161 0.054 0.001 0.18±0.08 0.15±0.30 0.624 -0.03±0.35 

47 unknown C20H32O3 A  692.45±303.45 5.13 0.240 0.011 0.133 <0.001 0.21±0.09 -0.04±0.30 0.888 -0.13±0.34 

48 unknown C20H32O3 B  20689.06±10286.11 -11.08 <0.001 0.090 0.079 <0.001 0.25±0.10 0.37±0.24 0.077 0.56±0.25 

50 unknown C20H30O4 60605.73±18178.65 -5.51 0.037 0.107 0.095 0.000 0.24±0.09 0.05±0.28 0.841 0.07±0.32 

51 unknown C20H30O5 11354.00±4595.08 -0.03 0.959 0.115 0.107 <0.001 0.25±0.10 0.07±0.28 0.806 0.13±0.32 

52 unknown C20H30O6 A 223.74±132.64 10.71 0.095 0.291 0.035 <0.001 0.31±0.11 0.18±0.27 0.517 0.01±0.31 

54 unknown C20H30O6 C 6297.58±1894.94 2.65 0.412 0.110 0.009 <0.001 0.30±0.11 0.32±0.25 0.209 0.16±0.30 

55 unknown C20H30O6 D 3583.38±1316.9 -6.60 0.008 0.500 0.078 <0.001 0.33±0.11 0.61±0.19 0.006 0.45±0.26  

  phenolics                    

56 anethole/estragole 1.63±0.65 -16.67 <0.001 0.145 0.208 0.005 0.12±0.06 0.00±0.58 0.752 0.43±1.00 

59 coniferyl alcohol 4.63±1.23 6.67 0.006 0.274 0.254 0.037 0.16±0.08 0.34±0.27 0.237 0.39±0.33 

67 phenyl ethanol 5.13±4.5 -5.66 0.218 0.500 0.036 0.431 0.00±0.02 0.52±0.56 1.000 0.15±0.61 

71 thymol 7.92±5.66 -8.24 <0.001 0.500 0.154 0.103 0.09±0.08 0.30±0.33 1.000 -0.40±0.37 

72 trans-ferulic acid 58.25±27.78 39.58 <0.001 0.205 0.500 0.000 0.11±0.06 0.48±0.27 0.051 0.32±0.35 

74 vanillin 4.56±0.76 6.82 <0.001 0.500 0.500 <0.001 0.15±0.07 -0.28±0.30 1.000 0.15±0.34 

  sugars                    

76 fructose 13303.09±3607.02 -22.19  <0.001 0.500 0.500 0.001 0.21±0.09 0.55±0.23 0.018 0.06±0.31 
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77 glucose 15298.65±4309.32 -18.50 <0.001 0.376 0.500 0.001 0.20±0.09 0.80±0.20 0.002 0.62±0.24 

78 inositol 10935.47±3551.37 -23.64 <0.001 0.354 0.500 0.060 0.14±0.08 -0.14±0.33 0.671 -0.01±0.38 

82 unknown 
monosaccharide 

521.33±236.64 24.12 <0.001 0.208 0.084 0.003 0.25±0.10 -0.47±0.28 0.066 -0.48±0.32 

  fatty acids                    

83 linoleic acid 16914.05±3747.38 -9.00 <0.001 0.500 0.500 <0.001 0.30±0.11 0.68±0.16 0.001 0.69±0.22 

84 linolenic acid 7689.81±1454.91 1.73 0.430 0.500 0.015 <0.001 0.37±0.12 0.65±0.19 0.004 0.50±0.26 

85 palmitic acid 16656.04±2440.36 4.05 <0.001 0.500 0.402 0.004 0.21±0.09 0.08±0.27 0.752 0.07±0.31 

  unknowns                    

86 unknown m/z 104 2.64±1.36 -16.67 <0.001 0.336 0.020 <0.001 0.38±0.12 0.42±0.22 0.042 0.27±0.28 

90 unknown m/z 274 1115.47±398.55 -9.04 0.004 0.100 0.052 <0.001 0.31±0.11 0.03±0.28 0.888 0.05±0.32 

94 unknown m/z 406 A 530.63±167.07 8.84 0.001 0.500 0.500 0.500 0.04±0.04 0.77±0.56 0.067 0.77±0.66 

95 unknown m/z 406 B 5984.92±2308.79 8.03 0.021 0.346 0.500 <0.001 0.16±0.08 -0.46±0.27 0.058 -0.68±0.27 
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6.3.5 Traits genetically associated with mammalian bark stripping 

A greater number of positive than negative genetic correlations between compounds and bark stripping 

were detected suggesting that preference may be a stronger driver for bark stripping than defence 

(Table 6.1; Figure 6.5). Significant unadjusted positive genetic correlations were detected between bark 

stripping and the sugars, glucose [77] (rg = 0.80 ± 0.20, p <0.01) and fructose [76] (rg = 0.55 ± 0.23, p 

<0.05; fatty acids- linoleic acid [83] (rg = 0.68 ± 0.16, p <0.01) and linolenic acid [84] (rg = 0.65 ± 0.19, p 

<0.01) as well as one diterpenoid – unknown C20H30O6 D [55] (rg = 0.61 ± 0.19, p <0.01). The only 

significant negative genetic correlation was observed between bark stripping and an unknown 

sesquiterpenoid alcohol [21] (rg = -0.69, p <0.05, unadjusted) (Figure 6.5, Table 6.1, Table 6.2).  

 

 

Figure 6.5: A network diagram showing the genetic correlations between different traits. Blue indicates a positive 

relationship and red indicates a negative relationship. A thicker line indicates a stronger correlation. 

 

6.3.6 Genetic correlations among compounds and with height 

In the trivariate models, the genetic correlation between mammalian bark stripping and height was 

positive, but non-significant (rg = 0.40 ± 0.29, p =0.11). However, several of the chemical compounds 

correlated with bark stripping were genetically correlated with height. A significant negative genetic 

correlation was detected between the unknown sesquiterpene alcohol [21] and height (rg = -0.85±0.22, 

χ2 = 7.1, p <0.01), suggesting that selecting for higher amounts of this compound will reduce growth in 
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the absence of herbivores (Table 6.2). Similarly, a positive correlation of sugars with height indicates 

that selecting for reduced sugars may result in reduced early growth. The strong positive genetic 

correlation between sugars and height shows that fast growing trees store more sugar in the bark than 

slow growing trees and conversely slow growing trees stored less sugar and more sesquiterpenes.  

 

Among the compounds that significantly correlated with bark stripping, genetic correlations indicated 

that selecting for higher amounts of the unknown sesquiterpenoid alcohol will slightly reduce the 

amount of the fatty acid - linoleic acid. There was no evidence for a genetic correlation between the 

unknown sesquiterpenoid alcohol and glucose (Table 6.2). The positive genetic correlations also 

indicate that selecting for low sugars will shift the fatty acids and the unknown diterpenoid in the same 

direction, offering possibilities for multi-trait selection. 

 

Phenotypic correlations between compounds showed similar trends as genetic correlations. However, 

significant correlations were detected at the phenotypic level that were not detected at genetic level 

(Table 6.1) suggesting that such correlations possibly pertain to this specific environment. Where 

genetic correlations were significant, the corresponding phenotypic correlations were smaller, except for 

the phenotypic correlations of the unknown sesquiterpenoid alcohol with glucose, fructose and the 

unknown diterpenoid (unknown C20H30O6 D) that were higher than genetic correlations. 
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Table 6.2: Genetic (below) and phenotypic (above) correlations and the standard error of the compounds that significantly correlated with mammalian bark stripping. The 

phenotypic correlation between bark stripping with the compounds was not estimated since the chemistry was estimated in separate plots from where bark stripping was estimated 

(see methods). Unadjusted p-values are indicated 

 

    Bark stripping Height unknown 
sesquiterpenoid 

alcohol 

unknown 
C20H30O6 D 

fructose glucose linoleic acid linolenic acid 

 

 
Bark stripping 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
Height 0.40 (0.29)  

 
 0.24 (0.04) *** -0.13 (0.04) ** -0.12 (0.00) * 0.36 (0.08)  -0.09 (0.00)  0.00 (0.00)  

 

21 unknown sesquiterpenoid 
alcohol 

-0.69 (0.22) * -0.85 (0.22) ** 
 

 -0.28 (0.12) *** -0.37 (0.05) *** -0.44 (0.05) *** -0.18 (0.19) *** -0.17 (0.05) ** 
 

55 unknown C20H30O6 D 0.61 (0.19) ** 0.45 (0.26)  -0.15 (0.26)  
 

 0.28 (0.40)  0.41 (0.09) *** 0.48 (0.09) *** 0.35 (0.09) *** 
 

76 fructose 0.55 (0.23) * 0.06 (0.31)  -0.06 (0.27)  0.64 (0.18) * 
 

  0.85 (0.03) *** 0.07 (0.05)  0.05 (0.05)  
 

77 glucose 0.80 (0.20) ** 0.62 (0.24) ** -0.19 (0.27)  0.85 (0.14) ** 0.84(0.09) *** 
 

 0.07 (0.15) * 0.18 (0.12) *** 
 

83 linoleic acid 0.68 (0.16) ** 0.69 (0.22) *** -0.51 (019) *  0.59(0.17) * 0.14 (025)    0.44 (0.23)  
 

 0.58 (0.06) *** 
 

84 linolenic acid 0.65 (0.19) ** 0.50 (0.26) ** -0.52 (0.21)  0.65 (0.16) ** 0.12 (026)  0.47 (0.23)  0.97 (0.06) *** 
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6.4 Discussion 

The results of this study showed that; (i) most of the bark primary and secondary chemical compounds 

of Pinus radiata are under additive genetic control, with non-additive effects of little significance, (ii) 

there are weak family differences for inducibility, (iii) sugars and fatty acids genetically, positively 

correlate with mammalian bark stripping while an unknown sesquiterpenoid negatively correlated with 

bark stripping, (iv) the sesquiterpenoid alcohol negatively correlated with height while the remainder of 

the compounds positively or did not correlate with height. Genetic differences in the constitutive and 

induced variation in patterns of secondary and primary metabolites have been noted in earlier studies in 

P. radiata and other pine species (Sampedro et al. 2010; Zhang et al. 2016a). In P. radiata, the 

presence of additive genetic variation has been previously detected for total terpenes and total 

phenolics (Moreira et al. 2012a; Moreira et al. 2013b) as well as a few individual monoterpenoids 

(Burdon et al. 1992a; Burdon et al. 1992b). However, with the large number of families tested in this 

study, this is the first to estimate narrow-sense heritability and genetic correlations for individual primary 

and secondary compounds in P. radiata bark.  

 

Within the secondary compound groups, the monoterpenoids appeared to have higher narrow-sense 

heritability compared to diterpenoids and phenolics. Differences in additive genetic variances of traits 

may be explained by the importance of these traits to fitness, whereby significant negative correlations 

exist between heritability and measures of fitness for different traits (Mousseau and Roff 1987). 

Following this theory, this suggests that diterpenoids and phenolics may be more related to fitness 

consequences in P. radiata in this study. The physiological role of diterpenoids is not well established, 

but given the diverse direct and indirect roles of phenolics in constitutive or inducible stress responses, 

particularly in lignin and pigment biosynthesis and in their ability to repel or kill many microorganisms, 

as well as their roles in cell division, hormonal regulation, photosynthetic activity and nutrient 

mineralization and direct (Bhattacharya et al. 2010; Hammerbacher et al. 2011), they may be important 

for plant fitness. In most conifers, constitutive and induced monoterpenoids have been implicated in 

defence against pathogens, insect pests as well as some mammalian herbivores (Bucyanayandi et al. 

1990; Iason et al. 2011; O'Reilly-Wapstra et al. 2007; Vourch et al. 2002) compared to other terpenoids 

or phenolics. If these results have fitness consequences, we could expect that the heritability of 

monoterpenoids should be lower. The higher heritability of monoterpenoids in this case could suggest 

that, survival of P. radiata was more related to defence against abiotic than against biotic stresses since 

naturally the trees grew on nutrient impoverished and often acidic soils (McDonald and Laacke 1990), 

and hence the higher importance (interpreted by the low heritability) of phenolic compounds. 
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Differences in heritability can also arise from differences in the levels of environmental or residual 

variance, nonadditive genetic variance or a combination of all these effects, rather than from different 

levels of additive genetic variation (Price and Schluter 1991). Although nonadditive genetic variation 

was not significant for the traits in this study, accounting for both spatial (i.e. between-population 

variation) and temporal (i.e. cohort variation) heterogeneity in environmental conditions may improve 

the estimates (Chapter 2). It has also been noted for secondary compounds that the relative amount of 

additive genetic variation may be related to the relative amount of compounds harboured by the plant, 

where metabolites that occur in higher amounts have been found to have higher heritability estimates 

than those with small amounts (Haviola et al. 2006). For P. radiata bark, the amounts of 

monoterpenoids often dominate the other terpenoid components (Chapter 3), which may explain their 

high heritability estimates compared to other secondary metabolites. While this may be linked to the 

accuracy of quantification using conventional wet chemistry or spectroscopic methods (Chapter 5), 

there was no link between NIRS accuracy and estimates of genetic parameters in this study. Overall, 

while heritability estimates for different secondary compounds may be variable between studies, the low 

to moderate heritability values from different studies (Sampedro et al. 2010; Zhang et al. 2016a) 

indicate that the secondary compounds in the bark of P. radiata and other conifers may have important 

fitness consequences and demonstrate sufficient additive variance to be potentially responsive to 

natural or artificial selection.  

 

The average narrow-sense heritability estimates of the sugars was lower than the terpenoids consistent 

with the theory that low heritability may result from intensive natural selection for traits that are tightly 

coupled with fitness (Mousseau and Roff 1987). Sugars are at the core of plant survival and 

development, as sugars and sugar derivatives are the conduit of the carbon fixed during photosynthesis 

(Patrick et al. 2013). However, sugars are also very sensitive to environmental changes (Bansal and 

Germino 2009; Cranswick et al. 1987), which can impact heritability estimates. Low genetic variation for 

bark and wood sugars has been detected in other P. radiata studies (Cranswick et al. 1987; Donaldson 

et al. 1997) and in other conifers species, observations have been mixed. For example while no genetic 

variation was observed for sugars in the bark of juvenile Pinus pinaster (Sampedro et al. 2011), strong 

genetic control of glucose has been observed in the wood of Pseudotsuga menziesii (Ukrainetz et al. 

2008). These counterexamples may also suggest tissue and species-specific differences in additive 

genetic variation for sugars.  

 

Fatty acids exhibited the highest average heritability compared to other compound groups, which may 

suggest that they are of relatively low importance for P. radiata fitness. However, the negative genetic 
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correlation of the fatty acid linoleic acid and the unknown sesquiterpenoid alcohol suggests that fatty 

acids may be partly linked to the formation of sesquiterpenoids. The storage and structural functions, as 

well as direct defence properties against pathogens of fatty acids have been documented in the 

needles of P. radiata (Franich et al. 1983). Actually some of the most studied signalling molecules like 

Jasmonic acid belong to a group of compounds formed by the oxygenation of fatty acids (Kachroo and 

Kachroo 2009), emphasizing the role of fatty acids in stress responses. In this Moreira et al. 

(2012a)study, fatty acids were also positively associated with bark stripping. The narrow-sense 

heritability for fatty acids in the bark has not been reported for most conifers. Overall, the results 

suggest that selection against primary compounds especially the sugars can be incorporated in the 

current P. radiata breeding/deployment programmes to reduce bark stripping by the marsupials. 

However, studies have noted that as environments change, heritability may change, and therefore 

testing the expression of the additive genetic variation in different environments, to get an 

understanding of the genotype by environment interactions (G x E) will facilitate the incorporation of the 

traits in different breeding programmes.  

 

Changes in the amounts of primary and secondary compounds were observed in response to artificial 

bark stripping. This is consistent with previous studies in this thesis and other P. radiata studies that 

show a reduction in the amounts of sugars and an increase in some of the secondary compounds after 

treatment (Chapter 3 ; Chapter 4 ; Moreira et al. 2012a; Sampedro et al. 2011). However, genetic 

differences in inducibility did not appear to be evident for individual compounds in the present study 

despite an earlier study (Chapter 4) illustrating that the amounts of individual terpenes, phenolics and 

sugars reduced or increased differentially between susceptible and resistant families. While several 

compounds showed genetic variation in the induced response to bark stripping, the effect was weak 

and not significant after statistical correction for multiple testing. In contrast, Moreira et al. (2013b) and 

Sampedro et al. (2011) found high genetic variation in inducibility of stem resins in P. radiata and 

diterpenoids in P. pinaster respectively. Presence of genetic variation in inducibility suggests that this 

trait can be selected for. However, overall, the results for the populations studied in this thesis suggest 

that selection for reduced susceptibility of P. radiata to bark stripping is more feasible based on the 

constitutive than the induced chemistry.  

 

Similar to ealier observations based on the top susceptible and resistant families (Chapter 4), the 

sugars; fructose and glucose positively correlated with bark stripping, which emphasizes the genetic 

basis of this association to susceptibility. Of the secondary compounds, an unknown sesquiterpenoid 

alcohol best correlated with reduced bark stripping and this is consistent with earlier characterisation 
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that identified the importance of this compound in differentiating the more and less susceptible groups 

of families (Chapter 4). In contrast, the sesquiterpenoid - bicylogermacrene that was the major 

compound that differentiated the less and more susceptible families in Chapter 4 did not exhibit 

significant additive genetic variation and did not genetically correlate with bark stripping. This  could 

possibly be due to non-linear genetic associations with bark stripping. Non-linear genetic relationships, 

where the range of a trait varies drastically from one extreme to another have been detected in 

Arabidopsis thaliana (Vasseur et al. 2019) and this may have affected the genetic parameters for 

bicyclogermacrene that were estimated based on linear models. Sometimes, bivariate correlations may 

give more positive results than a model with additional covariates, especially where the extra variables 

do not strongly correlate with the two major variables of the model (Song et al. 2019). In this study, 

genetic correlations between chemistry and bark stripping were estimated in trivariate models with bark 

stripping, a chemical compound and height as response variables, and because no bark stripped trees 

were chemotyped it was not possible to undertake bivariate genetic correlations between bark stripping 

and chemical compounds. So possibly an experimental design that favors this analysis may give further 

insights into the correlations. The only terpenoid that significantly correlated was one unknown 

diterpenoid that genetically, positively correlated with bark stripping. This diterpenoid was also 

highlighted earlier (Chapter 4) where its amount was higher in the susceptible compared to the resistant 

families (although this was non-significant). This positive association contrasts with the documented 

role of diterpenoids in reducing herbivory in conifers (Franceschi et al. 2005) and the fitness-related 

properties gestured by the low heritability estimates of diterpenoids as described above. This 

observation may be in part due to the capability of the marsupials to ingest and metabolise a range of 

terpenes that would be toxic to many other herbivore species (Boyle 1999; El-Merhibi et al. 2007). It 

could also be related to the sample size used in the study since accurate estimation of genetic 

correlation requires large sample sizes. It could also be due to the nature of experimental design that 

could not allow direct correlation of individual chemistry and bark stripping, which could have introduced 

more errors in the correlations. Consistently, across this system there was no evidence for the 

importance of monoterpenoids in determining bark stripping.  

 

There was evidence of defence-growth trade-off for the unknown sesquiterpenoid alcohol implying that 

this compound will potentially be reduced via indirect responses to selection in P. radiata programmes 

where height is targeted as a key breeding objective. The trade-offs were also implicated earlier 

(Chapter 4). Similarly, the positive correlation between sugars and height suggests that if bark stripping 

is mainly driven by the sugars, positive selection for early growth in the presence of bark stripping will 

increase the vulnerability of the populations to bark stripping. Positive correlations between herbivory of 
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the bark and height are common in conifers (Lenz et al. 2020; Zas et al. 2017) and may be explained 

by fast-growing trees potentially investing less in secondary compounds especially in the presence of 

resource constraints (Ferrenberg et al. 2015; Moreira et al. 2015). In this study, genetic correlations 

suggest that fast-growing trees invested less in secondary compounds and more in sugars. The 

direction of the correlation in this study was similar to the univariate models presented in Chapter 2 and 

non-parametric tests of Chapter 4 where a significant positive correlation between height and bark 

stripping was observed in the same population. However, in the linear models that included three 

response variables -height, bark stripping and chemical compounds as response variables, bark 

stripping was not significantly correlated with height. This may imply that height is an associational 

rather than independent predictor of susceptibility, especially given its positive correlation with bark 

glucose.  

 

The genetic correlations between individual compounds were mostly positive or non-significant, except 

for the negative correlation between the unknown sesquiterpenoid alcohol and the fatty acid, linoleic 

acid. Positive genetic correlations suggest simultaneous investment in multiple traits and is common for 

traits that interact together to perform a given function, and hence the potential for multi-trait selection. 

For chemical defences, this is important since defence is potentially achieved by multiple 

interdependent primary and secondary compounds (Chapter 4). On the other hand, negative genetic 

correlations indicate trade-offs between investment in the affected traits (Moreira et al. 2015). In this 

study, for instance, to invest in higher amounts of the defence compound (unknown sesquiterpenoid) 

will come at the expense of fatty acids, in presence of limited resources. This observation may explain 

the strong reduction in fatty acids detected in Chapter 3, consistent with suggestions that fatty acids 

can be precursors to the formation of secondary compounds (Kachroo and Kachroo 2009). The lack of 

significant negative correlations of the secondary compounds with sugars in this and earlier studies 

(Chapter 3) contradicts models of physiological trade-offs which postulate that non-structural 

carbohydrates (NSCs), e.g. glucose, are pivotal in defence-growth relationships (Herms and Mattson 

1992; Lombardero et al. 2000; Moreira et al. 2015; Sampedro et al. 2011). In this case, fatty acids were 

more traded for defence functions. Although, a negative correlation between height and the unknown 

sesquiterpenoid was detected, this growth-defence trade-off were not directly linked to the sugars in 

this study.  
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6.5 Conclusion  

There is significant additive genetic variation for primary and secondary compounds in the bark of P. 

radiata with low-moderate heritability estimates. While glucose and fatty acids predicted susceptibility, 

the unknown sesquiterpnoid alcohol was a strong predictor of reduced bark stripping. The unknown 

sesquiterpenoid alcohol was genetically, negatively correlated with height whereas glucose and 

fructose as well as the fatty acids genetically, positively correlated with height, suggesting that positive 

selection for early-age height would shift the chemistry of the plants towards increased susceptibility.  

However, whether or not these traits affect performance subsequent to browsing needs testing. The 

use of NIR offers opportunities for large scale chemical phenotyping and has allowed genotyping for 

chemical traits with results conforming to observations obtained using standard wet chemistry 

procedures. Nevertheless, there is still a need for calibration improvement for most of the compounds 

which may be achieved by increasing sample size.  
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Supplementary Table 6.1: The statistics used to select the best models, the range error ration-RER, prediction relative to the lab error -PRL, and Near infrared spectroscopy coefficient of determination -R2, in the different 

bark tissue types. Final prediction was based on the models developed with the dried-ground bark. The bold compounds were dropped from the final genetic analyses since their model parameters did not meet the set 

criteria. Compound identifiers (ID) were given to each compound for ease of location based on Supplementary Table 10 (after Chapter 9) 

 

ID Compound dried ground bark 
 

     RER    PRL   R2 

 
Inner bark proximal 

 
 RER    PRL   R2 

Inner bark distal 
 

   RER    PRL   R2 

 
Outer bark proximal 

 
 RER    PRL   R2 

Outer bark distal 
 

RER    PRL   R2  
monoterpenoids 

                   

1 α-pinene 7.63 0.81 0.73 
 

4.38 1.42 0.14 
 

4.47 1.39  0.18 
 

4.08 1.52 0.00 
 

4.11 1.51 0.02 

2 α-terpineol 5.15 2.56 0.37 
 

5.02 2.63 0.09 
 

5.00 2.64  0.08 
 

4.77 2.77 -0.01 
 

4.75 2.78 -0.02 

3 β-phellandrene 7.72 2.74 0.31 
 

5.44 3.89 0.00 
 

5.52 3.83  0.02 
 

5.57 3.80 0.04 
 

5.51 3.84 0.02 

4 β-pinene   10.30 1.01 0.73 
 

5.35 1.94 0.14 
 

5.66 1.84  0.22 
 

5.15 2.02 0.05 
 

6.51 1.60 0.14 

5 camphene 5.50 1.14 0.60 
 

4.96 1.27 0.23 
 

4.43 1.42  0.24 
 

3.93 1.60 0.03 
 

4.65 1.35 0.11 

6 citronellal 8.89 3.65 0.63 
 

10.98 2.95 0.21 
 

6.95 4.67  0.13 
 

6.88 4.71 0.10 
 

6.57 4.94 0.03 

7 citronellic acid 7.85 2.91 0.50 
 

7.07 3.23 0.25 
 

5.37  4.25  0.10 
 

5.13 4.45 0.01 
 

5.13 4.45 0.01 

8 citronellol 4.64 3.78 0.48 
 

4.08 4.29 0.17 
 

4.03  4.34  0.15 
 

3.86 4.53 0.07 
 

3.74 4.68 0.01 

9 γ-terpinene 7.07 10.01 0.17 
 

7.07 10.01 -0.01 
 

7.00 10.11 -0.02 
 

7.09 9.98 -0.01 
 

7.07 10.01 -0.02 

10 limonene 9.98  2.11 0.19 
 

3.84 5.49 0.01 
 

3.84  5.49  0.01 
 

3.84 5.49 0.00 
 

3.80 5.54 -0.01 

11 linalool 4.99  6.95 0.14 
 

5.05 6.86 0.04 
 

4.42  7.85  0.24 
 

3.93 8.82 0.02 
 

4.00 8.68 0.06 

13 sabinene 6.37 15.85 0.15 
 

6.50 15.52 0.00 
 

6.42 15.71 -0.02 
 

6.71 15.04 0.05 
 

6.40 15.76 -0.03 

14 terpinolene 5.81 18.94 0.14 
 

6.14 17.93 -0.01 
 

6.14 17.93 -0.01 
 

6.23 17.68 0.00 
 

6.10 18.06 -0.03 

15 terpinene-4-ol 8.27 11.12 0.26 
 

7.95 11.57 -0.01 
 

7.88 11.68 -0.03 
 

7.99 11.51 -0.01 
 

7.91 11.62 -0.02 

16 unknown Mol Wt 150 7.15 12.05 0.12 
 

6.93 12.43 0.01 
 

6.87 12.55 -0.02 
 

6.95 12.40 0.01 
 

6.88 12.52 -0.01  
sesquiterpenoids 

                   

17 bicyclogermacrene 6.99 0.80 0.15 
 

6.61 0.85 0.01 
 

6.75 0.83 0.05 
 

6.70 0.84 0.03 
 

6.70 0.84 0.03 

20 trans-farnesol 74.55 1.25 0.51 
 

12.53 7.43 -0.01 
 

12.64 7.36 -0.01 
 

12.64 7.36 -0.01 
 

12.53 7.43 -0.01 

21 unknown sesquiterpenoid 
alcohol 

7.18 1.11 0.16 
 

6.88 1.16 0.00 
 

6.88 1.16 0.00 
 

6.94 1.15 0.02 
 

9.83 0.81 0.08 

 
GC-MS diterpenoids 

                   

22 agathadiol 10.81 0.94 0.57 
 

7.85 1.30 0.24 
 

7.27 1.40 0.11 
 

9.89 1.03 0.17 
 

6.87 1.49 0.01 

23 agatholal 14.60 0.47 0.62 
 

7.94 0.87 0.22 
 

7.49 0.92 0.12 
 

10.60 0.65 0.21 
 

7.05 0.98 0.01 

24 copalol 5.46 0.98 0.64 
 

3.81 1.41 0.16 
 

3.94 1.36 0.21 
 

3.55 1.51 0.02 
 

3.49 1.54 0.00 

25 levopimaral 5.12 2.34 0.53 
 

4.88 2.46 0.08 
 

5.17 2.32 0.18 
 

4.79 2.50 0.03 
 

4.66 2.57 0.00 

26 methyl dehydroabietate 3.35 2.12 0.37 
 

3.28 2.16 0.00 
 

3.28 2.16 0.01 
 

3.25 2.18 0.04 
 

3.35 2.12 0.04  
LC-MS diterpenoids 

                   

29 dehydroabietic acid 9.49 2.05 0.55 
 

5.95 3.28 -0.10 
 

5.91 3.30 -0.11 
 

6.07 3.21 -0.05 
 

5.92 3.30 -0.11 
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32 unknown diterpene-3 4.63 1.38 0.23 
 

3.78 1.69 0.05 
 

3.71 1.72 0.02 
 

3.74 1.70 0.04 
 

3.68 1.73 0.00 

33 unknown m/z 109 A 6.48 0.56 0.53 
 

4.88 0.74 0.03 
 

5.32 0.68 0.18 
 

8.62 0.42 0.29 
 

4.80 0.75 0.00 

34 unknown m/z 109 B 7.29 2.93 0.16 
 

6.83 3.13 0.00 
 

6.91 3.09 0.02 
 

6.75 3.17 0.01 
 

6.87 3.11 0.02 

37 unknown m/z 239 7.76 0.98 0.31 
 

7.14 1.07 0.11 
 

7.12 1.07 0.10 
 

6.87 1.11 0.03 
 

7.08 1.08 0.09 

38 unknown Mol Wt 272 66.17 0.51 0.31 
 

12.28 2.78 0.00 
 

12.36 2.76 0.02 
 

12.36 2.76 0.01 
 

31.45 1.08 0.05 

41 C20H30O2 resin acids 9.46 2.01 0.47 
 

8.36 2.27 0.22 
 

7.17 2.65 0.07 
 

6.98 2.72 0.03 
 

6.89 2.75 -0.01 

43 unknown m/z 304 B 2.00 16.30 0.25 
 

2.64 12.34 0.00 
 

2.64 12.37 0.00 
 

2.65 12.30 0.00 
 

2.64 12.37 0.00 

45 unknown m/z 316 11.87 2.97 0.72 
 

5.56 6.33 -0.05 
 

5.59 6.30 -0.04 
 

5.79 6.08 0.04 
 

5.67 6.21 -0.01 

46 unknown C20H30O3    14.79 3.72 0.83 
 

6.03 9.13 -0.02 
 

6.08 9.05 0.00 
 

6.34 8.69 0.08 
 

6.13 8.98 0.01 

47 unknown C20H32O3 A  12.52 4.50 0.83 
 

7.73 7.30 0.26 
 

5.68 9.92 0.06 
 

7.17 7.86 0.17 
 

5.78 9.75 0.10 

48 unknown C20H32O3 B  20.52 6.38 0.33 
 

6.47 20.22 -0.02 
 

6.47 20.22 -0.02 
 

6.47 20.22 -0.01 
 

6.47 20.22 -0.01 

50 unknown C20H30O4 10.08 5.37 0.69 
 

5.61 9.63 0.10 
 

5.38 10.05 0.03 
 

5.64 9.59 0.11 
 

5.40 10.01 0.04 

51 unknown C20H30O5 12.24 4.59 0.71 
 

5.82 9.64 0.00 
 

5.75 9.76 -0.02 
 

6.25 8.98 0.13 
 

5.87 9.56 0.02 

52 unknown C20H30O6 A 14.14 6.58 0.6 
 

13.32 6.98 0.07 
 

8.52 10.91 -0.03 
 

8.68 10.71 0.00 
 

8.57 10.85 -0.01 

54 unknown C20H30O6 C 15.36 3.58 0.51 
 

8.09 6.80 0.21 
 

7.18 7.66 0.00 
 

8.07 6.82 0.20 
 

7.24 7.61 0.01 

55 unknown C20H30O6 D 17.31 4.08 0.46 
 

9.35 7.56 0.21 
 

8.33 8.49 0.01 
 

9.14 7.73 0.17 
 

8.30 8.52 0.00  
phenolics 

                   

56 anethole/estragole 10.18 3.12 0.47 
 

5.58 5.69 -0.01 
 

6.64 4.78 -0.04 
 

7.03 4.51 0.17 
 

6.28 5.05 0.05 

57 benzene acetic acid 5.95 3.33 0.25 
 

4.76 4.17 0.10 
 

4.77 4.15 0.11 
 

4.96 4.00 0.17 
 

4.62 4.29 0.05 

59 coniferyl alcohol 6.82 9.71 0.36 
 

6.05 10.94 0.10 
 

6.39 10.37 0.19 
 

5.89 11.25 0.10 
 

6.18 10.72 0.13 

61 ethyl phenol 1.51 NA 0.2 
 

1.51 NA -0.05 
 

1.51 NA -0.05 
 

1.31 NA -0.03 
 

1.51 NA -0.05 

63 4-ethyl guaiacol 689.72 0.02 0.23 
 

4.95 3.06 -0.05 
 

4.95 3.06 -0.05 
 

4.99 3.04 -0.03 
 

4.92 3.09 -0.06 

65 methyl eugenol 0.03 220.59 0.22 
 

4.46 1.52 0.06 
 

4.68 1.45 0.15 
 

4.40 1.54 0.03 
 

4.68 1.45 0.14 

66 p-Menth-1-en-7,8-diol 2.64 1.60 0.12 
 

4.92 0.86 0.18 
 

4.30 0.98 0.08 
 

0.00 0.00 0.00 
 

4.21 1.01 0.04 

67 phenyl ethanol 6.26 1.66 0.19 
 

6.71 1.55 0.00 
 

6.60 1.58 -0.03 
 

6.65 1.56 0.00 
 

6.64 1.57 -0.02 

68 pinosylvin dimethyl ether 5.81 7.62 0.07 
 

6.27 7.07 0.01 
 

6.27 7.07 0.01 
 

6.27 7.06 0.01 
 

6.24 7.10 0.01 

70 raspberry ketone 3.52 13.52 0.15 
 

4.42 10.75 0.13 
 

4.14 11.48 0.01 
 

4.46 10.67 0.17 
 

4.12 11.53 0.00 

71 thymol 4.52 0.75 0.38 
 

5.78 0.59 0.14 
 

6.02 0.56 0.20 
 

5.50 0.62 0.04 
 

5.67 0.60 0.10 

72 trans-ferulic acid 8.59 1.07 0.31 
 

6.58 1.39 0.12 
 

6.41 1.43 0.07 
 

6.76 1.36 0.16 
 

6.52 1.41 0.10 

74 vanillin 3.93 1.08 0.27 
 

3.77 1.13 -0.05 
 

4.05 1.05 0.08 
 

3.56 1.20 -0.02 
 

4.47 0.95 0.02  
sugars 

                   

76 fructose 10.55 1.63 0.77 
 

0.06 294.10 0.31 
 

6.53 2.62 0.40 
 

5.56 3.08 0.30 
 

7.36 2.33 0.52 

77 glucose 11.12 1.76 0.79 
 

0.07 295.27 0.40 
 

6.65 2.94 0.40 
 

9.23 2.12 0.49 
 

6.95 2.81 0.45 

78 inositol 0.01 34.81 0.64 
 

0.00 5668.48 0.05 
 

0.01 48.14 0.31 
 

6.25 0.05 0.01 
 

0.01 41.67 0.46 

79 sucrose 7062.29 0.47 0.11 
 

70.25 47.22 0.08 
 

6708.29 0.49 0.00 
 

6.10 544.04 0.03 
 

6658.23 0.50 -0.02 
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81 unknown monosaccharide 7.25 NA 0.26 
 

0.07 NA 0.01 
 

7.16 NA 0.00 
 

7.40 NA 0.06 
 

7.23 NA 0.02  
fatty acids 

                   

82 linoleic acid 8.40 0.97 0.69 
 

4.25 1.91 -0.04 
 

4.20 1.93 -0.06 
 

4.24 1.91 -0.02 
 

4.25 1.91 -0.04 

83 linolenic acid 6.72 2.24 0.58 
 

4.36 3.44 -0.05 
 

4.25 3.53 -0.10 
 

4.32 3.48 -0.08 
 

4.32 3.48 -0.08 

84 palmitic acid 6.57 1.39 0.44 
 

4.40 2.07 -0.14 
 

4.34 2.10 -0.17 
 

4.38 2.08 -0.12 
 

4.43 2.06 -0.13  
unknowns 

                   

86 unknown m/z 104 10.11 16.02 0.14 
 

9.90 16.36 0.02 
 

9.86 16.42 0.01 
 

10.01 16.17 0.04 
 

9.88 16.39 0.02 

89 unknown m/z 274 7.20 2.62 0.65 
 

4.12 4.58 0.00 
 

4.05 4.66 -0.04 
 

4.35 4.34 0.09 
 

8.14 2.32 0.03 

92 unknown m/z 406 A 7.54 1.50 0.52 
 

4.75 2.38 -0.12 
 

5.25 2.16 0.09 
 

5.25 2.16 0.11 
 

4.80 2.36 -0.10 

93 unknown m/z 406 B 4.74 1.59 0.24 
 

4.12 1.83 -0.01 
 

4.26 1.77 0.05 
 

4.09 1.84 0.01 
 

4.12 1.83 -0.01 
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Chapter 7: Genomic selection for resistance to bark stripping and associated 

chemical compounds in radiata pine 

 

7.0 Abstract 

The integration of genomic data into genetic evaluations can facilitate the rapid selection of superior 

genotypes and accelerate the breeding cycle in trees. In this chapter, 420 controlled-pollinated trees 

from 74 families were genotyped using a 50K axiom SNP chip array. A total of 15,624 high-quality 

SNPs were used to develop genomic prediction models for bark stripping, height and selected primary 

and secondary chemical compounds in the bark. Genetic parameters from different genomic prediction 

methods; univariate best linear unbiased prediction based on a genomic derived additive relationship 

matrix (GBLUP), trivariate single-step GBLUP which integrated the genomic and pedigree derived 

additive relationship matrix (ssGBLUP) and the univariate generalised ridge regression (GRR) were 

compared to equivalent univariate or trivariate pedigree-based predictions (ABLUP). The influence of 

the statistical distribution of data on the genetic parameters was assessed. Results indicated that the 

heritability estimates were improved by up to 2-fold with genomic models compared to the equivalent 

pedigree based ABLUP models. However, the predictive ability of the ssGBLUP was not markedly 

different from the pedigree-based model (ABLUP) for most traits. Compared with GBLUP, allowing for 

heterogeneity in marker effects through the use of GRR did not markedly improve predictive ability over 

GBLUP, arguing that most of the chemical traits are modulated by many genes with small effects. 

Overall, the traits with low ABLUP heritability benefited more from genomic models compared to the 

traits with high ABLUP heritability. There was no evidence that data skewness or presence of outliers 

affected the genomic or pedigree-based genetic estimates. 
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7.1 Introduction 

The implementation of genomic prediction in plants has offered new possibilities for maximising 

genetic gains for economically important traits (Crossa et al. 2017; Meuwissen et al. 2001) and can 

potentially enhance the efficiency of selecting herbivory-resistant phenotypes in conifers. In conifers, 

breeding for resistance against pests and diseases has mainly relied on conventional phenotype-

based methods (Alfaro et al. 2004; Carson 1989) and has been facilitated by quantitative genetic 

studies that investigate the genetic basis of the resistance mechanisms. Although results from these 

studies mostly indicate that resistance and the associated chemical traits are under genetic control 

and can respond to selection, often low narrow-sense heritability estimates (Chapter 2 ; Chapter 5 ; 

Moreira et al. 2013b; Zas et al. 2017) reduce the precision of breeding value predictions. In addition, 

the inherently long generation intervals of trees and high phenotyping costs are always a challenge 

in tree breeding. Therefore, the potential improvement in prediction accuracy of breeding values for 

traits with low heritability (Gamal El-Dien et al. 2016; Goddard 2009; Hayes et al. 2009; Iwata et al. 

2011; Klápště et al. 2018; Stejskal et al. 2018; Suontama et al. 2018), coupled with the predicted 

reduction in the length of breeding cycles (Klápště et al. 2018; Thistlethwaite et al. 2017), should be a 

major motivation for incorporating genomic selection in breeding for resistance in conifers. However, 

the effectiveness of genomic prediction depends on the improvement in the accuracy of breeding value 

predictions.  

 

The factors that affect the accuracy of breeding value predictions and, hence, the expected response to 

genomic-informed selection have been well documented (Desta and Ortiz 2014; Klápště et al. 2018; 

Momen et al. 2018; Stejskal et al. 2018). A key factor, however, is the choice of statistical methods for 

genomic estimated breeding value predictions that differ with respect to the assumptions regarding the 

distribution of marker effects. Methods such as the genomic best linear unbiased prediction (GBLUP), 

single-step GBLUP (ssGBLUP) and ridge regression best linear unbiased prediction (RR-BLUP) 

assume that all marker effects follow the same distribution and each explains a very small amount 

of variance (Legarra et al. 2009; Meuwissen et al. 2001; Misztal et al. 2013). In contrast, linear 

regularized (penalized) regression models such as generalised ridge regression (GRR), least 

absolute shrinkage and selection operator (LASSO) and elastic net as well as nonlinear Bayesian 

methods that include Bayes A/B/C/Cπ/R account for heterogeneity of marker effects (Meuwissen et 

al. 2017). Studies that have evaluated the relative predictive performance of the different approaches 

mostly indicate that the optimum approach is partly dependent on the genetic architecture and 

heritability of the trait involved (Hayes and Goddard 2001; Momen et al. 2018; Ogutu et al. 2012; 

Ratcliffe et al. 2017; Wang et al. 2018a). Genetic architecture describes genotype-phenotype 
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relationships for the loci contributing to phenotypic variation, and includes the number of loci and 

their genomic location, number of alleles per locus, magnitude of their effects, patterns of pleiotropy, 

mode of gene action and epigenetic effects (Momen et al. 2018). Complex quantitative traits that are 

controlled by many genes with small effects, such as likely for resistance to herbivory (Kliebenstein 

2014; Lenz et al. 2020), may be better predicted by methods that do not prioritize individual genetic 

markers (Desta and Ortiz 2014; Lenz et al. 2020). In conifers, however, studies also indicate that 

some herbivory resistance, as well as associated chemical resistance traits, may be controlled by 

genes with major effects (Porth et al. 2011). For such traits that are controlled by major genes, 

prediction accuracy can be favourably estimated by models that apply variable selection and 

differential shrinkage of allelic effects (Gianola et al. 2009; Resende et al. 2012a). Additionally, for 

resistance which is mostly scored on qualitative or semiquantitative scales, and chemical data that 

is skewed (Burdon et al. 1992a), regression models that support non-normal data may be more 

appropriate (Kärkkäinen and Sillanpää 2012). Therefore, for less studied traits, it is important to 

evaluate a broad range of statistical methods to identify those that can better model the additive 

genetic variance. Accordingly, we tested the ability of three selected statistical methods - GBLUP, 

ssGBLUP and GRR - to estimate breeding values for, (i) resistance of radiata pine (Pinus radiata D. 

Don) to marsupial bark stripping and (ii) the bark chemical traits, some of which may impact 

susceptibility. These methods were selected to represent alternative approaches and assumptions 

related to marker effects (Meuwissen et al. 2017; Wang et al. 2018b).  

 

In radiata pine, selection for pest resistance has mostly been based on conventional approaches 

involving visual selection and trait screening over several pedigreed generations (Carson 1989; Dungey 

et al. 2009). Although there does not appear to be operational breeding programmes focussed on 

reducing the susceptibility of radiata pine to herbivory, various quantitative genetic studies have 

indicated the potential for selection against insect and mammalian bark damage and the associated 

chemical traits in various radiata pine populations (Chapter 2 ; Chapter 5 ; Chapter 6 ; Moreira et al. 

2013b). However, bark stripping and associated chemical traits, that include terpenes, phenolics and 

sugars, have low to moderate pedigree-based heritability estimates (Chapters 2, 6) and would possibly 

benefit from genomic selection. In conifer-herbivore systems, only one study has examined the 

potential benefits of genomic selection, in this case for white pine weevil resistance in Norway spruce 

(Lenz et al. 2020). To my knowledge, there is no study incorporating genomic selection for chemical 

compounds related to susceptibility or resistance mechanisms in breeding programmes of conifers. For 

other economically important traits in radiata pine, studies have indicated potential genetic gain from 

using genomic selection (Li and Dungey 2018; Whitehill et al. 2016) and similar concepts could be 
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adopted for resistance breeding. Currently, there are marker panels to identify known biotic threats 

such as Dothistroma pini (Li et al. 2015b) and other genomic resources in radiata pine (Telfer et al. 

2019; Telfer et al. 2018) that can facilitate detailed genomic dissection of resistance and other traits of 

interest.  

 

The present study aimed to:  

(1) use genomic models to estimate genetic parameters for bark stripping and selected primary and 

secondary chemical compounds in the bark, including those associated with bark stripping in radiata 

pine. A key focus was examination of the stability and potential improvement in heritability estimates of 

the bark chemical compounds and their additive genetic correlation with bark stripping and height; and  

(2) assess the predictive ability of the implemented models and evaluate the impact of data statistical 

distribution on genomic prediction. 

  

7.2 Materials and methods 

7.2.1 Plant material 

The genetic field trial at Wilmot in Tasmania, Australia (-41.454271o N, 146.106801o E, 580 m ASL) 

described in Chapters 2, 4 and 6 was used for this study. Plant material was sourced from the New 

Zealand Radiata Pine Breeding Company (RPBC). This comprised 74 full-sib families that were planted 

in the field experiment in an incomplete randomised block design of 26 replicates with 78 incomplete 

blocks and single tree plots, with a total number of 1970 of trees. The families represented 55 unique 

parents and 54 grandparents. 20 replicates (1550 trees) were accessible to browsing for assessment of 

bark stripping. Six replicates (420 trees) were protected from bark stripping from which samples for the 

chemical analysis and for genotyping were collected (Supplementary Figure 7.1). The sample size is 

sufficient to reach the benchmark accuracy of conventional genomic selection (Grattapaglia and 

Resende 2011). Alternate trees in these replicates had been subject to artificial bark stripping (details in 

Chapters 2, 4 and 6).   

 

7.2.2 Phenotypic data 

a) Bark stripping 

From the 20 unprotected replicates, bark stripping damage by marsupials was recorded on an 

individual-plant basis at 2 years of age. The damage was scored on a categorical scale assigning zero 

(0) to non - stripped plants, 1 = <20% of the circumference stripped; 2 =20-50%; 3= 50-75% and 4= 

75->100%, 5=100% of the circumference stripped. At the same time, height was assessed in all the 26 
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replicates. From the 6 protected replicates, needle and bark samples were collected for chemistry and 

genetic analysis.  

 

b)  Chemical analysis using near infrared reflectance spectroscopy  

The chemical data used in this chapter was the same as used in Chapter 6. The chemical compounds 

i.e. terpenes, phenolics, fatty acids, sugars and unknown compounds were predicted by near infrared 

spectroscopy (NIRS) according to the methods documented in Chapter 5 and the associated wet 

chemistry methods are documented in Chapter 4. In brief, chemical extractions were done on 150 bark 

samples and NIRS prediction was done for the rest of the samples. Wet chemical extraction with 

dichloromethane (DCM) was carried out in 5ml of 0.75mg of fresh material and the acetone extraction 

was performed in 10 ml of 95% acetone using 50g of freeze-dried ground material. The sugars were 

extracted from 50 g of freeze dried, ground material in 10 ml of hot water (Jones et al. 2002). The DCM 

extracts were analysed by gas chromatography-mass spectrometry (GC-MS) while the acetone extracts 

and sugars were analysed by ultra-high-performance liquid chromatography-mass spectrometry 

(UHPLC-MS). The procedures for the GC-MS and UHPLC-MS are detailed in Chapter 3. For the NIRS 

analysis, samples were scanned when fresh and when freeze dried and ground according to the 

methods in Chapter 5. Near infrared reflectance spectroscopy models were developed to predict the 

amounts of all chemical compounds quantified in the bark as indicated in Chapter 6. The stronger 

model of either the cross-validated or the externally validated model was used to predict the chemistry 

of the unknown samples. The amount of each of the 65 compounds listed in Chapter 6 was predicted 

by NIRS and as a proof of concept only the 25 compounds in the bark predicted with models with R2 > 

0.5 (Chapter 6) were selected for this study. Four of these compounds were shown to positively 

correlate with bark stripping in Chapter 6. The descriptive statistics and the statistical distribution of all 

traits considered in the study are shown in Table 7.1.  
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Table 7.1: Descriptive statistics of the traits used for genomic selection. Only bark compounds with NIRS models 

r2 > 0.5 were selected for this study (Chapter 6), in addition to bark stripping and height. The monoterpenoids 

(M), sesquiterpenoids (SS) and GC-MS diterpenoids (DG) compound groups are expressed as milligrams of 

heptadecane equivalents per gram of dry weight of the sample. The LC-MS diterpenoids (DL), fatty acids (F) and 

the unknown compounds (U) are expressed as milligrams of nonadecanoic equivalents per gram of dry weight. 

The sugars (S) are expressed in absolute amounts (Min = minimum, Max = maximum, SD = standard deviation). 

Each chemical compound was given a unique identifier based on Supplementary Table 10 for ease of location in 

the tables  

 

Id Compound Compound 
group 

Min Mean Max SD skewness kurtosis 

 Bark stripping 
 

0.00 25.20 100.00 33.20 1.35 0.62 
 Height (cm) 

 
77.00 163.70 257.00 30.40 -0.35 0.72 

1 α-pinene M 0.02 3.82 0.78 0.42 2.08 9.56 
4 β-pinene M -0.38 8.34 1.84 0.99 1.40 6.11 
5 camphene M 0.00 0.03 0.01 0.00 0.88 3.15 
8 citronellal M -0.06 0.46 0.04 0.05 2.09 12.83 
20 trans-farnesol SS -0.02 0.10 0.02 0.02 1.00 2.88 
22 agathadiol DG -0.54 3.89 0.55 0.51 2.00 7.99 
23 agatholal DG -0.10 1.56 0.34 0.21 1.57 4.81 
24 copalol DG 0.00 0.18 0.03 0.02 2.33 12.09 
25 levopimaral DG 0.00 0.05 0.01 0.01 1.25 3.01 
29 dehydroabietic acid DL 8.53 39.35 24.71 5.18 0.72 -0.12 
33 unknown m/z 109 A DL -0.01 0.07 0.02 0.01 0.84 1.94 
45 unknown m/z 316 DL 2.48 44.63 13.75 5.58 1.20 3.62 
46 unknown C20H30O3    DL 7.56 88.00 25.93 9.27 1.65 7.25 
47 unknown C20H32O3 A DL -0.29 92.88 20.71 10.29 1.86 7.81 
50 unknown C20H30O4 DL 22.24 175.53 60.58 18.16 1.53 5.94 
51 unknown C20H30O5 DL 3.09 39.25 11.34 4.59 1.58 5.40 
52 unknown C20H30O6 A DL -0.06 1.16 0.22 0.13 1.59 7.50 
54 unknown C20H30O6 C DL 1.79 15.23 6.29 1.89 0.90 1.77 
76 fructose S -0.10 2.12 1.33 0.36 -0.30 0.01 
77 glucose S 0.31 3.06 1.53 0.43 0.09 0.30 
78 inositol S 0.17 2.30 1.09 0.36 0.29 0.13 
83 linoleic acid F 7.12 27.00 16.91 3.75 -0.08 -0.21 
84 linolenic acid F 1.11 12.31 7.69 1.46 -0.17 0.67 
90 unknown m/z 274 U 0.36 3.72 1.11 0.40 1.68 6.62 
94 unknown m/z 406 A U 0.08 1.02 0.53 0.17 -0.02 -0.27 
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7.2.3 Genotyping 

From the 6 protected replicates, needle samples were collected from all individuals (n=420) and stored 

at -800C before DNA extraction. Total genomic DNA was extracted using a commercial NucleoSpin 

Plant II kit (Machery-Nagel, Duren, Germany) with modifications (Telfer et al. 2013). DNA purity and 

concentration were evaluated using a NanoDrop 2000 spectrophotometer and quantified using the 

Agilent 5200 fragment analyser. The samples were genotyped using the 50K axiom SNP chip for 

radiata pine developed on the Illumina platform (Thermofischer) (Telfer, 2019). Currently this is the 

densest SNP array for radiata pine, capable of assaying in excess of 80,000 SNPs. 396 individuals 

were included in the final genotype data with a total of 27,000 SNPs. This genotype data was filtered to 

include only SNPs with a mean allele frequency (MAF) >0.01 and maximum missing data of 0.4% using 

the rrBLUP package. This filtering resulted in the retention of 15,624 SNPs for analysis. The genotyping 

reproducibility rate was high (99.9%), as estimated from 10 samples that were replicated during DNA 

extraction.  

 

7.2.4 Statistical methods 

Three selected statistical methods were compared - genomic best linear unbiased predictor (GBLUP), 

single-step genomic BLUP (ssGBLUP) and generalised ridge regression (GRR). GBLUP and ssGBLUP 

do not estimate individual marker effects and the two methods rely on different sample sizes. GBLUP 

used only the samples that were genotyped and phenotyped (n=396) and these were the plants in the 6 

protected replicates for which chemistry data was available (see Chapter 6). The ssGBLUP included all 

individuals in the Wilmot trial with documented pedigree that had been phenotyped for height (26 

replicates, n=1970). Of these, 20 replicates were exposed to bark stripping and 6 replicates were 

protected (see above). The genomic models were compared to the pedigree based (ABLUP) model 

involving the same individuals, which is the standard method used for breeding value prediction using 

the expected relatedness among individuals based on pedigree information. 

 

The ssGBLUP and GBLUP models are similar to the ABLUP models detailed in Chapter 6, except that 

the average numerator relationship matrix A in the ABLUP is substituted with the realized genomic 

relationship matrix (G) in GBLUP and with the H-matrix that combines G and A matrices in ssGBLUP 

(Christensen and Lund 2010).  

 

The G-matrix was computed using the “A.mat” function in the R package rrBLUP (Endelman 2011) from 

the marker data following (VanRaden 2008): 
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𝐺 =
𝑍𝑍′

2 ∑ 𝑝𝑖(1−𝑝𝑖)𝑖
                                                                               (1) 

where Z where Z = M − P, M is the matrix of genotypes coded 0, 1, and 2 as reference allele 

homozygote, heterozygote, and alternative allele homozygote, respectively, and P is the vector of 

doubled frequencies for alternative alleles, p is the frequency of the alternative allele at įth loci. 

 

The single-step GBLUP (ssGBLUP) combines the pedigree relationship matrix A and the genomic 

relationship matrix G, in one matrix, H and hence simultaneously uses information from genotyped and 

non-genotyped individuals. The H-matrix is defined by 

                                 (2) 

where, A11 , represents the relationship matrix for the non-genotyped individuals (20 replicates, n = 

1550), A12 and A21 are relationship matrices between genotyped and non-genotyped individuals (26 

replicates, n = 1970) while A22 is the pedigree-based relationship matrix for genotyped individuals (6 

replicates, n = 420) and Gs is the scaled marker-based matrix, G-matrix for only the genotyped 

individuals (see scaling below). Moreover, A22
-1 denotes the inverse of A22. And is denoted as; 

                                                              (3) 

Forming the H-matrix above involves 2-major steps; i) the G-matrix is rescaled (Ga) such that the 

average of its diagonal elements (avg.diag) is equal to the average of the diagonal elements of the A 

matrix, such that the G and A matrices are compatible. This is also done for the average of the non-

diagonal elements (avg.offdiag). Following (Gao et al. 2012), this was done by adjustment factors, α 

and β to all elements of G.  

Ga=Gβ+α,                                                                            (4) 

where α and β are adjustment factors derived from the following equations: 

                                                              (5) 

ii) The G matrix is usually not positive semi-definite, which is one of the mixed linear model 

assumptions, and weighting of the genomic and pedigree-based relationship matrices is required as 

follows: 

             Gs =Ga(1-w) + A22w                                                                     (6) 
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where Gs is a rescaled genomic relationship matrix based on the SNP data, Ga is the adjusted genomic 

relationship matrix (equation 4) and w is the weighting factor that represents the fraction of total additive 

variance that is not captured by markers and A22 is the additive relationship matrix from the full 

pedigree. The weight (w) can take any value between 0 and 1, where the model fitted with w=0 is 

equivalent to the GBLUP model while the model where w=1 is equivalent to ABLUP. For the present 

study, a low w of 0.05 was selected to give high weighting to the genomic data as 5% pedigree errors 

were detected during the attempted pedigree reconstruction (Martini et al. 2018).  

 

Linear models for estimation of variance components 

Variance components based on the univariate pedigree-based relationship matrix (A) have been 

previously documented (Chapter 6). This chapter presents the results from univariate and trivariate 

ABLUP for comparison with the genomic models. The variance components for the ABLUP, ssGBLUP 

or GBLUP were obtained in ASReml v4.1 (Gilmour et al. 2015) using a general linear additive genetic 

model as, 

y = Xβ + Zu + e,                                                               (7) 

where, y is the response variable (height, spatially adjusted bark stripping and a chemical variable); β, a 

vector of fixed effects; u is the vector of random effects which included replicates, incomplete blocks 

within replicates, tree (additive genetic effect – estimated using either the A, G or H relationship 

matrices) terms and e is a vector of random residuals. The random family (specific combining ability) 

and the tree*treatment terms were excluded from the analyses because they were generally non-

significant in previous analyses (Chapter 6). X and Z correspond to design matrices relating the 

observations in y to the fixed and random effects in β and u, respectively. The vector of random additive 

effect (u) in equation is assumed to follow a normal distribution u ~ N(0,A(G/H)σ2), where σ2 is the 

additive genetic variance based on the A, G or H matrices. For single models, the fixed term β 

contained the overall mean and the treatment term that was fitted for the chemical but for multi-trait 

models another term, “protected” was fitted for height as a fixed term to differentiate the measurements 

from the 20 replicates that were unprotected – where bark stripping was scored, from those from the 6 

protected replicates from which chemistry was estimated. To test whether the additive genetic variation 

was greater than zero, full models were compared with respective reduced models using a one-tailed 

likelihood ratio test (Gilmour et al. 2015). This was done for only the GBLUP model and for the trivariate 

models, tests were done for compounds [76,77,83,84] that exhibited significant correlation with bark 

stripping and height in Chapter 6.  
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Narrow-sense heritability estimates were derived from univariate ABLUP and GBLUP as well as 

trivariate ABLUP and trivariate ssGBLUP models (see below for trivariate models). Individual narrow-

sense heritability (ĥ 2) was estimated as the additive genetic variance divided by the sum of the additive 

genetic variance 𝜎̂𝑎
2 and the error variance 𝜎̂𝑒

2 as below: 

ℎ̂2 =
𝜎̂𝑎

2

𝜎̂𝑎
2+𝜎̂𝑒

2                                                           (8) 

Estimates of the associated standard error for the traits were obtained directly using Taylor series 

expansion (“delta method”) (Gilmour et al. 2015). The univariate ABLUP heritability values presented 

were those from Chapter 6.  

 

Comparisons of the heritability estimated were made between pedigree and genomic based models. 

The univariate GBLUP estimates were compared to univariate ABLUP, and similarly the trivariate 

ssGBLUP was compared with the trivariate ABLUP. A two-tailed paired t-test was used to test the 

difference in the average heritability estimates in R v 3.6.0. 

 

Generalised ridge regression  

Generalised ridge regression (GRR) estimates marker effects using linear and penalized parameters 

based on only the genotyped individuals (n=396). GRR alters the notations of parameters a and Z in 

Eq. (1) by allowing variable shrinkage for different markers through the introduction of a diagonal matrix 

following a two-step process (Shen et al. 2013).  

 

In the first step, the predicted breeding values are obtained following the mixed model by the summing 

of all the marker effects of an individual tree (similar to model 7), where, X is a vector of 1. The terms e 

(vector for random residuals) and Z (the design matrix for SNP effects) are respectively assumed to 

follow a normal distribution, i.e. e ∼ N(0, Iσ2
e) and u ~ N(0, Iσ2u), where I is an identity matrix. The 

solution for the marker effects is given by the following equation:  

𝑢̂ = (𝑧′𝑧 + 𝜆𝐼)−1𝑧′𝑦     (9) 

where, 𝜆 =
𝜎𝑒

2

𝜎𝑢
2⁄  , the ridge penalty parameter is the ratio between the residual and marker 

variances (Shen et al. 2013; Veerman et al. 2019). The method assumes equal distribution of  

marker effects, and therefore all effects are equally shrunk towards zero. 

 

 In the second step, a marker-specific shrinkage parameter is imposed on the BLUP for 𝑢̂ where 𝜆𝐼 

becomes diag (𝜆). The equation now becomes  
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𝑢̂ = (𝑧′𝑧 + diag(𝜆))−1𝑧′𝑦 

where 𝜆 is a vector of shrinkage parameters and 𝑢̂ is the BLUP marker effect (from step 1). 

Generalized ridge regression was implemented in the “bigRR” package in R (Rönnegård and Shen 

2016).  

 

Genetic correlations 

To estimate the genetic correlations among traits based on the ssGBLUP, trivariate models were fitted 

including height, spatially adjusted bark stripping and one chemical compound as response variables. 

Similar to the trivariate ABLUP models in Chapter 6, the fixed treatment effect was fitted to the chemical 

compound and the fixed protected effect was fitted to height. The random terms included the additive 

genetic variation, replicates and incomplete blocks within replicates. The multivariate analyses 

assumed heterogeneous independent residuals. The genetic correlation (rg) between two traits 

measured was estimated as:  

 

𝑟𝑔 =
𝑐𝑜𝑣𝑎(𝑥,𝑦)

√𝜎𝑎𝑥
2 ⋅𝜎𝑎𝑦

2
                                          (10) 

where cova(x, y) is the additive genetic covariance between traits x and y, σ2
ax is the additive genetic 

variance components for trait x, and σ2
ay is the additive genetic variance components for trait y. 

Standard errors were estimated in ASReml (Gilmour et al. 2015). The accuracy of the genetic 

correlation estimates were compared with those obtained with the trivariate ABLUP (Chapter 6). This 

was done by using a two-tailed paired t-test to test the difference in the standard errors of the 

correlation in R v 3.6.0. 

 

Cross-validation scheme for estimating predictive ability  

The predictive ability assesses the potential of the models to estimate the breeding value of individuals 

with yet-to-be observed phenotypes (Momen et al. 2018). To test the predictive ability of the 3 genomic 

and ABLUP methods, a 10-fold cross-validation scheme was implemented in ASReml (Gianola and 

Schön 2016; Utz et al. 2000). Within each model, individuals were randomly subdivided into 10 subsets 

(i.e., folds) irrespective of family, and a leave one out procedure was repeated 10 times until all 

individuals had their breeding values predicted. The average estimated breeding value from all 

iterations was computed for each individual. Predictive ability of phenotypes was then defined as the 

Pearson correlation between the genomic estimated breeding values predicted in cross-validation and 

the observed phenotypes (Momen et al. 2018).  
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To detect if data distribution was correlated to predictive ability, the coefficient of skewness (a measure 

of symmetry) and kurtosis (a measurement about the extremities [i.e. tails] of the distribution of data, 

that provides an indication of the presence of outliers) were estimated for each compound using 

functions SKEW and KURT respectively in excel. The expected skewness of a normal distribution is 

zero (0) while a dataset with no tails has a kurtosis of 3.0. The relationship between predictive ability for 

each and skewness and kurtosis was assessed using a scatter plot. 

 

7.3 Results 

7.3.1 ABLUP - univariate 

The additive genetic estimates for the 25 chemical compounds from the univariate pedigree-based 

model have been previously presented (Chapter 6) and are presented here for comparative purposes 

(Table 7.2). The narrow-sense heritability values of the 25 chemical compounds ranged between 0.03 - 

0.37 and averaged to 0.23 ± 0.09 (Table 7.2).  Apart from four compounds - agathadiol [22], 

dehydroabietic acid [29], inositol [78] and unknown m/z 406 A [94], the chemical compounds showed 

significant additive genetic variation (Table 7.2). Significant additive genetic variation but low heritability 

was exhibited for height (h2 = 0.04 ± 0.02) and the spatially adjusted bark stripping (h2 = 0.07 ± 0.03) 

based on univariate models (Table 7.2). 

 

7.3.2 GBLUP - univariate 

Based on the single trait GBLUP that used only the relationship matrix derived from genomic data (G-

matrix), heritability estimates ranged from 0.04 – 0.60 (average 0.37 ± 0.10), suggesting that the 

markers were sufficient in capturing the additive genetic variation despite the small sample size. The 

average of heritability estimates for the chemical traits (0.37 ± 0.10) was 1.6- fold higher than the 

average of the univariate ABLUP heritabilities (0.23 ± 0.09; t24 = -9.16, p < 0.001) (Table 7.2). The 

strongest improvement was exhibited with compounds that had the lowest ABLUP heritability. For 

example, a 3.5 - fold increase in heritability was detected for height. Also, the heritability of the 

unknown m/z 406 A[94] (h2 = 0.04 ± 0.05) increased 2.5-fold with the GBLUP (h2 = 0.10 ± 0.06) while 

that of citronellal [8], trans-farnesol[20] and unknown C20H30O3[46] increased 2.2-fold. Apart from the 

heritability of linoleic acid [83] that slightly reduced, the compounds experienced between 1.1-2.09 - fold 

increment with the GBLUP. Significant additive genetic variation was also detected for agathadiol [22], 

dehydroabietic acid [29], inositol [78] and unknown m/z 406 A [94] that were not significant with the ABLUP 

models. Bark stripping heritability estimates were not derived using GBLUP since bark stripping had 

missing values for the trees were genotyped. 

7.3.3 ssGBLUP - trivariate 
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Based on the trivariate ssGBLUP which combines pedigree (A) and genomic (G) matrices, low 

heritability values were estimated for bark stripping (h2 = 0.12 ± 0.04) and height (h2 = 0.07 ± 0.03). 

These estimates were constant irrespective of chemical compound fitted in the model. Compared to the 

trivariate ABLUP, the heritability for both bark stripping and height improved 1.4 - fold (Table 7.2). The 

trivariate ssGBLUP heritability estimates for individual bark compounds ranged between 0.13 – 0.77. 

Relative to the heritability of all the compounds based on the trivariate ABLUP (average = 0.27 ± 0.10), 

the heritability improved 1.7 – fold with ssGBLUP model (average =0.46 ± 0.10; t24 = -8.79, p < 0.001). 

Similar to GBLUP, the compounds that had high heritability with ABLUP showed the less relative 

improvement with ssGBLUP (Figure 7.1, Table 7.2). The four compounds that did not show any 

significant additive genetic variation with the univariate ABLUP displayed significant additive genetic 

variation with this model (results not shown).  
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Table 7.2: Narrow-sense heritability (h2) and standard error (se) estimates of bark stripping, height and selected chemical compounds quantified in P. radiata bark based on 

univariate models for ABLUP and GBLUP and trivariate ABLUP and ssGBLUP. The trivariate models included height, spatially adjusted bark stripping and one chemical 

compound. The predictive ability (PA) defined as the correlation of breeding values from 10-fold cross validation is also indicated. The significance that the additive genetic 

variation from the univariate ABLUP and GBLUP was greater than zero was tested using the one-tailed likelihood ratio test (Chapter 6), where * = p < 0.05, ** = p < 0.01 and 

*** p < 0.001. Significance tests were not done for the trivariate models. M = monoterpenoids, S=sesquiterpenoids, DG = GC-MS diterpenoids, GL=LC-MS diterpenoids, 

S=Sugars, F=Fatty acids, U=Unknown compounds. Each chemical compound is given a unique identifier (Id) based on Supplementary Table 10 (after Chapter 9), for ease of 

location in the tables 

 

  Narrow-sense heritability (h2) (se) 
     

  Predictive ability 

Id Compound Group ABLUP-
univariate 

  GBLUP-
univariate 

ABLUP-
trivariate 

ssGBLUP- 
trivariate 

  ABLUP-
univariate 

GBLUP-
univariate 

GRR-
univariate 

ABLUP-
trivariate 

ssGBLUP-
trivariate  

  

  Bark stripping   0.07 (0.03) ***   0.09 (0.03) 0.12 (0.04)   0.46     0.11 0.11 

  Height   0.04 (0.02) ** 0.14 (0.08) 0.05 (0.02) 0.07 (0.03)   0.37     0.36 0.10 

1  α-pinene M 0.25 (0.10) *** 0.32 (0.10)*** 0.25 (0.10) 0.32 (0.11)   0.76 0.22 0.24 0.74 0.82 

4  β-pinene M 0.27 (0.10) *** 0.45 (0.11)*** 0.34 (0.12) 0.60 (0.11)   0.74 0.30 0.32 0.74 0.75 

5 camphene M 0.26 (0.10) *** 0.45 (0.11)*** 0.29 (0.11) 0.55 (0.11)   0.75 0.33 0.33 0.75 0.78 

8 citronellal M 0.18 (0.09) *** 0.40 (0.12)*** 0.19 (0.09) 0.48 (0.11)   0.68 0.35 0.32 0.71 0.67 

20 trans-farnesol SS 0.14 (0.08) *** 0.31 (0.11)*** 0.14 (0.08) 0.43 (0.11)   0.66 0.27 0.26 0.60 0.14 

22 agathadiol DG 0.21 (0.10)   0.43 (0.11)*** 0.22 (0.10) 0.46 (0.11)   0.74 0.25 0.28 0.74 0.74 

23 agatholal DG 0.22 (0.09) *** 0.33 (0.10)*** 0.24 (0.10) 0.38 (0.11)   0.73 0.28 0.19 0.73 0.77 

24 copalol DG 0.29 (0.10) *** 0.51 (0.11)*** 0.28 (0.10) 0.51 (0.11)   0.79 0.37 0.37 0.79 0.82 

25 levopimaral DG 0.30 (0.10) *** 0.48 (0.11)*** 0.32 (0.11) 0.53 (0.11)   0.79 0.36 0.37 0.79 0.70 

29 dehydroabietic acid DL 0.03 (0.02)   0.04 (0.03)** 0.10 (0.07) 0.18 (0.09)   0.33 -0.13 -0.06 0.30 0.31 

33 unknown m/z 109 A DL 0.33 (0.11) *** 0.60 (0.11)*** 0.36 (0.12) 0.77 (0.10)   0.81 0.47 0.43 0.81 0.88 
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45 unknown m/z 316 DL 0.21 (0.09) * 0.32 (0.11)*** 0.25 (0.10) 0.41 (0.12)   0.71 0.20 0.18 0.70 0.71 

46 unknown C20H30O3 DL 0.18 (0.08) * 0.40 (0.12)*** 0.21 (0.10) 0.50 (0.13)   0.69 0.26 0.27 0.69 0.71 

47 unknown C20H32O3 A DL 0.21 (0.09) *** 0.44 (0.11)*** 0.21 (0.09) 0.48 (0.11)   0.71 0.32 0.32 0.78 0.74 

50 unknown C20H30O4 DL 0.24 (0.09) *** 0.41 (0.11)*** 0.28 (0.11) 0.50 (0.12)   0.73 0.27 0.28 0.73 0.54 

51 unknown C20H30O5 DL 0.25 (0.10) *** 0.43 (0.11)*** 0.29 (0.11) 0.52 (0.12)   0.75 0.26 0.30 0.76 0.64 

52 unknown C20H30O6 A DL 0.31 (0.11) *** 0.45 (0.11)*** 0.34 (0.11) 0.57 (0.11)   0.79 0.29 0.30 0.79 0.81 

54 unknown C20H30O6 C DL 0.30 (0.11) *** 0.43 (0.10)*** 0.38 (0.12) 0.54 (0.11)   0.77 0.24 0.29 0.81 0.79 

76 fructose S 0.21 (0.09) ** 0.31 (0.10)*** 0.30 (0.10) 0.47 (0.10)   0.58 0.29 0.28 0.57 0.46 

77 glucose S 0.20 (0.09) ** 0.37 (0.10)*** 0.27 (0.10) 0.49 (0.10)   0.63 0.18 0.29 0.59 0.64 

78 inositol S 0.14 (0.08)   0.29 (0.10)*** 0.16 (0.09) 0.32 (0.11)   0.60 0.08 0.07 0.60 0.16 

83 linoleic acid F 0.30 (0.11) *** 0.27 (0.09)*** 0.55 (0.13) 0.46 (0.10)   0.70 0.18 0.19 0.69 0.68 

84 linolenic acid F 0.37 (0.12) *** 0.40 (0.10)*** 0.45 (0.12) 0.47 (0.10)   0.81 0.29 0.39 0.80 0.80 

90 unknown m/z 274 U 0.31 (0.11) ** 0.37 (0.11)*** 0.32 (0.11) 0.39 (0.11)   0.80 0.27 0.28 0.81 0.81 

94 unknown m/z 406 A U 0.04 (0.04)   0.10 (0.06)* 0.04 (0.05) 0.13 (0.09)   0.46 0.00 -0.03 0.28 0.33 

1 
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7.3.4 Univariate versus trivariate models 

The application of trivariate models improved the genetic estimates of most traits (Table 7.2). With the 

ABLUP, a 1.3 – fold increase in heritability of both bark stripping and height was detected with trivariate 

ABLUP compared with the univariate estimates, with no change in the standard error of the estimates 

(Table 7.2). The heritability estimates of the chemical compounds also improved in trivariate (average 

h2 = 0.27 ± 0.10) compared to the univariate ABLUP (average h2 = 0.23 ± 0.09; t24 = 3.46, p < 0.01). 

However, the heritability of α-pinene [1], trans-farnesol [20], one unknown diterpenoid [49] and unknown m/z 

406 A [94] did not change, while that of copalol [24] slightly reduced in the trivariate ABLUP models 

indicating that the improvement of genetic estimates from correlated traits in multi-trait models is trait 

specific. With the ssGBLUP, a 50% reduction in heritability was detected for height, compared to the 

univariate GBLUP, although the ssGBLUP was associated with lower standard error of measurement 

suggesting that the ssGBLUP estimate is more accurate. With the ssGBLUP an improvement in the 

heritability estimates was detected for most of the chemical compounds (average h2 = 0.46 ± 0.10) 

relative to GBLUP (average h2 = 0.37 ± 0.10; t24 = 7.14, p < 0.001), except copalol [24], indicating the 

relative advantage of additional phenotypic information from correlated traits.  

 

Of the chemical compounds, the largest increment in heritability for both trivariate pedigree and 

genomic models relative to the univariate ABLUP was observed for compounds that had the lowest 

heritability estimate in the univariate models (Figure 7.1). The highest improvement was for example 

detected for dehydroabietic acid [29], where a 3.3 - fold and a 4.5 - fold improvement was detected with 

trivariate ABLUP and ssGBLUP respectively relative to the univariate models 

 

7.3.5 Genetic correlations 

The genetic correlations of chemical compounds with bark stripping or height varied from positive to 

negative for both trivariate ABLUP and ssGBLUP. Although most correlations retained the signs, shifts 

from the low negative ABLUP to low positive ssGBLUP genetic correlations were detected (Table 7.3). 

The magnitude of the ABLUP positive correlations marginally increased in magnitude compared to the 

genetic correlation from the ssGBLUP (Table 7.3). The ABLUP negative correlations either changed to 

positive or reduced in magnitude with the ssGBLUP. However, for both the ABLUP positive and 

negative, correlations, the standard error (se) of most estimates significantly reduced with the ssGBLUP 

compared to the trivariate ABLUP for both bark stripping (ABLUP average se = 0.29, ssGBLUP 

average se = 0.26, t24 = 3.52, p < 0.01) and height (ABLUP average se = 0.32, ssGBLUP average se = 

0.28, t24 = 5.30, p < 0.001), suggesting more accurate measurements with this model. The correlation 
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estimates that had the highest ABLUP standard errors more strongly improved in accuracy than those 

that had low errors of estimation (Figure 7.1, Table 7.3).  

 

The genetic correlations between the sugars – glucose [77] and fructose [76] as well as the fatty acids -

linoleic acid [83] and linolenic acid [84] with bark stripping that were significant with the trivariate ABLUP 

model were still significant with the trivariate ssGBLUP, although the magnitude of the genetic 

correlations slightly reduced (Table 7.3). The genetic correlations of compounds with height that were 

significant with the ABLUP models were non- significant with the ssGBLUP except for the genetic 

correlation between height and linoleic acid that retained its significance (rg = 0.62 ± 0.24, p < 0.05)  
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Table 7.3: Additive genetic correlation of different bark chemical compounds with bark stripping and height estimated using the pedigree-based method (ABLUP) and single 

step GBLUP (ssGBLUP) trivariate models. The multivariate models always included the spatially adjusted bark-stripping scores and height and one of the listed bark chemical 

compounds as response variables. The significance that the additive genetic correlation (rg) is different from zero was tested using a two-tailed likelihood ratio test (Chapter 6) 

and are presented here for comparative purposes. * = p <0.05, ** = p <0.01 and *** p <0.001, se = standard error of the genetic correlation. The GBLUP and GRR models are 

not included here since they were univariate. Significance tests were done for all ABLUP models and for correlations that were significant, likelihood ratio tests were further 

done on the ssGBLUP estimates. Each chemical compound is given a unique identifier (Id) based on Supplementary Table 10 (end of Chapter 9), for ease of location in the 

tables 

 

  Genetic correlation with bark 

stripping (rg) (se) 

 Genetic correlation with height (rg) 

(se) 

 

 Compound  trivariate 
ABLUP 

 trivariate 
ssGBLUP 

 trivariate 
ABLUP 

 trivariate 
ssGBLUP  

 

 Height 0.42 (0.29)  0.43 (0.27)      

1 α-pinene  -0.20 (0.29)  -0.01 (0.28)  0.02 (0.33)  0.15 (0.30)  

4 β-pinene  -0.01 (0.28)  0.14 (0.25)  -0.04 (0.32)  0.15 (0.26)  

5 camphene -0.12 (0.28)  0.01 (0.26)  -0.00 (0.33)  0.07 (0.27)  

8 citronellal -0.14 (0.32)  -0.17 (0.27)  -0.32 (0.36)  -0.16 (0.29)  

20 trans-farnesol 0.08 (0.35)  0.25 (0.26)  -0.37 (0.39)  0.01 (0.29)  

22 agathadiol -0.03 (0.31)  0.14 (0.27)  0.00 (0.36)  0.18 (0.29)  

23 agatholal -0.12 (0.29)  0.07 (0.27)  0.18 (0.33)  0.24 (0.29)  

24 copalol -0.09 (0.28)  0.05 (0.26)  -0.20 (0.32)  -0.02 (0.28)  

25 levopimaral 0.08 (0.27)  0.16 (0.25)  0.04 (0.31)  0.11 (0.27)  

29 dehydroabietic acid -0.27 (0.37)  0.10 (0.33)  0.39 (0.39)  0.43 (0.32)  
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33 unknown m/z 109 A 0.07 (0.27)  0.14 (0.24)  -0.11 (0.31)  0.16 (0.25)  

45 unknown m/z 316 -0.29 (0.29)  -0.15 (0.28)  -0.05 (0.34)  0.16 (0.29)  

46 unknown C20H30O3  0.15 (0.30)  0.33 (0.25)  -0.03 (0.35)  0.30 (0.27)  

47 unknown C20H32O3 A  -0.04 (0.30)  0.13 (0.26)  -0.13 (0.34)  0.05 (0.28)  

50 unknown C20H30O4 0.05 (0.28)  0.18 (0.26)  0.07 (0.32)  0.23 (0.27)  

51 unknown C20H30O5 0.07 (0.28)  0.17 (0.26)  0.13 (0.32)  0.29 (0.27)  

52 unknown C20H30O6 A 0.18 (0.27)  0.25 (0.24)  0.01 (0.31)  0.20 (0.26)  

54 unknown C20H30O6 C 0.32 (0.25)  0.37 (0.23)  0.16 (0.30)  0.29 (0.25)  

76 fructose 0.55 (0.23) * 0.51 (0.22) * 0.06 (0.31)  0.08 (0.27)  

77 glucose 0.80 (0.20) ** 0.71 (0.19) ** 0.62 (0.24) ** 0.52 (0.23)  

78 inositol -0.14 (0.33)  -0.04 (0.29)  -0.01 (0.38)  -0.01 (0.32)  

83 linoleic acid 0.68 (0.16) ** 0.65 (0.19) ** 0.69 (0.22) * 0.61 (0.24) * 

84 linolenic acid 0.65 (0.19) ** 0.62 (0.20) * 0.50 (0.26) ** 0.47 (0.25)  

90 unknown m/z 274 0.03 (0.28)  0.16 (0.26)  0.05 (0.32)  0.23 (0.28)  

94 unknown m/z 406 A 0.77 (0.56)  0.25 (0.36)  0.77 (0.66)  0.46 (0.39)  
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Figure 7.1: Above: The relationship between ABLUP heritability and improvement in heritability with the 

ssGBLUP and GBLUP models for the 25 chemical compounds in Table 7.2. Univariate GBLUP was compared to 

univariate ABLUP and the trivariate ssGBLUP was compared to trivariate ABLUP Below: Change in standard 

error (se) of the genetic correlations (rg) of the chemical compounds with bark stripping or height. The change 

was calculated as the difference between the standard error associated with ABLUP estimates and that of 

ssGBLUP (se ABLUP rg - se ssGBLUP rg) estimate for both bark stripping and height.



194 
 

7.3.5 Predictive ability  

The predictive ability (PA) for the height and the chemical phenotypes varied between -0.13 to 0.88 

depending on the trait and statistical model (Table 7.2). The PA for bark stripping was not estimated for 

the GBLUP and GRR since none of the bark stripped trees were genotyped. Overall, genomic models 

did not improve the PA for bark stripping, height and the chemical compounds. Comparing univariate 

models, the univariate ABLUP (average PA = 0.70) outperformed the GBLUP (average PA =0.25) and 

the GRR (average PA = 0.26). The PA for the univariate GBLUP and GRR were comparable (t24 = -1.2, 

p = 0.23). However, a few compounds, for example the sugar - glucose [77], a fatty acid - linolenic acid 

[84], and a diterpenoid[29] were better predicted by GRR compared to GBLUP suggesting that these 

compounds may be controlled by genes with major effects. Similarly, no relative advantage was 

detected for the trivariate ssGBLUP (average PA =0.65) over the trivariate ABLUP (average PA =0.69) 

models (t24 = 0.12, p = 0.12). The PA for height reduced with trivariate ssGBLUP (PA = 0.10) compared 

to trivariate ABLUP (PA =0.36).  

 

Within genomic models, PA for trivariate ssGBLUP was higher than that of the univariate GBLUP and 

GRR, indicating the advantage of the additional non-phenotyped trees. However, the PA for trivariate 

and univariate ABLUP did not differ (t24 = -0.97, p = 0.34). The linear relationship between heritability 

and predictive ability (PA) for the 25 chemical compounds, was high indicating that there was a 

tendency for compounds with higher heritability estimates to reach higher predictive ability for all 

models (Figure 7.2).  

 

In trivariate models, higher PA is expected in the presence of high genetic correlation between the 

traits. However, there was no linear relationship between the predictability of the chemical traits and the 

genetic correlation of the chemical traits with bark stripping or height (Supplementary Figure 7.2). 

Instead, the absolute standard error of the correlations showed a negative linear relationship with 

predictive ability, suggesting that the precision of the estimate impacts PA rather than the magnitude. 

The genetic correlations that were associated with low ABLUP error of estimating the genetic 

correlation were better predicted that those that had higher genetic correlation standard errors (Figure 

7.3).



195 
 

 

Figure 7.2: The coefficient of determination (r2) showing the relationship between ABLUP narrow-sense heritability (h2) and predictive ability of univariate ABLUP, GBLUP and 

GRR as well as trivariate ABLUP and ssGBLUP, models. The heritability estimates were derived from univariate models. 
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To detect the effect of the distribution of phenotypic data on predictive ability (PA), there was a 1 

tendency for positively skewed chemical compounds to have higher heritability estimates for all models 2 

(Figure 7.5) suggesting that a higher amount of compound may be better predicted. Similarly, there was 3 

a tendency for compounds with expected kurtosis coefficient (~3.0) to have higher heritability estimates 4 

for all the models (Figure 7.5) indicating that the presence of outliers in the data affects the prediction of 5 

breeding values more than the symmetry for these models. 6 

 

 

 

Figure 7.3: The coefficient of determination (r2) between predictive ability of the ABLUP and ssGBLUP models 

and the standard error (SE) of the trivariate ABLUP genetic correlation of chemical compounds with bark 

stripping (above) and height (below). The trivariate models included spatially adjusted bark stripping, height and 

a chemical compound  
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Figure 7.4: The relationship between predictive ability (PA) of the ABLUP, GBLUP, ssGBLUP and GRR and data distribution coefficient; skewness (a measure of symmetry) 

and kurtosis (a measurement of tails). Data with normal distribution has a skewness of zero and a kurtosis of 3.0, and therefore theoretically highest PA is expected at these 

points. 
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7.4  Discussion 

In this study, we aimed to compare genomic models and conventional pedigree-based models for 

resistance and chemical traits and also understand how statistical distribution of data impacts the 

prediction models. Results showed: (i) significant improvement in heritability estimates for traits with 

genomic models; (ii) improvement in the accuracy of genetic correlation estimates with genomic 

models; (iii) comparable ability of the pedigree (ABLUP) and genomic based models to predict future 

phenotypes (i.e. predictive ability); and (iv) minimal impact of statistical distribution of the data on the 

genetic estimates.  

 

Various studies have provided evidence that genomic models, using realized relationships based on 

marker information lead to a substantial increase in the prediction accuracies for various traits in trees 

compared to those using relationships based on pedigree information (Klápště et al. 2020a; Klápště et 

al. 2014; Ratcliffe et al. 2017), which is related to their ability to accurately trace pedigree relatedness 

and the ability to track Mendelian sampling variance (Klápště et al. 2018). In forest tree breeding, the 

single-step GBLUP (ssGBLUP) that combines phenotype, pedigree and genomic information through a 

single-step evaluation approach has been highlighted as the preferred strategy for evaluation of 

breeding values since it has not been practical to genotype all trees in the large progeny tests used in 

most forest tree breeding programmes (Ratcliffe et al. 2017). In this study, while direct evaluations for 

the impact of genomic models were made for chemical compounds and height, it was not possible to 

directly evaluate the impact of genomic models on bark stripping estimates since the genotyped trees 

were not scored for bark stripping. Therefore, the improvement detected in the genetic estimates of 

bark stripping indirectly links to the changes in the accuracy of estimating the genetic estimates of the 

chemical compound and height that were simultaneously analysed as response variables in trivariate 

models. A direct assessment of bark stripped, genotyped trees will give a better outlook of the impact of 

genomic models to the genetic parameters of bark stripping. While there are few comparative studies 

relating to herbivory in conifers, one recent study assessed the genomic prediction of resistance 

against weevil herbivory in spruce (Lenz et al. 2020). Lenz et al. (2020) indicated a two-fold reduction in 

the GBLUP heritability compared to pedigree-based prediction for the number of weevil attacks, and 

also the wood property traits assessed in the study, which could be related to the fewer SNPs (Chen et 

al. 2018) that was 4 - fold less than what has been used in this current study. Chen et al. (2018) also 

noted that improvement in genetic estimates increases with the number of families especially in full -sib 

populations, so possibly the 40 families (35 parents) used by Lenz et al. (2020) were not sufficient to 

capture the additive genetic variation, although the trees per family were greater compared to this 
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current study that used 75 families with utmost 6 trees per family. This may also imply that the number 

of families may be more important than the number of trees selected per family. In Norway spruce for 

example, PA for several wood traits stabilized as the number of trees within-family reached six (Chen et 

al. 2018). Therefore, the optimal parameters to realise the benefits of genomic selection for herbivory 

may need more research. However, more evidence of the superior performance of genomic models in 

resistance studies is available from pathosystems in Pinus radiata (Klápště et al. 2020b) and other 

conifers (Carpenter et al. 2018; González-Camacho et al. 2018; Resende et al. 2012a).  

 

Comparing heritability estimates for ABLUP and genomic models showed that the application of 

marker-based models significantly improved the narrow-sense heritability estimates of individual 

chemical compounds compared to the pedigree-based (ABLUP) method. The chemical traits that did 

not exhibit significant additive genetic variation with the univariate ABLUP model did with the GBLUP 

model. The GBLUP performed better than the ABLUP, indicating that markers provided additional 

information. The ssGBLUP, compared to the trivariate ABLUP further improved the estimates 

highlighting the importance of additional individuals. However, for some traits like linoleic acid [83] , no 

difference between GBLUP and HBLUP were detected, indicating that in this case the A-matrix did not 

provide additional genetic information, implying that the benefit of additional non-phenotyped data in the 

ssGBLUP is trait specific. Overall, the ssGBLUP and GBLUP should in theory perform well for traits that 

are under quantitative genetic control. Indeed there is evidence for their superior performance for 

different quantitative traits in conifers such as growth and wood traits (Cappa et al. 2019; Gamal El-

Dien et al. 2018; Ratcliffe et al. 2017). The genetic control and genomic selection of most chemical 

compounds have been less studied, and the genetic architecture is less known. However, based on our 

results the high predictive ability estimates from the trivariate ssGBLUP model, equivalent to the 

trivariate ABLUP suggest a strong quantitative genetic control of the amounts of these compound 

groups. All terpenoids for example, are formed directly by one group of terpene synthase genes that 

can be modified by various enzyme classes, such as the cytochrome P450 hydroxylases (Bohlmann 

and Croteau 1999; Celedon and Bohlmann 2019). However, the extent to which the terpene synthases 

are modified by other genes is not well studied. Results however, indicated that there was a tendency 

for some compounds such as the fatty acid compound; linolenic acid and the sugar; glucose to be 

controlled by genes with major effects. Comparing GBLUP and GRR, a few individual compounds these 

compounds tended to be better predicted by the GRR that assumed heterogeneity of marker effects 

suggesting that there is a tendency for such compounds to be influenced by genes with major effects. 

In other plants, the amount of some sugars, for example, have been shown to be multigenic and 

controlled by many quantitative trait loci (Calenge et al. 2006). Although there do not appear to be 
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many comparable studies in plants, enhanced performance of non-BLUP genomic methods has been 

observed in livestock for fatty acids that are controlled by a few dominant genes (Verbyla et al. 2009). 

In practice, traits controlled by major genes can easily be incorporated in breeding programmes (Pérez-

de-Castro et al. 2012).  

 

Similar to the chemical traits, the heritability for height in this study improved with genomic models 

consistent with the observations in Norway spruce populations (Chen et al. 2018). The results of this 

study however contrasted with observations in white spruce and Norway spruce (Gamal El-Dien et al. 

2018; Lenz et al. 2020), where multi-fold reduction in heritability values for height were documented for 

GBLUP vs ABLUP models. Likewise, in Douglas-fir, Thistlethwaite et al. (2019) did not show any 

relative improvement in heritability estimates in height with genomic models.  

 

Multi-trait models mostly gave higher heritability estimates compared to univariate for most of the 

compounds, which is the norm for most traits (Karaman et al. 2020; Lenz et al. 2020). Multi-trait 

selection models can improve the accuracy of predictions by taking advantage of the genetic 

correlations between traits (Calus & Veerkamp, 2011). In our case, the benefits of multi‐trait models 

were realised since chemical traits had fewer phenotypic records and could be better predicted 

genetically when coupled with other traits that were extensively assessed (Covarrubias-Pazaran et al. 

2018). The increase in heritability estimates with multi-trait over single-trait models was especially high 

for traits that had very low heritability values in the single trait models. The magnitude of the genetic 

correlation from ABLUP relative to ssGBLUP however, did not change, consistent with Lenz et al. 

(2020) for the wood and herbivory traits in spruce. However, evidence for better performance of the 

ssGBLUP was derived from the reduction in the standard errors of the estimates.  

 

The predictive ability (PA) (i.e. the ability to predict future phenotypes) did not vary markedly between 

the trivariate ABLUP and the ssGBLUP. This finding is consistent with some studies in conifers 

(Beaulieu et al. 2014; Chen et al. 2018) but not others where, potential improvement of PA with 

genomic models was shown (Gamal El-Dien et al. 2016; Goddard 2009; Hayes et al. 2009; Iwata et al. 

2011; Klápště et al. 2018; Stejskal et al. 2018; Suontama et al. 2018). The lack of improvement in PA 

for the genomic vs ABLUP in this study could be due to various reasons; Firstly, the genotyped 

reference was not large enough to improve the genomic predictive ability, although it improved the 

heritability estimates for the current study population. Few comparative studies exist in conifers, but in 

animal studies for example, PA drastically reduced for ssGBLUP compared with ABLUP when the 

genotyped reference population was small (Lourenco et al. 2015; Song et al. 2019). In pigs, the change 
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in PA was insignificant for ssGBLUP compared with ABLUP when the genotyped reference population 

size was <500 (Song et al. 2019). Secondly, the parameters selected for the construction of the H-

matrix; especially the w (the proportion of the genetic variation not captured by the markers) as well as 

α and β -the scaling factors have a significant impact on the predictive ability of the ssGBLUP. In this 

study, a low w was selected, which signified that most of the additive genetic variance was captured by 

the markers, which may not have been the case especially given that the genotyped population was 

small. The effect of the scaling factor, w, has been assessed in various studies and a range of optimum 

w for different traits, up to 0.95 have established (Oliveira et al. 2019; Song et al. 2019). Even then, 

these studies have indicated that w, α and β can be population and trait specific such that using the 

same parameters for different traits may lead to inaccuracy of prediction. Therefore, determining the 

optimal parameters for these traits is worth investigating. Thirdly, since the ABLUP and ssGBLUP were 

trivariate models, studies have also indicated that predictive ability in multi-trait models is influenced by 

the strength of the genetic correlation between the traits (Song et al. 2019), where a positive correlation 

is predicted between the magnitude of genetic correlation and predictive ability. In this study, the 

ssGBLUP genetic correlation did not improve relative to ABLUP, and consequently the PA. Even then, 

the study showed no linear relationship between predictive ability and genetic correlation that could be 

related to the change in direction that was observed in some correlations. Instead, predictive ability was 

strongly negatively correlated with the standard error of the genetic correlation estimates. In addition, 

for some compounds, for example glucose that seemed to have SNPs with major effects contributing to 

the genetic estimations, PA could be improved by utilizing the subset of markers with the largest 

positive effects rather than all markers (Chen et al. 2018). Finally, the spread of the data around the 

mean was of concern in this study since chemical data is often skewed and this distribution has a 

potential influence on the estimation of the genetic parameters (Kärkkäinen and Sillanpää 2012; 

Muranty et al. 2015). However, skewness (a measure of symmetry) and kurtosis (a measurement about 

the extremities, i.e. tails, of the distribution of data, that provides an indication of the presence of 

outliers) had negligible impact on the predictive ability of the pedigree- based or the genomic-based 

models. The data used in the study did not deviate strongly from normality for most compounds, where 

data with substantial departure from normality has as an absolute skew value > 2 and kurtosis of > 7 

(Kim 2013). Overall, minimal PA was low for traits with low ABLUP consistent with other studies (Arojju 

et al. 2019; Lenz et al. 2020).  

 

Comparing the univariate and trivariate models, the PA for trivariate ssGBLUP was higher than that of 

the univariate GBLUP and GRR. It has been indicated that prediction accuracy for a low-heritability trait 

could be significantly improved by multivariate genomic selection when a correlated high-heritability trait 
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was available (Jia and Jannink 2012). In contrast, where correlations are low or non-significant, there 

will be erroneous information sharing across traits leading to poor performance of multivariate models 

(Jia and Jannink 2012). In this study because, most of the correlations were not significant, and that PA 

for univariate ABLUP did not differ from the trivariate ABLUP, the better PA performance of the 

trivariate ssGBLUP compared to the univariate GBLUP and GRR could be due to a relatively small 

sample size used in these models. The heritability for height was lower than what has been estimated 

in other P. radiata populations using both ABLUP and genomic models (Li et al. 2018), which could be 

related to the age of the trees. Weng et al. (2007) for example, showed significant improvement in the 

heritability of P. banksiana with age. In Chapter 2, the heritability estimates of height in the older trials 

was also higher than that of the younger trial assessed in this study.  

 

7.5 Conclusion 

The results indicate improvement in the genomic models to predict heritability of primary and secondary 

chemical traits compared to the traditional ABLUP. Chemical traits that did not show evidence of 

additive genetic variation with the ABLUP model were significant with genomic models. Improvement in 

accuracy of genetic correlations was detected. Since genomic models, are important for traits with low 

heritability, this should be a motivation for its employment in forestry where most traits are complex. For 

predicting future phenotypes, no relative advantage was detected for genomic over pedigree prediction 

for bark stripping, while some improvements for predicting specific terpenes, sugars and fatty acids was 

observed.  
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Supplementary Figure 7.1: Set up of the genetic trial and the data collected from the different sections. 

However, the 6 protected replicates were randomly spread in the entire field. Height was the only variable 

assessed in all the 26 replicates, and in the trivariate models it was the bridging trait between the 20 unprotected 

and the 6 protected replicates.  
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Supplementary Figure 7.2: The coefficient of determination (r2) between the ABLUP genetic correlation of 

chemical compounds with bark stripping (above) and height (below). The trivariate models included spatially 

adjusted bark stripping, height and a chemical compound.  
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Chapter 8: Constitutive and induced transcriptome analysis of the needles and 

bark of Pinus radiata  

 

8.0 Abstract 

Plants are attacked by diverse insect and mammalian herbivores and respond with different physical 

and chemical defences. The changes in the phenotype usually underly transcriptional changes. 

Simulated herbivory has been used to study the transcriptional and other early regulation events of 

these plant responses. In this study, constitutive and induced transcriptional responses to artificial bark 

stripping were compared in the needles and the bark of Pinus radiata to the responses from application 

of the plant stressor, methyl jasmonate. The time progression of the responses was assessed over a 4-

week period. The constitutive transcriptome was dominated by genes related to defence and 

photosynthesis and did not differ between the needles and the bark. Following bark stripping and 

methyl jasmonate treatments, there was an up-regulation and down-regulation of genes associated with 

primary and secondary metabolism both in the needles and the bark. The genes related to primary 

metabolism were more responsive compared to those associated with secondary metabolism. The up-

regulation of genes related to sugar break-down and the repression of photosynthesis related genes 

was consistent with the strong down-regulation of sugars that was observed in the previous chapter 

(Chapter 3). While the regulation of genes involved in signalling, photosynthesis, carbohydrate and lipid 

metabolism, defence and water stress was mimicked well by the treatments, non-overlapping 

transcripts were detected between the needles and the bark, treatments and different times of 

assessment. Methyl jasmonate caused more responses in the bark than bark stripping although the 

peak of expression following both treatments was detected 7 days post treatment application. The 

effects of bark stripping were only localised, and no systemic changes were detected in the needles. 

Whether the gene expression changes are heritable and how they differ between resistant and 

susceptible families identified in previous work (Chapter 4) needs further investigation. 
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8.1 Introduction 

Plants have evolved a variety of constitutive and inducible defences to resist and tolerate herbivory. An 

assessment of the genetic mechanisms that influence these defences will enhance our understanding 

of their evolution (Anderson and Mitchell-Olds 2011). Although studies suggest that structural changes 

in DNA are the major source of genetic variation (Mitchell-Olds et al. 2007), the phenotypic outcomes of 

several traits have also been linked to gene expression (D'Agui et al. 2016; Eldar et al. 2009; Guo et al. 

2016; Li et al. 2019; Raj et al. 2010) but the genes and genetic pathways that underlie most phenotypes 

are still unknown (Mitchell-Olds et al. 2007). To date, most gene expression studies have focussed on 

identifying transcripts or genes showing differential expression, or pathways associated with a 

phenotype (case/control) or condition (treated/untreated). In conifers for example, transcript abundance 

has been examined with respect to biotic and abiotic environmental factors such as herbivory (Lamara 

et al. 2018; Verne et al. 2011), pathogens (Kovalchuk et al. 2019), artificial wounding (Ralph et al. 

2006), drought (Behringer et al. 2015), light intensity (Ranade et al. 2019), seasonal changes (Cronn et 

al. 2017), chemical stressors like methyl jasmonate (Liu et al. 2017a), as well as associated phenotypic 

traits such as resistance and chemical composition (Lamara et al. 2018; Verne et al. 2011).   

 

In conifer-herbivory studies, most gene expression studies have focused on understanding induced 

defence responses, with a premise that these may be more important than constitutive defences as 

they are cost effective and expressed only when required (Kant et al. 2015; Moreira et al. 2014). Global 

transcriptome responses have been studied in the needles and the bark, monitoring the expression of a 

wide range of genes related to the biosynthesis of primary and secondary compounds plus structural 

components (Du et al. 2018; Kānberga-Siliņa et al. 2017; Kolosova 2010; Litvak and Monson 1998; 

Miller et al. 2005; Ralph et al. 2006; Zulak and Bohlmann 2010). Most of these genes are expressed at 

basal levels in plants but some are only expressed in the presence of an appropriate stimulus. Some of 

the genes significantly respond to herbivory cues, by increasing or reducing their expression locally at 

the site of the perceived effect or systemically throughout the plant (Byun-McKay et al. 2006; Keeling 

and Bohlmann 2006; Miller et al. 2005). Studies also show a high overlap in the genes that are 

differentially expressed when plants are subjected to different biotic and abiotic stresses (Kovalchuk et 

al. 2015; Reymond et al. 2004). However, the genes that show differential expression have been 

indicated to differ within and between target plant species (Kolosova 2010; Verne et al. 2011), between 

plant tissues (Martin et al. 2002; Miller et al. 2005), as well as biotic agents (Korth 2003) and applied 

treatments (Men et al. 2013). Intra-specific differences in the timing of transcript expression have also 

been observed, where plants may respond to injury within hours or days, with short or long lasting 
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effects (Litvak and Monson 1998; Liu et al. 2017a; Martin et al. 2002; Miller et al. 2005). Plant 

responses to different classes of herbivores may differ due to differences in herbivore oral secretions or 

mode of feeding and the amount of plant tissue damage (Agrawal 2000; Korth 2003; Ohse et al. 2017). 

While available conifer studies have documented changes in gene expression in response to insect 

herbivory (Kovalchuk et al. 2015; Ralph et al. 2006), there are no studies from the perspective of  

mammalian herbivory, and none that link changes in gene expression to changing chemistry. 

Mammalian bark herbivory is fundamentally different from insect herbivory in the mode of feeding 

(Chapter 2 ; Kant et al. 2015) and possibly the oral secretions. This particularly applies to mammalian 

bark stripping, which is of increasing concern to managers of conifer forests world-wide including Pinus 

radiata plantations in Australia (ABARES 2018; Cukor et al. 2019; Nagaike). 

 

Pinus radiata is native to California (Eldridge 1979) but is now a major plantation species in Australia, 

where native marsupials (wallabies and kangaroos) are currently the primary cause of bark stripping. 

Native mammals strip the bark of the trees during the early stages of growth (Miller et al. 2014; Page et 

al. 2013; Smith et al. 2020), reducing tree growth rate (Chapters 2 and 4). Chemical profiling in P. 

radiata shows that needles and bark respond differentially to bark stripping and other forms of real and 

simulated herbivory, by mostly increasing levels of secondary compounds, especially terpenes and 

phenolics (Lundborg et al. 2019; Moreira et al. 2012a), and reducing levels of sugars and fatty acids 

(Chapters 3, 4 and 6). This suggests changes in the expression of underlying genes that subsequently 

transforms the chemical phenotype. The differences in timing of the induced changes in terpenes, 

phenolics and sugars (Chapter 3 ; Reglinski et al. 2017) suggest corresponding differences in the 

expression of the underlying genes. The molecular basis of these induced changes have not been 

characterised, although various studies have documented P. radiata transcriptomes with respect to 

changes in ontogeny and during wood formation (Alvarez et al. 2011; Li et al. 2013; Telfer et al. 2018).  

 

The present study aimed to quantify and compare the transcriptome changes that occur in response to 

artificial bark stripping of Pinus radiata and whole plant stress induced by application of the chemical 

stressor, methyl jasmonate. The longer-term goal is to identify genes that mediate the previously 

observed induced chemical responses to simulated bark stripping in P. radiata. The specific aims of the 

study were to: 1) characterise and compare the constitutive transcriptome of P. radiata needles and 

bark; and 2) identify genes which are differentially expressed following artificial bark stripping (aimed at 

mimicking mammalian bark stripping) and whole plant application of methyl jasmonate and compare the 

induced responses. The results are discussed in view of the holistic chemistry that has been 

characterised on the same individuals with the same treatments (Chapter 3). 
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8.2 Materials and Methods 

8.2.1 Experimental design 

The experiment and the genetic material used for this transcriptomic study are reported in Chapter 3. In 

2015, 6-month-old seedlings from 18 full-sib families of Pinus radiata (D. Don) originating from the 

Radiata Pine Breeding Company deployment population, were obtained from a commercial nursery. 

Seedlings were transferred into 145 mm x 220 mm pots containing 4L of basic potting mix (composted 

pine bark 80% by volume, coarse sand 20%, lime 3 kg/m3 and dolomite 3 kg/m3) and raised outside in 

a fenced area (to protect against animal damage) at the University of Tasmania, Hobart. At 2 years of 

age, methyl jasmonate was applied to seedlings of 6 families, artificial bark stripping treatments were 

applied to another 6 families, and the remaining 6 families were kept as controls (Chapter 3; Figure 

8.1). Methyl jasmonate (MJ) was applied in a 25 mM solution by spraying the whole plant with a fine 

mist from a hand sprayer until ‘just before run-off’. The treated seedlings were sprayed in a well-

ventilated area away from untreated seedlings to avoid cross contamination (Moreira et al. 2013a). For 

bark stripping (strip),18 plants were artificially stripped by removing a 30 cm vertical strip, beginning 2 

cm from the ground and covering 50% of the stem circumference, which is the average upper threshold 

of browsing observed in natural field conditions for families (Chapter 4). The treatment groups (control, 

strip and MJ) were replicated 3 times and arranged in a randomized block design of 3 blocks in a shade 

house. Four seedlings of each family were grown in a line plot and one was chosen at random for 

destructive harvesting at each time. The treatment plots were separated within each block to minimise 

any interference from treatments. 

 

Figure 8.1: The treatments, sample size and pairwise comparisons that were made for each time and for the two 

treatments - bark stripping (strip) and methyl jasmonate (MJ). The seedlings of each family were grown in a line 

plot and one was chosen at random for destructive harvesting at each time (T0 to T3). At T0, the sampled 

seedlings were destructively harvested just before treatment applications. At 7 (T1), 14 (T2) and 21 (T3) days 

after treatment, one seedling from each family and each treatment was destructively harvested (n=3 blocks x 3 

treatments x 2 families = 18).  
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8.2.2 Sample processing  

One seedling from each family was sampled weekly from T0-T3 (Figure 1). T0 represents the time 

immediately before treatment applications. T1, T2 and T3 represents respective sampling times at 7, 14 

and 21 days after treatment application. Seedlings were destructively sampled at each time and 

randomly selected from each family. Each treatment was equally represented by a random seedling 

from a total of 6 families at each sampling time. In total 72 needle and 72 bark samples were collected 

(3 treatments x 3 replicates x 2 families x 4 sample times = 72). Up to 20 young needles were randomly 

collected per seedling from different parts of the crown. The bark was sampled from different points of 

the stem carefully avoiding the wood as presented in Chapter 3. Individual samples were kept separate 

providing 144 samples for sequencing (2 plant parts x 3 treatments x 6 families x 4 sample times). The 

needles and bark samples were immediately frozen in liquid nitrogen and were stored at −80 °C until 

RNA extraction. The 6 families sampled from each treatment at each time point were treated as 

biological replicates. No technical replicates were included. This sampling occurred at the same time 

when the tissue for the chemistry assays reported in Chapter 3 was sampled.  

 

8.2.3 RNA extraction and sequencing  

RNA from all the 144 bark and needle samples was extracted using the Spectrum™ Plant Total RNA kit 

(Sigma Aldrich, lot # SLBW2113). The RNA extraction was random with respect to part, sampling time, 

treatment, family and shade house replicate. The quality and quantity of the RNA extracts were 

assessed with an Agilent 5200 Fragment Analyzer (Palo Alto, California, USA). One sample had poor 

quality RNA and was excluded from further processing. Using the high-quality RNA samples, 143 

separate libraries were prepared with a 6-bp nucleotide bar-coding tag for each library. To construct the 

library, approximately 1 μg of total RNA was used following the MGIEasy RNA Directional Library Prep 

Kit (MGI). Paired-end sequencing was performed using the Beijing Genomics Institute (BGI) MGISEQ-

2000 sequencer according to the manufacturer’s instructions, yielding 100-bp paired-end reads and a 

total of 20m reads per sample. Tagged cDNA libraries were sequenced in separate lanes. The library 

for each lane was selected at random. The quality of RNAseq sequences was assessed using FastQC 

version 0.11.8 (Andrews 2018). Quality trimming and filtering of data was performed using Trimmomatic 

v 0.39 (Bolger et al. 2014). On average, 99.9% of the sequences were retained at phred33 (Ewing and 

Green 1998). A de novo assembly of the pooled transcriptome was attempted using TRINITY v2.9.0 

(Grabherr et al. 2011) but due to the excessive computation requirements, could not be completed with 

the available resources in the required timeframe. Accordingly, the filtered reads were aligned to the 

Pinus radiata reference transcriptome that is harboured at the SCION Research Institute in New 

Zealand (Telfer et al. 2018) using SALMON v0.14.1(Patro et al. 2017). This reference transcriptome 
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was assembled from a range of Pinus radiata genotypes and tissue types that were collected at 

different developmental and temporal stages. Most of the samples were from healthy seedlings under 

normal growth conditions but also included some pathogen infected seedlings (Telfer et al. 2018). The 

reference transcriptome has a total of 279,510 unique transcripts.  

 

8.2.4 Differential transcripts expression analysis 

Statistical analysis of differential expression was performed using edgeR v3.24.3 (Robinson et al. 2010) 

package in R (v3.6.0) (R Core Team 2018). Transcripts were first filtered retaining only transcripts with 

a minimum expression fold change of 2 and with a minimum of 100 copies of a single transcript in at 

least two groups. To adjust for library sizes and skewed expression of transcripts, the estimated 

abundance values were normalized using the trimmed mean of M-values normalization method 

included in edgeR. To select the cut-off false discovery rate (FDR) for the different groups being 

compared, transcript expression was initially compared between the samples collected from the control 

plants (n=6), MJ-allocated (n=6) or strip-allocated groups (n=6) at T0 (before treatment) to check the 

inherent differences between sample groups. The p-values at which no differential expression was 

detected between these groups was set as the FDR for downstream pairwise comparisons. 

Respectively, the p-value for detecting differentially expressed transcripts (DET) in the treated needles 

following both MJ and bark stripping was set at 1.0 x10-11. A p-value of 1.0 x 10-18 was set to detect 

DET in MJ treated bark and 1.0 x 10-10 to detect expression in the bark stripped samples. For each 

plant part, comparisons were thereafter made between the control (n=6) and methyl jasmonate (MJ, 

n=6) and the control (n=6) and bark stripping (strip, n=6) treatments at each sampling time (T1, T2, T3) 

(Figure 8.1). Twelve pairwise comparisons were performed. Venn diagrams were used to find the 

transcripts that were identified as significantly differentially expressed across different comparisons and 

were generated using bioinformatics.psb.ugent.be/webtools/Venn/.  

 

Unsupervised cluster analysis was performed to detect dominant, relative expression patterns across 

the needles and the bark and the treatments. Following Ralph et al. (2006), a subset of 500 transcripts 

with the highest variability and highest expression across the 143 libraries were selected in edgeR for 

this analysis. Clustering and heat maps were generated using heatmap.2 function from the gplots 

package in R, with a matrix of Euclidean distances from the log2 counts of normalised transcripts.  

 

8.2.5 Sequence similarity search 

For sequence similarity search and functional analysis of differentially expressed transcripts (DETs) the 

transcripts were blasted against the nucleotide BLAST database using BLASTn 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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(https://blast.ncbi.nlm.nih.gov/Blast.cgi). BLAST analysis revealed that more P. radiata transcripts were 

most similar to those predicted from genome sequences of P. taeda (BLASTn with e- value <0.0001). 

Other species, mostly Pinus sylvestris, P. monticola, Picea stichensis and Pseudotsuga menziesii, 

showed high similarity with the P. radiata transcripts. Annotations of selected transcripts was done by 

comparing P. radiata transcripts to the sequences in the SwissProt annotated genes (Bairoch and 

Apweiler 2000) using cut-off values ≤ 1. To get clear patterns of the responses, only transcripts 

associated with genes of known function were included. However, there were many uncharacterised 

transcripts and proteins of unknown functions. 

 

8.2.6 GO enrichment analysis 

To understand differences in the biological process, cellular component and molecular function 

categories, gene ontology (GO) enrichment analysis was performed on selected transcripts. At T0, 

enrichment of differentially expressed transcripts aimed to understand the constitutive differences of the 

GO processes between the transcriptome of the needles and the bark. In addition, the GO enrichment 

that was performed on selected T1 transcripts aimed to understand differences in the up-regulated and 

down-regulated transcripts as well as differences in the induced transcriptome of the strip and MJ 

treated samples. Due to the limited annotation resources available for conifers, gene family annotations 

were obtained using genomes of 10 species: Arabidopsis thaliana, Citrus sinensis, Cucumis sativus, 

Oryza sativa, Populus trichocarpa, Prunus persica, Saccharomyces cerevisiae, Theobroma cacao, Vitis 

vinifera and Zea mays. Annotations were obtained via protein analysis through evolutionary 

relationships (PANTHER) version 14.1(Mi et al. 2019). GO analysis was done by comparing the GO 

terms enriched in the different conditions (time x treatment x part). 

 

8.3 Results 

8.3.1 The Pinus radiata reference transcriptome and read mapping 

RNA-seq of P. radiata generated a total of 2,860 million 100-bp PE reads with approximately 20 million 

reads from each of the 143 samples. Only 0.8% of the reads were mapped to the reference 

transcriptome but 87.6% of the reference transcriptome was represented among the study transcripts. 

However, after the filtration criteria described above, only 6312 unique transcripts (2.6% of the 

reference transcriptome) were retained as the expression of the other transcripts was too low.  

 

 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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8.3.2 Overall summary of the transcriptome 

To visualise the overall relationships between the transcriptome from the different samples, the 

unsupervised hierarchical clustering of the top 500 variable transcripts in the transcriptome showed that 

the major differences were concerning the plant parts (top x-axis). Among the most variable transcripts 

of the needles and the bark (y-axis), two major clusters of transcripts (1 & 2) categorised based on 

expression patterns by part, time and treatment were identified (Figure 8.2). Within the clusters, we 

noted genes that were: 

(i) up-regulated in the needles relative to the bark and generally non- responsive to treatment;  

(ii) up-regulated in the bark relative to the needles and generally non-responsive to treatment;  

(iii) up-regulated in either the needles or the bark and responsive to treatment;  

(iv) not differentially expressed between the needles and the bark but responded to treatment 
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Figure 8.2: Hierarchical cluster analysis of the top 500 most variable transcripts selected by edgeR in the 

needles (N) and bark (B) treated with methyl jasmonate (MJ) and artificial bark stripping (strip) and control (C), 7 

(T1), 14 (T2) and 21 (T3) days after treatment application. Transcripts (rows) and time/part/treatment categories 

(columns) were clustered using Euclidean distance. The Z-score is calculated by subtracting the score of the 

individual from the mean of the grand mean of all the individuals and then divided by the standard deviation. The 

colours; yellow = mean expression, blue= expression below the mean and red = expression above the mean. 

The categories on the X-axis were reshuffled based on similarity. Clusters 1 and 2 are highlighted as the major 

nodes on the Y-axis. 
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8.3.3 Differences in the constitutive needle and bark transcriptome 

Almost all the 6312 transcripts analysed were detected in both the needles and bark. Five transcripts 

were detected in the needles only and 13 in the bark only, and most of these were uncharacterised 

(Table 8.1). Gene level annotation of the top 10 transcripts expressed in each plant parts are listed in 

Table 8.2. The type 2 light-harvesting chlorophyll a/b-binding polypeptide (TLH) that harvests photons 

that are converted to biochemical energy and biomass through photosynthesis, was the most 

expressed gene in both the needles and the bark and was represented by different copies of transcripts 

(isoforms). The needles also had other photosynthesis-related genes such as ribulose bisphosphate 

carboxylase/oxygenase (RuBisCO) and PSI-D1 precursor (Table 8.2) possibly due to its major role in 

photosynthesis. Genes related to secondary metabolism were also detected among these top 10 

genes, suggesting that constitutive defence is important in P. radiata. These included dehydrin [2], 

metallothionein [3], chalcone synthase [4], defensin [5] and pathogenesis-related proteins [8] and were 

more prominent in the bark than in the needles but their relative expression was not significantly 

different between the needles and the bark. 

 

Approximately 1478 out of the 6312 transcripts (23.4%) were differentially expressed in the needles or 

the bark. Of these, 938 were up-regulated in the bark compared to the needles, while 540 transcripts 

were up-regulated in the needles. The 10 most strongly differentially expressed transcripts in both bark 

and needles are shown in Table 8.3. Besides the general function-genes and those related with 

photosynthesis, there was an upregulation of genes related to terpene [B9] and lipids biosynthesis [B7] in 

the bark and those related to sugars [N4] and phenolics biosynthesis [N1] in the needles. Of note were the 

genes involved in sugar transport in both the needles [N3] and the bark [B2].  
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Table 8.1: Transcripts that were unique to each Pinus radiata plant part in the constitutive transcriptome as assessed at T0 (sampled before treatment). The SCION transcript 

code, predicted gene name and predicted functions of the known genes are indicated 

 

P. radiata transcript 
code 

Gene name Gene function 

   
Transcripts expressed in the needles but not in the bark at T0  
NZPradTrx008090_C01 Unknown  
NZPradTrx102814_C01 Hypothetical protein 0_2136_01  
NZPradTrx114705_C04 PREDICTED: uncharacterized LOC101213828  
NZPradTrx119356_C01 Repetitive proline-rich cell wall protein 2 precursor, putative Key determinant of many cell wall proteins 

https://www.uniprot.org/uniprot/Q40375 
NZPradTrx138443_C01 Unknown  
  
Transcripts expressed in the bark but not in the needles at T0  
NZPradTrx105287_C05 Chloroplast ELIP early light-induced protein Prevents photooxidative stress (Hutin et al. 2003) 
NZPradTrx068786_C02 Unknown  
NZPradTrx110900_C02 Unknown  
NZPradTrx158724_C01 Unknown  
NZPradTrx111161_C02 Embryo-abundant protein May act as a cytoplasm protectant during desiccation. 

https://www.uniprot.org/uniprot/P46520 
NZPradTrx032755_C01 Unknown  
NZPradTrx054373_C01 Unknown  
NZPradTrx151188_C01 Unknown  
NZPradTrx007008_C01 Unknown  
NZPradTrx069030_C01 Unknown  
NZPradTrx081218_C01 Unknown  
NZPradTrx154223_C01 PREDICTED: tetrahydrocannabinolic acid synthase-like Catalyzes the oxidative cyclization of the monoterpene moiety 

in cannabigerolic acid https://www.uniprot.org/uniprot/Q8GTB6 
NZPradTrx189870_C01 Uninformative  

 

https://www.uniprot.org/uniprot/Q40375
https://www.uniprot.org/uniprot/P46520
https://www.uniprot.org/uniprot/Q8GTB6
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Table 8.2: Top most expressed transcripts in the constitutive transcriptome of the bark and the needles as assessed at T0 (sampled before treatment), indicating the SCION 

transcript name, gene name and predicted function. Some transcripts were represented by different copies of the transcripts (isoforms- represented by different transcript 

codes in each row) and the percentages of transcripts that represented by each isoform are indicated. Each isoform has a superscript linking it to its corresponding percentage 

number of transcripts identified. Ba= first isoform identified in the bark for the gene, Na =first isoform one identified in the needles etc.  The transcripts were not differentially 

expressed between the bark and the needles  

 

ID P. radiata code (or isoforms) Gene name predicted gene function percentages of transcripts (out of 6312) 

    Bark Needles 

1 NZPradTrx107583_C02Ba, Na 
NZPradTrx050124_C01Bb, Nb 
NZPradTrx118940_C01Bc, Nc 
NZPradTrx107583_C01Nd 
NZPradTrx107583_C03Ne 
NZPradTrx050061_C01Nf  
 

Light-harvesting 
chlorophyll a/b-binding 
polypeptide (Lhcb2) 
mRNA 

Absorb sunlight and transfer the 
excitation energy to the core complexes 
of PSII in order to drive photosynthetic 
electron transport (Liu et al. 2013b) 

1.46Ba,0.28Bb, 
0.25Bc 

1.99Na, 0.95 Nb, 1.07 Nc, 
0.51 Nd, 0.51 Ne, 0.33 Nf,  

2 NZPradTrx100458_C02 Ba 
NZPradTrx100458_C03 Bb 
 

Dehydrin 7 Involved in dehydration stress (Stival 
Sena et al. 2018) 

1.38 Ba, 0.60 Bb  

3 NZPradTrx112612_C02 Ba, Na 
NZPradTrx085990_C02 Bb 
NZPradTrx094970_C01 Nb 
NZPradTrx094970_C02 Nc 

Metallothionein 3 Play important roles in metal 
homeostasis and protection against 
heavy metal toxicity (Nevrtalova et al. 
2014) 

0.82 Ba,0.29Bb 0.58 Nc,1.75Na, 0.66Nb 

4 NZPradTrx052720_C01 Ba 
NZPradTrx115271_C03 Bb 

NZPradTrx078806_C01 Bc, Na 
NZPradTrx115271_C02 Bd 

NZPradTrx115271_C05 Be 
 

Chalcone synthase Plays crucial roles in phenolic 
biosynthesis (Dixon and Paiva 1995) 

0.70 Ba, 0.37Bb, 
0.35 Bc,0.27 Bd, 
0.26 Be 

0.30 Na 
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5 NZPradTrx050994_C02 Ba 

NZPradTrx050994_C01 Bb 
Defensin Inhibit the growth of a broad range of 

pathogens, including bacteria, fungi and 
viruses (Ermakova et al. 2016a; Picart et 
al. 2012). 

0.61 Ba, 0.53 Bb  

6 NZPradTrx076819_C01 TCTP-like protein Implicated in important cellular 
processes, such as cell growth, cell cycle 
progression, malignant transformation 
and in the protection of cells against 
various stress conditions and apoptosis 
(Bommer and Thiele 2004) 

0.42  

7 NZPradTrx062252_C01 Ba, 

NZPradTrx107621_C01 Bb 
 

Nonspecific lipid transfer 
protein 

Play important roles in resistance to 
biotic and abiotic stress. have the ability 
to bind or transfer various types of 
hydrophobic molecules in vitro, such as 
fatty acids, fatty acyl-CoA, phospholipids, 
glycolipids and cutin monomers (Liu et al. 
2015a) 

0.27 Ba, 0.26 Bb  

8 NZPradTrx116410_C12  
 

Pathogenesis-related 
protein 10 

Show biological activities related to 
disease resistance (Liu and 
Ekramoddoullah 2006) 

0.26  

9 NZPradTrx077717_C01 LP3-1 Implicated in water-stress  
https://www.uniprot.org/uniprot/Q5G154 

0.24  

10 NZPradTrx100333_C02 
 
 

ASR protein Involved in sugar and abscisic acid 
signalling 
(Çakir et al. 2003) 

0.25 0.24 

11 NZPradTrx098632_C01 Translation elongation 
factor-1 alpha 

Catalyses the transfer of aminoacylated-
tRNAs (Sasikumar et al. 2012) 

  

12 NZPradTrx098233_C03 Na 

NZPradTrx064995_C01 Nb 
NZPradTrx064875_C01 Nc 

NZPradTrx098233_C01 Nd 

Ribulose bisphosphate 
carboxylase//oxygenase  

Catalyses carboxylation of RuBP in the 
first step of the Calvin cycle of 
photosynthesis (Tabita 1999) 

 1.57 Na, 0.59 Nb, 0.53 Nc, 
0.36 Nd, 0.30 Ne, 0.22 Nf 

https://www.uniprot.org/uniprot/Q5G154
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NZPradTrx098233_C05 Ne 

NZPradTrx064875_C02 Nf 

13 NZPradTrx098207_C02 Na 
NZPradTrx098207_C01 Nb 
 

Cysteine proteinase 
inhibitor CPI-3 

Involved in plant development and 
defence, especially in the regulation of 
stress responses (Li et al. 2015a) 

 0.77 Na, 0.27 Nb 

14 NZPradTrx105813_C01 PREDICTED: probable 
fructose-bisphosphate 
aldolase 2, chloroplastic-
like 

It plays a key role in glycolysis and 
gluconeogenesis 
https://www.uniprot.org/uniprot/Q944G9 

 0.37 

15 NZPradTrx111299_C01 Na 

NZPradTrx100425_C01 Nb 
 
 

PREDICTED: oxygen-
evolving enhancer 
protein 1, chloroplastic-
like isoform 2 

Stabilizes the manganese cluster which 
is the primary site of water splitting 
https://www.uniprot.org/uniprot/P23321 

 0.35 Na, 0.32 Nb 

16 NZPradTrx065162_C02  
 

Thiazole biosynthetic 
enzyme 

Thiamine synthesis and DNA damage 
tolerance (Liu et al. 2015b) 

 0.34 

17 NZPradTrx184720_C01  
 

PSI-D1 precursor PsaD can form complexes with 
ferredoxin and ferredoxin-oxidoreductase 
in photosystem I (PS I) reaction centre. 
https://www.uniprot.org/uniprot/Q9S7H1 

 0.22 

 
 

  

https://www.uniprot.org/uniprot/Q944G9
https://www.uniprot.org/uniprot/P23321
https://www.uniprot.org/uniprot/Q9S7H1
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Table 8.3: Top 10 differentially expressed genes at T0 (before treatment). These are genes that were differentially expressed in either plant part without treatment  

 

Part  P. radiata code Predicted gene name Predicted gene function 

Bark B1 NZPradTrx054097_C01 Homeobox transcription factor 
KN3 

Central regulators of meristem cell identity (Guillet-Claude 
et al. 2004) 

  B2 NZPradTrx073079_C03 Transporter, putative Sugar transport (Weig et al. 1994) 

  B3 NZPradTrx087709_C01 Homeobox transcription factor 
KN1 

Central regulators of meristem cell identity (Namroud et 
al. 2010) 

  B4 NZPradTrx055579_C01 Mini zinc finger 1 Regulates several development aspects, including 
photomorphogenesis, apical dominance, longevity, flower 
morphology and fertility, as well as root and stem 
elongation (https://www.uniprot.org/uniprot/Q9CA51) 

  B5 NZPradTrx048496_C01 Plastid phosphate translocator Involved in the exchange of metabolites and inorganic 
phosphate between stroma and cytosol (Bockwoldt et al. 
2019) 

  B6 NZPradTrx101882_C01  Auxin-induced protein 5NG4, 
putative 

Transmembrane transporter activity especially during root 
formation (Busov et al. 2004) 

  B7 NZPradTrx103825_C01 
NZPradTrx103825_C04 

 PREDICTED: GDSL 
esterase/lipase At5g03610-like 

Lipid catabolic process 
(https://www.uniprot.org/uniprot/Q9LZS7) 

  B8 NZPradTrx184572_C01  G1-like protein Polymerizes the backbones of non-cellulosic 
polysaccharides (hemicelluloses) of plant cell wall 
https://www.uniprot.org/uniprot/Q570S7 

 B9 NZPradTrx055645_C01 
NZPradTrx096935_C03 

PREDICTED: squalene 
monooxygenase-like 

Converts squalene into oxidosqualene, the precursor of 

all known angiosperm cyclic triterpenoids (Rasbery et al. 

2007) 

 B10 NZPradTrx093053_C01 

 

Ribulose 1,5-bisphosphate 
carboxylase/oxygenase small 
subunit 

Catalyses carboxylation of RuBP in the first step of the 
Calvin cycle of photosynthesis (Tabita 1999) 

 Needles      

https://www.uniprot.org/uniprot/Q9CA51
https://www.uniprot.org/uniprot/Q9LZS7
https://www.uniprot.org/uniprot/Q570S7
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  N1 NZPradTrx115678_C04 
NZPradTrx115678_C05 

Anthocyanidin reductase Involved in the biosynthesis of proanthocyanidins (Zhu et 
al. 2015) 

  N2 NZPradTrx090889_C01 Cytochrome P450 CYPA2 Oxidoreductase activity, acting on paired donors, with 
incorporation or reduction of molecular oxygen   
https://www.uniprot.org/uniprot/A9F9S4 

  N3 NZPradTrx114954_C01 
NZPradTrx086877_C02 
 

Glucosyltransferase Transfer of glucose (Chen et al. 2016) 

  N4 NZPradTrx088783_C01 Glucose-1-phosphate 
adenylyltransferase, putative 

Involved in the pathway starch biosynthesis 
(https://www.uniprot.org/uniprot/Q688T8) 

 N5 NZPradTrx086324_C01 

 

PREDICTED: LOB domain-
containing protein 1-like 

Involved in the repression of the homeobox gene BP 
https://www.uniprot.org/uniprot/Q9FKZ3-1 

 N6 NZPradTrx065580_C01 

 

Catalase crucial antioxidant enzymes that mitigates oxidative stress 
to a considerable extent by destroying cellular hydrogen 
peroxide to produce water and oxygen (Nandi et al. 2019) 

 N7 NZPradTrx049683_C01 

 

Photosystem II core complex 
proteins psbY2C chloroplast 
precursor  

Photosystem II (PSII) is a multi-component pigment-
protein complex that is responsible for water splitting, 
oxygen evolution, and plastoquinone reduction (Lu 2016) 

 N8 NZPradTrx097448_C02 

 

ribonucleoprotein, chloroplast, 
putative 

involved in chloroplast RNA processing (Tillich et al. 
2009) 

 N9 NZPradTrx119685_C01 

 

SOUL heme-binding protein plays an active role in primary plant metabolic pathways 
as well as in stress signalling (Shanmugabalaji et al. 
2020) 

 N10 NZPradTrx184701_C01 

 

chloroplast ribosomal protein S1 involvement in translation initiation via positioning of 
initiation mRNA–protein complexes (mRNPs), and the 
potential involvement of these unique domains in the 
processivity of chloroplast translation (Manuell et al. 2007) 

   

file://///utas.ad.internal/research/SET/PlantSci/EucGen/PERSONAL%20FOLDERS/Judith%20Nantongo/CHAPTER%207_TRANSCRIPTOMICS/old%20Drafts/LATEST%20DRAFT_022020/xidoreductase%20activity,%20acting%20on%20paired%20donors,%20with%20incorporation%20or%20reduction%20of%20molecular%20oxygen
file://///utas.ad.internal/research/SET/PlantSci/EucGen/PERSONAL%20FOLDERS/Judith%20Nantongo/CHAPTER%207_TRANSCRIPTOMICS/old%20Drafts/LATEST%20DRAFT_022020/xidoreductase%20activity,%20acting%20on%20paired%20donors,%20with%20incorporation%20or%20reduction%20of%20molecular%20oxygen
https://www.uniprot.org/uniprot/A9F9S4
https://www.uniprot.org/uniprot/Q688T8
https://www.uniprot.org/uniprot/Q9FKZ3-1
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To assess the overall differences in the needles and the bark based on the top 100 differentially 

expressed transcripts in each plant part, GO annotation of the genes that were up-regulated in the 

needles or bark showed quantitative differences in enrichment of all the molecular but not biological or 

cellular GO categories. In the molecular terms, an overall difference in enrichment was detected in all 

GO-terms with the catalytic activity being more enriched in both the needle and bark transcripts (Figure 

8.3).  

 

Figure 8.3: The genes that were enriched in the different molecular functions in the needles (inner circle) and the 

bark (outer circle). The GO enrichment was based on the top 100 genes that were differentially expressed in 

each plant part.  

 

8.3.4 Gene expression in the needles and the bark after treatment 

After treatment, considering all time points, more transcripts responded to treatment in the needles than 

in the bark and more transcripts were up-regulated than down-regulated (Figure 8.4). Most differential 

expression was detected 7 days (T1) after MJ and strip treatments and decline thereafter, although 

differential expressed transcripts (DETs) were still evident in both treatments 21 days later (Figure 8.4). 

Bark stripping did not cause any systemic response in the needles at any time point, suggesting a 

localised effect. While the main response to MJ treatment was in the needles, DETs in the bark still 

exceeded the needles following bark stripping. Of the transcripts that were differentially expressed 

between the bark and needles at T0, only 20% of those expressed in the bark responded and 1% of 

those expressed on the needles responded following either of the treatments, indicating that the 

transcripts that did not differ between the needles and the bark at T0 showed stronger responses to 

treatment. One uncharacterised transcript (NZPradTrx091980_C05) that was not present in the 

transcriptome of untreated samples was present after treatment. One isoform of ribulose bisphosphate 

carboxylase preprotein (NZPradTrx098233_C06) that regulates the first step of carbon dioxide fixation 

during photosynthesis - was present before treatment but was missing in all the samples in the bark 

and the needles after treatment, including the untreated samples. 
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Figure 8.4: Number of differentially expressed transcripts (DETs) in Pinus radiata needles (N) and bark (B) 

following methyl jasmonate (MJ) and bark stripping (strip) treatments quantified 7 (T1), 14 (T2) and 21 (T3) days 

after treatment. No differential expression was detected in the needles following the strip treatment. 

 

Annotations of the top ten genes that were up-regulated or down-regulated for each condition (time x 

treatment x part) are presented in Table 8.4. Based on these genes, the following functions were 

detected, indicating that multiple genes are involved in coordinating plant responses to stress: 

1) primary metabolism; involved in synthesis or breakdown and transport of sugars, lipids and 

aminoacids such as hexokinases, esterase/lipases, glucose-1-phosphate adenylyltransferase and cell 

wall invertases. The genes involved in photosynthesis and in sugar and fatty acid synthesis were down-

regulated. Those involved in breakdown of sugars and fatty acids as well as those involved with amino-

acid synthesis were up-regulated. 

2) secondary metabolism; involved in biosynthesis of phenolics , alkaloids and terpenes such as 

chalcone synthases, anthocyanidin reductase , (RS)-norcoclaurine 6-O-methyltransferase-like and 

lipoxygenase 2. These were mostly up-regulated. 

3) digestive inhibitors; these block the normal digestion and absorption of nutrients by vertebrate and 

invertebrate herbivores (eg chloroplast threonine deaminase 1 precursor) and were up-regulated  

4) pathogenesis-related (PR) protein families; includes enzymes that degrade the cell walls of 

pathogenic fungi for example chitinases, thaumatin proteins, and glucanases. These were also up-

regulated. 

5) genes involved with physical strengthening of the cell-wall such as proline-rich arabinogalactan 

protein were up-regulated.  



223 
 

6) transcription factors which are key regulators of the activation or repression of differentially 

expressed transcripts for example bHLH126-like were up-regulated 

7) phytohormones and signalling molecules, including jasmonic, ethylene and abscisic acid signalling 

such as mitogen activated protein kinase 6, lanC-like protein 2-like, 1-aminocyclopropane-1-carboxylate 

oxidase 3, abscisic acid (ABA) and leucine-rich repeat-containing protein 40-like were up-regulated 

8) general catalysts such as the P450 gene family were down-regulated 

9) molecules involved in transcription, such as cleavage and polyadenylation specificity factor subunit 

5-like and these were down-regulated 

10) molecules involved in broad biotic and abiotic stress responses such as mitogen activated protein 

kinase and endo-1,3;1,4-beta-D-glucanase-like that were mostly up-regulated 

11) broad function genes, for example transporters like lysine histidine transporter 2-like and aquaporin-

like protein were up-regulated. 

However, it is also recognised that some genes may belong to more than one category 

 

8.3.5 Differences in responses between bark stripping and methyl jasmonate treatments  

A subset (15.6%) of the transcriptome was differentially expressed in only one treatment (strip or MJ) 

(Figure 8.5 top, Table 8.4). Similarly, non-overlapping transcripts were detected at different times in the 

needles and bark (Figure 8.5 bottom, Table 8.4).  
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Figure 8.5: Top: Venn diagrams showing the number of unique transcripts that were differentially expressed for 

methyl jasmonate (MJ) and bark stripping (strip) at each time; T1, T2 and T3 and for each treatment. Bottom: 

showing the number of unique transcripts that were differentially expressed across different times within each 

treatment and part. No differential expression was detected in the needles following bark stripping. 
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Table 8.4: Top 10 genes differentially expressed in each of the time periods from T1 to T3 in the bark (B) and needles (N) following bark stripping (S) or methyl jasmonate (MJ) treatment of two-year old Pinus radiata plants 

The SCION transcript code, predicted gene name and predicted functions of the known genes are indicated. Some genes were represented by more than one transcript (isoforms -different P. radiata codes that represent 

one gene in column 1) and multiple copies of an isoform as indicated by the numbers in the parentheses, for example +(2) = two copies of an isoforms relating to the gene were identified, where + = up-regulation, - = down-

regulation. The numbers in the parentheses along with the gene names represent the core function of the gene among the 11 broad categories identified in the previous page, for example for the Peptide transporter PTR3-

A-like [1], [1] denotes that this gene was associated with primary metabolism (see categories on p.217-218) . However, it is recognised that some genes may fall in more than one category 

 

 P. radiata code Gene name Function 

T
1-B

-M
J 

T
1-B

-S
 

T
1-N

-M
J 

T
2-B

-M
J 

T
2-B

-S
 

T
2-N

-M
J 

T
3-B

-M
J 

T
3-B

-S
 

T
3-N

-M
J 

NZPradTrx081530_C01 Peptide transporter PTR3-A-like 
[1] 

Facilitates amino acid induction (Barnes et al. 1998) +         

NZPradTrx115883_C01 Granule-bound starch synthase, 
partial [1] 

Responsible for amylose synthesis (Miao et al. 2014) -         

NZPradTrx113785_C01 GDP-D-mannose-3',5'-
epimerase [1] 

Central enzyme of the major ascorbate biosynthesis pathway in higher 
plants that converts GDP-d-mannose to GDP-l-galactose (Gilbert et al. 
2009) 

+         

NZPradTrx065162_C02 Thiazole biosynthetic enzyme [2] Thiamine synthesis and DNA damage tolerance (Liu et al. 2015b) -         

NZPradTrx083866_C01 1-aminocyclopropane-1-
carboxylate oxidase 3[7] 

Production of ethylene, that functions as a mediator of responses to 
external stimuli, such as wounding (Houben and Van de Poel 2019) 

+ +  + +     

NZPradTrx117447_C01 
NZPradTrx117447_C02 
NZPradTrx091619_C02 
 

PREDICTED: transcription factor 
bHLH126-like [6] 

Transcription factors play a central role in a number of biological 
processes, producing, for example, the induction of specific genes in 
response to particular stimuli as well as controlling the cell type specific or 
developmentally regulated expression of other genes (Latchman 2008) 

+ (2)   +(2)   +(3) +  

NZPradTrx113021_C04 
NZPradTrx117482_C10 

Cytochrome P450 CYPC [8] Key players in plant development and defence (Xu et al. 2015) -(2)   -      

NZPradTrx103647_C02 Oleoyl-acyl carrier protein 
thioesterase, partial [1] 

Plays an essential role in chain termination during de novo fatty acid 
synthesis https://www.uniprot.org/uniprot/Q42561 

-         

NZPradTrx111880_C01 
NZPradTrx132560_C01 

Cell wall invertase [1] Mediates reduced export of sucrose or enhanced import of hexoses at the 
site of infection (Proels and Hückelhoven 2014) 

+    +   + (2)  

NZPradTrx186688_C01 
NZPradTrx187077_C01 
 

DNA binding protein, putative [9] DNA binding proteins serve two principal functions: to organize and 
compact the chromosomal DNA and to regulate and effect the processes 
of transcription, DNA replication, and DNA recombination(Travers 2001).  

 +  -  -    

NZPradTrx065807_C02 PREDICTED: cleavage and 
polyadenylation specificity factor 
subunit 5-like [9] 

Component of the cleavage factor Im (CFIm) complex that functions as an 
activator of the pre-mRNA 3'-end cleavage and polyadenylation 
processing required for the maturation of pre-mRNA into functional 
mRNAs https://www.uniprot.org/uniprot/Q16630 

 -        

NZPradTrx095732_C01 Thaumatin-like protein [4] Involved in local responses of roots to colonization by non-pathogenic 
plant growth-promoting rhizobacteria (PGPR) fluorescent Pseudomonas 
spp.(Léon-Kloosterziel et al. 2005) 

- -,+ 
(2) 

  +  + +  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/biological-phenomena-and-functions-concerning-the-entire-organism
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/biological-phenomena-and-functions-concerning-the-entire-organism
https://www.sciencedirect.com/topics/medicine-and-dentistry/dna-recombination
https://www.uniprot.org/uniprot/Q16630
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NZPradTrx064724_C01 
NZPradTrx108940_C08 
NZPradTrx087317_C02 

NZPradTrx038584_C01 Chloroplast threonine deaminase 
1 precursor [3] 

Useful in isoleucine (Ile) biosynthesis and impairing digestive processes 
in the insect gut (Chen et al. 2007) 

 + +  + +  + + 

NZPradTrx111230_C01 Triacylglycerol lipase, putative [1] Release fatty acids from a number of different substrates (Padham et al. 
2007) 

 -        

NZPradTrx084103_C02 
 

PREDICTED: glutamate--
cysteine ligase, chloroplastic-like 
[4] 

Seems to play an important role in controlling the expression of resistance 
responses like the regulation of salicylic acid (SA) and phytoalexin 
(camalexin) production. Involved in resistance to fungal and bacterial 
pathogens. https://www.uniprot.org/uniprot/P46309 

 +        

NZPradTrx074370_C02, 
NZPradTrx132647_C01 

PREDICTED: lysine histidine 
transporter 2-like [11] 

Amino acid-proton symporter. Transporter with a broad specificity for 
neutral and acidic amino acids https://www.uniprot.org/uniprot/Q9LRB5 

 +   +  +  +(2) 

NZPradTrx098051_C01 
 

PREDICTED: endo-1,3;1,4-beta-
D-glucanase-like [10] 

 Implicated in responses to stress, wounding, and pathogen infection 
(Rezzonico et al. 1998) 

 +        

NZPradTrx053937_C01 
 

2-methyl-6-phytylbenzoquinone 
methyltranferase [10] 

One of the regulators of the composition of tocopherols-class of 
compounds that function as lipid soluble antioxidants that are extremely 
potent quenchers of singlet oxygen and free radical species (Shintani et 
al. 2002) 

 -        

NZPradTrx119228_C01 4-hydroxyphenyl-pyruvate 
dioxygenase [1] 

Plays an important role in degrading aromatic amino acids (Fritze et al. 
2004) 

  +   +    

NZPradTrx184501_C01 PREDICTED: 50S ribosomal 
protein L6, chloroplastic-like [9] 

Binds directly to 23S ribosomal RNA and is located at the aminoacyl-
tRNA binding site of the peptidyltransferase centre. 
https://www.uniprot.org/uniprot/O23049 

  -       

NZPradTrx186075_C01 PREDICTED: hexokinase-1-like 
[1] 

Fructose and glucose phosphorylating enzyme 
https://www.uniprot.org/uniprot/Q42525 

  -   -    

NZPradTrx105399_C03 PREDICTED: leucine-rich 
repeat-containing protein 40-like 
[10]  

Plays crucial roles in development and stress responses (Liu et al. 2017b)   -       

NZPradTrx051602_C02 Sodium-bile acid cotransporter, 
putative [11] 

Is involved in photorespiratory metabolism (South et al. 2017) 
 

  -       

NZPradTrx082621_C01 Mitogen activated protein kinase 
6 [10] 

Involved in oxidative stress-mediated signalling cascade (such as ozone) 
https://www.uniprot.org/uniprot/Q39026 

  +       

NZPradTrx033779_C01 
 

PREDICTED: pentatricopeptide 
repeat-containing protein 
At1g62670, mitochondrial-like [9] 

binds one or several organellar transcripts, and influences their 
expression by altering RNA sequence, turnover, processing, or translation 
(Barkan and Small 2014) 

  -       

NZPradTrx184660_C01 PREDICTED: PGR5-like protein 
1A, chloroplastic-like [1] 

Ferredoxin-plastoquinone reductase involved in cyclic electron flow (CEF) 
around photosystem I https://www.uniprot.org/uniprot/Q8H112 

  -       

NZPradTrx097586_C01 
 

Type III chlorophyll a /b-binding 
protein [1] 

functions as a light receptor, it captures and delivers excitation energy to 
photosystems with which it is closely associated 
https://www.uniprot.org/uniprot/P27523 

  -       

https://www.uniprot.org/uniprot/P46309
https://www.uniprot.org/uniprot/Q9LRB5
https://www.uniprot.org/uniprot/O23049
https://www.uniprot.org/uniprot/Q42525
https://www.uniprot.org/uniprot/Q39026
https://www.uniprot.org/uniprot/Q8H112
https://www.uniprot.org/uniprot/P27523
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NZPradTrx101698_C02 PrMC3 [2] Predicted to encode a chalcone-synthase-like protein (Walden et al. 
1999) 

   -   -   

NZPradTrx117804_C07 PREDICTED: probable 
carboxylesterase 2 [1] 

Carboxylesterases hydrolyse esters of short-chain fatty acids (Marshall et 
al. 2003) 

   -      

NZPradTrx100227_C01 PREDICTED: medium-chain-
fatty-acid--CoA ligase [1] 

Catalyses the esterification, concomitant with transport, of exogenous 
fatty acids into metabolically active CoA thioesters for subsequent 
degradation or incorporation into phospholipids 
https://www.uniprot.org/uniprot/P38135 

   +      

NZPradTrx081530_C01 
 

PREDICTED: peptide transporter 
PTR3-A-like [1] 

Facilitates amino acid induction (Barnes et al. 1998)    +      

NZPradTrx192941_C01 
 

Beta-amylase The primary function of β-amylase is involvement in starch breakdown in 
plants (Kaplan and Guy 2004) 

   +      

NZPradTrx052040_C01 
 

PREDICTED: oleosin 16 kDa-
like [10] 

May have a structural role to stabilize the lipid body during desiccation of 
the seed by preventing coalescence of the oil. 
https://www.uniprot.org/uniprot/Q42980 

   -      

NZPradTrx108711_C04 PREDICTED: putative UDP-
rhamnose:rhamnosyltransferase 
1-like [1] 

Involved in fatty acid metabolism (van der Sluis and Erasmus 2016)     +     

NZPradTrx112833_C08 
NZPradTrx112833_C07 
 

Tify domain containing protein [9] Found in a variety of plant transcription factors 
https://pfam.xfam.org/family/PF06200 

    +  +  + 

NZPradTrx071306_C02 
 

PREDICTED: transmembrane 
ascorbate ferrireductase 1-like 
[10] 

Catalyses ascorbate-dependent trans-membrane ferric-chelate reduction 
https://www.uniprot.org/uniprot/Q8L856 

    +     

NZPradTrx051982_C01 
 

PREDICTED: histone H2B.2-like 
isoform 2 [9] 

Histones thereby play a central role in transcription regulation, DNA 
repair, DNA replication and chromosomal stability 
https://www.uniprot.org/uniprot/Q5QNW6 

    -     

NZPradTrx119456_C01 
 

PR10-1.13 [10] Involved in defence against pathogen infection and other environmental 
stresses (Liu et al. 2005) 

    +     

NZPradTrx053878_C02 
NZPradTrx053878_C01 
NZPradTrx053878_C03 

Aldehyde dehydrogenase [1] Involved in plant metabolism and contribute to aldehyde homeostasis to 
eliminate toxic aldehydes (Zhao et al. 2017) 

     +(3)   +(3) 

NZPradTrx087148_C01 PREDICTED: lanC-like protein 2-
like [7] 

May play a role in abscisic acid (ABA) signalling 
https://www.uniprot.org/uniprot/F4IEM5 

     +    

NZPradTrx115807_C06 Hydrolase, putative [10] Enzyme which catalyses hydrolysis reaction, i.e. the addition of the 
hydrogen and hydroxyl ions of water to a molecule with its consequent 
splitting into two or more simpler molecules. 
https://www.uniprot.org/keywords/KW-0378 

     +   + 

NZPradTrx112951_C03 
 

Embryo-abundant protein [10] May act as a cytoplasm protectant during desiccation. 
https://www.uniprot.org/uniprot/P46520 

     +    

https://www.uniprot.org/uniprot/P38135
https://www.uniprot.org/uniprot/Q42980
https://pfam.xfam.org/family/PF06200
https://www.uniprot.org/uniprot/Q8L856
https://www.uniprot.org/uniprot/Q5QNW6
https://www.uniprot.org/uniprot/F4IEM5
https://www.uniprot.org/keywords/KW-0378
https://www.uniprot.org/uniprot/P46520
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NZPradTrx097637_C01 PREDICTED: 
leucoanthocyanidin 
dioxygenase-like [2] 

Involved in anthocyanin and protoanthocyanidin biosynthesis by 
catalysing the oxidation of leucoanthocyanidins into anthocyanidins 
https://www.uniprot.org/uniprot/Q96323 

     +    

NZPradTrx112166_C01 
 

Peroxidase-like protein, partial 
[10] 

Response to oxidative stress https://www.uniprot.org/uniprot/Q24925      +   + 

NZPradTrx082621_C01 Mitogen activated protein kinase 
6 [7] 

Play key roles in the transduction of environmental and developmental 
signals through phosphorylation of downstream signalling targets 
(Jagodzik et al. 2018) 

     +    

NZPradTrx110107_C07 PREDICTED: transcription factor 
aborted microspores-like  

Required for male fertility and pollen differentiation, especially during the 
post-meiotic transcriptional regulation of microspore development within 
the developing anther https://www.uniprot.org/uniprot/Q9ZVX2 

      +   

NZPradTrx112236_C02 Laccase [2] Involved in phenolic metabolism and functioning of cell wall (Ranocha et 
al. 2002) 

      +   

NZPradTrx089433_C01 Lipoxygenase 2 [2] Is essential for formation of green leaf volatiles and five-carbon volatiles 
(Mochizuki et al. 2016) 

      +   

NZPradTrx109272_C04 Malic enzyme, putative [1] Catalyse the oxidative decarboxylation of malate to form pyruvate, a 
reaction important in a number of metabolic pathways (Zhang et al. 
2016b) 

      - -  

NZPradTrx107808_C01 
 

Putative flavoprotein-containing 
polyamine oxidase, partial [2] 

Involved in drought stress response and flavonoid biosynthesis (Kamada-
Nobusada et al. 2008) 

      +   

NZPradTrx049513_C01 
NZPradTrx049513_C02 

Putative proline-rich 
arabinogalactan protein 4 [5] 

Contribute to the strengthening of cell walls of quickly growing organs 
(Hijazi et al. 2014) 

       +  

NZPradTrx079868_C01 PREDICTED: (RS)-norcoclaurine 
6-O-methyltransferase-like [2] 

Involved in the biosynthesis of (S)-coclaurine, the common precursor of 
all benzylisoquinoline alkaloids https://www.uniprot.org/uniprot/Q6WUC1 

       -  

NZPradTrx054832_C01 
 

Aquaporin-like protein [11] Main role of aquaporins in plants is transport of water and other small 
neutral molecules across cellular biological membranes (Kapilan et al. 
2018) 

       +  

NZPradTrx069597_C01 
 

Acetyl-CoA carboxylase BCCP 
subunit [1] 

Catalyses the first committed step of fatty acid synthesis, the 
carboxylation of acetyl-CoA to malonyl-CoA (Sasaki and Nagano 2004) 

       -  

NZPradTrx117954_C05 
 

E-alpha-bisabolene synthase [2] Involved in defensive oleoresin formation in conifers in response to insect 
attack or other injury. Involved in sesquiterpene (C15) olefins biosynthesis 
https://www.uniprot.org/uniprot/O81086 

       +  

NZPradTrx087252_C01 
 

TPA: putative GID1-like 
gibberellin receptor [7] 

Involved in gibberellin signalling (Sun 2011)         + 

NZPradTrx074370_C01 
NZPradTrx112166_C01 
 

Putative proline transporter [11] Mediates the amino acid proline and glycine betaine transport 
https://www.uniprot.org/uniprot/P92961 

        +(2) 

NZPradTrx113904_C06/ 
NZPradTrx101343_C01 
 
 

PREDICTED: clavaminate 
synthase-like protein At3g21360-
like [10] 

Associated with metal ion binding and oxido-reductase activity 
https://www.uniprot.org/uniprot/Q9LIG0 

        + 

https://www.uniprot.org/uniprot/Q96323
file://///utas.ad.internal/research/SET/PlantSci/EucGen/PERSONAL%20FOLDERS/Judith%20Nantongo/CHAPTER%201_INTRODUCTION/FLASH%20DISK_SCION/Response%20to%20oxidative%20stress
https://www.uniprot.org/uniprot/Q24925
https://www.uniprot.org/uniprot/Q9ZVX2
https://www.uniprot.org/uniprot/Q6WUC1
https://www.uniprot.org/uniprot/O81086
https://www.uniprot.org/uniprot/P92961
https://www.ebi.ac.uk/QuickGO/term/GO:0046872
https://www.uniprot.org/uniprot/Q9LIG0
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Annotations of the unique top differentially expressed transcripts in each category shown in the Venn 

diagram indicated that methyl jasmonate caused differential expression of more genes that are directly 

involved in the metabolism of sugars, fatty acids and amino acids in the bark and the needles (Table 

8.5). The strip induced transcriptome had among the top genes those involved in defence against 

pathogens, such as chitinases and PR10 and defensins. Bark stripping also caused water-stress 

responsive genes as well as genes related to replacement of tissues (Table 8.5). The difference in the 

representation of genes is likely related to the kind of damage incurred by the two stressors. Both 

stressors caused an expression of genes related to secondary metabolism, including metabolism of 

monoterpenes (e.g. geranyl diphosphate synthase), phenolics (e.g. laccases) and alkaloids (e.g. 

phenylalanine ammonia-lyase). Genes associated with lignification of cell walls were also identified for 

both treatments in the needles and the bark emphasising the role of cell wall physical properties in 

stress responses. For some genes, the same gene was represented by different isomorphs in the 

different conditions such as geranyl diphosphate synthase in the B-strip and N-MJ. 

 

Some genes were consistently differentially expressed from T1-T3 (Figure 8.5 bottom). Across all the 

treatments and parts, this involved only 6 genes that were all up-regulated (Table 8.5). Annotations of 

these transcripts mostly showed genes related to amino acid synthesis, suggesting that amino acids 

are integral parts of the plant stress responses. Specific treatments also showed some genes that 

consistently responded to treatment from T1-T3. In the methyl jasmonate-induced transcriptome of the 

bark (B-MJ), 6 transcripts were involved and were mostly up-regulated. Annotations of these transcripts 

showed that the genes were mostly involved in generating energy from various substrates, particularly 

glucose and fatty acids. In the needles treated with methyl jasmonate (N-MJ), 114 transcripts were 

consistently expressed from T1-T3. Among the top 10 differentially expressed genes were those 

directly associated with chemical and physical structures, for example 4hydroxyphenylpyruvate 

dioxygenase involved in phenolic biosynthesis and the hydroxyproline-rich glycoproteins that are 

important structural components of the cell wall. The others included growth regulating genes (Table 

8.5). However, among the 144 transcripts, defence related genes were also detected, and these 

included; class I chitinase and 1,8-cineole synthase, protein transparent testa involved in the 

accumulation of condensed tannins and acyl carrier protein involved in cell death execution or direct 

antimicrobial activity. These genes were mostly up-regulated. In the strip-induced transcriptome of the 

bark (B-strip), only the DNA binding protein was up-regulated consistently from T1 to T3. 
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Table 8.5: Number of transcripts that were uniquely expressed for each condition (time x treatment x plant part) and the five dominant genes in each category. These transcripts were not expressed at any other time or 

treatment. (+) =up-regulated and (-) =down-regulated 

 

Condition Unique 
transcripts 

P. radiata code Gene name Predicted gene function direction 

T1-B-MJ 96 NZPradTrx115883_C02 granule bound starch synthase 
1a precursor 

Involved in the pathway starch biosynthesis 
https://www.uniprot.org/uniprot/P0C585 

- 

  NZPradTrx184661_C01 PREDICTED: putative caffeoyl-
CoA O-methyltransferase 
At1g67980-like 

Involved in the reinforcement of the plant cell wall. Also involved in the responding 
to wounding or pathogen challenge by the increased formation of cell wall-bound 
ferulic acid polymers https://www.uniprot.org/uniprot/Q9C9W3 

- 

  NZPradTrx108036_C04 Cytochrome b reductase Required for the NADH-dependent electron transfer involved in the desaturation 
and hydroxylation of fatty acids and in the desaturation of sterol precursors 
https://www.uniprot.org/uniprot/Q9ZNT1 

- 

  NZPradTrx119186_C01 DEAD-box RNA helicase Ubiquitous in RNA-mediated processes and function by coupling cycles of ATP 
binding and hydrolysis to changes in affinity for single-stranded RNA 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032546/ 

- 

  NZPradTrx060156_C02 PREDICTED: probable 
rhamnose biosynthetic enzyme 1 

Involved with nucleotide-sugar metabolic process 
https://www.uniprot.org/uniprot/A0A1U7W8H4 

+ 

  NZPradTrx119948_C01 PREDICTED: protein 
HOTHEAD-like 

Required to limit cellular interactions between contacting epidermal cells during 
floral development (Krolikowski et al. 2003) 

+ 

  NZPradTrx119070_C01 PREDICTED: mitochondrial-
processing peptidase subunit 
alpha-like 

Substrate recognition and binding subunit of the essential mitochondrial 
processing protease (MPP), which cleaves the mitochondrial sequence off newly 
imported precursors proteins. https://www.uniprot.org/uniprot/P29677 

+ 

  NZPradTrx110606_C03 
NZPradTrx110606_C04 

snakin Active against fungal and bacterial plant pathogens (Berrocal-Lobo et al. 2002) 
 

- 

  NZPradTrx094750_C01 PREDICTED: zinc finger CCCH 
domain-containing protein 20-like 

Known to play important roles in RNA processing as RNA-binding proteins in 
animals (Wang et al. 2008) 

- 

  NZPradTrx119288_C01 PREDICTED: blue copper 
protein 

Redox proteins whose role is to shuttle electrons from an electron donor to an 
electron acceptor (De Rienzo et al. 2000) 

- 

T1-B-strip 39 NZPradTrx111276_C02 low molecular weight heat-shock 
protein 

Expressed in plants experiencing high-temperature stress (Hernandez and 
Vierling 1993) 

- 

  NZPradTrx109179_C02 
NZPradTrx077717_C01 

LP3-1 Shown to be up-regulated in response to water deficit stress and to also act as 
transcription factors for genes likely involved in hexose transport (Lecoy and 
García-Gil 2020) 

- 

  NZPradTrx112152_C04 PREDICTED: L-type lectin-
domain containing receptor 
kinase IV.1-like 

Involved in resistance response to the pathogenic oomycetes, Promotes 
hydrogen peroxide H2O2 production and cell death 
https://www.uniprot.org/uniprot/Q9LXA5 

+ 

  NZPradTrx082734_C01 Casparian strip domain-like gene Recruit the lignin polymerisation machinery necessary for the deposition of 
Casparian strips in the endodermis 
https://www.ebi.ac.uk/interpro/entry/InterPro/IPR006459/ 

- 

https://www.uniprot.org/uniprot/P0C585
https://www.uniprot.org/uniprot/Q9C9W3
https://www.uniprot.org/uniprot/Q9ZNT1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032546/
https://www.ebi.ac.uk/QuickGO/term/GO:0009225
https://www.uniprot.org/uniprot/A0A1U7W8H4
https://www.uniprot.org/uniprot/P29677
https://www.uniprot.org/uniprot/Q9LXA5
https://www.ebi.ac.uk/interpro/entry/InterPro/IPR006459/
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  NZPradTrx105759_C05 Methyl esterase 13 Involved in jasmonic and salicylic acid metabolic process 
https://www.uniprot.org/uniprot/F4IE65 

+ 

  NZPradTrx042090_C01 Geranyl diphosphate synthase Catalyses the condensation of dimethylallyl diphosphate and isopentenyl 
diphosphate to geranyl diphosphate, the key precursor of monoterpene 
biosynthesis (Burke et al. 1999) 

+ 

  NZPradTrx064702_C01 
 

Class II chitinase Involved in the defence response against pathogen and fungal infection (de A. 
Gerhardt et al. 1997) 

- 

  NZPradTrx105720_C01 Defensin Inhibit the growth of a broad range of pathogens, including bacteria, fungi and 
viruses (Ermakova et al. 2016a; Picart et al. 2012). 

- 

  NZPradTrx119059_C01 Annexin p33 Central regulators or effectors of plant growth and stress signalling (Mortimer et 
al. 2008) 

- 

  NZPradTrx118949_C01 Peroxiredoxin Guardians against oxidative stress and modulators of peroxide signalling (Perkins 
et al. 2015) 

- 

T1-N-MJ 751 NZPradTrx110565_C01 
 

UDP-sulfoquinovose synthase Involved in the biosynthesis of sulfolipids found in thylakoid membranes. Converts 
UDP-glucose and sulfite to the sulfolipid head group precursor UDP-
sulfoquinovose https://www.uniprot.org/uniprot/O48917 

- 

  NZPradTrx064995_C02 
 

Chloroplast ribulose 
bisphosphate 
carboxylase/oxygenase activase 
alpha1, partial 

Catalyses carboxylation of RuBP in the first step of the Calvin cycle of 
photosynthesis (Tabita 1999) 

- 

  NZPradTrx088104_C02 RNA polymerase sigma factor 
rpoD, putative 

Sigma factors are initiation factors that promote the attachment of RNA 
polymerase to specific initiation sites and are then released 
https://www.uniprot.org/uniprot/P00579 

- 

  NZPradTrx081803_C01 
 

PREDICTED: mitochondrial 
carnitine/acylcarnitine carrier-like 
protein-like 

Mediates the transport of acylcarnitines of different length across the 
mitochondrial inner membrane from the cytosol to the mitochondrial matrix for 
their oxidation by the mitochondrial fatty acid-oxidation pathway 
https://www.uniprot.org/uniprot/O43772 

- 

  NZPradTrx086144_C02 
 

Chloroplast omega-6 fatty acid 
desaturase 

Chloroplast omega-6 fatty acid desaturase introduces the second double bond in 
the biosynthesis of 16:3 and 18:3 fatty acids, important constituents of plant 
membranes. It is thought to use ferredoxin as an electron donor and to act on 
fatty acids esterified to galactolipids, sulfolipids and phosphatidylglycerol 
https://www.uniprot.org/uniprot/P46312 

- 

  NZPradTrx065194_C01 
 

Glutamate--ammonia ligase Key enzyme of ammonium assimilation and recycling in plants where it catalyses 
the synthesis of glutamine from ammonium and glutamate(Lothier et al. 2011) 

- 

  NZPradTrx077590_C01 
 

PREDICTED: ATP synthase 
gamma chain, chloroplastic-like 

Produces ATP from ADP in the presence of a proton gradient across the 
membrane. The gamma chain is believed to be important in regulating ATPase 
activity and the flow of protons through the CF0 complex 
https://www.uniprot.org/uniprot/Q01908 

- 

  NZPradTrx064646_C01 
 

PREDICTED: photosystem I 
reaction center subunit XI, 
chloroplastic-like 

Involved in photosynthesis https://www.uniprot.org/uniprot/Q41385 - 

https://www.uniprot.org/uniprot/F4IE65
https://www.uniprot.org/uniprot/O48917
https://www.uniprot.org/uniprot/P00579
https://www.uniprot.org/uniprot/O43772
https://www.uniprot.org/uniprot/P46312
https://www.uniprot.org/uniprot/Q01908
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  NZPradTrx115121_C05 
 

glutathione peroxidase-like 
protein, partial 

Protects cells from phospholipid hydroperoxides and nonphospholipid peroxides 
during oxidative stress https://www.uniprot.org/uniprot/P36014 

+ 

  NZPradTrx186664_C01 
 

F353614_1 senescence-
associated protein SPA15 

May be involved in the regulation of leaf senescence  
https://www.uniprot.org/uniprot/Q65XF2 

- 

T2-B-MJ 18 NZPradTrx192941_C01 Beta-amylase The primary function of β-amylase is involvement in starch breakdown in 
plants (Kaplan and Guy 2004) 

+ 

  NZPradTrx076831_C01 
 

UV-B receptor 1 Involved in response to UV-B (Loyola et al. 2016) + 

  NZPradTrx044917_C01 Putative cyclophilin Involved in various physiological processes including transcriptional regulation, 
organogenesis, photosynthetic and hormone signalling pathways, stress 
adaptation and defence responses (Barbosa dos Santos and Park 2019) 

- 

  NZPradTrx119079_C01 Xyloglucan 
endotransglucosylase/hydrolase 
13 

Cleaves and religates xyloglucan polymers, an essential constituent of the 
primary cell wall, and thereby participates in cell wall construction of growing 
tissues 
https://www.uniprot.org/uniprot/Q9FKL8 

- 

  NZPradTrx037564_C01 PREDICTED: bidirectional sugar 
transporter SWEET3-like 

Mediates both low-affinity uptake and efflux of sugar across the plasma 
membrane https://www.uniprot.org/uniprot/Q6NQN5 

- 

  NZPradTrx118938_C01 
 

Glycine-rich RNA-binding protein Plays a role in RNA transcription or processing during stress. Binds RNAs and 
DNAs sequence with a preference to single-stranded nucleic 
acids. https://www.uniprot.org/uniprot/Q03250 

- 

  NZPradTrx109658_C01 
 

Probable aquaporin Main role of aquaporins in plants is transport of water and other small neutral 
molecules across cellular biological membranes (Kapilan et al. 2018) 

- 

  NZPradTrx094541_C02 PREDICTED: methionine 
gamma-lyase-like 

Involved in amino acid catabolism (Ravanel et al. 1998) + 

T2-B-strip 12 NZPradTrx119456_C01 PR10-1.13 Involved in defence against pathogen infection and other environmental stresses 
(Liu et al. 2005) 

+ 

  NZPradTrx098320_C05 PREDICTED: LOB domain-
containing protein 1-like 

Controls the proximal-distal patterning in petals and the adaxial-abaxial 
determination of leaves. Involved in the repression of the homeobox gene BP 
https://www.uniprot.org/uniprot/Q9FKZ3-1 

+ 

  NZPradTrx073494_C01 TPA: putative ARF GTPase-
activating domain family protein 

Have potential roles in cell migration, central to normal physiology in 
embryogenesis, the inflammatory response and wound healing (Campa and 
Randazzo 2008) 

- 

  NZPradTrx103835_C01 2C-methyl-D-erythritol 2,4-
cyclodiphosphate synthase 

Involved in the biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl 
diphosphate (DMAPP), two major building blocks of terpenoid compounds 
https://www.uniprot.org/uniprot/P62617 

+ 

  NZPradTrx102746_C02 S6 ribosomal protein Key downstream effector of the target of rapamycin (TOR) kinase pathway that 
regulates various biological processes, including translation, synthesis of 
ribosomal proteins, and transcription of rRNA (Kim et al. 2014) 

+ 

  NZPradTrx094959_C01 Pathogenesis-related protein 10 Function in a wide range from cell wall rigidification to signal transduction and 
antimicrobial activity (Liu and Ekramoddoullah 2006) 

+ 

https://www.uniprot.org/uniprot/P36014
https://www.uniprot.org/uniprot/Q65XF2
https://www.uniprot.org/uniprot/Q9FKL8
https://www.uniprot.org/uniprot/Q6NQN5
https://www.uniprot.org/uniprot/Q03250
https://www.uniprot.org/uniprot/Q9FKZ3-1
https://www.uniprot.org/uniprot/P62617
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  NZPradTrx096309_C03 Dirigent-like protein Predominant roles in defence responses, secondary metabolism, and fiber 
biosynthesis (Li et al. 2017) 

+ 

  NZPradTrx105315_C01 PREDICTED: uncharacterized 
LOC101219508 

 - 

  NZPradTrx077043_C01 FAD/NAD(P)-binding 
oxidoreductase domain-
containing protein 

Catalyse a wide variety of redox reactions with many different substrates (Sellés 
Vidal et al. 2018) 

- 

  NZPradTrx110593_C01 
 

PREDICTED: chaperonin 
CPN60-2, mitochondrial-like 

Implicated in mitochondrial protein import and macromolecular assembly. May 
facilitate the correct folding of imported proteins. May also prevent misfolding and 
promote the refolding and proper assembly of unfolded polypeptides generated 
under stress conditions in the mitochondrial matrix. 
https://www.uniprot.org/uniprot/Q05046 

+ 

T2-N-MJ 30 NZPradTrx118421_C03 Caffeic acid O-methyltransferase Catalyses the conversion of caffeic acid to ferulic acid and of 5-hydroxyferulic acid 
to sinapic acid. The resulting products may subsequently be converted to the 
corresponding alcohols that are incorporated into lignins 
https://www.uniprot.org/uniprot/Q06509 

+ 

  NZPradTrx079649_C05 
NZPradTrx079649_C03 
NZPradTrx079649_C02 

Geranyl diphosphate synthase Catalyses the condensation of dimethylallyl diphosphate and isopentenyl 
diphosphate to geranyl diphosphate, the key precursor of monoterpene 
biosynthesis (Burke et al. 1999) 

+ 

  NZPradTrx122822_C01 PREDICTED: F-box protein 
GID2-like 

Essential component of the SCF-type E3 ligase complex, SCF(GID2), a complex 
that positively regulates the gibberellin signalling pathway 
https://www.uniprot.org/uniprot/Q9STX3 

+ 

  NZPradTrx083848_C01 Chlorophyllase The first enzyme involved in chlorophyll (Chl) degradation and catalyses the 
hydrolysis of ester bond to yield chlorophyllide and phytol (Tsuchiya et al. 1999) 

+ 

  NZPradTrx103321_C01 Phenylalanine ammonia-lyase Phenylalanine aminomutase that catalyses the rearrangement of L-phenylalanine 
to R-beta-phenylalanine. Catalyses the first committed step in the biosynthesis of 
the side chain of the alkaloid taxol (paclitaxel) 
https://www.uniprot.org/uniprot/Q68G84 

+ 

  NZPradTrx071573_C01 
 

Starch synthase isoform II Contribute to the extension of glucan chains in the synthesis of starch (Edwards 
et al. 1999) 

+ 

  NZPradTrx105898_C01 
 

Glutamate-1-semialdehyde 2,1-
aminomutase 

Essential enzyme in the pathway that leads to the synthesis of chlorophyll and 
other tetrapyrroles in plants and some bacteria (Tyacke et al. 1995) 

- 

  NZPradTrx182827_C01 PREDICTED: LRR receptor-like 
serine/threonine-protein kinase 
FLS2-like 

Constitutes the pattern-recognition receptor (PPR) that determines the specific 
perception of flagellin (flg22), a potent elicitor of the defence response to 
pathogen-associated molecular patterns (PAMPs) 
https://www.uniprot.org/uniprot/Q9FL28 

+ 

  NZPradTrx184681_C01 
 

FK506 binding-like protein Involved in diverse cellular functions including protein folding, cellular signalling, 
apoptosis and transcription (Tong and Jiang 2016) 

+ 

  NZPradTrx094486_C01 Putative UDP-glucose:flavonoid 
glucosyltransferase 

Enhances the solubility of anthocyanins (Chen et al. 2011) + 

https://www.uniprot.org/uniprot/Q05046
https://www.uniprot.org/uniprot/Q06509
https://www.uniprot.org/uniprot/Q9STX3
https://www.uniprot.org/uniprot/Q68G84
https://www.uniprot.org/uniprot/Q9FL28
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T3-B-MJ 4 NZPradTrx083714_C01 
 

PREDICTED: protein 
GLUTAMINE DUMPER 1-like 

Involved in the regulation of the amino acid metabolism. involved in the salicylic 
acid (SA) pathway and in the geminivirus-host interaction 
https://www.uniprot.org/uniprot/O81775 

+ 

  NZPradTrx053990_C01 
 

PREDICTED: cytochrome P450 
71A1-like 

Involved in the metabolism of compounds associated with the development of 
flavour in the ripening fruit process, possibly by acting as trans-cinnamic acid 4-
hydrolase https://www.uniprot.org/uniprot/P24465 

+ 

  NZPradTrx105443_C01 GMP synthase [glutamine-
hydrolyzing] subunit A, putative 

Involved in the de novo biosynthesis of guanosine nucleotides 
https://www.brenda-enzymes.org/enzyme.php?ecno=6.3.5.2 

+ 

  NZPradTrx112236_C01 Laccase Involved in phenolic metabolism and functioning of cell wall (Ranocha et al. 2002) + 

T3-B-S 13 NZPradTrx087634_C02 Properoxidase Involved in lignification, cell elongation, stress defence and seed germination 
(Shigeto and Tsutsumi 2016) 

+ 

  NZPradTrx103699_C01 Oxidoreductase, 2OG-Fe(II) 
oxygenase family protein 

Involved in defence against pathogens (Van Damme et al. 2008) + 

https://www.uniprot.org/uniprot/O81775
https://www.uniprot.org/uniprot/P24465
https://www.brenda-enzymes.org/enzyme.php?ecno=6.3.5.2
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The time progression of individual genes was variable between methyl jasmonate and strip induced 

genes. For purposes of illustrating the differences in temporal expression of individual genes, Figure 

8.6 below shows the time progression of the top 10 genes that were differentially expressed in the bark 

compared to the needles at T0 (listed in Table 8.2) and how they responded to methyl jasmonate and 

strip treatments. The genes were up-regulated or down-regulated following both treatments. Although 

results show stronger quantitative responses at T1 for most up-regulated and down-regulated genes, 

the direction of responses for some genes differed between methyl jasmonate and strip treatments. 

Figure 8.6 shows chalcone synthase involved in phenolic metabolism was up-regulated in the strip 

treatment but down-regulated after methyl jasmonate treatment. Metallothionein was consistently down-

regulated in strip-treated transcriptome but was up-regulated at T3 in methyl jasmonate induced 

transcriptome.  

 

Figure 8.6: Time progression of the top 10 genes that were differentially expressed in the bark relative to the 

needles at T0 following, a) strip treatment and b) methyl jasmonate treatment. Average change in expression 

was estimated at each time point by comparing the raw counts for the strip or methyl jasmonate induced 

transcripts and the transcripts from control treatments (mean of treatment – mean of control) for a specific time 

and were adjusted according to the basal expression at T0. T0 -before treatment applications, then, T1, T2 and 

T3 are respectively 7, 14 and 21 days after treatment application. 

 

8.3.7 Functional annotation and gene ontology (GO) classification of differentially expressed 

transcripts  

To assess the overall effect of the treatments across different gene families and molecular processes, 

an enrichment analysis of GO terms was performed for the up-regulated and down-regulated transcripts 

for each condition (time x treatment x plant part). An overall similarity was detected of the major GO 

terms for genes that were up- and down-regulated in both the strip and methyl jasmonate treatments. 
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For example, in the GO-molecular function (Figure 8.7), most genes relating to catalytic activity were 

enriched both in the needles and the bark. However, the enrichment was stronger for the genes that 

were up-regulated in the methyl jamonate-expressed transcripts, while in the strip-expressed transcripts 

enrichment was stronger in the down-regulated genes.  

 

 

Figure 8.7: GO-molecular categories showing differences in the treatments, and plant parts, as well as 

differences in enrichment of the different GO terms for the up-regulated and down-regulated transcripts for each 

condition at T1. The top 100 differentially expressed transcripts were selected in each condition for this analysis. 

The categories in order from the centre are; a) transcripts in the bark up-regulated relative to the needles at T0, 

up-regulated in T1-B-strip, down-regulated in T1-B-strip, up-regulated in T1-B-MJ and down-regulated in T1-B-

MJ, b) transcripts up-regulated in the needles relative to the bark at T0, up-regulated in T1-N-MJ and down-

regulated in T1-N-MJ). No differential expression was detected in the needles of bark stripped trees at any time 

point. 

 

Comparing GO terms for the constitutive and induced transcriptome, results indicated that some gene 

functions that were not strongly enriched at T0 with respect to plant parts were enriched after treatment, 

for example, genes related to response to stimulus (GO:0050896), plasmodesma (GO:0009506) and 

cell junction (GO:0030054) were strongly enriched in the transcriptome of the bark stripped samples 

(Figure 8.8).   
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Figure 8.8: Number of transcripts enriched in each biological and cellular categorization of up-regulated and 

down-regulated genes in Pinus radiata needles (N) and bark (B) between plant parts at T0 and after treatment 

with methyl jasmonate (MJ) or bark stripping (strip) at T1. The categorization is based on gene ontology (GO) 

annotations of the top 100 differentially expressed transcripts in each category. No differences were detected in 

the biological and cellular processes of up-regulated or down-regulated genes. 

 

8.4 Discussion 

We aimed to understand the differences in the constitutive needle and bark transcriptomes and the 

changes that occur following bark stripping and how they compare with those of methyl jasmonate that 

have been documented in several conifer species (Celedon et al. 2017; Kānberga-Siliņa et al. 2017; Liu 

et al. 2017a; Men et al. 2013). While the results are based on a partial transcriptome, comparing the 

needle and bark transcriptome as assessed prior to treatment (T0) showed that, there were minimal 

qualitative differences in the transcriptomes. However, after treatment there was strong transcriptional 

response in both the needles and the bark following both methyl jasmonate and strip treatments, with 

different and sometimes non-overlapping in responses between plant parts, treatments and at each 

time of sampling. Differences in responsiveness were also detected between the classes of genes, 
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where genes related to primary metabolism were more responsive to treatments by up-regulation or 

down-regulation compared to genes associated with secondary metabolism. This is the first study to 

illustrate transcriptional responses to bark stripping.  

 

Among the genes that were homogeneously expressed between the bark and the needles were those 

related to basic life fuctions especially those related to primary and secondary metabolism. Genes for 

example, ribulose bisphosphate carboxylase/oxygenase (RuBisCO) and a chlorophyll a/b binding 

protein were dominant both in the transcriptome of the needles and the bark. Similar observations were 

made in the needles of other P. radiata populations (Alvarez et al. 2016) and Pinus monticola (Liu et al. 

2013a), although these studies did not  analyse how the transcriptomes change with treatment and the 

observations were limited to one plant part. Genes directly related to secondary metabolism for 

example chalcone synthases, dehydrins and defensins were among the basal genes, highlighting the 

importance of constitutive defences in P. radiata. Chalcone synthase has been identified in other 

conifers (Baker and White 1996; Richard et al. 2000) and plays crucial roles in phenolic biosynthesis 

(Dixon and Paiva 1995). Defensins have also been detected in various conifers where they inhibit the 

growth of a broad range of pathogens, including bacteria, fungi and viruses (Ermakova et al. 2016b; 

Picart et al. 2012). Dehydrins that represent a family of genes for drought tolerance have been detected 

in spruces and in other Pinaceae (Stival Sena et al. 2018). Metallothioneins that were strongly 

expressed both in the bark and the needles are important in protection against heavy metal toxicity 

(Nevrtalova et al. 2014) and have been documented mainly in Pseudotsuga menziesii (Chatthai et al. 

1997; Chatthai et al. 2004) and could reflect an adaptation to leached, heavy metal enriched soils in the 

coastal sites of California where Pinus radiata originates (Keator 2002). However, while the above 

genes are expressed at high amounts equally in the bark and needles, some transcripts were up-

regulated in the needles or the bark. More up-regulation was detected in the bark, which contrasted 

with the higher expression of transcripts in the needles than the bark reported in other P. radiata 

populations (Alvarez et al. 2016). In both parts up-regulated genes were predominantly related to the 

synthesis and transfer of macro- and micro-molecules, as well as transcription factors which are the key 

molecular switches orchestrating the regulation of plant responses to a variety of stresses. 

 

After treatment with methyl jasmonate and bark stripping, there was an up-regulation and down-

regulation of several genes involved in both primary and secondary metabolism both in the bark and 

needles, consistent with other studies that have characterised responses to other stressors (Kānberga-

Siliņa et al. 2017; Liu et al. 2017c). The top genes that were up-regulated or down-regulated in the 

present study overlap with those observed in similar studies that have characterised the transcriptomes 
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with contrasting sources of stress in conifers (Celedon et al. 2017; Fox et al. 2017; Liu et al. 2013a; Liu 

et al. 2017c; Ralph et al. 2006), suggesting that changes in gene expression following stress are 

relatively conserved. Among the top expressed genes, results showed a down-regulation of 

hexokinases, granule-bound starch synthase and sodium-bile acid cotransporter as well as genes 

related with photosynthesis, suggesting reduction in sugar metabolism in the treated plants. However, 

cell wall invertase that mediates export of sucrose or enhanced import of hexoses at the site of infection 

was up-regulated in both methyl jasmonate and strip treated plants. Cell wall invertase (CWI) is an 

enzyme that cleaves sucrose, the major transport sugar in plants, irreversibly yielding glucose and 

fructose, which can be taken up by plant cells (Proels and Hückelhoven 2014; Tauzin and Giardina 

2014). An increase in CWI should ideally lead to a reduction in sucrose, which is consistent with the 

drastic reduction in the amounts of sucrose that has been observed following methyl jasmonate and 

strip treatments in P. radiata (Chapters 3 and 6). The up-regulation of CWI would also suggest an 

increase of glucose and fructose, but this was not the case as a strong reduction in the amounts of 

glucose and fructose was observed in treated samples (Chapter 3). This suggests that although 

fructose and glucose may be potentially enhanced by an increased break down of sucrose, their 

utilisation for energy and carbon skeletons for other organic compounds or for tissue recovery exceeds 

their production, supporting the concept that defence is costly in terms of energy (Gershenzon 1994). 

Gould et al. (2008) detected a repression of photosynthesis in P. radiata as a response to stress that 

could lead to a reduction of sugars. However, the repression of sugars in the needles of bark stripped 

trees (Chapter 3) without a consequent change in gene expression shows that reduction of sugars 

following defence activation does not always correlate with changes in protein profiles, indicating that 

mechanisms other than transcriptional level changes are involved in reconfiguration of the sugars. 

Sugars have also been shown to function as signalling molecules, in a manner similar to hormones 

(Tauzin and Giardina 2014; Trouvelot et al. 2014), but their down-regulation contrasts to the up-

regulation of other signalling molecules. However, according to Eveland and Jackson (2012) sugar 

signals are generated either by relative ratios to other metabolites, such as C:N not necessarily 

carbohydrate concentration. 

 

Additionally, genes related to fatty acid metabolism, for example medium-chain-fatty-acid--CoA ligase 

and UDP-rhamnose:rhamnosyltransferase, were up-regulated and those related to fatty acid hydrolysis 

such as carboxylesterase were down-regulated. Observations on the same population showed a 

reduction in fatty acids following treatment (Chapter 3), suggesting their potential use as precursors to 

the formation of secondary compounds (Kachroo and Kachroo 2009). Accumulating evidence has 

suggested lipids and lipid metabolites as important regulators of plant defence (Shah 2005). Genes 
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related to amino acid synthesis were also among the top expressed genes. Increase in amino acid 

levels have been detected in plants under stress and is hypothesized to protect plant cells against 

dehydration (Al-Asbahi et al. 2012; Joshi and Jander 2009). Amino acid accumulation has been 

observed to be strongly related to abscisic acid signalling (Al-Asbahi et al. 2012). Molecules related to 

abscisic acid signalling were also strongly up-regulated.  

 

Genes related directly to secondary metabolism were not detected among the top differentially 

expressed genes although they are abundant in the constitutive transcriptome consistent with the 

observations in spruce (Verne et al. 2011). However, the relatively weak transcriptional response to 

treatment of individual genes related to secondary metabolism in this study contrasts with other studies 

(Liu et al. 2017a; Ralph et al. 2006) and could possibly be due to the timing of the sampling, which was 

done 7 days after treatment application. In various studies maximum expression of genes is shown to 

be attained within 5 days after treatment application (Liu et al. 2017a; Ralph et al. 2006). On the same 

population, a weak response of terpenes and phenolics was observed following similar treatments 

(Chapters 3 and 6), which probably suggests an inherently weak response of secondary compounds 

and associated genes to stress in P. radiata. Defence genes being strongly expressed in the 

constitutive but not in the induced transcriptome may suggest existence of trade-offs in induced gene 

expression (Kim et al. 2020), analogous to the trade-offs in constitutive versus induced chemical 

responses that have been detected in P. radiata (Moreira et al. 2014). Although alkaloids have not been 

well researched as important defence compounds in conifers, genes related to alkaloid biosynthesis 

such as RS-norcoclaurine 6-O-methyltransferase were among the top expressed genes but was down-

regulated after treatment. There were also many proteins of unknown functions that were up-regulated 

or down-regulated at various time points, which potentially explains the many unknown chemical 

compounds that were quantified on the same plants.  

 

Considerable overlap was observed between the methyl jasmonate and the strip induced 

transcriptome. However, results also indicate that bark stripping can induce transripts that are not 

induced with methyl jasmonate and vice versa. Defence responses for bark stripping may differ from 

methyl jasmonate since bark stripping causes tissue and water loss at the injured sites, and damaged 

plants are also easily infected by pathogens through these wounds. In this case both defence and 

repair responses are required. Hence the dominant genes in the strip-induced transcriptome involved 

pathogenesis-related (PR) genes and those related to fibre synthesis. The expression of PR genes 

could also be related to the historical relationship between P. radiata and various pathogens (Offord 

1964). No systemic transcript responses were observed in the needles to bark stripping. Coupled with 
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the chemical changes that were observed in the needles following bark stripping on the same 

population for example the reduction of glucose and fructose at T1 and T2, (Chapter 3), this 

observation suggests that some chemical stress responses, possibly those involving sugars may not 

involve on-site gene expression changes and may result from passive reallocation of chemistry within 

the plant. For other compounds like terpenes, it has been indicated that passive changes normally 

occur only in the constitutive environment and that stress-induced changes in terpenes are entirely of a 

de novo nature (Wu et al. 2017).  

 

Relative to the chemical changes that were observed on the same population, whereas maximum 

expression of the transcripts was observed at T1 (7 days after treatment), more chemical changes were 

detected at T2 (14 days) and T3 (21 days) suggesting a time-lag between gene and phenotypic 

expression. This discrepancy may be associated with trade-offs between gene expression and other 

cellular resources, including the nutritional quality of the plant (Kim et al. 2020). 

 

On functional analysis, one GO-term that was significantly enriched after treatment was response to 

stimuli (Figure 8.8) and consistently, genes related to signalling were among the top expressed genes. 

For example 1-aminocyclopropane-1-carboxylate oxidase, which is related to production of ethylene; 

lanC-like protein 2-like for abscissic acid and Tify domain containing protein for jasmonates were 

strongly responsive. Ethylene is one of the major signalling molecules in plant defences in addition to 

others, such as jasmonic acid, salicylic acid and abscisic acid (Yang et al. 2019). Ethylene can act 

synergistically or antagonistically with jasmonic acid in the regulation of both stress and developmental 

responses. The connection between these two signalling pathways has been demonstrated genetically 

to be the transcription factor for the ethylene response (Lorenzo et al. 2003), that was also strongly 

expressed. This suggests that jasmonates, abscisic acid and ethylene are involved in induced 

responses of Pinus radiata under different stresses. The involvement of jasmonates and ethylene in 

induced defence responses has been shown in other pine species (Hudgins and Franceschi 2004). In 

other species, abscisic acid has been shown to be involved in defence responses and has been 

reported to play a negative role in the regulation of the major photosynthesis gene - type 2 light-

harvesting chlorophyll a/b-binding polypeptide (Liu et al. 2013b), which was reduced after treatment in 

this current study.  
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8.5 Conclusion  

There are marked quantitative differences in the needle and bark transcriptome of Pinus radiata both in 

the constitutive and induced states. The transcriptome triggered by bark stripping substantially differed 

from methyl jamonate triggered responses suggesting that some molecular aspects of bark stripping 

may differ from other biotic and abiotic responses, which contributes to the understanding of plant 

molecular responses to diverse stresses. Gene annotation revealed that some of the differentially 

expressed transcripts have putative functions in plant defence signalling, transcription regulation, 

biosyntheses of primary and secondary metabolites and other biological processes. The diversity of 

these genes reflects the complexity of stress responses. The expressed genes provide a basis for 

further identification of candidate genes that affect bark stripping through variation in their expression 

levels while the uncharacterized genes that responded to simulated herbivory and methyl jasmonate 

provide a rich resource for future studies. Gene expression can be used by breeders to exploit 

phenotype variability among individuals within or between populations.  It also remains to be tested 

whether variations in the transcript levels, particularly the differentially expressed components in 

reponse to the artificial stress treatments can be linked to the susceptibility classes identified in the field 

(e.g Chapter 4) and whether they are heritable. 
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Chapter 9: General discussion 

 

This thesis examined the quantitative and molecular genetic-based variation in bark stripping of P. 

radiata by marsupial herbivores and the mechanistic traits conferring variation in damage. The forestry 

sector is significantly impacted by damage caused by browsing herbivores (Gill et al. 2000; Månsson 

and Jarnemo 2013; Miller et al. 2014; Smith et al. 2020; Turek et al. 2016) and natural variation in plant 

susceptibility to herbivory (Alfaro et al. 2013; Dimock et al. 1976; Russell 2008) may provide a strategy 

for forest managers to mitigate herbivore impacts in managed plant systems. The results in this thesis 

show that tree genetics influences the amount of bark removed from trees by marsupial herbivores and 

that there are potential opportunities to reduce levels of bark stripping by exploiting natural variation in 

P. radiata susceptibility. A major finding of this study is the significant additive genetic variation in bark 

stripping (Chapter 2) in the current breeding populations of P. radiata, and that plant physical and 

primary and secondary metabolites influence feeding preferences (Chapters 2, 4 and 6), and these can 

be selected for/against to reduce susceptibility. Predictive genomic approaches have also shown to 

increase selection accuracy. These will shorten generation intervals. The genomic approaches as well 

as gene expression may also assist the detection of novel allelic variants and disclose the genomic 

potential of adaptation to herbivory and other biotic and abiotic stresses. 

 

The physical traits include the bark features (presence of rough bark, rough bark height and bark 

thickness) that are more important in older plantations, and the presence of obstructive branches or 

needles on the stem in younger plantations. In both cases, these traits showed significant additive 

variation. The thick bark generally reduces damage of conifers from herbivores as well as pathogens 

with few exceptions (Shibata 1998; Tomlin and Borden 1997). The function of bark thickness may be 

related to the ratio of the outer bark (as the first line of protection) to the inner bark as a source of 

nutrition. A thicker outer bark may suggest a more passive defence function of the bark, as dead tissue 

cannot react against threats, but relies solely on its constitution such as texture and chemical 

composition. On the other hand, a thick inner bark may imply a more dynamic strategy, where the living 

cells play a role in defence by actively responding to the threat (Morris and Jansen 2016). Therefore, 

examination of genetic-based variation of the relative proportion of outer and inner bark, may be 

important to fully understand the importance of bark thickness to the browsing marsupial herbivores. 

The importance of rough bark in reducing bark stripping by the marsupial herbivores contrasts with the 

situation for insect herbivores where smooth bark appears to reduce damage of Pinus trees based on 

the slippery’ hypothesis (Ferrenberg and Mitton 2014). Such contrasts suggest herbivore specific 
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responses to physical traits and are important considerations in the presence of multiple herbivores. In 

Tasmania and other parts of Australia, the phloem-feeding aphid Essigella californica represents a 

potential threat to the productivity of P. radiata plantations (Ivković et al. 2010b; Sasse et al. 2009). 

Sirex noctilio which is still considered the most serious insect problem in radiata pine plantations in 

Australia (Nahrung et al. 2015) appears to prefer rough bark Pinus species (Haavik et al. 2017). Also, 

the relationship of the physical traits with other aspects of production such as timber quality due to 

knots and processing costs due to different bark traits (Murphy and Cown 2015) needs further analysis. 

In these populations, the physical traits explained only some proportion of the genetic variation in bark 

stripping, consistent with chemical traits being another potential mechanism of variation.  

 

Secondary metabolites have been suggested as the major mechanistic link between genetic variation in 

P. radiata and levels of herbivory (Lundborg et al. 2019; Moreira et al. 2012). Indeed, the untargeted 

chemical profiling of experimental plants (Chapter 3) showed that P. radiata harbors high chemical 

diversity within the plant, providing a platform for herbivores to respond. The constitutive and induced 

chemical profiles differ in the needles, bark and roots (Chapter 3) as may be expected according to the 

optimal defence theory (McKey 1974). The constitutive and induced chemistry in the needles and the 

bark of P. radiata and other conifers has been previously studied and similar patterns of allocation of 

secondary compounds have been documented (Lundborg et al. 2019; Moreira et al. 2012). However, 

this is the first report on plant-wide above and below ground chemistry in P. radiata, showing significant 

levels of secondary compounds in the roots. While root chemistry has been less studied in conifers 

(Poopat 2013), this topic has received increased attention in the area of plant–root herbivore 

interactions in non-coniferous systems, as well as plant-soil microbiota interactions (Rasmann and 

Agrawal 2008), where root chemistry influences root herbivores, soil biota as well as above ground 

resistance (Swett and Gordon 2017). In P. radiata and other conifers, root chemistry may be especially 

important with respect to protection against root pathogens which may be a threat, especially to 

seedlings (Reglinski et al. 2009). Currently, the root pathogens are managed by chemical agents 

(Reglinski et al. 2009), however, the enhancement of natural resistance to root pathogens may reduce 

reliance on agrochemicals. In this thesis, the attempts to understand how root chemistry may contribute 

to susceptibility of P. radiata to bark stripping can be inferred from the allocation of compounds, 

including the trade-offs between below ground and above ground chemistry. For example, the 

significant positive correlation of total phenolics between the needles and the roots may suggest that 

the state of phenolic-based defence of the needles can be correlated to the roots. Although the 

correlations of the amounts of compounds between the roots and the aboveground parts were not 

prominent, an understanding that roots have distinct qualitative and quantitative, constitutive and 
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induced chemical profiles relative to the bark and the needles provides a rich information resource for 

future related studies.  

 

This study included an examination of variation in the primary plant compounds and possible 

relationships with plant stress and bark-stripping. When examining conifer defence or susceptibility to 

herbivores, most studies have targeted secondary compounds, and simultaneous examination of 

primary and secondary compounds is rare (Raffa et al. 2017). Primary compounds especially the non-

structural carbohydrates (NSC) that include sugars such as glucose and fructose have been studied in 

P. radiata and other conifers predominantly in relation to different abiotic conditions such as seasonal 

changes or soil properties (Cranswick et al. 1987; Tinus et al. 2000). This is based on the premise that 

NSC storage could be used by trees to cope with stress or alternatively that NSC storage competes 

with growth under stress conditions (Wiley and Helliker 2012). Consistently, the comprehensive 

examination of stressed plants in this study showed that primary compounds were more responsive to 

stress treatments than secondary compounds (Chapter 3). 

 

 A similar pattern was also detected at the molecular level where genes related to primary compounds 

were more strongly expressed following a stressor treatment relative to those related to secondary 

metabolism. Genes with reduced variance of expression in a selected line may reflect the influence of 

selective breeding, which is consistent with the artificial selection that has been ongoing in P. radiata 

(Hughes and Buitenhuis 2010). Genes related to primary compounds metabolism were mostly down-

regulated while those related to catabolism were up-regulated.  

 

As predicted from the initial experiments (Chapter 3), an important finding in this study was that 

variation in sugars influenced the degree of bark-stripping by the marsupial herbivores. Characterising 

the differences between the extreme resistant and susceptible phenotypes indicated that constitutive 

glucose was more important than the other compounds in differentiating the two groups of plants. 

Glucose was also strongly genetically correlated to bark stripping. Although in the induced chemistry, 

the sugars could not separate the resistant and susceptible families, their importance in bark stripping 

was still signalled by their strong reduction in the susceptible but not in the resistant families. This 

indicates that after the initial taste by the animals of the susceptible families, their sugar amounts will 

reduce to the level of the resistant families. So, if sugars strongly determine susceptibility, the 

attractiveness of the susceptible families will be reduced after the first taste which can minimise multiple 

damage. Sugars; being important in determining bark stripping is not trivial since nutrition is the primary 

driver for herbivory and in both P. radiata and non-conifers trees, sugars have been correlated with 
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bark stripping (Kurek et al. 2019; Page et al. 2013). However, this is the first study to demonstrate the 

role of sugars in determining genetic differences in mammalian herbivory in conifers. Available studies 

in non-conifers linking sugars to bark stripping have been undertaken on an ad hoc basis and with 

limited experimental evidence (Kurek et al. 2019; Saint-Andrieux et al. 2009). This study has also 

demonstrated that NSC concentrations are not strictly a passive response to source:sink (Wiley and 

Helliker 2012) but are under genetic control. The reduction in sugars could be related to the increase in 

sugar breakdown as a response to stress treatments shown by the up-regulation of genes like the 

sucrose invertase. It could also be due to repression of photosynthesis that was detected from the 

down regulation of photosynthesis related genes. Therefore, how gene expression links to the resistant 

and susceptible categories will enhance the understanding of the molecular mechanisms involved in 

bark stripping. 

 

In relation to other conifer/herbivore systems, few studies have shown a direct role of sugars in 

herbivory (Clancy 1992), although their indirect roles in signalling in a manner similar to hormones or as 

sources of energy have been more widely researched (Deslauriers et al. 2015; Tauzin and Giardina 

2014; Trouvelot et al. 2014). In other studies, sugars may lead to increased resistance, for example, 

sucrose increased the resistance of Pseudotsuga menziesii trees to western spruce budworm 

(Choristoneura occidentalis) (Clancy 1992). Similarly, in most fungal pathogen–plant systems, a high 

level of sugars in plant tissues enhances plant resistance (Morkunas and Ratajczak 2014). This 

suggests that different sugars can have contrasting roles in different systems. P. radiata is a non-native 

in Australia and the high amount of sugars could be a defence adaptation to pathogens in California, 

the native origin where pathogens were more important than mammal herbivory (Mead 2013). If high 

amounts of sugars promote resistance to pathogens, the selection of trees with less sugars may have 

direct implications on pathogens like Dothistroma needle blight that have been detected in Tasmania 

and other Australian P. radiata plantations (Podger and Wardlaw 1990). The relationship between 

sugars and pathogens is also important since tissues exposed after bark stripping are prone to 

pathogens.  

 

Overall, results from this thesis suggest that selecting and potentially breeding for trees that have lower 

amounts of sugars in the bark may reduce the bark stripping. The potential to reduce sugars through 

selection was signalled by the significant additive genetic variation with moderate pedigree- based 

(ABLUP) narrow- sense heritability estimates (h2 = 0.14 - 0.31). This falls in the range of the traits that 

are targeted for improvement in Pinus radiata e.g. stem straightness and branching (h2 = 0.23 to 0.55), 

DBH (h2 = 0.22 - 0.32) (Gapare et al. 2012), height (h2 = 0.21) (Li et al. 2018) as well as disease 
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resistance (h2 = 0.28–0.48) (Ismael et al. 2020). While the ABLUP estimates were promising, the 

estimates were significantly improved using genomic best linear unbiased predictions (GBLUP) and 

single-step GBLUP (ssGBLUP) by up to 2-fold (Chapter 6). This suggests that genomic-based models 

can increase accuracy of selections. However, sugars appear to accumulate in the bark during winter 

as an adaptive response for conifers to the cold (Bansal and Germino 2009; Ögren et al. 1997), and an 

understanding of the seasonal changes in sugars between the resistant and susceptible families may 

provide a further understanding of the basis on the winter bark stripping. In P. radiata, Cranswick et al. 

(1987) showed existence of seasonal variation of sugars in the needles, bark and roots but how these 

contribute to intraspecific variation in bark stripping is not known.  

 

The positive correlation between prior height and bark stripping in the initial stages of growth is 

however a challenge, where selection for fast growth as a common breeding objective in P. radiata may 

make trees more vulnerable to browsing, especially at early ages. Positive correlation between growth 

and herbivory is a common trend in herbivore studies (King et al. 1997; Mottet et al. 2015; Zas et al. 

2008; Zas et al. 2005). However, in this study further analysis of the relationship between height and 

bark stripping showed that height is not an independent factor but is possibly related to the 

accumulation of sugars or the reduction of secondary metabolites following fast growth (Ferrenberg et 

al. 2015; Kenward et al. 1996). On the other hand, it has also been suggested that fast growing -

susceptible trees should be able to recover more quickly from herbivory damage than slower growing- 

resistant trees (Gianoli and Salgado-Luarte 2017; Wiley and Helliker 2012) - an aspect of tolerance that 

needs further research for P. radiata bark stripping. For commercial P. radiata plantations intended for 

timber production, tolerance will however be less desirable since bark stripping exposes tissues to 

fungal attack with subsequent rotting which reduces timber quality (Cukor et al. 2019). Bark stripping 

may also reduce tolerance to freezing that may be associated with subsequent chemical changes 

(Fedderwitz et al. 2020). 

 

While sugars became a dominant story in this thesis, the importance of constitutive secondary 

compounds- phenolics and sesquiterpenoids was also noted. Total and individual phenolics were also 

important in differentiating the resistant and susceptible families although they increased in the 

susceptible families and were genetically, positively correlated with bark stripping. Phenolics seem to 

be more important when considered as a sum of their individual components in contrast to the sugars 

where individual but not total compounds are more important. Also contrary to the strong reduction 

observed in the sugars, the phenolics responded to stress treatments by mostly increasing their 

amounts. However, the changes in the amount of individual phenolics were not as intense as those 
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observed with the reduction in the sugars. The consistent role of phenolics in defence against 

mammalian herbivores is still not clear as there is contrasting evidence in the literature (Radwan 1972; 

Sunnerheim-Sjöberg and Hämäläinen 1992). However, the direct and indirect roles of phenolics in 

constitutive or inducible stress responses, such as cell division, hormonal regulation, photosynthetic 

activity and nutrient mineralization (Bandau et al. 2015; Hammerbacher et al. 2011) have been 

suggested. It is also possible that phenolics may have an attractant rather than a defensive effect, 

especially in low concentrations. Of the terpenes, sesquiterpenes, bicyclogermacrene and an unknown 

sesquiterpenoid alcohol were more important in reducing susceptibility to bark stripping by marsupials 

in contrast to monoterpenes that have been more implicated in conifer susceptibility to bark insect 

herbivores (Raffa and Smalley 1995). For other mammalian herbivores which browse on needles such 

as deer, monoterpenes have been suggested as important deterrents (Elliott and Loudon 1987; Russell 

2008; Vourc'h et al. 2002a), suggesting that defences differ for different herbivores (Korth 2003; Ohse 

et al. 2017). Australian marsupials have evolved to ingest and metabolise a range of dietary terpenes 

and phenols that would be toxic to many other herbivore species (Boyle 1999; El-Merhibi et al. 2007). 

This thesis shows that secondary compounds can also potentially be selected for as they exhibited 

strong additive genetic variation with low-moderate pedigree and genomic based heritability. Previous 

studies indicate that intraspecific variation for secondary metabolites in most plant species is high and 

may be subject to selection (Iason et al. 2011; Moore et al. 2014; O'Reilly-Wapstra et al. 2013b).  

 

Near infrared spectroscopy (NIRS) was used to accurately quantify the amount of compounds in the 

different plant parts, which enabled the chemotyping of a larger number of samples for genetic studies. 

Although NIR spectroscopy is not a new technology,  its use for quantifying secondary compounds in 

trees has not been very common (Couture et al. 2016) being partly due to the scepticism in its ability to 

quantify compounds that often occur in very small quantities. However, this study has shown that high 

accuracy of prediction can be attained even for low quantity metabolites.   Other studies that have 

compared the accuracy of  NIRS and conventional wet chemistry also show very high correlation 

between the two methods (Harris et al. 2018). Therefore, studies focussing on the application of 

phenolics, terpenes, and other secondary metabolites, as well as sugars or fatty acids in areas of stress 

and defence responses, plant physiological, plant extractives among others can be enhanced; taking 

advantage of the cost effectiveness, rapid analysis, recent improvements in the interpretability of NIR 

spectra and wide-applicability to a variety of samples. The work in this thesis was done using benchtop 

spectrometers, however, the flexible instrumentation including  hand-held NIR spectrometers enable 

on-site examination of samples (Yan et al. 2019) making the analysis even faster.  
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In conclusion, based on the extreme less susceptible and more susceptible families, differences in the 

amounts of secondary compounds were very subtle and more positive than negative genetic 

correlations of compounds with bark stripping were observed suggesting that the importance of nutrition 

may outweigh defence in this non-native P. radiata system.  
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Supplementary Table 10: Compounds that were detected in the needles, bark and roots of, in the shade house 

and the field experiments.  ✓=detected. The identifier is used in the text for ease of identification of the 

compound. Compounds labelled “A”, “B”, “C” and “D” are isomers 

 

 
 
 
Identifier 

 Shade house samples 
(Chapters 3 and 5) 
 
Bark     Needles   Roots 

 Field samples 
(Chapters 4 and 6 
 
Bark      Needles  

Monoterpenoids       

1 α-pinene ✓ ✓ ✓ 
 

✓ ✓ 

2 α-terpineol ✓ 
   

✓ ✓ 

3 β-phellandrene ✓ ✓ ✓ 
 

✓ ✓ 

4 β-pinene ✓ ✓ ✓ 
 

✓ ✓ 

5 camphene ✓ ✓ 
  

✓ ✓ 

6 citronellal ✓ 
   

✓ 
 

7 citronellic acid ✓ 
   

✓ ✓ 

8 citronellol ✓ 
   

✓ ✓ 

9 γ-terpinene ✓ 
   

✓ ✓ 

10 limonene ✓ ✓ ✓ 
 

✓ ✓ 

11 linalool ✓ 
   

✓ ✓ 

12 myrtenoic acid     ✓   
  

13 sabinene ✓ ✓ ✓ 
 

✓ ✓ 

14 terpinene-4-ol ✓ 
   

✓ ✓ 

15 terpinolene ✓ 
 

✓ 
 

✓ ✓ 

16 unknown Mol Wt 150 ✓ ✓ 
  

✓ ✓         

 
Sesquiterpenoids 

      

17 bicyclogermacrene ✓ ✓ 
  

✓ ✓ 

18 caryophyllene 
     

✓ 

19 γ-elemene 
     

✓ 

20 trans-farnesol ✓ ✓ 
  

✓ ✓ 

21 unknown sesquiterpenoid 
alcohol 

✓ ✓ 
  

✓ ✓ 

        

 
GC-MS diterpenoids 

      

22 agathadiol ✓ ✓ 
  

✓ ✓ 

23 agatholal ✓ ✓ 
  

✓ ✓ 

24 copalol   ✓     ✓ ✓ 

25 levopimaral ✓ 
 

✓ 
 

✓ 
 

26 methyl dehydroabietate ✓ ✓ ✓ 
 

✓ ✓ 

27 methyl levopimarate ✓ 
 

✓ 
  

✓ 

28 unknown C19H26 ✓ 
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LC-MS diterpenoids 

      

29 dehydroabietic acid ✓ ✓ ✓ 
 

✓ ✓ 

30 unknown diterpene-1 ✓ 
     

31 unknown diterpene-2     ✓   
  

32 unknown diterpene-3 ✓ ✓ ✓ 
 

✓ 
 

33 unknown m/z 109 A ✓ 
 

✓ 
 

✓ ✓ 

34 unknown m/z 109 B ✓ ✓ 
  

✓ ✓ 

35 unknown m/z 121     ✓   
  

36 unknown m/z 134 ✓ 
     

37 unknown m/z 239   ✓ ✓   ✓ ✓ 

38 unknown Mol Wt 272 ✓ 
   

✓ ✓ 

39 unknown C20H30O2 A     ✓   
 

✓ 

40 unknown C20H30O2 B   ✓     
 

✓ 

41 C20H30O2 resin acids ✓ ✓ ✓ 
 

✓ ✓ 

42 unknown m/z 304 A   ✓     ✓ 
 

43 unknown m/z 304 B   ✓     
 

✓ 

44 unknown m/z 304 C ✓ 
     

45 unknown m/z 316 ✓ 
   

✓ 
 

46 unknown C20H30O3    ✓ ✓ ✓ 
 

✓ ✓ 

47 unknown C20H32O3 A  ✓ ✓ ✓ 
 

✓ ✓ 

48 unknown C20H32O3 B    ✓     ✓ ✓ 

49 unknown C20H32O3 C    ✓     
 

✓ 

50 unknown C20H30O4 ✓ ✓ ✓ 
 

✓ ✓ 

51 unknown C20H30O5 ✓ 
 

✓ 
 

✓ 
 

52 unknown C20H30O6 A ✓ 
   

✓ 
 

53 unknown C20H30O6 B   ✓     
 

✓ 

54 unknown C20H30O6 C ✓ 
   

✓ 
 

55 unknown C20H30O6 D 
    

✓ 
 

        

 
phenolics 

      

56 anethole ✓ 
   

✓ ✓ 

57 benzene acetic acid 
    

✓ ✓ 

58 chavicol 
     

✓ 

59 coniferyl alcohol 
    

✓ ✓ 

60 eugenol 
     

✓ 

61 ethyl phenol 
    

✓ 
 

62 ethyl 4-ethoxybenzoate ✓ 
 

✓ 
   

63 4-ethyl guaiacol 
    

✓ 
 

64 isoeugenol 
     

✓ 
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65 methyl eugenol ✓ 
   

✓ 
 

66 p-Menth-1-en-7,8-diol 
    

✓ 
 

67 phenyl ethanol 
    

✓ ✓ 

68 pinosylvin dimethyl ether ✓ 
   

✓ 
 

69 piperitone 
     

✓ 

70 raspberry ketone ✓ ✓ 
  

✓ ✓ 

71 thymol 
    

✓ ✓ 

72 trans-ferulic acid 
    

✓ ✓ 

73 trans-coniferyl alcohol ✓ ✓ 
    

74 vanillin ✓ 
   

✓ ✓ 

75 zingerone 
     

✓         

 
sugars 

      

76 fructose ✓ ✓ ✓ 
 

✓ ✓ 

77 glucose ✓ ✓ ✓ 
 

✓ ✓ 

78 inositol ✓ ✓ ✓ 
 

✓ ✓ 

79 sucrose ✓ 
 

✓ 
 

✓ ✓ 

80 unknown disaccharide A ✓ ✓ ✓ 
   

81 unknown disaccharide B ✓ ✓ ✓ 
  

✓ 

82 unknown monosaccharide ✓ ✓ 
  

✓ 
 

  
       

  fatty acids 
      

83 linoleic acid ✓ ✓ ✓ 
 

✓ ✓ 

84 linolenic acid ✓ ✓ ✓ 
 

✓ ✓ 

85 palmitic acid ✓ ✓ ✓ 
 

✓ ✓ 

  
       

  unknowns 
      

86 unknown m/z 104 ✓ 
   

✓ ✓ 

87 unknown m/z 111     ✓   
  

88 unknown m/z 162 ✓ 
     

89 unknown m/z 272   ✓     
 

✓ 

90 unknown m/z 274 ✓ 
 

✓ 
 

✓ 
 

91 unknown m/z 302   ✓     
  

92 unknown m/z 358   ✓     
 

✓ 

93 unknown m/z 362   ✓     
 

✓ 

94 unknown m/z 406 A ✓ 
 

✓ 
 

✓ 
 

95 unknown m/z 406 B 
    

✓ 
 

96 unknown m/z 740 A ✓ 
     

97 unknown m/z 740 B   ✓     
 

✓ 

98 unknown m/z 770   ✓         
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Richard S, Lapointe G, Rutledge RG, Séguin A (2000) Induction of chalcone synthase expression in 
white spruce by wounding and jasmonate. Plant and Cell Physiology 41, 982-987. 
 
Riley MR, Crider HM (2000) The effect of analyte concentration range on measurement errors 
obtained by NIR spectroscopy. Talanta 52, 473-484. 
 
Rinnan Å, Berg Fvd, Engelsen SB (2009) Review of the most common pre-processing techniques for 
near-infrared spectra. Trends in Analytical Chemistry 28, 1201-1222. 
 
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics 26, 139-140. 



282 
 

 
Roitto M, Rautio P, Markkola A, Julkunen-tiitto R, Varama M, Saravesi K, Tuomi J (2009) Induced 
accumulation of phenolics and sawfly performance in Scots pine in response to previous defoliation. 
Tree Physiology 29, 207-216. 
 
Rönnegård L, Shen X (2016) Genomic prediction and estimation of marker interaction effects. In. ' 
bioRxiv) 
 
Roth M, Hussain A, Cale JA, Erbilgin N (2018) Successful colonization of lodgepole pine trees by 
mountain pine beetle increased monoterpene production and exhausted carbohydrate reserves. 
Journal of Chemical Ecology 44, 209-214. 
 
Rousseeuw PJ, Debruyne M, Engelen S, Hubert M (2006) Robustness and outlier detection in 
chemometrics. Critical Reviews in Analytical Chemistry 36, 221-242. 
 
Rubert-Nason KF, Holeski LM, Couture JJ, Gusse A, Undersander DJ, Lindroth RL (2013) Rapid 
phytochemical analysis of birch (Betula) and poplar (Populus) foliage by near-infrared reflectance 
spectroscopy. Analytical and Bioanalytical Chemistry 405, 1333-1344. 
 
Russell J (2008) Deployment of deer-resistant western redcedar (Thuja plicata). In 'National 
Proceedings: Forest and Conservation Nursery Associations - 2007. (Eds RK Dumroese and LE Riley) 
pp. 149-153. (U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort 
Collins, CO). 
 
Saccenti E, Hoefsloot HCJ, Smilde AK, Westerhuis JA, Hendriks MMWB (2014) Reflections on 
univariate and multivariate analysis of metabolomics data. Metabolomics 10, 361-374. 
 
Saeki Y, Tuda M, Crowley PH (2014) Allocation tradeoffs and life histories: a conceptual and graphical 
framework. Oikos 123, 786-793. 
 
Saeys W, Mouazen AM, Ramon H (2005) Potential for onsite and online analysis of pig manure using 
visible and near infrared reflectance spectroscopy. Biosystems Engineering 91, 393-402. 
 
Saint-Andrieux C, Bonenfant C, Toïgo C, Basille M, Klein F (2009) Factors affecting beech Fagus 
sylvatica bark stripping by red deer Cervus elaphus in a mixed forest. Wildlife Biology 15, 187-197. 
 
Salem MZM, Ali HM, Basalah MO (2014) Essential oils from wood, bark, and needles of Pinus 
roxburghii Sarg. from Alexandria, Egypt: antibacterial and antioxidant activities. BioResources 9, 
7454-7466. 
 
Sampedro L, Moreira X, Llusia J, Peñuelas J, Zas R (2010) Genetics, phosphorus availability, and 
herbivore-derived induction as sources of phenotypic variation of leaf volatile terpenes in a pine 
species. Journal of Experimental Botany 61, 4437-4447. 
 
Sampedro L, Moreira X, Zas R (2011) Costs of constitutive and herbivore-induced chemical defences 
in pine trees emerge only under low nutrient availability. Journal of Ecology 99, 818-827. 
 
Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene 
manipulation for plant breeding. Bioscience, Biotechnology, and Biochemistry 68, 1175-1184. 
 



283 
 

Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY (2011) Extraction, isolation and 
characterization of bioactive compounds from plants' extracts. African Journal of Traditional, 
Complementary, and Alternative Medicines 8, 1-10. 
 
Sasikumar AN, Perez WB, Kinzy TG (2012) The many roles of the eukaryotic elongation factor 1 
complex. WIREs RNA 3, 543-555. 
 
Sasse J, Elms S, Kube P (2009) Genetic resistance in Pinus radiata to defoliation by the pine aphid 
Essigella californica. Australian Forestry 72, 25-31. 
 

Sauvé DG, Cǒté SD (2007) Winter forage selection in white-tailed deer at high density: balsam fir is 
the best of a bad choice. Journal of Wildlife Management 71, 911-914. 
 
Scalerandi E, Flores GA, Palacio M, Defagó MT, Carpinella MC, Valladares G, Bertoni A, Palacios SM 
(2018) Understanding synergistic toxicity of terpenes as insecticides: contribution of metabolic 
detoxification in Musca domestica. Frontiers in Plant Science 9, 1579. 
 
Schimleck LR, Doran JC, Rimbawanto A (2003) Near infrared spectroscopy for cost effective 
screening of foliar oil characteristics in a Melaleuca cajuputi breeding population. Journal of 
Agricultural and Food Chemistry 51, 2433-2437. 
 
Schimleck LR, Evans R, Matheson AC (2002) Estimation of Pinus radiata D. Don clear wood properties 
by near-infrared spectroscopy. Journal of Wood Science 48, 132-137. 
 
Schimleck LR, Yazaki Y (2003) Analysis of Pinus radiata D. Don bark by near infrared spectroscopy. 
Holzforschung 57, 520-526. 
 
Schmidt A, Zeneli G, Hietala AM, Fossdal CG, Krokene P, Christiansen E, Gershenzon J (2005) Induced 
chemical defenses in conifers: biochemical and molecular approaches to studying their function. In 
'Chemical Ecology and Phytochemistry in Forest Ecosystems. Vol. 39. (Ed. JT Romeo) pp. 1-28. 
(Elsevier: Amsterdam). 
 
Schowalter TD (2012) Ecology and management of bark beetles (Coleoptera: Curculionidae: 
Scolytinae) in southern pine forests. Journal of Integrated Pest Management 3, A1-A7. 
 
Schowalter TD (2016) 'Insect Ecology: An Ecosystem Approach.' 4th edn. (Academic Press). 
 
Schulz H, Schrader B, Quilitzsch R, Pfeffer S, Krüger H (2003) Rapid classification of basil chemotypes 
by various vibrational spectroscopy methods. Journal of Agricultural and Food Chemistry 51, 2475-
2481. 
 
Schwachtje J, Baldwin IT (2008) Why does herbivore attack reconfigure primary metabolism? Plant 
Physiology 146, 845-851. 
 
Schwanninger M, Rodrigues JC, Fackler K (2011) A review of band assignments in near infrared 
spectra of wood and wood components. Journal of Near Infrared Spectroscopy 19, 287-308. 
 
Sellés Vidal L, Kelly CL, Mordaka PM, Heap JT (2018) Review of NAD(P)H-dependent oxidoreductases: 
Properties, engineering and application. Biochimica et Biophysica Acta - Proteins and Proteomics 
1866, 327-347. 
 



284 
 

Senior JK, Potts BM, O'Reilly‐Wapstra JM, Bissett A, Wooliver RC, Bailey JK, Glen M, Schweitzer JA 

(2018) Phylogenetic trait conservatism predicts patterns of plant‐soil feedback. Ecosphere 9, 
e02409. 
 
Seybold SJ, Huber DPW, Lee JC, Graves AD, Bohlmann J (2006) Pine monoterpenes and pine bark 
beetles: a marriage of convenience for defense and chemical communication. Phytochemistry 
Reviews 5, 143-178. 
 
Shah J (2005) Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Annual Review 
of Phytopathology 43, 229-260. 
 

Shanmugabalaji V, Grimm B, Kessler F (2020) Characterization of a plastoglobule-localized SOUL4 
heme-binding protein in Arabidopsis thaliana. Frontiers in Plant Science 11. 
 
Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid 
pathway and the role of polyphenols in plants under abiotic stress. Molecules 24, 2452. 
 
Shen X, Alam M, Fikse F, Rönnegård L (2013) A novel generalized ridge regression method for 
quantitative genetics. Genetics 193, 1255-1268. 
 
Shibata Ei (1998) Effects of Japanese cedar inner bark nutritional quality on development of 
Semanotus japonicus (Coleoptera: Cerambycidae). Environmental Entomology 27, 1431-1436. 
 
Shigeto J, Tsutsumi Y (2016) Diverse functions and reactions of class III peroxidases. New Phytologist 
209, 1395-1402. 
 
Shintani DK, Cheng Z, DellaPenna D (2002) The role of 2-methyl-6-phytylbenzoquinone 
methyltransferase in determining tocopherol composition in Synechocystis sp. PCC6803. FEBS Letters 
511, 1-5. 
 
Siesler HW, Ozaki Y (2002) 'Near-infrared spectroscopy: principles, instruments, applications.' (Wiley-
VCH: Weinheim, Germany). 
 
Silen RR, Randall WK, Mandel NL (1986) Estimates of genetic parameters for deer browsing of 
Douglas-fir. Forest Science 32, 178-184. 
 
Singh D, Wang X, Kumar U, Gao L, Noor M, Imtiaz M, Singh RP, Poland J (2019) High-throughput 
phenotyping enabled genetic dissection of crop lodging in wheat. Frontiers in Plant Science 10, 394. 
 
Smith AH, Ratkowsky DA, Wardlaw TJ, Mohammed CL (2020) Ease of access to an alternative food 
source enables wallabies to strip bark in Tasmanian Pinus radiata plantations. Forests 11, 387. 
 
Sniezko RA, Koch J (2017) Breeding trees resistant to insects and diseases: putting theory into 
application. Biological Invasions 19, 3377-3400. 
 
Snyder MA (1992) Selective herbivory by Abert's squirrel mediated by chemical variability in 
ponderosa pine. Ecology 73, 1730-1741. 
 
Snyder MA (1993) Interactions between Abert's squirrel and ponderosa pine: the relationship 
between selective herbivory and host plant fitness. The American Naturalist 141, 866-879. 
 



285 
 

Song H, Zhang J, Zhang Q, Ding X (2019) Using Different Single-Step Strategies to Improve the 
Efficiency of Genomic Prediction on Body Measurement Traits in Pig. Frontiers in genetics 9, 730-
730. 
 
South PF, Walker BJ, Cavanagh AP, Rolland V, Badger M, Ort DR (2017) Bile acid sodium symporter 
BASS6 can transport glycolate and is involved in photorespiratory metabolism in Arabidopsis 
thaliana. The Plant Cell 29, 808-823. 
 
Stackpole DJ, Vaillancourt RE, Alves A, Rodrigues J, Potts BM (2011) Genetic variation in the chemical 
components of Eucalyptus globulus wood. Genes, Genomes, Genetics 1, 151-159. 
 
Stein O, Granot D (2019) An Overview of Sucrose Synthases in Plants. Frontiers in plant science 10, 
95-95. 
 
Stejskal J, Lstibůrek M, Klápště J, Čepl J, El-Kassaby YA (2018) Effect of genomic prediction on 
response to selection in forest tree breeding. Tree Genetics & Genomes 14. 
 
Stival Sena J, Giguère I, Rigault P, Bousquet J, MacKay J (2018) Expansion of the dehydrin gene family 
in the Pinaceae is associated with considerable structural diversity and drought-responsive 
expression. Tree Physiology 38, 442-456. 
 
Stuart BH (2004) 'Infrared spectroscopy: fundamentals and applications.' (John Wiley & Sons, Ltd: 
Chicester, West Sussex, UK). 
 
Stutz RS, Croak BM, Proschogo N, Banks PB, McArthur C (2017) Olfactory and visual plant cues as 
drivers of selective herbivory. Oikos 126, 259-268. 
 
Sun T-p (2011) The molecular mechanism and evolution of the GA–GID1–DELLA signaling module in 
plants. Current Biology 21, R338-R345. 
 
Sunnerheim-Sjöberg K, Hämäläinen M (1992) Multivariate study of moose browsing in relation to 
phenol pattern in pine needles. Journal of Chemical Ecology 18, 659-672. 
 
Suontama M, Klápště J, Telfer E, Graham N, Stovold T, Low C, McKinley R, Dungey H (2018) Efficiency 
of genomic prediction across two Eucalyptus nitens seed orchards with different selection histories. 
Heredity 122, 370-379. 
 
Suontama M, Li Y, Low CB, Dungey HS (2019) Genetic improvement of resistance to cyclaneusma 
needle cast in Pinus radiata. Canadian Journal of Forest Research 49, 128-133. 
 
Swett CL, Gordon TR (2017) Exposure to a pine pathogen enhances growth and disease resistance in 
Pinus radiata seedlings. Forest Pathology 47, e12298. 
 
Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A different 
perspective. Photosynthesis Research 60, 1-28. 
 
Tamura N, Ohara S (2005) Chemical components of hardwood barks stripped by the alien squirrel 
Callosciurus erythraeus in Japan. Journal of Forest Research 10, 429-433. 
 
Tauzin AS, Giardina T (2014) Sucrose and invertases, a part of the plant defense response to the 
biotic stresses. Frontiers in Plant Science 5, 293-293. 



286 
 

 
Telfer E, Graham N, Macdonald L, Li Y, Klápště J, Resende Jr M, Neves LG, Dungey H, Wilcox P (2019) 
A high-density exome capture genotype-by-sequencing panel for forestry breeding in Pinus radiata. 
PLoS One 14. 
 
Telfer E, Graham N, Macdonald L, Sturrock S, Wilcox P, Stanbra L (2018) Approaches to variant 
discovery for conifer transcriptome sequencing. PLoS One 13, e0205835. 
 
Telfer E, Graham N, Stanbra L, Manley T, Wilcox P (2013) Extraction of high purity genomic DNA from 
pine for use in a high-throughput genotyping platform. New Zealand Journal of Forestry Science 43, 
3. 
 
Telford A, Cavers S, Ennos RA, Cottrell JE (2014) Can we protect forests by harnessing variation in 
resistance to pests and pathogens? Forestry 88, 3-12. 
 
Tenhaken R (2015) Cell wall remodeling under abiotic stress. Frontiers in Plant Science 5, 771. 
 
Thistlethwaite FR, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr MU, El-Kassaby YA (2017) Genomic 
prediction accuracies in space and time for height and wood density of Douglas-fir using exome 
capture as the genotyping platform. BMC Genomics 18, 930. 
 
Thistlethwaite FR, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr MU, El-Kassaby YA (2019) Genomic 
selection of juvenile height across a single-generational gap in Douglas-fir. Heredity 122, 848-863. 
 
Tiffin P (2000) Mechanisms of tolerance to herbivore damage: what do we know? Evolutionary 
Ecology 14, 523-536. 
 
Tillich M, Hardel SL, et al. (2009) Chloroplast ribonucleoprotein CP31A is required for editing and 
stability of specific chloroplast mRNAs. Proceedings of the National Academy of Sciences 106, 6002-
6007. 
 
Tinus RW, Burr KE, Atzmon N, Riov J (2000) Relationship between carbohydrate concentration and 
root growth potential in coniferous seedlings from three climates during cold hardening and 
dehardening. Tree Physiology 20, 1097-1104. 
 
Tomlin ES, Antonejevic E, Alfaro RI, Borden JH (2000) Changes in volatile terpene and diterpene resin 
acid composition of resistant and susceptible white spruce leaders exposed to simulated white pine 
weevil damage. Tree Physiology 20, 1087-1095. 
 
Tomlin ES, Borden JH (1997) Thin bark and high density of outer resin ducts: interrelated resistance 
traits in Sitka spruce against the white pine weevil (Coleoptera: Curculionidae). Journal of Economic 
Entomology 90, 235-239. 
 
Tong M, Jiang Y (2016) FK506-binding proteins and their diverse functions. Current Molecular 
Pharmacology 9, 48-65. 
 
Toscano G, Rinnan Å, Pizzi A, Mancini M (2017) The use of near-infrared (NIR) spectroscopy and 
principal component analysis (PCA) to discriminate bark and wood of the most common species of 
the pellet sector. Energy & Fuels 31, 2814-2821. 
 



287 
 

Travers A (2001) DNA-binding proteins. In 'Encyclopedia of Genetics. (Eds S Brenner and JH Miller) 
pp. 541-544. (Academic Press: New York). 
 
Trouvelot S, Héloir M-C, et al. (2014) Carbohydrates in plant immunity and plant protection: roles 
and potential application as foliar sprays. Frontiers in Plant Science 5, 592-592. 
 
Tsuchiya T, Ohta H, Okawa K, Iwamatsu A, Shimada H, Masuda T, Takamiya K-i (1999) Cloning of 
chlorophyllase, the key enzyme in chlorophyll degradation: Finding of a lipase motif and the 
induction by methyl jasmonate. Proceedings of the National Academy of Sciences 96, 15362-15367. 
 
Turek K, Kamler J, Procházka L (2016) The impact of thinning type on bark stripping damage intensity 
caused by red deer (Cervus elaphus L.). Baltic Forestry 22, 246-250. 
 
Tyacke RJ, Contestabile R, Grimm B, Harwood JL, John RA (1995) Reactions of glutamate 
semialdehyde aminotransferase (glutamate-1-semialdehyde 2,1 aminomutase) with vinyl and 
acetylenic substrate analogues analysed by rapid scanning spectrophotometry. Biochemical Journal 
309, 307-313. 
 
Ukrainetz NK, Kang K-Y, Aitken SN, Stoehr M, Mansfield SD (2008) Heritability and phenotypic and 
genetic correlations of coastal Douglas-fir (Pseudotsuga menziesii) wood quality traits. Canadian 
Journal of Forest Research 38, 1536-1546. 
 
Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of 
genotypic variance explained by quantitative trait loci determined from experimental data in maize 
using cross validation and validation with independent samples. Genetics 154, 1839-1849. 
 
Van Damme M, Huibers RP, Elberse J, Van den Ackerveken G (2008) Arabidopsis DMR6 encodes a 
putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy 
mildew. The Plant Journal 54, 785-793. 
 
van der Sluis R, Erasmus E (2016) Xenobiotic/medium chain fatty acid: CoA ligase – a critical review 
on its role in fatty acid metabolism and the detoxification of benzoic acid and aspirin. Expert Opinion 
on Drug Metabolism & Toxicology 12, 1169-1179. 
 
vanAkker L, Alfaro RI, Brockley R (2004) Effects of fertilization on resin canal defences and incidence 
of Pissodes strobi attack in interior spruce. Canadian Journal of Forest Research 34, 855-862. 
 
VanRaden PM (2008) Efficient Methods to Compute Genomic Predictions. Journal of Dairy Science 
91, 4414-4423. 
 
Vasseur F, Fouqueau L, de Vienne D, Nidelet T, Violle C, Weigel D (2019) Nonlinear phenotypic 
variation uncovers the emergence of heterosis in Arabidopsis thaliana. PLoS Biology 17. 
 
Veerman JR, Leday GGR, van de Wiel MA (2019) Estimation of variance components, heritability and 
the ridge penalty in high-dimensional generalized linear models. Communications in Statistics - 
Simulation and Computation, 1-19. 
 
Verbyla KL, Hayes BJ, Bowman PJ, Goddard ME (2009) Accuracy of genomic selection using 
stochastic search variable selection in Australian Holstein Friesian dairy cattle. Genetics Research 91, 
307-311. 
 



288 
 

Verne S, Jaquish B, White R, Ritland C, Ritland K (2011) Global transcriptome analysis of constitutive 
resistance to the white pine weevil in spruce. Genome Biology and Evolution 3, 851-867. 
 
Viana JMS, Faria VR, da Costa e Silva A (2009) Bias in the prediction of genetic gain due to mass and 
half-sib selection in random mating populations. Genetics and Molecular Biology 32, 497-506. 
 
Villamuelas M, Serrano E, et al. (2017) Predicting herbivore faecal nitrogen using a multispecies 
near-infrared reflectance spectroscopy calibration. PLoS One 12, e0176635-e0176635. 
 
Villari C, Faccoli M, Battisti A, Bonello P, Marini L (2014) Testing phenotypic trade-offs in the 
chemical defence strategy of Scots pine under growth-limiting field conditions. Tree Physiology 34, 
919-930. 
 
Vinaixa M, Samino S, Saez I, Duran J, Guinovart JJ, Yanes O (2012) A guideline to univariate statistical 
analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites 2, 775-795. 
 
Vourc'h G, De Garine-Wichatitsky M, Labbé A, Rosolowski D, Martin J-L, Fritz H (2002a) 
Monoterpene effect on feeding choice by deer. Journal of Chemical Ecology 28, 2411-2427. 
 
Vourc'h G, Vila B, Gillon D, Escarré J, Guibal F, Fritz H, Clausen TP, Martin JL (2002b) Disentangling 
the causes of damage variation by deer browsing on young Thuja plicata. Oikos 98, 271-283. 
 
Vourch G, Russell J, Martin J-L (2002) Linking deer browsing and terpene production among genetic 
identities in Chamaecyparis nootkatensis and Thuja plicata (Cupressaceae). Journal of Heredity 93, 
370-376. 
 
Wainhouse D, Staley JT, Jinks R, Morgan G (2009) Growth and defence in young pine and spruce and 
the expression of resistance to a stem-feeding weevil. Oecologia 158, 641. 
 
Walden AR, Walter C, Gardner RC (1999) Genes expressed in Pinus radiata male cones include 
homologs to anther-specific and pathogenesis response genes. Plant Physiology 121, 1103-1116. 
 
Wang D, Guo Y, Wu C, Yang G, Li Y, Zheng C (2008) Genome-wide analysis of CCCH zinc finger family 
in Arabidopsis and rice. BMC Genomics 9, 44. 
 
Wang J, Zhou Z, Zhang Z, Li H, Liu D, Zhang Q, Bradbury PJ, Buckler ES, Zhang Z (2018a) Expanding the 
BLUP alphabet for genomic prediction adaptable to the genetic architectures of complex traits. 
Heredity 121, 648-662. 
 
Wang X, Xu Y, Hu Z, Xu C (2018b) Genomic selection methods for crop improvement: Current status 
and prospects. The Crop Journal 6, 330-340. 
 
Ward AI, White PCL, Smith A, Critchley CH (2004) Modelling the cost of roe deer browsing damage to 
forestry. Forest Ecology and Management 191, 301-310. 
 
Weig A, Franz J, Sauer N, Komor E (1994) Isolation of a family of cDNA clones from Ricinus communis 
L. with close homology to the hexose carriers. Journal of Plant Physiology 143, 178–183. 
 
Welch D, Scott D (1998) Bark-stripping damage by red deer in a Sitka spruce forest in western 
Scotland IV. Survival and performance of wounded trees. Forestry 71, 225-235. 
 



289 
 

Welch D, Staines BW, Scott D, Catt DC (1988) Bark stripping damage by red deer in a Sitka spruce 
forest in western Scotland II. Wound size and position. Forestry 61, 245-254. 
 
Weng Y, Tosh K, Park Y, Fullarton M (2007) Age-related trends in genetic parameters for jack pine 
and their implications for early selection. Silvae Genetica 56, 242-252. 
 
Westbrook JW, Walker AR, et al. (2015) Discovering candidate genes that regulate resin canal 
number in Pinus taeda stems by integrating genetic analysis across environments, ages, and 
populations. New Phytologist 205, 627-641. 
 
Westoby M (1978) What are the biological bases of varied diets? The American Naturalist 112, 627-
631. 
 
White TCR (2019) The cause of bark stripping of young plantation trees. Annals of Forest Science 76, 
105. 
 
White TW, Adams WT, Neale DB (2007) 'Forest Genetics.' (CABI Publishing: Cambridge, MA). 
 
Whitehill JGA, Bohlmann J (2019) A molecular and genomic reference system for conifer defence 
against insects. Plant, Cell & Environment 42, 2844-2859. 
 
Whitehill JGA, Henderson H, Schuetz M, Skyba O, Yuen MMS, King J, Samuels AL, Mansfield SD, 
Bohlmann J (2016) Histology and cell wall biochemistry of stone cells in the physical defence of 
conifers against insects. Plant, Cell & Environment 39, 1646-1661. 
 
Whitehill JGA, Yuen MMS, Henderson H, Madilao L, Kshatriya K, Bryan J, Jaquish B, Bohlmann J 
(2019) Functions of stone cells and oleoresin terpenes in the conifer defense syndrome. New 
Phytologist 221, 1503-1517. 
 
Wiley E, Helliker B (2012) A re-evaluation of carbon storage in trees lends greater support for carbon 
limitation to growth. New Phytologist 195, 285-289. 
 

Wise MJ, Rausher MD (2013) Evolution of resistance to a multiple‐herbivore community: genetic 
correlations, diffuse coevolution, and constraints on the plant's response to selection. Evolution 67, 
1767-1779. 
 
Wright MN, Ziegler A (2015) ranger: A fast implementation of random forests for high dimensional 
data in C++ and R. Journal of Statistical Software 77, 1508.04409. 
 
Wu C, Pullinen I, Andres S, Kiendler-Scharr A, Kleist E, Wahner A, Wildt J, Mentel TF (2017) 13C 
labelling study of constitutive and stress-induced terpenoide missions from Norway spruce and Scots 
pine. In 'Biogeosciences. '  pp. preprint) 
 
Wu HX, Eldridge KG, Matheson AC, Powell MP, McRae TA (2007) Successful introduction and 
breeding of radiata pine to Australia. In 'Growing Forest Values. Proceedings of ANZIF 2007 
Conference; 3-7 June, 2007; Coffs Harbour, NSW.  pp. 506-517. (Institute of Foresters of Australia 
and New Zealand Institute of Forestry: Canberra). 
 
Xu J, Wang X-y, Guo W-z (2015) The cytochrome P450 superfamily: Key players in plant development 
and defense. Journal of Integrative Agriculture 14, 1673-1686. 
 



290 
 

Yamada Y (1962) Genotype by environment interaction and genetic correlation of the same trait 
under different environments. The Japanese Journal of Genetics 37, 498-509. 
 
Yan H, Xu Y-C, Siesler HW, Han B-X, Zhang G-Z (2019) Hand-Held Near-Infrared Spectroscopy for 
Authentication of Fengdous and Quantitative Analysis of Mulberry Fruits. Frontiers in Plant Science 
10. 
 
Yanchuk AD, Murphy JC, Wallin KF (2008) Evaluation of genetic variation of attack and resistance in 
lodgepole pine in the early stages of a mountain pine beetle outbreak. Tree Genetics & Genomes 4, 
171-180. 
 
Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C (2019) The crosstalks between jasmonic acid and 
other plant hormone signaling highlight the involvement of jasmonic acid as a core component in 
plant response to biotic and abiotic stresses. Frontiers in Plant Science 10, 1349. 
 
Yang Z, Nie G, Pan L, Zhang Y, Huang L, Ma X, Zhang X (2017) Development and validation of near-
infrared spectroscopy for the prediction of forage quality parameters in Lolium multiflorum. PeerJ 5, 
e3867. 
 
Zamora Nasca LB, Relva MA, Núñez MA (2018) Ungulates can control tree invasions: experimental 
evidence from nonnative conifers and sheep herbivory. Biological Invasions 20, 583-591. 
 
Zas R, Björklund N, Nordlander G, Cendán C, Hellqvist C, Sampedro L (2014) Exploiting jasmonate-
induced responses for field protection of conifer seedlings against a major forest pest, Hylobius 
abietis. Forest Ecology and Management 313, 212-223. 
 
Zas R, Björklund N, Sampedro L, Hellqvist C, Karlsson B, Jansson S, Nordlander G (2017) Genetic 
variation in resistance of Norway spruce seedlings to damage by the pine weevil Hylobius abietis. 
Tree Genetics & Genomes 13, 111. 
 
Zas R, Moreira X, Sampedro L (2011) Tolerance and induced resistance in a native and an exotic pine 
species: relevant traits for invasion ecology. Journal of Ecology 99, 1316-1326. 
 
Zas R, Sampedro L, Moreira X, Martíns P (2008) Effect of fertilization and genetic variation on 
susceptibility of Pinus radiata seedlings to Hylobius abietis damage. Canadian Journal of Forest 
Research 38, 63-72. 
 
Zas R, Sampedro L, Prada E, Fernández-López J (2005) Genetic variation of Pinus pinaster Ait. 
seedlings in susceptibility to the pine weevil Hylobius abietis L. Annals of Forest Science 62, 681-688. 
 
Zas R, Solla A, Sampedro L (2007) Variography and kriging allow screening Pinus pinaster resistant to 
Armillaria ostoyae in field conditions. Forestry 80, 201-209. 
 
Zhang S, Jiang J, Luan Q (2016a) Genetic and correlation analysis of oleoresin chemical components 
in slash pine. Genetics and Molecular Research 15, gmr.15038982. 
 
Zhang X, States JS (1991) Selective herbivory of ponderosa pine by Abert squirrels: a re-examination 
of the role of terpenes. Biochemical Systematics and Ecology 19, 111-115. 
 



291 
 

Zhang Y, Smallbone LA, diCenzo GC, Morton R, Finan TM (2016b) Loss of malic enzymes leads to 
metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium 
meliloti. BMC Microbiology 16, 163. 
 
Zhao J, Missihoun TD, Bartels D (2017) The role of Arabidopsis aldehyde dehydrogenase genes in 
response to high temperature and stress combinations. Journal of Experimental Botany 68, 4295-
4308. 
 
Zhou S, Lou Y-R, Tzin V, Jander G (2015) Alteration of plant primary metabolism in response to insect 
herbivory. Plant Physiology 169, 1488-1498. 
 
Zhu Y, Wang H, Peng Q, Tang Y, Xia G, Wu J, Xie D-Y (2015) Functional characterization of an 
anthocyanidin reductase gene from the fibers of upland cotton (Gossypium hirsutum). Planta 241, 
1075-1089. 
 
Zornoza R, Guerrero C, Mataix-Solera J, Scow KM, Arcenegui V, Mataix-Beneyto J (2008) Near 
infrared spectroscopy for determination of various physical, chemical and biochemical properties in 
Mediterranean soils. Soil Biology and Biochemistry 40, 1923-1930. 
 
Zou J, Cates RG (1994) Role of Douglas fir (Pseudotsuga menziesii) carbohydrates in resistance to 
budworm (Choristoneura occidentalis). Journal of Chemical Ecology 20, 395-405. 
 
Zulak KG, Bohlmann J (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. 
Journal of Integrative Plant Biology 52, 86-97. 
 

 


