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Abstract 

Oligodendrocytes produce and wrap an insulating, fatty substance called myelin around axons 

to increase the conduction velocity of action potentials along these axons and to provide them 

with critical metabolic support.  Highly myelinated white matter regions are amongst the first 

to be damaged in Alzheimer’s disease (AD), and early oligodendrocyte damage has been 

detected in transgenic mice carrying human genetic variants associated with the development 

of AD. In diseases such as multiple sclerosis, immature brain cells called oligodendrocyte 

progenitor cells (OPCs) proliferate and differentiate into myelinating oligodendrocytes in an 

attempt to replace oligodendrocytes lost to the disease, restore action potential conduction 

speed and protect neurons from further damage.  However, OPC fate in the early stages of AD-

like pathology is unknown. 

In this thesis, I have shown that the cells of the oligodendrocyte lineage respond differently to 

hyperphosphorylated microtubule-associated protein tau (tau) (Chapter 3) and amyloidosis 

(Chapter 4), two major pathological features of AD, respectively recapitulated in transgenic 

mice by the overexpression in neurons of a human genetic variant of microtubule-associated 

protein tau (MAPT) or the amyloid precursor protein (APP).  Overexpression of MAPT in 

neurons indirectly increased new oligodendrocyte addition throughout the brain; however, this 

was not associated with a change in total oligodendrocyte number, proportion of myelinated 

axons and myelin thickness in MAPT mice compared to WT (Chapter 3).  The OPC response 

to glutamate and GABA was unchanged in pre-symptomatic MAPT mice; however, OPC 

responded more robustly to GABA in early amyloid pathology.  By overexpressing APP in 

neurons and oligodendrocytes throughout life, developmental myelin thickness was increased, 

but amyloid plaque formation was also coincident with an increase in oligodendrogenesis 

between 5 and 6 months of age in APP mice (Chapter 4).  Together, this thesis suggests that 
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oligodendrocyte turnover is an early feature of both tau and amyloid pathology, while myelin 

remodelling only occurs in amyloid pathology, which may result from neurotransmitter or 

excitatory-inhibitory signalling imbalance within the neuronal network.  

My data suggest that OPCs and oligodendrocytes are affected by both tauopathy and 

amyloidosis, which are critical aspects of pathology in people diagnosed with AD.  More 

specifically, my data suggest that oligodendrocytes are particularly susceptible to undergo cell 

death in response to these pathological insults.  The lost oligodendrocytes are replaced by OPCs 

early on, suggesting that early interventions that promote oligodendrocyte survival and 

oligodendrogenesis could be very beneficial for preserving neural circuit function in people 

with AD, and slowing neurodegeneration in other tauopathies.
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Chapter 1: Introduction 

The central nervous system (CNS) includes the brain, spinal cord and optic nerve; and is 

responsible for cognition and executive function.  The CNS is composed of neurons, which are 

the electrically active cells critical for neurotransmission (reviewed by Yuste, 2015); vascular 

cells, which regulate blood flow (reviewed by Mazurek et al., 2017); and three major types of 

glial cells - microglia, astrocytes and oligodendrocytes.  Microglia are critical for maintaining 

brain homeostasis through their role in clearing cellular debris (Ayata et al., 2018; Villani et 

al., 2019) and pruning synapses (Paolicelli et al., 2011).  By contrast, astrocytes ensure brain 

homeostasis through neurotransmitters reuptake (Voutsinos-Porche et al., 2003; Cho et al., 

2018), delivery of nutrients from blood-vessels to the electrically conducting parts of neurons 

known as axons (García-Cáceres et al., 2016) and maintenance of ion balance at the synapse 

(Sibille et al., 2015).  The third glial cell type, the oligodendrocytes, create and wrap a lipid 

and protein rich substance known as myelin around axons, which facilitates their rapid saltatory 

conduction of action potentials (reviewed by Hughes and Appel, 2016).   Small myelinic 

channels in the myelin sheath also allow oligodendrocytes to provide critical metabolic support 

to axons (Fünfschilling et al., 2012; Lee et al., 2012; Meyer et al., 2018).  Each glial cell type 

is critical for CNS function and the dysregulation or loss of these cells has been shown to cause 

or exacerbate a number of pathological conditions.  

 

Oligodendrocyte death and the associated myelin loss, known as demyelination, are key 

pathological feature of multiple sclerosis (Traka et al., 2015; Way et al., 2015), and can also 

be observed in various types of dementia, including frontotemporal dementia (Kovacs et al., 

2008; Zhang et al., 2009) and Alzheimer’s disease (AD: Zhang et al., 2009; Gagyi et al., 2012).  

This thesis will explore the impact that the expression of two human pathological proteins, that 
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are known to result in frontotemporal dementia or AD, have on the behaviour of 

oligodendrocytes and their precursor cells, the oligodendrocyte progenitor cells (OPCs). 

 

1.1. Developmental oligodendrogenesis 

OPCs also known as NG2 (neural / glial antigen 2) glia or polydendrocytes are immature 

precursor cells that give rise to mature myelinating oligodendrocytes in the developing (Zhu et 

al., 2008, 2011) and mature (Dimou et al., 2008; Rivers et al., 2008; Kang et al., 2010; Zhu et 

al., 2011; Young et al., 2013) CNS.  OPC can be identified in situ by their expression of the 

chondroitin sulphate proteoglycan NG2 (Nishiyama et al., 1996), the mitogenic receptor 

platelet-derived growth factor receptor a (PDGFRa; Pringle et al., 1992) and the transcription 

factor OLIG2 (Ligon et al., 2004, 2006).  During mouse development OPCs are produced from 

neural stem cells located in the ventricular zone of the brain (Kessaris et al., 2006) and spinal 

cord (Fu et al., 2002; Masahira et al., 2006).  In the brain, OPCs are generated in three waves: 

the first involves OPC production from neural stem cells located in the medial ganglionic 

eminence at embryonic day 12.5; the second comprises OPC production from the lateral and 

caudal ganglionic eminence at embryonic day 15.5, and the third wave of OPC generation 

occurs after birth, with OPCs being produced from neural stem cells in the ventricular zone of 

the cortex (Kessaris et al., 2006).   

 

Once formed, OPC undergoes symmetric or asymmetric division resulting in two OPCs or an 

OPC and a differentiating oligodendrocyte (Sugiarto et al., 2011; Zhu et al., 2011; Hill et al., 

2014; Boda et al., 2015), or alternatively directly differentiates to produce an oligodendrocyte.  

In rodents, OPCs start to differentiate into mature myelinating oligodendrocytes after birth with 

the peak period of oligodendrogenesis observed between postnatal day (P)7 and P21 in the 

optic nerve (Barres et al., 1992).  OPC production, differentiation and oligodendrocyte 
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maturation in the human CNS follow a similar pattern, with OPCs being observed from 9 weeks 

of gestation; however, they commence differentiation prior to birth (Back et al., 2001; 

Jakovcevski and Zecevic, 2005), with the first myelin sheaths being produced by 

oligodendrocytes at approximately 18 weeks of gestation (Jakovcevski and Zecevic, 2005; 

Jakovcevski et al., 2007, 2009).   

 

OPC differentiation is associated with significant changes in gene transcription (Copray et al., 

2006; Maire et al., 2010; Hornig et al., 2013; Zhu et al., 2014; Figure 1.1).  NG2 and PDGFRa 

expression are downregulated (Zhou et al., 2000, 2001; Lu et al., 2002; Zhou and Anderson, 

2002; Jakovcevski and Zecevic, 2005) as an OPC becomes a premyelinating oligodendrocyte, 

which can be identified by the expression of ectonucleotide pyrophosphatase 

phosphodiesterase 6 (ENPP6; Zhang et al., 2014; Xiao et al., 2016), breast carcinoma amplified 

sequence 1 (BCAS1; Fard et al., 2017) and the transcription factor critical for oligodendrocyte 

maturation, myelin regulatory factor (MyRF; Cahoy et al., 2008; Emery et al., 2009; Bujalka 

et al., 2013; Hornig et al., 2013).  MyRF expression in premyelinating oligodendrocytes 

triggers the expression of myelin proteins leading to their maturation into myelinating 

oligodendrocytes (Emery et al., 2009). 

 

In the developing CNS, cell death allows the removal of unnecessary oligodendrocytes (Barres 

et al., 1992; Trapp et al., 1997).  In the rat optic nerve, cell death peaks in the first 10 days of 

postnatal life with 0.25% of all cells dying, but decreases drastically by P45 (Barres et al., 

1992).  Between P4 and P12, ~15% of all propidium iodide-labelled cells with pyknotic nuclei 

co-labelled with the oligodendrocyte-specific RIP antigen (Berger and Frotscher, 1994; Butt et 

al., 1995; Watanabe et al., 2006), suggesting that a substantial number of oligodendrocytes die 

in the rat optic nerve.  As the RIP antigen is an an intracellular protein that might be digested   
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Figure 1.1. Schematic of OPC differentiation 

OPC can be identified by their expression of the mitogenic receptor PDGFRa and the proteoglycan NG2.  As 

they differentiate into premyelinating oligodendrocytes, the expression of these markers is downregulated, and 

expression of BCAS1, ENPP6, ASPA, MyRF, PLP, MBP and CNP are induced.  As premyelinating 

oligodendrocytes mature into myelinating oligodendrocytes, expression of BCAS1 and ENPP6 is lost, and 

expression of MOG is induced.  All the cells of the oligodendrocyte lineage can be identified by their expression 

of the transcription factors OLIG2 and SOX10.  Figure created with Biorender. 
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rapidly during cell death, it is unlikely to allow the detection of oligodendrocytes in late stages 

of programmed cell death.  To address this, hybridoma cells that secreted antibodies against an 

extracellular oligodendrocyte antigen (galactocerebroside) were injected into the subarachnoid 

space of P2 rats.  This approach allowed the comprehensive and long-lived labelling of these 

cells and revealed that ~91% of cells that were dying in the P5 rat optic nerve were 

oligodendrocytes (Barres et al., 1992).  Furthermore, injection of bromodeoxyuridine (BrdU) 

in the optic nerve at P15 revealed that oligodendrocytes die within 2 to 3 days after being 

generated (Barres et al., 1992).  In the developing rat cerebral cortex, ~20% of premyelinating 

oligodendrocytes undergo cell death between P7 and P21; and by P28 it increases to ~37% 

(Trapp et al., 1997) as premyelinating oligodendrocytes that are not necessary for myelination 

degenerate during development (Barres et al., 1992; Trapp et al., 1997).  However, the majority 

of premyelinating oligodendrocytes undergo further transcriptional and morphological changes 

to become mature myelinating oligodendrocytes (Fitzner et al., 2006; Emery et al., 2009). 

 

As oligodendrocytes differentiate into mature myelinating oligodendrocytes, they extend many 

new cellular processes (Fitzner et al., 2006).  This process is supported by alterations to the 

cytoskeleton (Wilson and Brophy, 1989).  Process outgrowth requires the transport of mRNAs 

that code for the synthesis of myelin-specific proteins such as myelin basic protein (MBP), to 

the cellular extensions (Ainger et al., 1993, 1997; Carson et al., 1997; Smith, 2004).  MBP 

mRNA translocation in oligodendrocytes depends on intact microtubules and kinesins (Carson 

et al., 1997), which require expression of microtubule-associated proteins such as microtubule-

associated protein 2 and microtubule-associated protein tau (tau) to stabilize and organize the 

microtubule network (Al-Bassam et al., 2002; Kadavath et al., 2015; Shigematsu et al., 2018).  

Microtubule-associated protein 2 and tau are expressed by oligodendrocytes in vitro (Müller et 
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al., 1997; Richter-Landsberg and Gorath, 1999) and facilitate oligodendrocyte process 

outgrowth as well as the formation and maintenance of myelin sheaths.   

 

1.2. Myelination 

During the early stages of myelin formation also called myelination or myelinogenesis, 

oligodendrocytes produce a cholesterol-rich membrane (Saher et al., 2005) looped around 

axons that progressively forms a compact multilamellar spiral structure (Aggarwal et al., 2013; 

Snaidero et al., 2014).  Each oligodendrocyte ensheathes multiple selected axon segments 

(Matthews and Duncan, 1971; Chong et al., 2012).  The ensheathment process occurs over a 

brief time window.  For example, ensheathment is completed within 12-18 hours in rat cortical 

cultures (Downes and Mullins, 2014), while oligodendrocytes produce new myelin internodes 

during a period of 5 hours in zebrafish (Czopka et al., 2013).  In zebrafish, a small proportion 

of the myelin sheaths is subsequently rapidly retracted over the following 2 days after which 

oligodendrocyte morphology and myelin sheath number remain stable. 

 

The myelin sheath is composed of various lipids and proteins (Figure 1.2a).  By transmission 

electron microscopy (TEM), the myelin sheath appears to have alternative major dense lines, 

or dark and light layers (reviewed by Simons and Nave, 2016).  Myelin is 40% water and its 

dry mass includes 70% lipid and 30% protein (O’Brien and Sampson, 1965), which form the 

different dark and light layers observed using TEM (Figure 1.2b).  Myelin contains 

cholesterol, phospholipids and glycolipids, and is particularly rich in glycosphingolipids, 

including galactocerebrosides (Raff et al., 1978; Zalc et al., 1981).  MBP and proteolipid 

protein (PLP) represent 30% and 50% of myelin proteins respectively.  Other proteins, such as 

2’,3’-cyclic nucleotide 3’-phosphodiesterase (CNP), myelin-associated glycoprotein (MAG)  
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Figure 1.2. Schematic of myelin structure  

a) Myelin is composed of various lipids and proteins including MBP, PLP, CNP, MOG and MAG.  These proteins 

regulate myelin formation, compaction and maintenance.  b) As myelin sheaths are wrapped around the axon, 

they form concentric myelin layers, and each layer is separated by a major dense line.  Figure partially created 

with Biorender. 
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and myelin oligodendrocyte glycoprotein (MOG) are also present (Scolding et al., 1989; Yin 

et al., 1998; Marques et al., 2016; Snaidero et al., 2017). 

 

Proteins within the myelin membrane regulate myelin sheath compaction and stability, and the 

appropriate compaction of myelin is required for the fast transmission of action potentials as 

well as the ability of oligodendrocytes to offer long-term metabolic support to axons (Gutiérrez 

et al., 1995; Griffiths et al., 1998; Lappe-Siefke et al., 2003).  To provide an example, MBP is 

required for the compaction and maintenance of the myelin sheath (Allinquant et al., 1991; 

Weil et al., 2016), with the MBP gene deleted shiverer mice showing myelin decompaction 

(Allinquant et al., 1991), and MBP loss causing myelin breakdown and ultimately axonal 

degeneration (Weil et al., 2016).  The ratio of CNP to MBP protein is also important, as it 

determines the level of myelin compaction (Snaidero et al., 2017), with CNP counteracting the 

MBP-driven myelin compaction (Snaidero et al., 2017) and allowing oligodendrocyte process 

outgrowth (Lee et al., 2005) and the formation of the axo-myelinic channels necessary for 

axonal support (Lappe-Siefke et al., 2003).  Consequently, mice overexpressing CNP have 

impaired MBP accumulation and reduced myelin compaction (Gravel et al., 1996; Yin et al., 

1997).  PLP is largely required for myelin maintenance, as Plp-deficient mice develop myelin 

decompaction in the optic nerve (Boison and Stoffel, 1994; Klugmann et al., 1997; Rosenbluth 

et al., 2006), which is ultimately associated with axonal mitochondrial dysfunction and axon 

degeneration (Yin et al., 2016a).  Premature oligodendrocyte death observed from P4 in the 

spinal cord, P12 in the optic nerve and P16 in the corpus callosum of jimpy mice expressing a 

plp mutation has been associated with gross myelin deficit observed in these mice (Knapp et 

al., 1986).  Similarly, within 6 months of gene deletion, tamoxifen-inducible Plp-deficient mice 

also show myelin disassembly and outfoldings of the sheath, as well as axonal sprouting and 

spheroid formation in the optic nerve (Lüders et al., 2019).   
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Once generated, oligodendrocytes and their myelin internodes are remarkably stable 

throughout life (Tripathi et al., 2017; Auer et al., 2018; Hill et al., 2018; Hughes et al., 2018).  

For example, in the mouse corpus callosum, ~90% of developmentally born oligodendrocytes 

survive for over 8 months, compared with ~70% in the motor cortex, and ~60% in the spinal 

cord and optic nerve (Tripathi et al., 2017).  While the oligodendrocytes themselves largely 

survived long-term, a subset of myelin internodes was found to extend or retract (Auer et al., 

2018; Hill et al., 2018), indicating that mature myelinating oligodendrocytes may retain some 

level of plasticity.  Indeed the level of myelin plasticity observed in the adult CNS is quite 

significant, as in addition to plastic changes made by existing mature oligodendrocytes, it has 

been demonstrated that new oligodendrocytes are added to the brain of adult rodents (Rivers 

et al., 2008; Young et al., 2013; Hill et al., 2018; Hughes et al., 2018) and humans (Yeung et 

al., 2014) throughout life.   

 

1.3. Oligodendrogenesis occurs in the healthy adult brain 

Following developmental oligodendrogenesis, OPCs are maintained in the adult CNS (Wren 

et al., 1992).  In the rodent brain, OPCs represent 5-8% of all cells (Dawson et al., 2003; Dimou 

et al., 2008; Rivers et al., 2008) and the population is maintained in the brain parenchyma 

through a process of self-renewal (Wren et al., 1992; Menn et al., 2006); however, a small 

number of new OPCs are generated from stem cells in the subventricular zone (Nait-Oumesmar 

et al., 1999; Picard-Riera et al., 2002; Menn et al., 2006).  Like their developmental 

counterparts, adult OPCs express the chondroitin sulphate proteoglycan NG2, the mitogenic 

receptor PDGFRα and the O4 glycolipid antigen, and while they proliferate less frequently, 

and differentiate more slowly (Wolswijk et al., 1989, 1990; Wren et al., 1992; Psachoulia et 

al., 2009), they continue to generate new oligodendrocytes throughout life.  Of the 

premyelinating oligodendrocytes produced in the mouse cortex between ~8-14 months of age, 
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Hughes et al. (2018) demonstrated that only ~22% survived to form mature myelinating 

oligodendrocytes.  These data suggest that more cells are born than are required for 

oligodendrocyte addition.  However, as adult parenchymal OPCs increasingly express 

senescence markers (Kujuro et al., 2010) and show reduced proliferation with increasing age 

(Lasiene et al., 2009; Young et al., 2013), the steady supply of immature premyelinating 

oligodendrocytes is diminished with aging. 

 

1.4. Oligodendrocyte loss with aging and injury 

White and grey matter volumes reduce with aging in human (Giorgio et al., 2010; Gogniat et 

al., 2018), and rhesus monkey brain (Wisco et al., 2008), and this pattern of tissue loss is also 

seen in senescence accelerated mice (Tanaka et al., 2005).  Senescence accelerated mice 

experience oligodendrocyte loss from the hippocampus, but have normal numbers of 

oligodendrocytes in the cerebral cortex and optic nerve at 10 months of age (Tanaka et al., 

2005).  With normal aging, mice experience cortical oligodendrocyte loss from approximately 

2 years of age (Hill et al., 2018).  In aging, increased oxidative stress (Dröge and Schipper, 

2007), neuroinflammation (Mecha et al., 2012) and changes in cytokine production (Chen et 

al., 2008) may stress oligodendrocytes, which have a high metabolic demand, and this may 

render them susceptible to cell death.  However, oligodendrocytes can also switch their energy 

consumption in response to nutrient deprivation to prioritise cell survival (Rone et al., 2016).  

This ability may explain discrepancy between the decreased oligodendrocyte density in mice 

and increased oligodendrocyte population in rhesus monkeys (Peters, 2004) but relatively 

stable oligodendrocyte population in humans during aging (Yeung et al., 2014).  Indeed to 

promote their survival following metabolic stress, human oligodendrocytes have the ability to 

reduce glycolytic ATP production leading to myelin process withdrawal and demyelination 

(Rone et al., 2016). 
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Demyelination is a process inducing the degeneration and loss of myelin sheaths, and is a key 

pathological feature of multiple sclerosis (Haider et al., 2016; Schirmer et al., 2019).  Multiple 

sclerosis is an autoimmune disease in which peripheral immune cells invade the CNS and cause 

myelin loss from discrete regions referred to as lesions.  Lesions develop in the brain, spinal 

cord and optic nerve, and lead to motor and cognitive impairment (Manrique-Hoyos et al., 

2012; Hulst et al., 2013; Sbardella et al., 2013).  People are generally diagnosed with multiple 

sclerosis between 20 and 45 years of age and the disease affects three times as many women 

as men (Evans et al., 2013).  A variety of immunomodulatory drugs can be effective reducing 

immune cell infiltration of the CNS (reviewed by Goldenberg, 2012); however, no treatment 

is currently available to prevent oligodendrocyte death and demyelination or promote 

oligodendrogenesis and remyelination.  

 

1.5. Remyelination is mediated by oligodendrocyte addition to the brain 

Remyelination is the process by which OPCs form new oligodendrocytes that elaborate new 

myelin sheaths on previously demyelinated axons (Franklin et al., 1997; Gensert and Goldman, 

1997; Figure 1.3).  Parenchymal OPCs and OPCs newly formed in the subventricular zone of 

the adult mouse brain successfully produce new oligodendrocytes involved in the spontaneous 

remyelination process following demyelination (Nait-Oumesmar et al., 1999; Menn et al., 

2006; Serwanski et al., 2018).  OPCs from the subventricular zone have been shown to 

remyelinate more efficiently in the short-term, while parenchymal OPCs have been shown to 

produce long-term repair following cuprizone-induced demyelination (Brousse et al., 2015).  

New oligodendrocytes may be added to a lesion site following demyelination through 

migration of neural progenitors from the subventricular zone, which produce OPCs that later 
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Figure 1.3. Schematic of remyelination by new oligodendrocyte addition 

When an oligodendrocyte dies (grey), an OPC or premyelinating oligodendrocyte (green) can contact the 

demyelinated axon and differentiate into a new mature, myelinating oligodendrocyte and wrap new myelin sheaths 

around the axon. Figure created with Biorender. 
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proliferate and differentiate into immature and mature myelinating oligodendrocytes (Xing et 

al., 2014).  Following 4 weeks of cuprizone-induced demyelination in mice, OPC number 

tripled in the corpus callosum, the oligodendrocyte population was replaced within 1 week of 

recovery, and remyelination was completed within 6 weeks (Baxi et al., 2017).  While OPCs 

can differentiate into oligodendrocytes or astrocytes in vitro (Raff et al., 1983) and in vivo (Zhu 

et al., 2007), they preferentially differentiate into oligodendrocytes following induced 

demyelination in the corpus callosum (Nait-Oumesmar et al., 1999) and spinal cord (Kang et 

al., 2010; Tripathi et al., 2010) of transgenic mice.   

 

The myelin formed during remyelination is thinner and shorter than myelin formed during 

development but can still protect axons (Duncan et al., 2017).  Axonal conduction is improved 

by new myelin internode addition as it restores saltatory conduction; however, axonal 

conduction is not as rapid following remyelination as it was prior to demyelination (Brill et al., 

1977; Blakemore and Murray, 1981).  Using TEM, remyelinated axons can be distinguished 

from developmentally myelinated axons (Gledhill and McDonald, 1977; Prineas and Connell, 

1979; Blakemore and Murray, 1981) with the exception of smaller diameter axons (Stidworthy 

et al., 2003).  However, Powers et al. (2013) showed that 6 months after contusion-induced 

partial spinal cord demyelination, remyelinated and developmentally myelinated axons are 

indistinguishable with the exception of the largest diameter axons.   

 

In advanced demyelinating diseases, oligodendrocytes establish contact with axons but fail to 

myelinate, which result in axonal dystrophy, swelling and degeneration (Chang et al., 2002).  

OPCs and premyelinating oligodendrocytes have been identified in demyelinated regions 

(Boyd et al., 2013; Fard et al., 2017) when mature oligodendrocytes are rare (Chang et al., 

2002; Kuhlmann et al., 2008).  For successful remyelination, OPC proliferation, 
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oligodendrocyte differentiation and survival must be promoted.  In the past decade, various 

factors have been identified that can enhance remyelination in vitro and in vivo including the 

neuregulin, neurotrophin-3 and the brain-derived neurotrophic factor, which promote OPC 

proliferation, differentiation and remyelination (Vondran et al., 2011; Lundgaard et al., 2013; 

Wong et al., 2013; McTigue et al., 2018). 

 

Myelin loss is observed in a number of conditions that are not classically thought of as 

demyelinating diseases.  For example, myelin loss has been detected in multiple system atrophy 

(Wakabayashi et al., 1998), amyotrophic lateral sclerosis (Philips et al., 2013), traumatic brain 

injury (Flygt et al., 2013, 2016), perinatal white matter injury (Back and Rosenberg, 2014), 

neuropsychiatric diseases (Tkachev et al., 2003) and other neurodegenerative disorders 

including frontotemporal dementia (Zhang et al., 2009) and AD (Bartzokis et al., 2004; Zhan 

et al., 2014; Dean et al., 2017).  However, the extent of oligodendrocyte loss and replacement 

has been poorly characterised in many of these conditions. 

 

1.6. Alzheimer’s disease 

AD is a neurodegenerative disease and the most common form of dementia.  It is characterized 

by significant brain atrophy (Jack et al., 2010), memory loss and executive function decline 

(Garcia-Alvarez et al., 2019).  Personality and behavioural changes such as enhanced paranoia, 

aggression, delusions, hallucinations, apathy, elevated fear and sleep disturbances are often 

observed in AD patients (McKhann et al., 1984).  Clinically, AD can be partially diagnosed 

using multiple tests and the medical history of each patient but the diagnosis always has to be 

confirmed post-mortem by brain tissue analysis with assessment of amyloid beta (Ab) and tau 

biomarkers in the cerebrospinal fluid (Andreasen et al., 2001).  The formation of amyloid 

plaques (amyloid pathology, accumulated Ab) and neurofibrillary tangles (tau pathology, 
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aggregated tau) were first described in 1906 by German psychiatrist and neurologist Alois 

Alzheimer (translation of original paper by Stelzmann et al., 1995; Graeber and Mehraein, 

1999); and are now known as the main pathological features of AD.  However, more than a 

century after this discovery, the underlying cause of AD in the majority of patients remains 

unclear (reviewed by Selkoe, 2001). 

 

AD patients are generally classified as having familial or sporadic AD depending on the 

presence or absence of an inherited genetic mutation known to precipitate the disease (Haass 

et al., 1995; Lemere et al., 1996; Cruchaga et al., 2012; Jin et al., 2012; Hatami et al., 2017).  

Familial AD has been the main form studied in the past decades while sporadic AD actually 

represents about 99% of all AD cases (Goedert and Spillantini, 2006).  It is not possible to 

produce faithful mouse models of sporadic AD without knowing the precise cause of this 

disease in humans; however, some mouse models have been developed that produce age-

related deficits in memory, that are being used in this context.  For example, high-cholesterol 

diet models were generated to investigate lipid mechanism disorders associated with AD, while 

senescence-accelerated models were developed to define aging implication on AD progression 

(reviewed by Zhang et al., 2020).  None of these models are a true model of sporadic AD, but 

allow instead specific investigation of defective mechanisms observed in human sporadic AD 

cases.  Most research studies instead use mouse models of familial AD, which cannot be used 

to study the cause of sporadic AD, but can be used to gain insight into the molecular and cellular 

changes that are common to both familial and sporadic forms of AD.  It has been established 

that the pathological phenotype produced by both forms of AD is very similar and can often be 

mistaken if the age of the patient is unknown by the neuropathologist studying the case 

(McKhann et al., 1984).  The vast majority of genetic mutations known to cause familial AD 
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are found within the amyloid precursor protein (APP) gene, or genes coding for proteins 

known to alter APP expression and activity (Blauwendraat et al., 2019; Giau et al., 2019). 

 

1.6.1. Amyloid pathology 

Amyloid pathology is mainly characterized by the extracellular aggregation of Ab peptides 

forming amyloid plaques also called senile plaques, which disrupt synapses and cause neuronal 

loss (reviewed by Selkoe and Hardy, 2016; Kashyap et al., 2019).  The Ab peptides result from 

the cleavage of the single transmembrane APP by beta secretase and gamma secretase (Kang 

et al., 1987; Vassar et al., 1999; Takasugi et al., 2003).  The main peptides obtained from this 

cleavage are the Ab40 and Ab42 oligomers (Citron et al., 1996; Qiang et al., 2017).  Ab42 is 

more likely to aggregate and form amyloid plaques while Ab40 is the main form of circulating 

Ab in the plasma, cerebrospinal fluid and brain interstitial fluid (Roher et al., 2009). 

 

The primary physiological function of APP is unclear; however, many roles have been 

proposed, including the facilitation of intracellular and extracellular signalling, gene regulation 

and activity as a trophic factor (reviewed by Dawkins and Small, 2014).  Interestingly, APP 

levels are elevated at sites of axonal damage and in dystrophic neurites around amyloid plaques 

suggesting that physiological APP might participate in synaptic repair and homeostasis (Cras 

et al., 1991; Joachim et al., 1991; Yasuhara et al., 1994).  However, mutations in the APP gene 

can affect the ratio of Ab40/Ab42 and increase the production of Ab42 as well as its aggregation 

in the extracellular milieu in AD (Levy et al., 1990; Citron et al., 1992; Haass et al., 1995; 

Cheng et al., 2004).  The APP gene is located on chromosome 21 and patients with Down 

syndrome (trisomy 21) have an extra copy of the APP gene, which causes an increased risk of 

developing AD (Potter et al., 2016).  Goate et al. (1991) identified the first mutation of the APP 

gene involved in AD as a missense mutation in codon 717 leading to the replacement of a 
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valine by an isoleucine (Val-Ile), this mutation is now known as the London mutation (Goate 

et al., 1991).  At present, only one mutation of the APP gene has been identified as being 

protective against the development of AD (Hashimoto and Matsuoka, 2014) despite the 

identification of numerous pathological mutations in APP and its associated regulators. 

 

Presenilins are transmembrane proteins involved in the cleavage of APP and genetic mutations 

affecting the function of these proteins can impact the ratio of Ab40/Ab42 (Jankowsky et al., 

2004).  Presenilins 1 (PSEN1) and  2 (PSEN2) are subunits of the protease gamma secretase 

and mutations of both PSEN1 and PSEN2 have been associated with an accelerated AD 

phenotype development (Steiner et al., 1999; McMillan et al., 2000; Lou et al., 2017; Giau et 

al., 2019).  Notably, Scheuner et al. (1996) showed that mutations of the PSEN1 gene (on 

chromosome 14) and PSEN2 gene (on chromosome 1) led to the increased cleavage of APP to 

produce more Ab42 and less Ab40 in human plasma, consequently leading to increased amyloid 

plaque formation in the brain.  Jankowsky et al. (2004) showed that decreased Ab40/Ab42 ratio 

following Ab42 increase, and subsequent accelerated amyloid pathology were associated with 

PSEN1 overexpression rather than PSEN1 loss of function. 

 

Various AD associated mutations detected in the APP, PSEN1 and PSEN2 genes have been 

expressed in transgenic mice to study AD progression (reviewed by Elder et al., 2010).  These 

mutations mostly induce an amino acid substitution, which is called a missense mutation.  

Commonly studied APP mutations include the mutant human APP Swedish (K670N, M671L; 

Mullan et al., 1992), Indiana (V717F; Murrell et al., 1991), London (V717I, Goate et al., 1991) 

and Florida (I716V; Eckman et al., 1997) AD mutations.  In addition, common PSEN1 

mutations used include M146L, L286V, L166P and deltaE9; and finally, the main PSEN2 

mutation used is N141I.  By transgenically expressing these pathological mutations, it has been 
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possible to study disease progression and evaluate the effect of Ab production and plaque 

formation on neuronal survival, gliosis, synaptic function and cognitive impairment.   

 

Some of the most commonly used mouse models of amyloid pathology include the J20 (APP 

Swedish and APP Indiana mutations; Mucke et al., 2000), APP/PS1 (APP Swedish, PSEN1 

L166P; Radde et al., 2006), and 5xFAD (APP Swedish, APP Florida, APP London, PSEN1 

M146L and PSEN1 L286V mutations; Oakley et al., 2006) mouse lines.  All these models 

present with different pathological time courses and are influenced by the mutations but also 

the genetic background of the mouse line.  The J20 mouse line expressing a three point 

mutation in the APP gene exhibits cognitive impairment at approximately 4 months of age in 

the radial arm maze (Wright et al., 2013), and which is severe enough to be detected in the 

Morris water maze at 6-7 months of age (Palop et al., 2003).  The cognitive phenotype appears 

prior to amyloid plaque formation (Hong et al., 2016) and reactive gliosis (Wright et al., 2013), 

which are detected from 5-6 months of age.  By contrast the APP/PS1 mice exhibit amyloid 

plaque and gliosis at approximately 1 month of age (Radde et al., 2006), synaptic loss from 2 

months of age (Bittner et al., 2012), and cognitive impairment from 7 months of age in the 

Morris water maze (Serneels et al., 2009).  On a hybrid background (C57BL/6 x SJL), 5xFAD 

mice develop amyloid plaques and gliosis at 2 months of age (Oakley et al., 2006), synaptic 

deficits from 4 months of age and spatial working memory impairment by 4-5 months of age 

in the Y maze, prior to neuronal loss (Oakley et al., 2006; Devi and Ohno, 2010).  On a 

C57BL/6 background,  5xFAD mice still develop amyloid plaques (Richard et al., 2015) and 

gliosis  (Giannoni et al., 2016) at 2 months of age, yet synaptic deficits (Buskila et al., 2013) 

are also observed at 2 months of age, followed by synapse loss (Crowe and Ellis-Davies, 2014) 

and working memory impairment in the cross-maze at 6 months of age and neuronal loss at 12 
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months of age (Jawhar et al., 2012).  Transgenic mice have become precious tools to understand 

AD development and the progression of the amyloid but also the tau pathology. 

 

1.6.2. Tau pathology 

In the healthy brain, tau proteins promote microtubule network integrity (Weingarten et al., 

1975; Qiang et al., 2018).  There are six isoforms of tau, which are encoded by the microtubule-

associated protein tau (MAPT) gene located on chromosome 17 (Neve et al., 1986; Goedert et 

al., 1989).  These six isoforms are divided in two main groups: those with 3 (3R-tau) or 4 (4R-

tau) microtubule binding repeats (Goode et al., 2000; reviewed by Venkatramani and Panda, 

2019).  Tau isoform composition determines the effectiveness of microtubule assembly; 4R-

tau strongly stabilises microtubules and effectively prevents disassembly compared to 3R-tau 

repeats (Panda et al., 2003).  In frontotemporal dementia with parkinsonism-17, MAPT 

mutations shift the 3R:4R ratio, promoting microtubule disassembly (D’Souza et al., 1999).  

The phosphorylation of tau regulates microtubule assembly (Utton et al., 1997) and tau 

hyperphosphorylation leads to microtubule disassembly (Alonso et al., 1994) and the formation 

of neurofibrillary tangles inside neurons (Grundke-Iqbal et al., 1986; Alonso et al., 1996, 

2001), which is a pathological characteristic of tauopathies.  

 

In AD, tau can be found in the brain as toxic oligomers that accumulate into neurofibrillary 

tangles, which are less toxic (D’Orange et al., 2018).  Elevated tau and phosphorylated tau 

levels have been reported in the cerebrospinal fluid of AD patients and those with other 

tauopathies (Arai et al., 1995, 1997).  Khatoon et al. (1992) reported that total tau was four to 

eight-fold higher in the brain of AD patients relative to age-matched controls due to a 

significant increase in hyperphosphorylated tau.  Köpke et al. (1993) reported that 40% of tau 

found in the AD brain was hyperphosphorylated oligomeric tau, which is highly toxic in vitro 
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(Gómez-Ramos et al., 2006).  The oligomeric toxic form of tau can be removed from the 

cerebrospinal fluid by promoting protein aggregation into neurofibrillary tangles, which 

promotes neuronal survival (D’Orange et al., 2018).  Phosphorylation of tau at phosphorylation 

sites Ser262 and Ser214, required for tau detachment from microtubules, protects against its 

aggregation (Schneider et al., 1999).  It has been suggested that neurofibrillary tangles observed 

in neurons are formed to be cleared but this process would be overwhelmed at some stages, 

notably due to tau slower turnover rate following acetylation (Noack et al., 2014).  Tau 

aggregates are mainly found in neurons; however, tau inclusions can also be found in astrocytes 

and oligodendrocytes (Hashimoto et al., 2003; Lin et al., 2003a; Ren et al., 2014).  Clearance 

of abnormal tau aggregates can occur via two main pathways: the ubiquitin-proteasome and 

the autophagy-lysosomal pathways (Krishnamurthy et al., 2011; Leyk et al., 2015; Guo et al., 

2016).  However, phosphorylation and acetylation can lead to the malfunction of these two 

pathways (reviewed by Richter-Landsberg, 2016).   

 

Mutations of the MAPT gene have been discovered and linked to various neurodegenerative 

diseases with AD-like phenotypes; yet, while MAPT genetic risk variants have been described 

in AD (Myers et al., 2005; Laws et al., 2007; Jin et al., 2012; Allen et al., 2014), no mutations 

have been associated with AD pathology (reviewed by Cacace et al., 2016; Blauwendraat et 

al., 2019).  Mutations that induce the hyperphosphorylation of tau have been identified in 

patients with frontotemporal dementia (Bugiani et al., 1999), frontotemporal dementia 

parkinsonism linked to chromosome 17 (Hutton et al., 1998), corticobasal degeneration and 

multiple system atrophy (Spillantini et al., 1998).   

 

The overexpression of missense mutations such as MAPT*P301S (Yoshiyama et al., 2007) or 

MAPT*P301L (Lewis et al., 2000) in transgenic mice have been used to study tau pathology 
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progression.  PS19 transgenic mice overexpress the MAPT*P301S mutation in neurons under 

the control of the prion protein promoter, and exhibit early gliosis and synapse loss at 3 months 

of age followed by cognitive impairment by 6 months of age in the Morris water maze 

(Takeuchi et al., 2011) coincident with the formation of neurofibrillary tangles prior to neuron 

loss (Yoshiyama et al., 2007).  The JNPL3 transgenic mice overexpress MAPT*P301L in 

neurons under the control of the prion protein promoter, and develop neurofibrillary tangles by 

4.5 months, while gliosis and neuronal loss have not been observed prior to 10 months of age 

(Lewis et al., 2000).  When this variant is overexpressed in CamKIIa+ neurons, spatial memory 

impairment (Ramsden et al., 2005; Santacruz et al., 2005) and gliosis (Helboe et al., 2017) are 

observed from 2.5 months of age followed by neurofibrillary tangle formation at 4 months of 

age and subsequent neuron loss (Ramsden et al., 2005; Santacruz et al., 2005).  Surprisingly, 

deletion of the endogenous Mapt in transgenic mice either resulted in motor deficits (Ikegami 

et al., 2000; Lei et al., 2012; Morris et al., 2013), or produced no overt motor and cognitive 

deficits (Van Hummel et al., 2016; Tan et al., 2018). 

 

1.7. Progressive white and grey matter loss lead to cognitive deficit in 

Alzheimer’s disease 

In addition to the two main pathological features, the amyloid and tau pathology, AD is 

characterised by white and grey matter diminution (Defrancesco et al., 2014).  White and grey 

matter loss occur in aging as observed using magnetic resonance imaging (Ge et al., 2002); 

however, brain atrophy is more severe in AD and mostly prevalent in frontal and temporal 

lobes (Van Der Flier et al., 2002) leading to memory impairment (Di Paola et al., 2007; Irish 

et al., 2014; Rémy et al., 2015).  Using magnetic resonance imaging, it was demonstrated that 

first brain areas affected in AD are the entorhinal cortex and the hippocampus (Du et al., 2001; 

Pennanen et al., 2004), which are two key regions involved in learning and memory (Hyman 
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et al., 1984).  Like grey matter, degenerated white matter was observed in the parietal, frontal 

and temporal lobes of people diagnosed with AD using both diffusion tensor (Zhang et al., 

2009) and T1-weighted (Baron et al., 2001) magnetic resonance imaging, and occurs in early 

AD suggesting it may participate in pathology development (reviewed by Nasrabady et al., 

2018). 

 

White matter damage is found in many brain regions in AD starting in regions defined as late-

myelinating (Stricker et al., 2009; Gao et al., 2011; Benitez et al., 2014) in accordance with the 

retrogenesis model (Reisberg et al., 1999; Brickman et al., 2012).  Loss of white matter occurs 

in the parietal, frontal and temporal regions and affects the corpus callosum tracts (Hampel et 

al., 1998; Dean et al., 2017), uncinate fasciculus tracts and cingulum tracts in AD patients 

(Rose et al., 2000; Zhang et al., 2009).  Using diffusion tensor imaging, Stricker et al. (2009) 

showed white matter loss was more pronounced in late-myelinating fibre tracts including the 

inferior and the superior longitudinal fasciculi fibre pathways compared to early myelinating-

tracts.  Additionally, Benitez et al. (2014) characterized white matter tract metrics using 

diffusional kurtosis imaging and showed a correlation between the decrease in late-myelinating 

tracts integrity (superior and inferior longitudinal fasciculi) and patient semantic verbal fluency 

decline, a cognitive function affected in AD (Benitez et al., 2014).  Moreover, early disruption 

of fronto-hippocampal white matter connectivity initiates episodic memory impairment in 

people diagnosed with AD (Rémy et al., 2015).   

 

White matter degeneration is associated with myelin alterations and oligodendrocyte loss in 

late AD (Ihara et al., 2010; Nielsen et al., 2014; Ota et al., 2019), and oligodendrocytes are 

particularly absent in amyloid plaque vicinity in post-mortem AD brain tissue (Mitew et al., 

2010).  AD-related myelin decrease correlates with increased phosphorylated tau and amyloid 
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levels in late myelinating regions Notably, cholesterol and myelin protein levels, including 

CNP, MBP and PLP, are reduced in the white matter of people with AD, analysed post-mortem 

(Roher et al., 2002).  Additionally, oligodendrocytes have shrunken nuclei (Gagyi et al., 2012), 

and increased DNA damage has been associated with increased oligodendrocyte death (Tse et 

al., 2018). 

 

White matter loss is also observed in transgenic mouse models of AD (reviewed in Table 1.1); 

and is associated with cognitive impairment.  Myelin pathology in transgenic mouse models of 

AD includes the focal loss of myelin from the vicinity of amyloid plaques (Mitew et al., 2010), 

the development of myelin aberrations such as myelin outfoldings (Behrendt et al., 2013), the 

abnormal expression of MBP in the nuclei of oligodendrocytes (Desai et al., 2011), and 

decreased MBP expression (Desai et al., 2010).  White matter pathology often develops prior 

to the onset of cognitive deficits in AD transgenic mouse models (see Table 1.1), and the 

progressive loss of oligodendrocytes and myelin seem to precipitate learning and memory 

impairment. 

 

1.8. Oligodendrocytes contribute to learning and memory 

Cognitive changes in AD have been largely attributed to synaptic deficits and neuronal loss; 

however, it may also be exacerbated by changes in oligodendrogenesis and myelin levels 

(reviewed by Bartzokis, 2011).  Social isolation during rodent development reduces myelin 

levels and impairs working memory (Makinodan et al., 2012; Yang et al., 2017).  Similarly, 

induced-oligodendrocyte loss and demyelination in the rat hippocampus (Xu et al., 2017) or 

mouse prefrontal cortex (Xu et al., 2010) impairs working memory; but preventing cuprizone-

induced demyelination in mice can rescue working memory (Xiao et al., 2008).  Furthermore,  
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Table 1.1. Overview of myelin and oligodendrocyte pathology in commonly used transgenic mouse models of AD.  

Mouse Mutations Myelin and oligodendrocyte pathology Cognition References 
APP/PS1 APPK670N,M671L 

PSEN1L166P 
 

- Myelin aberrations 
- Myelin loss in amyloid plaque core 
- Increased OPC proliferation and differentiation 
à age: 6 months, brain region: cortical grey and white matter 
 

- Spatial learning and memory deficit in 
Morris water maze at 7 months of age 

Behrendt et al., 2013 
Serneels et al., 2009 

APPSwe / 
PSEN1dE9 

APPK670N,M671L  
PSEN1dE9 

- Decreased g-ratio and internode length 
- Increased MBP, NG2 and CNPase relative density 
à age:2 months, brain region: hippocampus 
 
- Downregulation of MBP mRNA (from 3 months, more 
advanced at 6 months) 
- Increase in NG2+ cells 
à age: 6 months, brain region: temporal lobe 
 

- Spatial learning deficit in Morris water 
maze at 12 months of age 
 
 

Wu et al., 2017 
Dong et al., 2018 
Lalonde et al., 2005 

APPSwe / 
PSEN1M146L 

APPK670N,M671L 
PSEN1M146L 
 

- Decreased myelin levels in amyloid plaque vicinity 
à age: 13 months 

- Spatial learning normal at 5-7 months but 
deteriorates by 15-17 months in water maze 
and radial arm maze 
 

Mitew et al., 2010 
Arendash et al., 2001  

 
Tg2576 APPK670N,M671L - Decreased myelin levels in amyloid plaque vicinity 

à age: 13 months 
- Impaired spatial learning and working 
memory develops between 6 to 12 months of 
age 
 
NB: Mice subject to blindness 
 

Mitew et al., 2010 
Hsiao et al., 1996 

3xTG PSEN1M146V 
MAPTP301L 
APPK670N,M671L 

- Myelin abnormalities 
à age: 2 and 6 months, brain region: hippocampus and entorhinal 
cortex 
 
- Decreased myelin level 
- Decreased number of myelinated processes  
- Increased CC1+ oligodendrocytes 
- No change in OLIG2+ cells 
à age: 6 months, brain region: hippocampus (CA1) 
 
- Aberrant expression of MBP within oligodendrocyte nuclei – 
mature oligodendrocytes are non-myelinating. 
à age: 9 months, brain region: entorhinal cortex 

 

- Memory retention deficit from 4 months of 
age in Morris water maze 
 
- Spatial learning deficit from 6 months of 
age in Morris water maze 
 

Desai et al., 2009 
Desai et al., 2010 
Desai et al., 2011 
Billings et al., 2005  
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Table 1.1. Overview of myelin and oligodendrocyte pathology in commonly used transgenic mouse models of AD. (continued)

Mouse Mutations Myelin and oligodendrocyte pathology Cognition References 
5xFAD APPK670N,M671L  

APPI716V 
APPV7171 

PSEN1M146L 
PSEN1L286V 

 

- Myelin aberrations 
- Increased g-ratio due to decreased myelin thickness, and 
progressive decrease of axon calibre with age 
à age: 1, 2, 3 and 5 months, brain region: prelimbic area, 
retrosplenial granular cortex, CA1, entorhinal cortex 

- Spatial learning deficit in Morris Water 
Maze from 1 month of age 
 
- Motor deficits from 12 months of age 
(females) 

Gu et al., 2018 
Chu et al., 2017 
Tang et al., 2016 
O’Leary et al., 2018 
 

PS19 MAPTP301S 

 
Not reported - Increased hyperactivity in open field test, 

Y-maze and elevated plus maze at 6-7 
months of age 
 
- Decreased anxiety-like behaviour in 
elevated plus maze at 6,7 and 10 months of 
age 
 
- Spatial memory retention deficit in Barnes 
Maze and Morris Water Maze from 6 
months of age 
 
- Spatial learning deficit at 10 months of age 
 

Takeuchi et al., 2011 
Dumont et al., 2011 
Chalermpalanupap et al., 
2017. 
 

J20 APPK670N,M671L 

APPV717F 

 

Not reported - Hyperactivity from 2 months of age 
reported in multiple tests (e.g. open field, 
elevated plus maze) 
 
- Decreased anxiety-like behaviour in 
elevated plus maze from 2 months of age 
 
- Spatial learning and memory deficit 
observed in radial arm maze from 4 months 
of age, in Morris water maze from 3-4 
months of age, in Barnes Maze from 5 
months of age 
 

Wright et al., 2013 
Cheng et al., 2007 
Harris et al., 2010 
Cissé et al., 2011 
Murakami et al., 2011 
Sanchez et al., 2012 
Dubal et al., 2015 
Nunes et al., 2015 
Mably et al., 2015 
Mesquita et al., 2015 
Fujikawa et al., 2017 
Flores et al., 2018 
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white matter ultrastructure changes have been reported in humans following complex-motor 

skill training (Scholz et al., 2009; Sampaio-Baptista et al., 2013), and recent evidences 

demonstrate that new oligodendrocyte addition and myelination are required throughout life 

for motor-skill learning (Mckenzie et al., 2014; Xiao et al., 2016). 

 

Learning is the ability to acquire, modify or reinforce new knowledge, behaviours and skills.  

It can be active or passive, associative or non-associative, and involves the acquisition of pure 

data or the formation of an association between, for example, a place and an emotion (reviewed 

by Milner et al., 1998).  Learning stimulates short and long-term memory creation.  Short-term 

memory includes sensory and working memory (Cowan, 2009).  Long-term memory is 

characterized as either declarative/explicit and includes the recollection of facts (semantic 

memory) and events (episodic-like or spatial memory) (Squire and Zola, 1996), or as non-

declarative/implicit and includes the recollection of learned skills (procedural memory) and 

reflexes to an event (classical conditioning) (Milner et al., 1998).  Learning and memory 

processes are associated with measurable changes in brain microstructure. 

 

Learning is associated with ultrastructural changes in grey and white matter regions of the CNS 

in humans (Gaser and Schlaug, 2003; Scholz et al., 2009; Jiang et al., 2016) and rodents 

(Sampaio-Baptista et al., 2013; Mckenzie et al., 2014).  Changes in white matter architecture 

were also described in the healthy human brain in the intraparietal sulcus following juggling 

training (Scholz et al., 2009).  Healthy aged individuals trained in a single (reasoning) or multi-

domain cognitive training (reasoning, memory, visual and motor) twice per week for 12 weeks 

experienced cortical thickness changes in correlation with the type of cognitive task performed 

(Jiang et al., 2016).  For example, improvement in immediate memory was correlated with an 

increase in cortical thickness in the entorhinal cortex following single-domain cognitive 
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training.  Correspondingly, brain structure differences were observed between musicians, non-

professional musicians and non-musician controls proving that experience and training can 

modify the brain structure in a training dependent-manner as grey matter volume correlates 

with training intensity (Gaser and Schlaug, 2003).  Motor-dependent training tasks showed that 

learning is associated with alteration in white and grey matter regions including but not limited 

to corpus callosum, primary motor and somatosensory cortex, which could either be associated 

with myelin, neuronal changes or both.  By performing transgenic lineage tracing of OPCs and 

delivery of 5-ethynyl-2’-deoxyuridine (EdU), Mckenzie et al. (2014) showed that motor skill 

training stimulates OPC proliferation and increases the number of new oligodendrocytes added 

to the adult mouse brain.  Furthermore, rats trained to perform a skilled reaching task 

demonstrated an increase in myelination in the cingulum, external capsule and corpus callosum 

subjacent to the sensorimotor cortex contralateral to the trained limb relative to control groups 

including unskilled reaching and caged controls (Sampaio-Baptista et al., 2013).  Adult 

oligodendrogenesis and myelination are required for learning and memory acquisition, and in 

turn neuronal activity changes occurring during learning regulate new oligodendrocyte 

addition and myelination; however, neuronal activity is altered in AD. 

 

1.9. Neuronal activity changes in Alzheimer’s disease 

Neuronal activity is impeded in AD by neurotransmitters or excitatory-inhibitory signalling 

imbalance leading to Aβ-induced neuronal hyperactivity followed by neuron loss.  Glutamate 

accumulates in the synaptic cleft as transporters fail its reuptake (Masliah et al., 1996; Scott et 

al., 2002; Potier et al., 2010), particularly in close vicinity of amyloid plaques (Hefendehl et 

al., 2016), which overexcite the neuronal network in early AD.  Glutamate-induced 

overactivation becomes toxic and progressively induces synaptic deficits and neuron death in 

late AD (reviewed by Ong et al., 2013).  As a consequence of excitatory-inhibitory signalling 
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imbalance, theta oscillations are boosted in early AD (Montez et al., 2009), while their decrease 

in late AD correlates with cognitive deficit reported by mini-mental state examination (Engels 

et al., 2016).  Alterations of neural oscillations associated with amyloid plaque burden (Mander 

et al., 2015) lead to cognitive deficit (Verret et al., 2012; Bender et al., 2016) and increase the 

risk of epileptic seizures associated with abnormal neuronal activity in people diagnosed with 

AD (Amatniek et al., 2006; reviewed by Kitchigina, 2018).  Nonetheless, rescuing gamma-

aminobutyric acid (GABA) levels in cell cultures (Velasco and Tapia, 2002) and enhancing 

GABAA receptors activity in rodents (Paula-Lima et al., 2005; Brito-Moreira et al., 2011) can 

protect against glutamate-induced neuron damage. 

 

Abnormal neuronal network connectivity and disproportion of excitatory-inhibitory signalling 

(Palop et al., 2007; Busche et al., 2008, 2012; Sun et al., 2009; Verret et al., 2012; Van Groen 

et al., 2014) alter neuron status to hypoactive or hyperactive based on amyloid plaque vicinity 

in AD transgenic mice (Busche et al., 2008), resulting in epileptic-seizures and behavioural 

abnormalities (Palop et al., 2007; Sanchez et al., 2012; Verret et al., 2012).  Neuronal 

hyperactivity has been associated with progressive amyloid accumulation in the brain (Busche 

et al., 2012; Lerdkrai et al., 2018) starting with early hippocampal hyperactivity following 

soluble Aβ accumulation (Busche et al., 2012), while neuronal hypoactivity occurs only after 

amyloid plaque formation (Busche et al., 2012).  By contrast, human MAPT overexpression in 

transgenic mice leads to an increase in hypoactive or silent neurons (Busche et al., 2008), and 

MAPT overexpression overlooks amyloid-induced hyperactivity in mice recapitulating both 

the amyloid and tau pathology leading to an increase in silent neuron population following 

soluble tau accumulation (Busche et al., 2019).  This suggests an early Aβ-induced 

overexcitation of neuronal activity followed by the loss of neuronal function as observed in 

early and late AD, respectively.   
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Soluble Aβ accumulation triggers the loss of white matter integrity in the fimbria/fornix and 

perforant pathways (Van Groen et al., 2014) highly involved in memory processing (Amaral 

et al., 2014, 2018).  Amyloidosis induces astrocytic glutamate release, associated with early 

neuronal hyperactivity and neuronal hypoactivity in advanced AD (reviewed by Findley et al., 

2019), and reduces synaptic density (Talantova et al., 2013).  Glutamate promotes tau 

phosphorylation (Sindou et al., 1994) and tau accumulation reduces dendritic length and 

synapse number (Yin et al., 2016b) leading to neuron hypoactivity and loss.  Neuronal activity 

is regulated by APP and tau accumulation, and can in turn regulate amyloid burden (Bero et 

al., 2011; Zhen et al., 2017) and extracellular tau level released in mice (Yamada et al., 2014) 

consequently worsening AD pathology.  However, as early AD pathology is associated with 

an increase in neuronal activity, this could result in an increased rate of oligodendrocyte 

addition to the brain. 

 

1.10. Neuronal activity promotes new oligodendrocyte addition 

Oligodendrocyte addition and adaptive myelination are promoted by neuronal activity.  

Optogenetic stimulation of layer V projection neurons in the premotor cortex of awake and 

behaving Thy1::ChR2 mice rapidly enhanced OPC proliferation.  Within 4 weeks post-

stimulation oligodendrogenesis and myelin thickness were boosted in the premotor cortex and 

corpus callosum, which was associated with motor performance improvement in the CatWalk 

gait test relative to controls (Gibson et al., 2014).  Similarly, pharmacological increase of 

neuronal activity of some somatosensory axons using h3MDq-DREADD (designer receptor 

exclusively activated by a designer drug) and clozapine-N-oxide injection in the somatosensory 

cortex of Pdgfrα-CreERT2::Tau-mGFP mice led to an increase in PDGFRα+ OPC density, 

PDGFRα+ EdU+ proliferating OPCs, aspartoacylase (ASPA)+ EdU+ newly added 
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oligodendrocytes and an increase in the proportion of green fluorescent protein (GFP)+ 

myelinated axons in the corpus callosum (Mitew et al., 2018).  While electrically active axons 

are preferentially myelinated, a decrease of neuronal activity does not result in oligodendrocyte 

and myelin degeneration but in myelination adjustment.  Overexpression of Kir2.1 to reduce 

neuron excitability in mice did not alter OPC density, proliferation and differentiation but the 

number of GFP+ myelinated axons was decreased in the corpus callosum (Mitew et al., 2018).  

Neuronal activity regulates myelination, and myelination regulates neural synchronicity.  

Overexpression of PLP in PLP-tg mice (Kagawa et al., 1994) result in motor learning 

impairment, reduced oligodendrogenesis and MBP mRNA expression relative to controls 

following motor training (Kato et al., 2019).  Decreased task-related and spontaneous Ca2+ 

transients were observed in PLP-tg mice compared to controls during motor learning 

suggesting an incapacity of myelin to regulate excitatory signalling as parvalbumin-positive 

inhibitory interneurons functioned normally (Kato et al., 2019).  Optogenetic stimulation of 

thalamic cell bodies in PLP-tg mice, 3 weeks post-injection with AAV2/1-Syn-ChR2 (H134R)-

EYFP into the thalamus, increased spike latency, spike volley duration and number of spikes; 

and rescued motor learning during the pull lever task indicating a potential compensation for 

thalamic activity by input adjustment (Kato et al., 2019).  New oligodendrocyte addition and 

myelination are enhanced by neuronal activity and in turn myelination regulates neural 

synchronicity required for learning and memory acquisition but the continuous role of 

oligodendrogenesis in memory maintenance in the healthy CNS and in pathological conditions 

is unknown.   

 

1.11. Amyloidosis affects the cells of the oligodendrocyte lineage 

Human studies suggest that amyloid alters mature oligodendrocyte morphology (Roher et al., 

2002), and in vitro evidences found that Ab peptides are toxic for oligodendrocytes (Xu et al., 
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2001; Horiuchi et al., 2012).  Xu et al. (2001) indicated that Ab40 as well as its truncated 

fragment Ab25-35 led to oligodendrocyte death in cultures obtained from the cortex of P1-2 rats.  

Horiuchi et al. (2012) later showed that Ab1-42 oligomers are cytotoxic for mature myelinating 

oligodendrocytes and inhibit myelin sheaths formation in vitro.  Ab-induced oligodendrocyte 

dysfunction was reported to be increased by PSEN1 mutation, using the 3xTg transgenic mouse 

line (Desai et al., 2011).  Desai et al. (2011) showed that MBP distribution was impaired in 

mature myelinating oligodendrocytes, which consequently were not able to produce myelin 

sheaths.  Increase in MBP degradation and formation of myelin vesicles was observed in the 

periventricular white matter of AD patients using immunohistochemical staining of AD brain 

tissue post-mortem (Zhan et al., 2014), and degraded MBP was found to colocalize with Ab1-

42 peptides in the core of amyloid plaques (Zhan et al., 2015).   

 

The main myelin protein MBP binds to Ab peptides and inhibits Ab fibrils formation (Hoos et 

al., 2009; Liao et al., 2009; Ou-Yang et al., 2015).  Using cell culture, Liao et al. (2009) 

demonstrated that purified human MBP and recombinant human MBP could bind and degrade 

Aβ40 and Aβ42 peptides in vitro.  In addition, using a mouse line expressing the APP Swedish 

mutation (Tg2576), they reported that MBP could degrade assembled fibrillar Aβ in situ.  These 

data are consistent with results reported by Hoos et al. (2009) showing that MBP could interact 

with Aβ peptides and inhibit Aβ fibril formation in vitro.  The N-terminal domain of MBP and 

particularly four residues (K54, R55, G56, and K59) found between residues 54 and 64 of 

MBP1-64 (Kotarba et al., 2013) mediates Ab fibrillar aggregation inhibition (Liao et al., 2010).  

Transgenic mice Tg-MBP1-EGFP overexpressing MBP1-64 in neurons via the Thy1.2 promoter 

crossed with 5xFAD mice (Oakley et al., 2006) presented a decrease in insoluble Ab and 

fibrillar amyloid following a decrease in the size of amyloid plaques rather than a decrease in 

number, which led to an improved spatial memory in the Barnes maze (Ou-Yang et al., 2015). 
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Ab directly interacts with OPCs (NG2 cells) and can affect their morphology. Human NG2 

cells exposed to Ab oligomer or fibril enriched preparation in vitro experienced morphological 

changes and fibrillar Ab1-42 decreased NG2 concentrations (Nielsen et al., 2013).  AD patients 

presented lower cerebrospinal fluid NG2 levels compared to controls that was correlated to 

AD-related biomarkers including Ab, consequently a prolonged exposure to Ab might actually 

be toxic for OPCs (Nielsen et al., 2013).  While decrease in NG2 levels were observed in 

diagnosed AD patients with advanced AD stages, the ratio of NG2 cells in the temporal lobe 

was increased in concomitance with early loss of myelin in the corpus callosum at 6 months of 

age in APPSwe/PSEN1dE9 mice (Dong et al., 2018).  NG2 cell clusters around amyloid 

plaques were observed between 6 and 15 months of age in APPSwe/PSEN1dE9 mice and NG2 

cells cleared Ab42 peptides in OPC cultures derived from Sprague-Dawley rats at P1-2; and Ab 

clearance by NG2 cells occurred via endocytosis and autophagy (Li et al., 2013).  Processes by 

which OPCs can promote homeostasis and remyelination and consequently delay 

neurodegeneration are still unclear.  However, the increase in OPC ratio following 

demyelination suggests that OPCs could promote repair in AD as observed in multiple sclerosis 

(Keirstead et al., 1998; Chang et al., 2000; Girolamo et al., 2010). 

 

Oligodendrocyte and myelin alterations can be rescued in amyloid-like pathology.  In APP/PS1 

mouse model, an increase in total OLIG2+ oligodendrocyte population and the proportion of 

proliferating OLIG2+ cells were observed at 6 and 11 months of age in APP/PS1 mice 

compared to controls (Behrendt et al., 2013).  The increase in OLIG2+ cells corresponded to a 

significant increase in proliferating NG2+ BrdU+ OPCs and GSTπ+ BrdU+ newly differentiated 

oligodendrocytes in cortical grey and white matter at 6 months of age.  The increase in OPC 

proliferation and differentiation was associated with myelin aberration repair between 6 and 9 
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months of age, which was observed by Gallyas impregnation and MAG immunostaining 

(Behrendt et al., 2013).  APP/PS1 mice showed focal myelin loss around amyloid plaques, 

which was previously reported by Mitew et al. (2010) in APPSwe/PSEN1M146L mice and AD 

brain tissue post-mortem.  The amyloid pathology seems to initially increase oligodendrocyte 

addition in rodents; however, a similar effect was not observed in humans.  Nielsen et al. (2013) 

observed a decrease in NG2 immunoreactivity in the molecular layer of the hippocampus in 

post-mortem brain specimens from clinically diagnosed and post-mortem verified AD patients 

compared to non-demented controls (Nielsen et al., 2013).  These findings were in accordance 

with the reported decreased OLIG2+ oligodendrocyte population in grey and white matter of 

the sensory motor cortex, superior temporal gyrus and the mid frontal gyrus in AD brain tissue 

post-mortem (Behrendt et al., 2013).  As brain tissue samples used in human studies were 

obtained from mild to severe AD patients, the decrease in oligodendrocytes may only 

correspond to advanced stages of the disease, consequently the fate of the cells of the 

oligodendrocyte lineage in early AD remains unclear and further investigations are required. 

 

1.12. Tau alterations disturb the cells of the oligodendrocyte lineage 

Tau modifications alter oligodendrocyte differentiation and process outgrowth.  Seiberlich et 

al., (2015) showed that oligodendrocytes lacking tau following siRNA knockdown of MAPT 

in vitro remained in a progenitor state rather than differentiate due to a lack of MBP transport 

from the soma to the processes, which resulted in shorter processes and an incapacity to form 

appropriate contact with neurons to differentiate into oligodendrocytes and form myelin 

internodes.  A transient tau dephosphorylation in oligodendrocytes following hydrogen 

peroxide exposure resulted in a loss of oligodendrocyte cellular processes in OPC cultures 

prepared from primary mixed glial cultures established from rat neonate brains (LoPresti and 

Konat, 2001).  Tau expression and phosphorylation modulate oligodendrocyte differentiation, 



34 
 

process outgrowth and myelination; yet, the fate of oligodendrocytes in presence of 

hyperphosphorylated tau remains unknown. 

 

Overexpression of human MAPT in transgenic mouse models leads to oligodendrocyte and 

myelin loss associated with cognitive and motor impairment.  In transgenic mice 

overexpressing Prnp-MAPT*P301L mutation, motor impairment was associated with 

increased tau levels and dying TUNEL+ and Caspase3+ cells in females and males compared 

to non-transgenic controls (Zehr et al., 2004).  Oligodendrocytes were found to be apoptotic 

while neurons and astrocytes did not colocalized with TUNEL+ and Caspase3+ cells (Zehr et 

al., 2004).  Overexpression of a MAPT*P301L mutation driven in oligodendrocytes by the CNP 

promoter in transgenic mice engendered impaired axonal transport prior to myelin and axon 

degeneration and the appearance of Thioflavin-S+ tau inclusions in oligodendrocytes, 

oligodendrocyte death and motor impairment (Higuchi et al., 2005).  Overexpression of the 

three 3R human isoforms via overexpression of MAPT*P301L mutation, associated with 

frontotemporal dementia parkinsonism linked to the chromosome 17, expressed in neurons, 

astrocytes and oligodendrocytes under the control of the mouse α-tubulin promoter resulted in 

tau inclusions in oligodendrocytes and astrocytes by 6 months of age, myelin and glial 

degeneration and motor deficits by 24-25 months of age.  Significant age-related loss of 

oligodendrocytes in the basal ganglia, cerebellum and brain stem; and loss of myelin associated 

with neuronal loss in the spinal cord were found between 1 and 24 months of age in these mice 

(Higuchi et al., 2002).  The conditional overexpression of MAPT*P301L in CamKIIa+ neurons 

resulted in myelin thinning of myelinated axons from the perforant pathway, a widespread 

myelin damage of myelinated axons from the ammonic path in the para-ventricular alveus near 

the Cornu Ammonis field 2 (CA2) region of the hippocampus; and myelin remodelling in the 

optic nerve with no signs of demyelination but associated with a transient decrease in neuronal 
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excitability at 1 month post induction, which recovered by 6 months post-induction (Jackson 

et al., 2018).  Brain regions can react differently to MAPT overexpression and some areas may 

be prone to oligodendrocyte and myelin replacement in tauopathy. 

 

MAPT overexpression may enhance OPC differentiation.  Following focal lysolecithin-induced 

demyelination of the spinal cord ventral funiculus of 2-months old Thy1.2-MAPTP301S mice, 

OPC density (Sox2+ / OLIG2+ cells per mm2) is maintained within the lesion (Ossola et al., 

2016).  However, mature oligodendrocyte density (Adenomatous polyposis coli (APC)+ / 

OLIG2+ cells per mm2; and PLP+ cells per mm2) and expression of MBP was increased in 

Thy1.2-MAPTP301S mice relative to controls within the lesioned area.  A three-fold increase in 

mature oligodendrocyte density (MBP+ / OLIG2+ cells per mm2) was additionally observed in 

OPC cultures from P10-12 Thy1.2-MAPTP301S mice compared to controls suggesting that OPC 

enhanced ability to proliferate and differentiate was acquired from microenvironment priming 

as OPCs did not directly expressed the MAPT mutation but yet retained their enhanced ability 

in vitro.  Nevertheless, in accordance with previous findings, the interaction of tau with the 

cells of the oligodendrocyte lineage is evident.  However, OPC response to MAPT 

overexpression in early tauopathy such as AD remains unclear. 
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1.13. Hypothesis & Aims 

OPCs generate new oligodendrocytes throughout life in the healthy brain, and can increase 

oligodendrocyte production in response to demyelination to promote myelin replacement and 

maintain neuronal activity.  Myelin loss is observed in late AD, but whether OPCs have the 

ability to increase new oligodendrocyte addition to replace oligodendrocytes and myelin early 

in AD is unclear.  A recent study showed that OPCs produced larger numbers of new 

oligodendrocytes in response to a focal, demyelination injury in the spinal cord of transgenic 

mice that overexpress a dementia-associated pathogenic variant of human MAPT (Ossola et al., 

2016); and that new oligodendrocyte addition can also be enhanced by the overexpression of 

human pathogenic versions of APP and PSEN1 (Behrendt et al., 2013).  However, it is not 

known whether the overexpression of pathogenic MAPT or APP is sufficient to affect cells of 

the oligodendrocyte lineage early in AD development.  I hypothesise that the overexpression 

of pathological human MAPT and APP, primarily in neurons, will be sufficient to induce 

oligodendrocyte damage and that this will result in elevated oligodendrogenesis. 

 

I will evaluate this hypothesis, by achieving the following aims: 

 

Aim 1: To determine whether the overexpression of MAPT has a pathological effect on 

cells of the oligodendrocyte lineage 

I will assess cognitive performances of Prnp-MAPTP301S transgenic mice, that primarily 

overexpress hyperphosphorylated human tau in neurons in the CNS, by performing a series of 

behavioural assessments to ensure that these mice do not experience significant memory 

impairment prior to 6 months of age, in order to define the pre-symptomatic period.  I will then 

use Cre-lox lineage tracing technology to label OPCs and follow their fate over time, 



37 
 

quantifying oligodendrogenesis in the hippocampus, entorhinal cortex and fimbria of control 

and Prnp-MAPTP301S transgenic mice.  I will use histological approaches and transmission 

electron microscopy to determine the impact of any change in oligodendrogenesis on 

myelination in the hippocampus. 

 

Aim 2: To determine whether the overexpression of a human AD-associated variant of 

APP has a pathological effect on cells of the oligodendrocyte lineage 

I will determine the pre-symptomatic period of PDGFb-APPSw,Ind mice, overexpressing human 

APP Swedish and Indiana mutations in neurons and oligodendrocytes, using a battery of 

behavioural assessments.  I will assess PDGFRα+ OPC density in the hippocampus, entorhinal 

cortex and fimbria of PDGFb-APPSw,Ind transgenic mice and WT littermates over time, using 

immunohistochemistry.  I will compare the electrophysiological properties of OPCs in control, 

Prnp-MAPTP301S and PDGFb-APPSw,Ind mice, in order to determine whether amyloid pathology 

influences the membrane properties of these cells or their ability to respond to neurotransmitter 

signalling.  I will use transmission electron microscopy to determine if myelin thickness is 

altered in the hippocampus of PDGFb-APPSw,Ind mice during the pre-symptomatic period. 

Using Cre-lox lineage tracing technology and histological approaches, I will quantify 

oligodendrogenesis in control and PDGFb-APPSw,Ind mice, and determine whether amyloid 

pathology impacts the total number of oligodendrocytes. 

 

This research will provide critical insight into the impact that AD pathology has on cells of the 

oligodendrocyte lineage.  I will particularly study the impact that AD pathology has on these 

cells prior to the onset of behavioural symptoms in order to understand some of the earliest 

cellular changes that underpin neurodegeneration, and identify potential early targets for 

therapeutic intervention.  
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Chapter 2: General methods 

2.1. Transgenic mice 

Male and female mice were housed in individually ventilated cages (Optimice) on a 12h light 

/ dark cycle (07:00-19:00) with food and water available ad libitum.  All animal experiments 

were approved by the Animal Ethics Committee of the University of Tasmania (13741 and 

16151) and carried out in accordance with the Australian code of practice for the care and use 

of animals in science. Details of animal experiments are reported in accordance with the 

ARRIVE guidelines.  Rosa26-YFP Cre-sensitive reporter mice (Srinivas et al., 2001) were 

purchased from the Jackson Laboratory (B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J, stock 

#006148) and backcrossed onto a C57BL/6 background in house for >10 generations.  PDGFb-

APPSw,Ind mice (referred to here as APP mice, but also known as J20 mice; Mucke et al., 2000) 

expressing a three point mutation (Swedish and Indiana) driven in neurons by the platelet 

derived growth factor-beta chain (PDGFb) were purchased from the Jackson Laboratory 

[B6.Cg-Zbtb20Tg(PDGFB-APPSwInd)20Lms/2Mmjax, stock #006293].  Prnp-MAPTP301S 

transgenic mice  (referred to here as MAPT mice, but also known as PS19 mice, Yoshiyama et 

al., 2007), that express a human variant of MAPT driven in neurons by the prion protein 

promoter, were purchased from the Jackson Laboratory (B6;C3-Tg(Prnp-

MAPT*P301S)PS19Vle/J, stock #008169) and backcrossed onto a C57BL/6 background for 

>20 generations.  Pdgfrα-CreERT2 transgenic mice (Rivers et al., 2008) were a kind gift from 

Prof. William D Richardson (University College London, UK).  Pdgfrα–H2BGFP mice 

(Hamilton et al., 2003) were purchased from the Jackson Laboratory (B6.129S4-

Pdgfratm11(EGFP)Sor/J, stock # 007669).  Mice were maintained on a C57BL/6 background 

and bred to generate experimental mice that were heterozygous for each transgene.   Mouse 

used for each aim in this study are listed below (Appendix 2. Table 1).   
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We performed cre-lox lineage tracing (Metzger et al., 1995; Leone et al., 2003) to fluorescently 

label adult OPCs and trace their generation of new oligodendrocytes over time.  When 

tamoxifen is delivered to Pdgfra-CreERT2 :: Rosa26-YFP transgenic mice, it binds to a form 

of cre-recombinase that is fused to the estrogen-receptor type II, only in OPCs, causing it to 

translocate to the nucleus.  In the nucleus, Cre recombinase recognises and recombines the 

loxp-sites that flank a stop codon in the Rosa26-YFP transgene, excising the stop codon and 

enabling expression of the yellow fluorescent protein (YFP) reporter.  YFP expression is 

permanently turned on in the OPCs and retained by their progeny (as per Rivers et al., 2008) 

In this system, Cre activation and OPC labelling has been shown to be strictly dependent on 

tamoxifen delivery (Rivers et al., 2008; Clarke et al., 2012; Young et al., 2013).  Mouse lines 

expressing an APP or MAPT mutation were selected due to reported cognitive decline prior to 

amyloid plaque (Palop et al., 2003; Wright et al., 2013) and neurofibrillary tangle (Yoshiyama 

et al., 2007; Takeuchi et al., 2011) formation allowing us to evaluate the effect of early stages 

AD-like pathology on the cells of the oligodendrocyte lineage.  

 

2.2. Genotyping transgenic mice tissue sample 

2.2.1. Genomic DNA extraction from ear clips 

To determine and confirm the genotype of each transgenic mouse, genomic deoxyribonucleic 

acid (DNA) was extracted from a small tissue biopsy.  Mice ear clips or tail samples were 

collected at ~ P30 and post-mortem.  Each sample was sealed in a DNAse free 1.5ml 

microcentrifuge tube and incubated with 250µl of DNA extraction buffer containing 6µl 

Proteinase K (stock solution 20mg/ml) at 55°C overnight on a heat block.  On the next day, 

they were briefly vortexed and centrifuged to avoid cross-contamination.  Subsequently, 6M 

Ammonium Acetate (100µl, Sigma) was added into samples using p200 Barrier Tip for cell 

lysis.  Samples were then vortexed, placed on ice for 15 min and centrifugated for 10 min at 
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13,200 rpm and 4°C to separate cellular debris from the DNA. The supernatant containing the 

DNA was poured into a fresh tube.  Isopropanol (250µL, Sigma) was added into the supernatant 

to precipitate the DNA.  Tubes were vortexed and spun at 13,200 rpm for 3 min at room 

temperature.  The supernatant was quickly poured off and the precipitated DNA was washed 

using 70% ethanol (125µL, Sigma).  Most of ethanol was removed after 3 min centrifugation.  

The DNA pellet was centrifuged for 1 min in the remaining solution, which was then removed.  

50µl of Milli-Q water were added and the DNA pellet resuspended at 55°C for 15 min or 

overnight at room temperature.  The DNA was quantified by spectrophotometry using a 

NanoDrop UV-Vis Spectrophotometer (Thermo Fisher Scientific, Waltham, USA). The DNA 

was then stored at -20°C or used to perform genotyping by polymerase chain reaction (PCR; 

see below). 

 

2.2.2. Amplification by Polymerase Chain Reaction of genomic DNA  

PCR was applied to genotype transgenic mice by a 25µl PCR reaction.  For most transgenes, 

0.5 to 2µl depending on concentration of extracted DNA was used as template in PCR 

reaction together with 12.5µl of GoTaq, 0.5µl of each primer, and 9.5 to 11µl of Milli-Q water 

to complete the 25µl required volume.  For the APP and MAPT transgenes, a Taq DNA 

polymerase with standard Taq (Mg-free) buffer (New England Biolabs) was used and included 

0.1µl of Taq, 2.5µl of standard buffer, 2.0µl of MgCl2, 0.5µl of deoxynucleotide solution mix 

(New England Biolabs), 0.2µl of each primers, and 17.5 to 19µl of Milli-Q water to complete 

the 25µl required volume. The DNA sequence was initially amplified at 94℃ for 4 min then 

for a various number of cycles; depending on the transgene of interest (Appendix 2. Table 2); 

at 94°C for 30 seconds, 57˚C or 62°C for 45 seconds and 72°C for 1 min, followed by 10 min 

at 72°C and hold at 4°C. 
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2.2.3. Gel electrophoresis 

Following PCR, the DNA product was visualized by gel electrophoresis, which separates DNA 

based on its size.  1% and 2% (w/v) agarose gels were made by dissolving agarose powder 

(Biorad) in 1X Tris-Acetate EDTA (TAE) (LifeTechnologies).  The solution was heated in a 

microwave until the powder dissolved.  100mL of molten agarose were added to a gel cast 

containing 1μl of SybrSafe (Invitrogen) for DNA detection.  Once set the gel was transferred 

into a gel tank containing 1X TAE (Life Technologies).  The gel comb was removed, and 15μl 

of PCR product was loaded into each well.  5μl of Hyperladder I (Biorad) was loaded into one 

well as a reference to determine the size of the PCR product.  The gel was run at 100 volts for 

15 to 30 min depending on the gel concentration, 1 to 2 % respectively.  The gel was then 

removed from the gel tank and excited at 470nm using an Image Station Amershamä Imager 

600 (GE Healthcare Life Sciences) and bands were detected with an emission filter set at 

600nm. 

 

2.2.4. Genotyping by light to reveal fluorescence 

To confirm the Histone-GFP transgene expression in Pdgfrα–H2BGFP mice, pups were placed 

under a light after birth (P1-P2) to reveal brain fluorescence prior to skull skin thickening 

(Hamilton et al., 2003).   

 

2.3. Tamoxifen preparation and delivery 

Tamoxifen (Sigma) was dissolved in corn oil (40mg/ml) by sonication (Ultrasonic cleaner FXP 

8M, Unisonics Australia) at 21˚C for 2 hours and administered to adult mice (P60) to activate 

Cre-recombinase and induce expression of yellow fluorescent protein (YFP).  Control, MAPT 

and APP adult mice (P60) carrying the Pdgfrα-CreERT2 and Rosa26-YFP transgenes received 

300mg tamoxifen/kg body weight daily for four consecutive days by oral gavage as previously 
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described (O’Rourke et al., 2016).  Mice were analysed 7, 60, 90 or 120 days after their first 

dose of tamoxifen, and are referred to as P60+7, P60+60, P60+90 and P60+120, respectively.   

 

2.4. Western blot  

Mice were terminally anaesthetized with sodium pentobarbital (i.p.60mg/kg). Toe pinch-

response method was used to determine depth of anaesthesia.  Once mice were unresponsive, 

they were placed onto a shallow tray and a longitudinal incision was made to open the chest; 

the heart was exposed and carefully trimmed.  An incision was made to the mice’s right atrium 

with iris scissors, and mice were transcardially perfused with 0.01M phosphate buffer saline 

(PBS).  The brain was placed inside a coronal brain matrix (Agar Scientific, Essex, UK) and 

scalpel blades placed at Bregma -1.06 and -2.06.  The hippocampi were dissected from this 

brain slice and protein lysates produced in radioimmunoprecipitation assay (RIPA) cell lysis 

buffer (50mM Tris-HCL, 150mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% Sodium 

dodecyl sulfate (SDS) and one phosphatase inhibitor tablet per 10mL in autoclaved MilliQ 

water).  Samples were centrifuged for 10 min at 13,200 rpm and 4˚C before the supernatant 

was collected and stored at -80°C.  Protein quantification by Bradford assay and western 

blotting was performed as previously described (Auderset et al., 2016).  The western gel was 

run for 1 hour at 21˚C and 90 V and 20 min at 165 V and the proteins transferred onto an 

ethanol-activated polyvinylidene fluoride (PVDF) membrane (Biorad) over a 60 min period at 

20 V and 4°C.  Each membrane was placed in blocking solution [5% (w/v) skim milk powder 

in 0.2% Tween-20 in Tris Buffered Saline (TBS-T)] and incubated on the orbital shaker for 1 

hour at 21°C, before being transferred into blocking solution containing primary antibodies 

(Appendix 3. Table 3) and incubated on a rotator overnight at 4°C. The membrane was then 

washed by agitation in TBS-T (3 x 10 min) at 21°C.  The relevant horseradish peroxidase 
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(HRP) conjugated secondary antibodies were diluted in 1% (w/v) skim milk powder in TBS-T 

and applied for 1 hour at 21°C. The membrane was again washed in TBS-T and exposed to 1:1 

Immobilon Western™ HRP Peroxidase Solution (Millipore) and Luminol Reagent (Millipore) 

for visualisation of the protein bands on an Image Station Amershamä Imager 600 (GE 

Healthcare Life Sciences).  

 

Membranes were washed with PBS, TBS-T and a blot stripping buffer (ThermoScientific) and 

incubated in blocking solution for 1 hour before exposure to mouse anti-b-actin (1:1000 in 

blocking solution) for 1 hour at 21˚C. The membrane was washed in TBS-T (3 x 10 min) before 

application of goat anti-mouse HRP (1:10000). The membrane was washed in TBS-T (2 x 8 

min) before band visualisation as describe above. Western blot band intensity was calculated 

by measuring integrated density and normalized to actin protein expression levels. 

 

2.5. Behavioural assessment 

Mice cognitive performance was assessed using a battery of behavioural tests, which involved 

the activation of our brain regions of interest that are highly involved in memory function and 

greatly affected in AD, the hippocampus and the entorhinal cortex.  Behavioural testing was 

carried out over 17 days (Figure 2.1a) for MAPT (Prnp-MAPTP301S) transgenic mice, APP 

(PDGFb- APPSw,Ind) transgenic mice and their wildtype (WT) littermates (C57BL/6 mice) in 

separate cohorts at 60, 90 and 180 days of age.  All behavioural testing was carried out during 

the dark phase of the light-dark cycle.  Mice were moved to the testing room 2 hours prior to 

the light cycle change, and habituated to the room for 3 hours.  All testing was carried out 

within the same 5-hour window of the dark phase.  Sodium lights were used in the room, and 

bright lights were used above the maze as needed.  All trials were video recorded and animal 
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movement tracked using automated tracking software (EthoVision XT 11, Noldus, 

Netherlands).  Males were tested prior to females but the order of testing was otherwise 

randomised between sessions.  All equipment was cleaned with 70% ethanol between trials to 

avoid olfactory cues.  To avoid any flaw due to fear or stress, mice were handled fifteen times 

prior to any behaviour assessment (5 min per day).   

 

2.5.1. Barnes Maze 

First, mice underwent a shortened version of the Barnes maze protocol, adapted from Attar et 

al. (2013) over seventeen days (Figure 2.1b).  On day 1, mice were placed in the brightly lit 

centre (120 lux) of an elevated (30cm above the ground), circular maze (100cm diameter) that 

contained 20 holes evenly spaced around the circumference.  After 1 min, the mice were gently 

directed to an escape box located underneath one of the holes in the circumference and left to 

habituate to the box for 5 min.  On days 2 and 3, the maze was raised to 70cm, and light 

intensity in the centre of the maze increased to 160 lux.  Distinct patterns were placed on each 

wall surrounding the maze, acting as spatial reference points that remained consistent 

throughout all trials. At the start of each trial, each mouse was placed at the centre of the maze 

under a covered start box for 15-30 sec before the box was removed, and the mouse left to 

explore until they found the escape box or 5 min elapsed.  If a mouse did not find the escape 

box prior to the end of trial, it was given direction to the box and allowed to enter it. After 

entering the escape box, each mouse was left for 1 min before being returned to the home cage 

to await the next trial. Mice were trained to learn the location of the escape box across three 

trials per day with an inter-trial interval of 30-45 min. During training, approaching any hole 

that did not lead to the escape box was considered a primary error, and the number of primary 

errors made during a trial was measured as an indicator of learning (reviewed by Gawel et al., 

2019).    
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Figure 2.1. Behavioural testing to evaluate spatial learning, recognition, short- and long-term memory 

a) Each experimental mouse was handled for 5 minutes per day for 15 consecutive days prior to starting behaviour 

testing and cognitive tests were performed in the order shown.  b) The Barnes maze was used to evaluate spatial 

learning, recognition, short-term and long-term memory.  c) The novel object recognition task was performed to 

examine recognition and short-term memory, and the first day of the novel object recognition task was used as an 

open field task to measure activity.  d) The T-maze was performed to evaluate working memory. 
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Short-term and long-term memory were assessed 1-day and 2-weeks after initial training, 

respectively. For each memory probe trial, mice were returned to the maze but with the escape 

box removed and left to explore the maze for 5 min.  The maze was divided into four quadrants 

within the tracking software (EthoVision XT 11) and the quadrant containing the hole that 

previously led to the escape hole was designated the target zone. The proportion of time spent 

within the target zone during the probe trial was measured as an indicator of intact memory for 

the location of the escape box.  

 

2.5.2. Open field and novel object recognition task 

The novel object recognition task was performed over 3 days (Figure 2.1c) to evaluate 

recognition memory and short-term memory.  On day 1, we carried out an open field 

assessment using a protocol adapted from Wang et al. (2013), to assess locomotor and anxiety-

like behaviour.  Each mouse was placed in an open square arena (30cm2, with walls of 20cm 

in height) lit (200 lux) to create a bright centre and dark perimeter, and the speed of movement 

and total distance moved was measured over a 10 min period.  On day 2, the arena was 

uniformly illuminated (50 lux) and contained two identical objects (multi-coloured green and 

blue Lego towers), equidistant from the box edges (7.5cm away from the box edges).  Each 

mouse was left to explore the arena and familiarise themselves with the identical objects for 10 

min.  On Day 3, one of the familiarised objects was replaced by a novel object (a multi-coloured 

green and blue Lego man) that was of similar size and colour, but a different shape and texture. 

Each mouse was returned to the arena and left to explore for 5 min.  The time spent exploring 

each object was recorded and the proportion of time exploring the novel object was calculated 

as an indication of short-term recognition memory.   
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2.5.3. T Maze 

The final test used was the T maze, which was performed over a day (Figure 2.1d).  The T 

maze was used to evaluate mice working memory using a protocol adapted from Deacon and 

Rawlins (2006).  A mouse was placed in the start arm and once they chose to explore the left 

or right arm of the maze, retreat from that arm was blocked for 1 min.  The mouse was then 

returned to the start arm and allowed to make another choice.  This was repeated 10 times.  

Mice naturally exhibit exploratory behaviour and tend to choose the arm not visited in the 

previous trial, therefore, returning to the same arm in successive trials was recorded as an error.     

 

2.6. Tissue perfusion fixation and cryoprotection 

Mice were anaesthetized with sodium pentobarbital (i.p.60mg/kg) and depth of anaesthesia 

testing were performed as described above (see 2.4.).  4% (w/v) paraformaldehyde (PFA) in 

PBS was injected into left ventricle using a perfusion needle.  Once the blood was removed 

and the fixation was finished, the brain was taken out, sectioned coronally (1mm thick sections) 

using a brain matrix, immersion fixed into 4 % PFA at room temperature for 90 min and stored 

in 20% (w/v) sucrose in PBS overnight at 4°C.  The following day, brain sections were 

embedded with Thermofisher™ Cryomatrix™ medium and stored at -80°C until use. 

 

2.7. Immunohistochemistry and amyloid plaque detection 

30µm coronal brain cryosections containing the hippocampus, entorhinal cortex and fimbria 

(Bregma -1.34 to -2.54; Franklin & Paxinos, 2007) were collected and processed as floating 

sections.  Cryosections were incubated for 1 hour at 21°C in blocking solution [10% Fetal Calf 

Serum (FCS) / 0.1% triton x-100 in PBS] before being placed on an orbital shaker overnight at 

4˚C in blocking solution containing primary antibodies (Appendix 3. Table 4).  Sections were 

washed thrice in PBS before being placed on an orbital shaker at 4˚C overnight, in blocking 
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solution containing secondary antibodies, conjugated to Alexa Fluors (Appendix 3. Table 4).  

Cell nuclei were visualised by the inclusion of Hoechst 33342 (Appendix 3. Table 4).  To 

detect amyloid plaques, 40µm coronal brain cryosections were transferred into 0.1% (w/v) 

Thioflavin-S (Sigma) / 60% (v/v) ethanol / 40% (v/v) PBS, and agitated on a shaker for 3 min 

at 21°C.  Sections were de-stained by washing twice in 50% ethanol (v/v) in PBS and thrice in 

PBS.  Floating sections were mounted onto glass slides and the fluorescence preserved by the 

application of fluorescent mounting medium (Dako Australia Pty. Ltd., Campbellfield, 

Australia).   

 

2.8. EdU administration and detection 

EdU (Invitrogen) was administered to P175 mice via their drinking water (0.2 mg/ml, as per 

Young et al., 2013) for 5 consecutive days.  EdU-labelled cells were visualised using the 

AlexaFluor-647 Click-iT EdU kit (Invitrogen).  Briefly, 30µm floating cryosections were 

incubated for 15 min in 0.5% Triton X-100 (v/v) in PBS at room temperature before being 

transferred into the EdU developing cocktail and incubated for 45 min in the dark.  

Cryosections were washed twice in PBS before carrying out immunohistochemistry as 

described above.   

 

2.9. Confocal microscopy 

Confocal images (3µm spacing) were collected from the hippocampus, entorhinal cortex and 

fimbria, using a 20x air, 40x air or 100x oil objective and standard excitation and emission 

filters for 4',6-diamidino-2-phenylindole (DAPI), Fluorescein isothiocyanate (FITC; Alexa 

Fluor-488), Tetramethylrhodamine isothiocyanate (TRITC; Alexa Fluor-568) and Cyanine 5 

(CY5; Alexa Fluor-647).  A minimum of n=3 images were collected per area from each 

hemisphere, across n=3 brain sections and n=3 mice on an Andor Confocal microscope with 
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Nikon Software (Andor Technology Ltd., Belfast, Northern Ireland) or UltraView Spinning 

Disk Confocal microscope with Volocity Software (Perkin Elmer, Waltham, USA).  Brain 

regions of interests were delimited based on the Mouse Brain Atlas (Franklin and Paxinos, 

2007). Measurements to determine cell density, g-ratio and nodes length were performed 

manually using Fiji software (NIH, Washington DC, USA).  All measurements were made 

blind to the genotype and time-point being analysed. 

 

2.10. Electrophysiology 

Control, MAPT and APP mice carrying the Pdgfrα–H2BGFP transgene, in which OPCs 

express GFP, were used for the electrophysiological characterisation of OPCs.  Following 

cervical dislocation, P30 (P30-P35) and P100 (P100-P114) mice were decapitated and their 

brains transferred into ice cold slicing solution (124 mM NaCl, 26 mM NaHCO3, 1 mM 

NaH2PO4, 2.5 mM KCl, 2 mM MgCl2, 2.5 mM CaCl2, 10 mM glucose, and 1 mM Na-

kynurenate) saturated with 95% O2 / 5% CO2.  Horizontal brain slices (300 µm), prepared using 

a VT1200s vibratome (Leica), were incubated at 21°C in slicing solution that lacked Na-

kynurenate.  Whole cell patch clamp recordings were made at 21°C from GFP+ cells situated 

amongst the Schaffer collaterals in Cornu Ammonis field 1 (CA1) of the hippocampus.  

Recordings were made using an Axopatch200B or HEKA patchclamp EPC800 amplifier, 

collected using PClamp9.2 or PClamp10.5 software (Molecular Devices), sampled at a rate of 

50 kHz and filtered at 10 kHz.  The perfusion solution contained 144 mM NaCl, 2.5 mM KCl, 

2.5 mM CaCl2, 10 mM HEPES, 1 mM NaH2PO4 and 10 mM glucose set to pH 7.4 and saturated 

with O2.  Electrodes were prepared from glass capillaries with a resistance of 3-6 MΩ when 

filled with an internal solution containing 130 mM K-gluconate, 4 mM NaCl, 0.5 mM CaCl2, 

10 mM HEPES, 10 mM BAPTA, 4 mM MgATP, 0.5 mM Na2GTP set to pH of 7.2- 7.4, and 

an osmolarity of 290 ± 5 mOsm/kg.  
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Upon breakthrough, resting membrane potential (RMP), capacitance, membrane resistance, 

and the magnitude of the voltage-gated inward (sodium) current, elicited by a voltage step 

from -60 mV to 20 mV, were recorded as previously described (Clarke et al., 2012).  Cells with 

a voltage gated sodium channel current < 60 pA were classified as newly differentiated 

oligodendrocytes (Clarke et al., 2012) and were consequently removed from analysis.  Access 

resistance was measured before and after each recording and was between 12-25.0 MΩ (mean 

19.18 ± 0.42 MΩ).  Data were not included if the access resistance changed by ≥ 20% over the 

course of the recording or exceeded 25 MΩ.  To determine the effect of bath applied 100 µM 

kainate (KA; Abcam), cells were voltage clamped at -60 mV and currents elicited by 200 ms 

voltage steps from -100 to 20 mV (20 mV increments).  To measure the effect of bath-applied 

100 µM GABA (Sigma), cells were voltage clamped at 0 mV and currents elicited by 200 ms 

voltage steps from -80 to +80 mV (20 mV increments).  The average steady state current 

magnitude in the last 50 ms of the voltage step was measured using clampfit 10.5 (molecular 

devices) and the evoked current (current in the presence of drug minus baseline current) 

reported.  After recording the KA- or GABA-evoked current, 6-cyano-7-nitroquinoxaline-2,3-

dione (CNQX; a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/KA receptor 

antagonist, 10 µM, Sigma) or picrotoxin (PTX, GABAA receptor antagonist, 100 µM, Sigma) 

was bath applied for 2 minutes before reapplication of KA or GABA.   

 

2.11. Transmission electron microscopy 

2.11.1. Perfusion fixation and dehydration steps 

Mice were terminally anaesthetised using sodium pentobarbital (i.p. 60mg/kg) and 

transcardially perfused with Karnovsky’s fixative [0.8% (v/v) glutaraldehyde (GA) / 2% (w/v) 

PFA / 0.25mM CaCl2 / 0.5mM MgCl2 in 0.1M sodium-cacodylate buffer].  Brains were sliced 
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into 2mm thick coronal slices using a rodent brain matrix (Agar Scientific, Essex, UK) and 

immersion fixed at 21ºC for 2h, before being stored in 0.1M sodium-cacodylate buffer 

overnight at 4°C.  The stratum lacunosum moleculare of the CA1 of the hippocampus was 

dissected and immersed in 1% osmium tetroxide / 1.5% potassium ferricyanide in 0.065M 

sodium-cacodylate buffer, in the dark, for 2h at 4˚C.  Tissue was washed five times in Milli-Q 

water, before being dehydrated in: 70% ethanol (v/v) in Milli-Q water overnight at 21ºC; 80% 

ethanol (2 x 10 min); 85% ethanol (2 x 10 min); 90% ethanol (2 x 10 min); 95% ethanol (2 x 

10 min) and 100% ethanol (4 x 10 min).  Tissue was embedded by serial exposure to: 100% 

propylene oxide (2 x 5 min); 75% propylene oxide / 25% epon (4h); 67% propylene oxide / 

33% epon (4h); 50% propylene oxide / 50% epon (overnight); 33% propylene oxide / 67% 

epon (4h); 25% propylene oxide / 75% epon (4h), and 100% epon (overnight).  Tissue was 

transferred to fresh 100% epon for 4h before being polymerised at 60˚C for 72h.  Blocks 

containing the samples were stored at room temperature until use. 

 

2.11.2. Sectioning and grid staining 

Embedded sample size was reduced using an ultramicrotome (Ultracut, Leica) to hold the 

sample in position and razor blades to remove excess resin.  Glass-knifes were made using a 

knifemaker (7800 knifemaker, Leica).  Using an ultramicrotome (Reichert Ultracut S, Leica) 

and a glass knife, 1µm sections were cut to polish the samples.  Once the tissue was visible, a 

glass knife with a boat (fixed to the glass knife using nail polish and filled with water) was 

placed on the ultramicrotome to cut and collect floating sections with a perfect loop (Diatome).  

Sections were placed on a slide and stained with toluidine blue for 30s on a heat plate at 60˚C 

to locate the region of interest visualised with an optical microscope (Zeiss).  The glass knife 

was then replaced with a diamond knife (Diatome) and ultrathin floating sections (70nm thick) 

were cut and similarly collected with a perfect loop.  Ultrathin sections were placed on a gold 
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grid with formvar (ProSciTech).  The next day, sections were stained on the grid with 

Reynolds’ stain [Reynolds, 1963; lead citrate made from lead nitrate (Sigma) and trisodium 

citrate dihydrate (Merck)] and 4% uranyl acetate (filtered, Serva) in 50% ethanol to enhance 

the contrast. 

 

2.11.3. Imaging 

Electron micrographs of the stratum lacunosum moleculare were collected using a HT7700 

(Hitachi) transmission electron microscope.  Axons were identified based on their microtubule 

organisation (reviewed by Stassart et al., 2018) and individual myelin lamella (wrap) by the 

presence of major dense lines (reviewed by Simons & Nave, 2016).  The g-ratio was measured 

for a minimum of 95 myelinated axons per mouse, and the number of myelin wraps for a 

minimum of 27 myelinated axons per mouse.  Quantification was performed by an 

experimenter blind to genotype for n=3-4 mice per group. 

 

2.12. Statistical analyses  

Statistical analyses were performed using GraphPad Prism 8.0 (La Jolla CA, USA).  The 

distribution of each data set was evaluated to determine whether the data were normally 

distributed using the D’Agostino & Pearson normality test or Shapiro-Wilk normality test 

where n ≥ 5.  Data that were normally distributed were analysed by a parametric test [one-way 

analysis of variance (ANOVA) or two-way ANOVA for groups comparison with a Bonferroni 

post-hoc test], and data that were not normally distributed were analysed using a non-

parametric text [Mann-Whitney U test or Kolmogorov-Smirnoff test].  For experiments where 

n=3, a normal distribution was assumed, and data were analysed using an unpaired two-tailed 

t-test.  Survival curve comparisons were performed using a Log-Rank (Mantel-Cox) test.  
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Statistical significance was established as p<0.05.  Statistical details are reported in 

corresponding figure legend and individual data points are presented on each graph.  

Behavioural and electrophysiological data are presented as mean ± standard error of the mean 

(SEM).  Western blot, immunohistochemical or TEM data are presented as mean ± standard 

deviation (SD).    
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Chapter 3: Grey and white matter oligodendrogenesis is increased 

prior to locomotor or memory impairment in an adult mouse 

model of tauopathy 

 

3.1. Introduction 

In physiological aging, white matter damage can be detected in brain regions that are critical 

for cognitive and emotional processing, including the hippocampus, neocortex and frontal 

white matter tracts, and the extent of white matter damage closely correlates with cognitive 

decline (Charlton et al., 2006; Hirsiger et al., 2017; Fan et al., 2019).  White matter 

degeneration is exacerbated in people diagnosed with a tauopathy.  For example, diffusion 

tensor imaging evaluations of people with frontotemporal dementia indicate that fractional 

anisotropy is reduced in frontal and temporal white matter regions including the anterior corpus 

callosum, anterior cingulum tracts and uncinate tracts, when compared with healthy controls 

(Zhang et al., 2009; Lu et al., 2014; Kassubek et al., 2018).  Similar studies show that people 

with AD have reduced fractional anisotropy in parietal, temporal and frontal regions including 

the corpus callosum, cingulum and uncinate tracts, compared to controls (Choi et al., 2005; 

Stricker et al., 2009; Zhang et al., 2009; O’Dwyer et al., 2011; Benitez et al., 2014; Brueggen 

et al., 2019).  In these tauopathies, the observed white matter degeneration likely reflects a 

combination of myelin breakdown and axon degeneration.   

 

Tauopathies are a group of diseases characterised by the aggregation of hyperphosphorylated 

tau in neurons and glial cells, including myelinating oligodendrocytes (reviewed by Ferrer, 

2018).  Tau aggregates in cells of the oligodendrocyte lineage are referred to as coiled bodies 

and threads, and have been identified in post-mortem tissue from people diagnosed with Pick’s 
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disease (Komori, 1999; Arai et al., 2001; Mimuro et al., 2010), progressive supranuclear palsy 

(Nishimura et al., 1995b; Arima et al., 1997; Komori, 1999; Arai et al., 2001; Jin et al., 2006), 

corticobasal degeneration (Wakabayashi et al., 1994; Feany and Dickson, 1995; Komori, 1999; 

Arai et al., 2001) frontotemporal lobar degeneration associated with variants in MAPT (Higuchi 

et al., 2005) and AD (Nishimura et al., 1995a).  In Frontotemporal dementia, myelin 

degenerates in the frontal white matter, and in AD white matter cholesterol and myelin proteins 

such as MBP, PLP and CNP (Roher et al., 2002) are progressively lost.  CNP expression is 

reduced in the frontal cortex in AD (Vlkolinský et al., 2001), and impaired myelin lipid 

synthesis occurs in the temporal grey matter, hippocampus and frontal grey matter in AD 

(Couttas et al., 2016).  Myelin degeneration is also detected post-mortem in the frontal and 

periventricular white matter regions of people with AD (Ihara et al., 2010; Zhan et al., 2014), 

and a recent proteomics study revealed that myelin sheath components are significantly 

reduced in the frontal cortex of people with sporadic AD (Zhang et al., 2018). 

 

Tauopathy-like oligodendrocyte pathology can be induced in mice by the injection of brain 

tissue homogenates from sporadic AD primary age-related tauopathy, aging-related tau 

astrogliopathy, globular glial tauopathy, progressive supranuclear palsy, Pick’s disease and 

frontotemporal lobar degeneration (linked to the MAPTP301L variant) into the corpus callosum.  

Phospho-tau deposits developed inside cells of the oligodendrocyte lineage and myelin 

disruption was evident within 6 months after injection (Ferrer et al., 2019).  However, a 

separate study found that tau-inclusions were rarely seen in mice inoculated with AD 

homogenates but were a common feature following inoculation with corticobasal degeneration 

homogenates (Boluda et al., 2015).   
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Transgenic mice that express human tauopathy-associated variants in MAPT, primarily the 

MAPTP301L and MAPTP301S variants, also recapitulate many of the aspects of human tauopathy, 

including the development of gliosis, the formation of neurofibrillary tangles, neuron loss, and 

motor and cognitive impairment (Lewis et al., 2000; Lin et al., 2003b, 2003a; Ramsden et al., 

2005; Santacruz et al., 2005; Yoshiyama et al., 2007; Takeuchi et al., 2011; Ren et al., 2014).  

In the spinal cord of the Prnp-MAPTP301L transgenic mice, oligodendrocytes also undergo 

apoptosis (Zehr et al., 2004). Furthermore, when three human tauopathy MAPT variants are 

expressed under the control of the mouse α-tubulin promoter, in the absence of endogenous 

Mapt, coiled bodies form inside spinal cord oligodendrocytes, and oligodendrocyte number is 

reduced by 6 months of age - prior to neuron loss (Higuchi et al., 2002).  Consistent with these 

findings, the expression of MAPTP301L in CamKIIa+ neurons was associated with myelin 

thinning within perforant pathway axons that project from the entorhinal cortex to the 

hippocampus (Jackson et al., 2018), and when expression of this variant was restricted to 

oligodendrocytes (CNP promoter) myelin degeneration and axon loss from the spinal cord was 

detected prior to the development of tau aggregates in oligodendrocytes or oligodendrocyte 

loss (Higuchi et al., 2005).   

 

OPCs have the ability to proliferate and differentiate to produce new oligodendrocytes in 

response to oligodendrocyte loss and demyelination (Picard-Riera et al., 2002; Zawadzka et 

al., 2010; Assinck et al., 2017; Baxi et al., 2017), making it possible that oligodendrogenesis 

occurs alongside oligodendrocyte loss in tauopathy.  Following a focal, lysolecithin-induced 

demyelination of the spinal cord ventral funiculus in young adult Thy1.2-MAPTP301S mice, OPC 

density is maintained, but the density of oligodendrocytes and expression of MBP is elevated 

at the lesion site, compared with demyelinated WT mice (Ossola et al., 2016), suggesting that 
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in the presence of MAPTP301S, demyelination can be more effectively countered by 

oligodendrogenesis. 

 

In this study, we demonstrate that overexpression of the MAPTP301S variant, primarily in 

neurons, results in a large number of new oligodendrocytes accumulating in the hippocampus, 

entorhinal cortex and fimbria between 5 and 6 months of age.  This increase in oligodendrocyte 

addition occurred prior to axon loss or the development of overt cognitive deficits but did not 

increase the total number of oligodendrocytes detected in these regions, suggesting that new 

oligodendrocyte addition facilitates oligodendrocyte and myelin maintenance as early 

pathology develops in the CNS of MAPT transgenic mice.   

 

3.2. Results 

3.2.1. MAPT transgenic mice do not develop overt locomotor or memory impairment by 

P180 

Prior to examining the response of cells of the oligodendrocyte lineage to the earliest stages of 

tauopathy, we confirmed that human tau was expressed in brain tissue from MAPT mice 

(Figure 3.1).  Western blot analysis of the dorsal hippocampus indicated that human tau 

(Figure 3.1a, c) and phosphorylated human tau (phosphorylated at threonine 231; Figure 3.1b, 

d) was expressed by MAPT transgenic mice, but not their WT littermates, at P30, P60, P90 and 

P180.  By comparing the relative expression of human tau (upper band, Figure 3.2a) and 

endogenous mouse tau (lower band, Figure 3.2a), we determined that human tau expression 

was 2- to 5-fold more abundant than mouse tau in the hippocampus of MAPT mice (Figure 

3.2c).  We also found that phosphorylated human tau (upper band, Figure 3.2b) was 7- to 
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Figure 3.1. MAPT mice do not develop overt locomotor or memory impairment by P180 

a-b) Western blots probing for tau (a; human ~55kDa; mouse ~51kDa) and phosphorylated tau (pTau) (b; human 

~55kDa, mouse ~51kDa) in hippocampal brain lysates from P30 wildtype (WT; open circles, black bars) and 

MAPT (black squares, open bars) mice. c) Human tau expression relative to β-actin in P30, P60, P90 and P180 

WT and MAPT mice [Two-way ANOVA, genotype: F (1, 16) = 110, p < 0.0001; age: F (3, 16) = 1.034, p = 

0.4040; interaction: F (3, 16) = 0.9767, p = 0.4282]. d) Human phosphorylated tau relative to β-actin in MAPT 

and WT mice at P30, P60, P90 and P180 [Two-way ANOVA, genotype: F (1, 16) = 148.4, p < 0.0001; age: F (3, 

16) = 2.078, p = 0.1434; interaction: F (3, 16) = 2.004, p = 0.1540]. e-f) Track visualisation (EthoVision XT) 

showing movement (white lines) of P180 WT (e) and MAPT (f) mice in the open field locomotor task. g) The total 

distance travelled by WT and MAPT mice in the open field task at P60, P90 and P180 [Two-way ANOVA, 

genotype: F (1, 94) = 3.536, p = 0.0631; age: F (2, 94) = 1.180, p = 0.3119; interaction: F (2, 94) = 0.767, p = 

0.4671]. h) Quantification of the average movement velocity of WT and MAPT mice during the open field task at 

P60, P90 and P180 [Two-way ANOVA, genotype: F (1, 94) = 3.466, p = 0.0658; age: F (2, 94) = 1.253, p = 

0.2904; interaction: F (2, 94) = 0.8427, p = 0.4338]. i) Schematic of the T-maze. j) Quantification of the 

proportion incorrect arm choices (errors) made by P60, P90 and P180 WT and MAPT mice during the T-maze 

alternation task [Two-way ANOVA, genotype: F (1, 96) = 4.317, p = 0.0404; age: F (2, 96) = 0.7271, p = 0.4859; 

interaction: F (2, 96) = 3.028, p = 0.0531]. k-l) Heatmaps (EthoVision XT) showing the relative proportion of 

time P180 WT (k) and MAPT (l) mice spent exploring the familiar and novel objects in the novel object recognition 

task. Warmer colours represent a greater proportion of time in that area. m) Quantification of the proportion of 

time P60, P90, and P180 WT or MAPT mice spent exploring the novel object relative to the total time spent 

exploring either object [Two-way ANOVA, genotype: F (1, 98) = 2.823, p = 0.0961; age: F (2, 98) = 2.506, p = 

0.0868; interaction: F (2, 98) = 0.006544, p = 0.9935]. n-o) Track visualisation images (EthoVision XT) showing 

movement (white lines) of P180 WT (n) and MAPT (o) mice during the Barnes maze long-term memory probe 

trial, carried out 2 weeks after mice learned the expected location of an escape box (red arrows). Yellow shading 

indicates the quadrant defined as the target zone. p) The proportion of time P60, P90, and P180 WT or MAPT 

mice spent within the target zone during the long-term memory probe trial [Two-way ANOVA, genotype: F (1, 

98) = 3.708, p = 0.0570; age: F (2, 98) = 0.5633, p = 0.5711; interaction: F (2, 98) = 2.623, p = 0.0777]. Western 

blot data are presented as mean ± SD, n = 3 mice per group.  Behaviour data are presented as mean ± SEM, n= 

9-24 mice per group. Asterisks denote significant differences identified by Bonferroni post hoc analysis, **p < 

0.01, ***p < 0.001, ****p < 0.0001. Scale bars represent 10cm (e-f, i, k-l) and 25cm (n-o).  
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Figure 3.2. Human tau protein expression is 2- to 5-fold higher than endogenous mouse tau in MAPT mice 

a) Representative images of western blots probing for human (~55kDa) and mouse (~51kDa) tau in hippocampal 

brain lysates from P60, P90 and P180 WT and MAPT mice (one western blot per time point). b) Representative 

images of western blots probing for human (~55kDa) and mouse (~51kDa) tau phosphorylated on Threonine 231 

site in hippocampal brain lysates from P60, P90 and P180 WT and MAPT mice (one western blot per time point). 

c) Fold change between human tau and mouse tau in MAPT mice at P30, P60, P90 and P180. d) Fold change 

between human phosphorylated tau and mouse phosphorylated tau in MAPT mice at P30, P60, P90 and P180. 

Results are presented as mean ± SD, n = 3 mice per genotype. e) 86% of MAPT mice (n = 39) survived to P200 

against 98% of WT mice (n = 73). Survival curves comparison: Log-Rank (Mantel-Cox), p = 0.0390. 
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10-fold more abundant than phosphorylated mouse tau (lower band, Figure 3.2b) in the 

hippocampus of MAPT mice (Figure 3.2d).  This transgenic overexpression of human MAPT 

was associated with the impaired survival of MAPT transgenic mice, relative to their WT 

littermates (Figure 3.2e), and reactive microgliosis by P180, that was primarily observed in 

the hippocampus and entorhinal cortex (Figure 3.3).  To determine whether the overexpression 

of human tau impacted gross locomotor or cognitive performance over this time period, MAPT 

and WT mice were subjected to a battery of behavioural tasks.  WT (Figure 3.1e) and MAPT 

(Figure 3.1f) mice were placed in an open field arena, and the distance that each mouse 

travelled (Figure 3.1g), and the velocity of that movement (Figure 3.1h), was mapped over a 

10 min period.  The overexpression of human tau did not alter the distance travelled (Figure 

3.1g) or the velocity of movement (Figure 3.1h) at P60, P90 or P180.  MAPT  and WT mice 

also spent a similar proportion of time in the central area of the open field [P60: WT 31.9 ± 2.0 

%, MAPT 38.2 ± 3.8 %; P90: WT 32.2 ± 2.0 %, MAPT 32.3 ± 3.5 %; P180: WT 35.8 ±1.9 %, 

MAPT 35.1 ± 3.3 %, mean ± SEM; Two-way ANOVA, genotype: F (1, 94) = 0.6999, p = 

0.4049; age: F (2, 94) = 0.8799, p = 0.4182; interaction: F (2, 94) = 0.9449, p = 0.3924].    

 

Working-memory was evaluated by assessing spontaneous alternation in the T-maze (Figure 

3.1i).  We found that the performance of WT and MAPT mice was equivalent for this task, with 

mice of each genotype making an equivalent number of errors at P60, P90 and P180 (Figure 

3.1j).  Short-term recognition memory was evaluated for WT (Figure 3.1k) and MAPT (Figure 

3.1l) mice using the novel object recognition task. Both WT and MAPT mice spent a larger 

proportion of their time exploring the novel object, compared to the familiar object, and we 

found that the overexpression of human tau did not affect the ability of mice to discriminate 

between the objects at P60, P90 or P180 (Figure 3.1m).  The spatial learning ability, as well   
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Figure 3.3. Reactive microglia are visible in MAPT mice at P180 

a-f) Representative confocal images of Iba1 (red) and Hoechst 33342 (blue) in the hippocampus (a-b), entorhinal 

cortex (EC; c-d) and fimbria (e-f) of WT (a, c, e) and MAPT (b, d, f) mice at P180.  Scale bars represent 60µm. 
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as the short- and long-term memory performance of WT (Figure 3.1n) and MAPT (Figure 

3.1o) mice was assessed using a Barnes maze spatial learning task (Figure 3.4a).  We found 

that at P60, P90 and P180, WT and MAPT mice made fewer visits to incorrect holes (primary 

errors) on day 2 of training, compared with day 1, suggesting that mice of both genotypes 

learned the location of the escape box (Figure 3.4b-d).  One day after training, during the 

short-term memory probe phase, P180 WT and MAPT mice spent an equivalent amount of time 

in the target quadrant of the maze, and both groups spent more time in the target quadrant 

compared with all other quadrants (Figure 3.4e).  During the long-term memory probe phase, 

two weeks after initial training, WT mice spent more time in the target quadrant, relative to 

other maze quadrants, while MAPT mice spent an equivalent amount of time in all 4 quadrants 

(Figure 3.4f).  While these data may suggest that MAPT mice are beginning to experience 

long-term memory impairment, this was not a robust phenotype, as the time that MAPT mice 

spent in the target quadrant was equivalent to that of WT mice (Figure 3.1p).  Overall, these 

data indicate that human tau overexpression does not induce overt cognitive impairment in 

mice by P180.   

 

3.2.2. The number of new YFP+ cells produced by OPCs is elevated in P180 MAPT mice 

To determine whether the overexpression of human hyperphosphorylated tau in neurons could 

indirectly influence adult oligodendrogenesis, prior to the onset of a behavioural change, we 

performed cre-lox lineage tracing of PDGFRα+ OPCs in the hippocampus, entorhinal cortex 

and fimbria of control and MAPT mice.  The hippocampus and entorhinal cortex were selected, 

as they are among the first regions affected in human tauopathy associated with AD (Xu et al., 

2000; Du et al., 2001; Pennanen et al., 2004), and the fimbria is part of the major white matter  
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Figure 3.4. Learning and memory performance in the Barnes maze 

a) Schematic diagram of the Barnes maze depicting the location of the escape box (red) relative to the spatial 

cues surrounding the maze and quadrant divisions. b) Quantification of the average number primary errors 

committed by P60 WT (open circles, black bars) and MAPT (black squares, open bars) mice during the first and 

second day of learning [Two-way ANOVA, genotype: F (1, 60) = 0.24, p = 0.6233; learning day: F (1, 60) = 

12.46, p = 0.0008; interaction: F (1, 60) = 0.39, p = 0.5307]. c) Quantification of the average number primary 

errors committed by P90 WT and MAPT mice during the first and second day of learning [Two-way ANOVA, 

genotype: F (1, 68) = 6.30, p = 0.0144; learning day: F (1, 68) = 13.37, p = 0.0005; interaction: F (1, 68) = 

0.25, p = 0.6166]. d) Quantification of the average number primary errors committed by P180 WT and MAPT 

mice during the first and second day of learning [Two-way ANOVA, genotype: F (1, 70) = 2.569, p = 0.1135; 

learning day: F (1, 70) = 13.91, p = 0.0004; interaction: F (1, 70) = 0.5959, p = 0.4428]. e) Quantification of 

the time spent by P180 WT and MAPT mice in each quadrant of the maze during the short-term memory probe 

phase [Two-way ANOVA, genotype: F (1, 140) = 6.558e-006, p = 0.9980; maze quadrant: F (3, 140) = 35.37, p 

< 0.0001; interaction: F (3, 140) = 1.959, p = 0.1230]. f) Quantification of the time spent by P180 WT and MAPT 

mice in each quadrant of the maze during the long-term memory probe phase [Two-way ANOVA, genotype: F (1, 

140) = 0.033, p = 0.8550; maze quadrant: F (3, 140) = 14.14, p < 0.0001; interaction: F (3, 140) = 6.737, p = 

0.0003]. Data are presented as mean ± SEM, n= 9-24 mice per group. 
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tract that connects the hippocampi of both hemispheres, and each hippocampus with other 

subcortical structures of the brain (Fimbria-fornix-commissural pathway; Wyss et al., 1980; 

reviewed by Kesner & Rolls, 2015).  Tamoxifen was administered to P60 control (Pdgfra-

CreERT2::Rosa26-YFP) and MAPT (Pdgfra-CreERT2::Rosa26-YFP::Prnp-MAPTP301S) mice, 

and brain tissue was collected at P60+7, 90 or 120 days (Figure 3.5).  Immunohistochemistry 

was performed on coronal cryosections, to allow detection of PDGFRα+ OPCs (red) and YFP 

(green) tracer in the hippocampus (Figure 3.5a-d), entorhinal cortex (Figure 3.5e-h) and 

fimbria (Figure 3.5i-l).  By quantifying the proportion of OPCs that expressed YFP, we 

determined that ~40% of OPCs had undergone recombination in all brain regions examined in 

control and MAPT mice (Figure 3.5m-o).  Furthermore, these YFP-labelled OPCs gave rise to 

YFP+ PDGFRα-negative presumptive oligodendrocytes over time (arrows, Figure 3.5a-l).  

However, between P60+90 and P60+120, the proportion of YFP+ cells that were PDGFRα-

negative significantly increased in the hippocampus (Figure 3.5p), entorhinal cortex (Figure 

3.5q) and fimbria (Figure 3.5r) of MAPT mice, despite being largely unchanged in controls.  

This equated to a doubling in the density of new YFP+ oligodendrocytes present in each region 

over a 1-month period, such that by P60+120 MAPT mice had significantly more new 

oligodendrocytes in the hippocampus (Figure 3.5s), entorhinal cortex (Figure 3.5t) and 

fimbria (Figure 3.5u), than control mice. 

 

3.2.3. Fimbria OPC proliferation is increased in P180 MAPT mice 

To determine whether human hyperphosphorylated tau influenced new oligodendrocyte 

number by modulating OPC proliferation, we next evaluated PDGFRα+ OPC density in the 

hippocampus (Figure 3.6a-c), entorhinal cortex (Figure 3.6d) and fimbria (Figure 3.6e) of 

control and MAPT mice, at P60+7, P60+90 and P60+120.  OPC density was equivalent in  



68 
 

Figure 3.5. New oligodendrocyte addition is increased in the hippocampus, entorhinal cortex and fimbria of 

MAPT mice at P180 

a-l) Representative confocal images showing PDGFRa (red), YFP (green), and Hoechst (blue) in the 

hippocampus (a-d), entorhinal cortex (e-h) and fimbria (i-l) of PDGFRα-CreERT2 :: Rosa26-YFP (control; a-b, 

e-f, i-j) and PDGFRα-CreERT2 :: Rosa26-YFP :: Prnp-MAPTP301S (MAPT; c-d, g-h, k-l) mice at 90 (P60+90) 

and 120 (P60+120) days post tamoxifen administration (P60).  m-o) Quantification of the proportion of 

recombined OPCs (YFP + PDGFRa +  / PDGFRa +) in the hippocampus [(m) : Two-way ANOVA, genotype: F 

(1, 23) = 1.272, p = 0.2710; age: F (2, 23) = 0.8038, p = 0.4598; interaction: F (2, 23) = 0.04821, p = 0.9530], 

the entorhinal cortex [(n) : Two-way ANOVA, genotype: F (1, 25) = 3.13, p = 0.0891; age: F (2, 25) = 0.982, p 

= 0.3885; interaction: F (2, 25) = 0.169, p = 0.8455] and the fimbria [(o) : Two-way ANOVA, genotype: F (1, 

23) = 3.469, p = 0.0753; age: F (2, 23) = 0.3587, p = 0.7024; interaction: F (2, 23) = 0.02172, p = 0.9785] of 

control (open circles, black bars) and MAPT (black squares, open bars) mice at 7, 90 and 120 days post tamoxifen 

administration (P60).  p-r) Quantification of the proportion of recombined OPCs that differentiated into new 

oligodendrocytes (PDGFRa negative YFP+ / YFP+) over 7, 90 and 120 days in the hippocampus [(p) : Two-way 

ANOVA, genotype: F (1, 23) = 18.33, p = 0.0003; age: F (2, 23) = 20.33, p < 0.0001; interaction: F (2, 23) = 

11.70, p = 0.0003], the entorhinal cortex [(q) : Two-way ANOVA, genotype: F (1, 25) = 9.489, p = 0.0050; age: 

F (2, 25) = 34.13, p < 0.0001; interaction: F (2, 25) = 15.42, p < 0.0001] and the fimbria [(r) : Two-way ANOVA, 

genotype: F (1, 23) = 10.18, p = 0.0041; age: F (2, 23) = 58.20, p < 0.0001; interaction: F (2, 23) = 10.49, p = 

0.0006] of control and MAPT mice.  s-u) Quantification of the density of new oligodendrocytes (PDGFRa-

negative YFP+ / mm2) added to the hippocampus [(s) : Two-way ANOVA, genotype: F (1, 23) = 23.09, p < 

0.0001; age: F (2, 23) = 20.88, p < 0.0001; interaction: F (2, 23) = 15.26, p < 0.0001], the entorhinal cortex [(t) 

: Two-way ANOVA, genotype: F (1, 25) = 14.94, p = 0.0007; age: F (2, 25) = 18.28, p < 0.0001; interaction: F 

(2, 25) = 14.37, p < 0.0001] and the fimbria [(u) : Two-way ANOVA, genotype: F (1, 23) = 26.15, p < 0.0001; 

age: F (2, 23) = 35.02, p < 0.0001; interaction: F (2, 23) = 21.65, p < 0.0001].  Data are presented as mean ± 

SD, n=4-6 mice per group. Asterisks indicate significant differences identified by Bonferroni post hoc analysis, 

****p < 0.0001. Scale bars represent 30 µm. Arrows indicate YFP+ PDGFRa+ recombined OPCs. Arrow heads 

indicate YFP+ PDGFRa-negative newly added oligodendrocytes.  
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Figure 3.6. OPC proliferation is increased in the fimbria of MAPT mice at P180  

a-b) Representative confocal image stacks showing PDGFRa labelling in the hippocampus of PDGFRα-CreERT2 

:: Rosa26-YFP (control; a) and PDGFRα-CreERT2 :: Rosa26-YFP :: Prnp-MAPTP301S (MAPT; b) mice at 120 

days post tamoxifen administration (P60). c-e) Quantification of OPC density (PDGFRa+ / mm2) in the 

hippocampus [(c): Two-way ANOVA, genotype: F (1, 23) = 1.938, p = 0.1772; age: F (2, 23) = 0.3121, p = 

0.7349; interaction: F (2, 23) = 2.015, p = 0.1562], the entorhinal cortex [(d): Two-way ANOVA, genotype: F 

(1, 25) = 1.188, p = 0.2861; age: F (2, 25) = 1.162, p = 0.3292; interaction: F (2, 25) = 3.189, p = 0.0584] and 

the fimbria [(e): Two-way ANOVA, genotype: F (1, 23) = 0.5396, p = 0.4700; age: F (2, 23) = 12.37, p = 0.0002; 

interaction: F (2, 23) = 0.2118, p = 0.8107] of control (open circles, black bars) and MAPT (black squares, open 

bars) mice. f-k) Representative confocal image stacks showing PDGFRa (red), EdU (green) and Hoechst 33342 

(blue) labelling in the hippocampus (f-g), entorhinal cortex (h-i) and fimbria (j-k) of P180 wildtype (WT; open 

circles, black bars) and MAPT (black squares, open bars) mice following 5 days of EdU administration. l) 

Quantification of the proportion of EdU+ OPCs  (EdU+ PDGFRa+ / PDGFRa+) in the hippocampus, entorhinal 

cortex and fimbria of WT and MAPT mice [(l): Two-way ANOVA, genotype: F (1, 20) = 11.98, p = 0.0025; brain 

region: F (2, 20) = 121.7, p < 0.0001; interaction: F (2, 20) = 5.997, p = 0.0091].   m-n) Representative confocal 

images showing cells expressing PDGFRa (red) and Ki67 (green) in the fimbria of P180 WT (m) and MAPT (n) 

mice. (o) Quantification of the proportion of Ki67+ OPCs (Ki67+ PDGFRa+ / PDGFRa+) at P180 within the 

fimbria (Two tailed, unpaired t-test, p = 0.798). Data are presented as mean ± SD for n=3-6 mice per group. 

Arrows indicate PDGFRa+ OPCs. Arrow heads indicate recently divided OPCs (EdU+ PDGFRa+).  Scale bars 

represent 80µm (a-b); 40µm (f-k); 20µm (m-n). 
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control and MAPT mice and did not change with age in any region (Figure 3.6c-e).  To 

determine whether OPC proliferation was affected by hyperphosphorylated tau, P175 WT and 

MAPT mice were given the thymidine-analogue EdU via their drinking water for 5 consecutive 

days, and coronal cryosections processed to detect PDGFRα (red) and EdU (green) (Figure 

3.6f-k).  The proportion of OPCs that proliferated to incorporate EdU (EdU+ PDGFRa+ / 

PDGFRα+ x 100) was equivalent in the hippocampus (Figure 3.6f, g, l) and entorhinal cortex 

(Figure 3.6h, i, l) of WT and MAPT mice.  By contrast, we detected a small but significant 

increase in OPC proliferation in the fimbria of MAPT mice, compared with WT mice (Figure 

3.6j-l), but this was not a large enough change in proliferation to overtly alter the proportion 

of OPCs that expressed the proliferative marker Ki67 at P180 (Figure 3.6m-n).  Consequently, 

this small increase in fimbria OPC proliferation appears unable to explain the large increase in 

new oligodendrocyte number noted across the hippocampus, entorhinal cortex and fimbria of 

MAPT mice at P60+120 (Figure 3.5).  

 

3.2.4. Oligodendrocyte density is normal in MAPT mice 

To determine whether the increase in new oligodendrocyte addition was accompanied by an 

overall increase in oligodendrocyte number in the hippocampus (Figure 3.7a-d), entorhinal 

cortex (Figure 3.7e-h) or fimbria (Figure 3.7i-l), we performed immunohistochemistry on 

coronal brain cryosections from P120 and P180 WT and MAPT mice, to detect the 

oligodendrocyte marker ASPA.  We found that the density of ASPA+ oligodendrocytes was 

unchanged between P120 and P180 in the hippocampus (Figure 3.7m), entorhinal cortex 

(Figure 3.7n) and fimbria (Figure 3.7o) of WT or MAPT mice, and that the overexpression of  

hyperphosphorylated tau did not influence total oligodendrocyte density in any region.  

However, as only 284 ± 36 (mean ± SD) oligodendrocytes are present per mm2 in the  
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Figure 3.7. Oligodendrocyte population is not altered in MAPT mice at P120 and P180  

a-l) Representative confocal images of ASPA (red) and Hoechst 33342 (blue) in the hippocampus (a-d), entorhinal 

cortex (EC; e-h) and fimbria (i-l) of WT and MAPT mice at P120 and P180. m-o) Quantification of total 

oligodendrocyte density  (ASPA+ / mm2) in the hippocampus [(m): Two-way ANOVA, genotype: F (1, 17) = 

0.417, p = 0.526; age: F (1, 17) = 0.849, p = 0.369; interaction: (1, 17) = 1.100, p = 0.308], the entorhinal cortex 

[(n): Two-way ANOVA, genotype: F (1, 18) = 0.004, p = 0.948; age: F (1, 18) = 0.0254, p = 0.875; interaction: 

F (1, 18) = 0.397, p = 0.536] and the fimbria [(o): Two-way ANOVA, genotype: F (1, 14) = 0.594, p = 0.453; 

age: F (1, 14) = 1.145, p = 0.302; interaction: F (1, 14) = 0.080, p = 0.781] of WT (open circles, black bars) and 

MAPT (black squares, open bars) mice at P120 and P180.  Data are presented as mean ± SD, n=3-5 mice per 

group. Scale bars represent 40µm. 
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hippocampus of P180 MAPT mice, and 95 ± 15 (mean ± SD) cells/mm2 are newborn 

oligodendrocytes, these data suggest that ~33% of oligodendrocytes present in the P180 MAPT 

hippocampus are newborn oligodendrocytes.  In the entorhinal cortex and fimbria, it equates 

to ~51 and 21%, respectively.  As the new oligodendrocytes comprise such a large proportion 

of all oligodendrocytes in the hippocampus, entorhinal cortex and fimbria of the P180 MAPT 

mice, but do not increase total oligodendrocyte density beyond that seen in WT mice, it is likely 

that oligodendrocyte addition is accompanied by oligodendrocyte loss in the MAPT mouse 

brain. 

To determine whether new oligodendrocytes added to the brains of P60+120 controls and 

MAPT mice are mature oligodendrocytes, we immunolabelled coronal cryosections, containing 

the hippocampus and fimbria, to detect PDGFRa+ (blue), YFP+ (green) and ASPA (red) 

(Figure 3.8a-h).  We found that the density of YFP+ ASPA+ mature oligodendrocytes was 

increased in the hippocampus (Figure 3.8.i) and fimbria (Figure 3.8.j) of MAPT mice relative 

to controls, while the density of YFP+ PDGFRa-negative ASPA-negative presumptive 

premyelinating oligodendrocytes was equivalent between MAPT mice and controls.  Therefore, 

new oligodendrocytes may be added to replace myelin. 

 

3.2.5. Myelination is not altered in MAPT mice 

To further explore the possibility of oligodendrocyte turnover, we next quantified myelination 

in the stratum lacunosum moleculare of the CA1 region of the hippocampus in P180 WT and 

MAPT mice by TEM (Figure 3.9).  We found that total axon density (Figure 3.9a-c) and 

myelinated axon density (Figure 3.9d) were equivalent between WT and MAPT mice.  

Looking more closely at the myelinated axons, we found that the g-ratio [axon diameter / 

(axon+myelin diameter)], a measure of myelin thickness relative to axon size, was the same  
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Figure 3.8. MAPT mice add more ASPA+ mature oligodendrocytes to the hippocampus and fimbria than 

control mice between 5 and 6 months of age.  

a-h) Confocal images showing ASPA (red), PDGFRα (blue) and YFP (green) in the hippocampus of P60 + 120 

Pdgfrα-CreERT2:: Rosa26-YFP (control; a-d) and Pdgfrα-CreERT2:: Rosa26-YFP:: Prnp-MAPTP301S (MAPT; 

e-h) mice. i) Quantification of the density of all YFP+ cells that are PDGFRα-negative in the hippocampus of P60 

+ 120 control and MAPT mice, including those that are YFP+ PDGFRα-negative ASPA-negative premyelinating 

oligodendrocytes versus YFP+ PDGFRα-negative ASPA+ mature oligodendrocytes. [two-way ANOVA, genotype: 

F (1, 12) = 120.5, p < .0001; cell type: F (2, 12) = 79.72, p < .0001; interaction: F (2, 12) = 25.19, p < .0001]. 

j) Quantification of the density of all YFP+ cells that are PDGFRα-negative in the fimbria of P60 + 120 control 

and MAPT mice, including those that are YFP+ PDGFRα-negative ASPA-negative premyelinating 

oligodendrocytes versus YFP+ PDGFRα-negative ASPA+ mature oligodendrocytes. [two-way ANOVA, genotype: 

F (1, 12) = 40.81, p < .0001; cell type: F (2, 12) = 15.27, p = .0005; interaction: F (2, 12) = 5.46, p = .02]. 

Asterisks indicate significant differences identified by Bonferroni post hoc analysis, **p < .01, ***p < .001, ****p 

< .0001.  White arrows indicate newborn oligodendrocytes (YFP+ ASPA+ cells).  Scale bars represent 35μm. 
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Figure 3.9. Axon density, proportion of myelinated axons and myelin thickness are not altered in the 

hippocampus of MAPT mice at P180 

 a-b) Representative electron micrographs from the CA1 region of the hippocampus of WT (a) and MAPT (b) mice 

at P180. c) Quantification of axon density (axons/mm2) in WT (open circles) and MAPT (black squares) mice 

(Two-tailed, unpaired t-test: t=0.2567, df=5, p =0.8076).  d) Quantification of the proportion of myelinated axons 

in the CA1 of WT and MAPT mice at P180 (Two-tailed, unpaired t-test: t=0.1780, df=5, p = 0.8657). e) Graphical 

representation of the g-ratio distribution based on axon diameter (Kolmogorov-Smirnoff test, K-S D = 0.06307, 

p = 0.2825; n = 98-190 myelinated axons per mouse). f-i) Representative high magnification electron 

micrographs through a single myelinated axon within the CA1 region of the number of myelin wraps in WT (f-g) 

and MAPT mice (h-i) at P180. j) Quantification of average g-ratio per animal in WT and MAPT mice at P180 

(Two-tailed, unpaired t-test: t=0.5232, df=5, p = 0.6232). k) Quantification of average myelin wraps per animal 

in WT and MAPT mice at P180 (Two-tailed, unpaired t-test: t=1.112, df=5, p = 0.3167). Scale bars represent: 

1µm (a-b), 300nm (f, h) and 100nm (g, i). Results are presented as mean ± SD, n = 3-4 mice per genotype.  
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for axons in the hippocampus of WT and MAPT mice (Figure 3.9e-i) and that across individual 

mice, the average g-ratio (Figure 3.9j) and average number of myelin wraps per sheath (Figure 

3.9k) was also unaffected by genotype.  These data suggest that myelination is normal in the 

hippocampus of P180 MAPT mice, or that newborn oligodendrocytes act to maintain a normal 

level of myelination. 

 

3.3. Discussion 

Myelin and axon loss are associated with cognitive decline and is exacerbated in people 

diagnosed with tauopathy.  However, the behaviour of OPCs early in the disease process, and 

the potential for myelin repair remains unclear.  Herein, by tracing the fate of OPCs in MAPT  

transgenic mice we show that the number of adult-born oligodendrocytes increases in the 

hippocampus, entorhinal cortex and fimbria between 5 and 6 months of age, prior to the onset 

of overt cognitive symptoms.  This increase in new oligodendrocyte addition cannot be 

explained by an equivalent increase in OPC proliferation and was not associated with a change 

in total oligodendrocyte density, or myelination within the hippocampus.  

 

3.3.1. MAPT mice do not develop overt motor or cognitive deficits by 6 months of age.  

MAPT transgenic mice overexpress the T34 isoform of human MAPT (1N4R) with the P301S 

mutation under the regulation of the mouse prion promotor, leading to human tau being 

expressed in the brain at levels that are 5-times above that of the endogenous mouse protein 

(Yoshiyama et al., 2007).  To determine whether the relative expression of human tau within 

the hippocampus changed with age, we performed Western blot analysis of hippocampal 

lysates from P30, P60, P90 and P180 mice.  We found that human tau and hyperphosphorylated 

human tau were not detected in WT mice, but were abundantly expressed in MAPT mice, and 
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the level of expression remained stable over time (Figure 3.1).  MAPT mice, maintained on a 

B6C3H background, exhibit prominent microglial activation, prior to the formation of 

neurofibrillary tangles at 6 months of age (Yoshiyama et al., 2007).  We observed microglial 

activation at 6 months of age (Figure 3.3), and neurofibrillary tangles are reported to develop 

at 10 months of age when MAPT mice are backcrossed onto a C57BL/6 background (Dumont 

et al., 2011).  The more severe phenotype of MAPT mice on a B6C3H background is further 

supported by poorer survival outcomes with ~25% dying by 6 months of age (Yoshiyama et 

al., 2007) compared with only ~15% of mice dying within the first 6 months when they are 

crossed onto a C57BL/6 background (Merchán-Rubira et al., 2019; Figure 3.2).   

 

Tauopathies are associated with progressive motor degeneration and cognitive impairment 

(Lewis et al., 2000; Ramsden et al., 2005; Santacruz et al., 2005; Yoshiyama et al., 2007; 

Takeuchi et al., 2011; reviewed by Ferrer, 2018).  To determine whether MAPT mice had 

impaired locomotor or cognitive performance, they were subjected to a battery of behavioural 

tests at 2, 3 and 6 months of age.  We found that locomotion in an open field task was not 

affected by overexpression of MAPTP301S up to 6 months of age (Figure 3.1), suggesting there 

was no overt impairment in motor function.  There was also no effect of MAPTP301S 

overexpression on working memory performance in the T-maze, short term recognition 

memory in the novel object recognition task, or spatial learning and memory in the Barnes 

maze at any age (Figure 3.1), suggesting that these mice do not exhibit a decline in cognitive 

performance until after 6 months of age.  Overexpression of the P301L mutation of human 

MAPT under the mouse prion promotor results in a rapid decline in motor function from as 

early as 4.5 months of age in homozygous and 6.5 months in heterozygous mice (Lewis et al., 

2000).  However, motor decline is not observed in mice overexpressing the P301S mutation 

under the same promotor (Dumont et al., 2011; Takeuchi et al., 2011; Chalermpalanupap et 
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al., 2017; Figure 3.1).  Instead, transient increases in locomotor behaviour in an open field 

arena have been reported that are either only seen between 30 and 90 min of a 2-hour 

observation time (Takeuchi et al., 2011), or present at 7 months of age but not at 10 months 

(Dumont et al., 2011).  For MAPT mice raised on the B6CH3 background, spatial memory and 

contextual fear conditioning have been reported at 6 (Takeuchi et al., 2011) and 7.5 (Lasagna-

Reeves et al., 2016) months of age.  However, consistent with our data, when MAPT mice are 

backcrossed onto a C57BL/6 background the onset of memory impairment is delayed until 

after 10 months of age (Dumont et al., 2011; Chalermpalanupap et al., 2017), such that 

performance in a Barnes maze is equivalent to WT mice at 6 months of age (Takeuchi et al., 

2011).  These data indicated that cellular changes identified in MAPT mice ≤ 6 months of age 

occur prior to the onset of cognitive decline. 

 

3.3.2. The number of new oligodendrocytes added to the brain of MAPT mice increases 

between 5 and 6 months of age 

OPCs continue to generate new oligodendrocytes at different rates in the adult mouse brain 

grey and white matter (Dimou et al., 2008; Rivers et al., 2008; Hill et al., 2013; Young et al., 

2013; Fukushima et al., 2015).  While the rate of OPC proliferation and oligodendrocyte 

addition slows with aging in the mouse CNS (reviewed by Wang & Young, 2014), 

experimental interventions that produce demyelination have been shown to stimulate OPC 

proliferation and result in the rapid replacement of oligodendrocytes and remyelination 

(Tripathi et al., 2010; Zawadzka et al., 2010; Assinck et al., 2017; Baxi et al., 2017).  To 

determine whether the expression of the human MAPTP301S variant in neurons was associated 

with a change in OPC behaviour and new oligodendrocyte addition, we fluorescently labelled 

OPCs and followed their fate over time (Figure 3.5).  We found that a small number of 

newborn YFP-labelled oligodendrocytes accumulated in the hippocampus, entorhinal cortex 
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and fimbria of control and MAPT transgenic mice between P60 and P150, and that the rate of 

oligodendrocyte addition was not affected by MAPTP301S expression.  However, between P150 

and P180, when oligodendrocyte addition was negligible in control mice, the number of YFP-

labelled oligodendrocytes increased significantly in MAPT transgenic mice, in each of the brain 

regions examined.  Previous studies have not examined oligodendrogenesis in MAPT 

transgenic mice; however, there is some evidence that oligodendrogenesis is increased in P60 

adult Thy1.2-MAPTP301S transgenic mice following toxin-induced focal demyelination of the 

ventral funiculus in the spinal cord (Ossola et al., 2016).  14 days after demyelination, the 

density of APC+ OLIG2+ oligodendrocytes was increased in the lesion site of Thy1.2-

MAPTP301S transgenic mice compared to WT lesioned mice (Ossola et al., 2016), confirming 

the capacity for OPCs to efficiently remyelinate the injured CNS in the early stages of tau 

pathology.     

A large increase in oligodendrocyte generation is often accompanied by an increase in OPC 

proliferation, as OPC differentiation stimulates the proliferation of adjacent OPCs to sustain 

the OPC population (Hughes et al., 2013).  To determine whether expression of the human 

MAPTP301S variant, and the associated increase in new oligodendrocyte number, was associated 

with elevated OPC proliferation, dividing OPCs were EdU labelled in the brain of 6-month old 

control and MAPT transgenic mice (Figure 3.6).  While OPC proliferation was elevated in the 

fimbria of MAPT transgenic mice, when compared with WT littermates, it was not elevated in 

the hippocampus or entorhinal cortex.  These data could be explained by an increase in 

oligodendrogenesis occurring close to P150, such that OPC proliferation has returned to normal 

by P180.  We have previously shown that new oligodendrocyte number can be increased 

without increasing OPC proliferation, as this can be achieved by enhancing the survival of the 

newborn cells (Cullen et al., 2019).  It is therefore possible that oligodendrocyte loss or other 

stimuli could increase the number of new oligodendrocytes detected by enhancing newborn 
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oligodendrocyte survival in the MAPT transgenic mice.  Indeed, a combination of increased 

cell generation and improved survival would likely be needed to account for the substantial 

increase in new oligodendrocyte number observed over a one month-period in the MAPT 

transgenic mice.   

 

3.3.3. Is oligodendrocyte turnover increased in MAPT mice?    

To determine whether the large number of new oligodendrocytes added to the hippocampus, 

entorhinal cortex and fimbria of MAPT transgenic mice increased the total number of 

oligodendrocytes, or acted to replace oligodendrocytes lost to pathology, we quantified 

oligodendrocyte density in each region (Figure 3.7) and determined whether newborn 

oligodendrocytes added to the brains were mature oligodendrocytes (Figure 3.8).  

Oligodendrocyte density was significantly higher in the fimbria than in the hippocampus or 

entorhinal cortex but was equivalent between WT and MAPT transgenic mice in each region 

(Figure 3.7).  However, a larger proportion of new oligodendrocytes were added and matured 

between 5 and 6 months of age in MAPT mice compared to controls (Figure 3.8), suggesting 

that oligodendrocyte turnover had occurred.  To confirm that this phenotype was not associated 

with neuron loss, we quantified axon density and the proportion of axons that are myelinated 

(Figure 3.9) in the hippocampus at 6 months of age.  Axon density in the CA1 subfield of the 

hippocampus was normal in 6-month-old MAPT transgenic mice, and the proportion of axons 

that were myelinated, and their myelin thickness was also equivalent to that of WT mice.  As 

the newborn oligodendrocytes comprise a large proportion of all oligodendrocytes detected in 

the grey matter regions of MAPT transgenic mice, it would not be possible for their addition to 

result in no change in total oligodendrocyte addition or the proportion of axons that are 

myelinated without an increase in oligodendrocyte death and myelin loss.  Therefore, we 

suggest that oligodendrocyte addition between P150 and P180 is driven by the need for 
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oligodendrocyte replacement in the MAPT transgenic mice and propose that these 

oligodendrocytes act to maintain myelin at this early stage of tauopathy.   

Hyperphosphorylated tau can directly affect oligodendrocytes as they express tau proteins 

(Müller et al., 1997; Seiberlich et al., 2015), and can develop tau inclusions (Ikeda et al., 1998; 

Arai et al., 2001), which leads to oligodendrocyte degeneration in transgenic mice 

overexpressing human MAPTP301L variant throughout the CNS under the mouse a-tubulin 

promoter (Higuchi et al., 2002).  However, the human MAPTP301S variant is primarily expressed 

in neurons by the prion protein promoter (Bailly et al., 2004; Tremblay et al., 2007) in our 

study; therefore, the oligodendrocyte phenotype observed is likely to be a secondary outcome 

of neuronal tauopathy. 



86 
 

Chapter 4: Amyloidosis is associated with the formation of thicker 

myelin in development and increased adult oligodendrogenesis 

 

4.1. Introduction 

In the aging human brain, white matter degeneration occurs in regions critical for cognitive 

and emotional processing, including the hippocampus, neocortex and frontal white matter 

tracts, and the extent of white matter degeneration correlates with the degree of cognitive 

impairment and loss of information processing speed (Charlton et al., 2006; Hirsiger et al., 

2017; Chopra et al., 2018; Fan et al., 2019).  However, the degree of white matter degeneration 

is exacerbated in AD (Choi et al., 2005; Stricker et al., 2009; Zhang et al., 2009; O’Dwyer et 

al., 2011; Benitez et al., 2014; Brueggen et al., 2019).  AD is a progressive neurodegenerative 

disease characterized post-mortem by the presence of extracellular plaques of aggregated 

amyloid β (Miller et al., 1993; Roher et al., 1993; Burgold et al., 2011; reviewed by Selkoe and 

Hardy, 2016), and the detection of neurofibrillary tangles, form by the intracellular aggregation 

of cytoskeletal proteins, mainly hyperphosphorylated tau (Goedert et al., 1989; Schmidt et al., 

1990; Braak and Braak, 1996; Iseki et al., 2006).  Oligodendrocyte loss and demyelination has 

also been detected in post-mortem AD brain at the site of pathological inclusions throughout 

the brain (Mitew et al., 2010; Behrendt et al., 2013; Tse et al., 2018).  As diffusion tensor 

imaging studies, examining individuals in the preclinical stages of disease, have determined 

that the extent to which fractional anisotropy increases and mean diffusivity decreases for white 

matter regions including the fornix, cingulum and corpus callosum, correlates with amyloid 

β42 load (Gold et al., 2014; Racine et al., 2014; Shi et al., 2015), early white matter 

degeneration may be associated with amyloidosis.  This idea is further supported by the fact 

that in preclinical individuals carrying gene mutations associated with increased risk of AD, 
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lower cerebral spinal fluid concentration of amyloid β42 correlated with a greater severity of 

white matter hyperintensities identified by magnetic resonance imaging (Scott et al., 2015; Lee 

et al., 2016). Decreased concentration of amyloid β42 in cerebral spinal fluid are associated 

with increased amyloid plaque deposition in the brain of AD patients (Grimmer et al., 2009) 

and white matter hyperintensity volume increases after the reduction of cerebral spinal fluid 

amyloid β42 concentration, but prior to symptom onset in preclinical patients (Lee et al., 2016) 

indicating that amyloid induced changes in white matter integrity may be an early feature of 

AD pathophysiology.  

 

A number of studies have demonstrated that oligodendrocyte function is impaired by exposure 

to amyloid, with cultured rat oligodendrocytes exposed to amyloid β1-42 or amyloid β25-35, 

experiencing oxidative stress and undergoing cell death (Xu et al., 2001; Lee et al., 2004), and 

exposed to amyloid β1-42 showing impaired myelin sheath formation (Horiuchi et al., 2012).  

Additionally, exposure of a mouse oligodendrocyte progenitor cell line to amyloid β1-42 has 

been shown to induce cell death in the differentiated and undifferentiated cells (Desai et al., 

2010).  However, when the undifferentiated cells also carried pathological variant of human 

PSEN1M146V, exposure to amyloid β1-42 increased the number of CC1+ MBP-negative 

premyelinating oligodendrocytes, an effect that was not observed in cells carrying human 

PSEN1 (Desai et al., 2011), suggesting that pathological variants of PSEN1 can modulate the 

response of OPCs to amyloid pathology.   

 

A small number of studies have examined the influence of amyloid pathology on OPC and 

oligodendrocyte function in vivo, and these studies have largely examined the combined effect 

of human pathological variants in APP and PSEN1.  In APP/PS1 transgenic mice, amyloid 
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plaques form by 2 months of age (Radde et al., 2006), and are associated with focal 

demyelination at 6 months of age (Behrendt et al., 2013).  However, OPCs and 

oligodendrocytes appear to respond early to pathology, as expression of the OPC proteoglycan 

NG2 and the oligodendrocyte proteins CNP and MBP are already elevated in the hippocampus 

by 2 months of age (Wu et al., 2017).  Despite an increase in OPC density and proliferation 

and GSTpi+ oligodendrocyte number at 6 months of age, myelin aberrations can also be clearly 

detected, including double ensheathment, excess cytoplasm in the inner loop, myelin out-

folding, degenerating sheaths and myelin ballooning (Behrendt et al., 2013).  In 3xTg mice, 

that carry human pathological variants in APPSw, PSEN1M146V and MAPTP301L, amyloid β1-42 

is increased by  6 months of age (Desai et al., 2010); however, Schaffer collateral axons are 

already dystrophic and have granulated myelin by 2 months of age, and myelin protein 

expression is reduced in the CA1 region of the hippocampus (Desai et al., 2009), which 

manifests as fewer myelinated CA1 axons by 6 months of age (Desai et al., 2010).  As the viral 

delivery of intracellular targeted anti-Aβ antibodies to 3xTg mice at 2 months of age, to prevent 

Aβ aggregation, can restore myelination at 6 months of age (Desai et al., 2010), amyloid 

pathology appears to be the primary driver of oligodendrocyte damage in these mice.  

 

Herein, we show that mice carrying the Swedish and Indiana mutations in APP transgenic mice 

maintain a normal density of OPCs and oligodendrocytes in the hippocampus from P60 to 

P180; however, OPC behaviour is altered by amyloid pathology.  In young adulthood (P100), 

OPCs in the hippocampus of APP transgenic mice have an increased response to GABA, 

becoming more depolarised upon bath application of the neurotransmitter.  Oligodendrocyte 

maturation also appears to be affected in the hippocampus of these mice, as the nodes of 

Ranvier are shorter and the paranodes longer and this phenotype is associated with increased 

myelin thickness by P100.  The number of new oligodendrocytes produced by adult OPCs 
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appeared normal in early adulthood, but increased in the hippocampus, entorhinal cortex and 

fimbria of APP transgenic mice as pathology developed.  As total oligodendrocyte density was 

unchanged by P180, it is likely that the newborn oligodendrocytes replace oligodendrocytes 

lost to pathology. 

 

4.2. Results 

4.2.1. APP mice develop histopathological features of Alzheimer’s disease by P180 

To characterise the expression of human APP and the timeframe for the development of 

amyloid plaques in the brain of APP transgenic mice, we generated hippocampal brain lysates 

and coronal brain cryosections from WT, MAPT and APP mice at P30, P60, P90 and P180.  By 

performing a series of Western blots to detect immature and mature human APP (6E10 

antibody), we determined that human APP was already expressed by APP mice at P30, and 

expression was stable over time (Figure 4.1a, b).  Human APP (~100kDa) was not detected in 

hippocampal lysates from WT or MAPT transgenic mice (Figure 4.1b), which acted as an 

additional control for this experiment.  A smaller protein band (~55kDa) was detected in lysates 

from MAPT transgenic mice; however, this band does not correspond to human APP (Grant et 

al., 2019).  We next performed a histological study to determine whether human APP 

expression resulted in amyloid plaque formation in APP transgenic mice.  Coronal brain 

cryosections from P60, P90 and P180 WT and APP mice were stained with thioflavin S (Figure 

4.1c-i, green), which binds to β-sheet structures identifying amyloid β plaques (Sun et al., 2002; 

Bussière et al., 2004).  Sections were also co-labelled to detect the microglial marker Iba1 

(Figure 4.1c-i, red).  Plaques were absent from the hippocampus of WT and APP mice at P60 

(Figure 4.1c, d) and P90 (Figure 4.1e, f).  At P180, plaques had not formed in the hippocampus 

of WT mice (Figure 4.1g), but were present in the hippocampus of APP mice (Figure 4.1h-i).   
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Figure 4.1. APP transgenic mice have impaired survival compared with their wildtype littermates 

a) A Western blot utilising the anti-human APP 6E10 antibody reveals a protein band of ~100kDa in hippocampal 

protein lysates generated from P30 APP mice, that is absent from lysates generated from WT littermates and 

Prnp-MAPTP301S (MAPT) transgenic mice.  A protein band corresponding to β-actin (~42kDa) was detected in 

all brain lysates.  b) Quantification of human APP expression, relative to β-actin expression, in brain lysates from 

P30, P60, P90 and P180 WT, MAPT and APP transgenic mice, indicated that human APP expression was 

significantly elevated in APP mice relative to WT and MAPT mice at all timepoints [Two-way ANOVA, genotype: 

F (2, 24) = 112.0, p < 0.0001; age: F (3, 24) = 2.35, p = 0.097; interaction: F (6, 24) = 2.31, p = 0.066].  P180 

APP transgenic mice expressed more human APP than P30, P60 or P90 mice of the same genotype [Bonferroni 

post-test: 30 vs 180, p = 0.040; 60 vs 180, p = 0.001; 90 vs 180, p = 0.030].  c-h) Coronal brain cryosections 

showing the hippocampus of P60, P90 and P180 WT and APP mice stained to detect the microglial marker Iba1 

(red) and amyloid plaques (thioflavin S; green).  White arrow heads indicate amyloid plaques.  i) A thioflavin S 

labelled amyloid plaque (green) surrounded by microglia (Iba1; red) in the hippocampus of a P180 APP 

transgenic mouse.  j) Quantification of the survival of WT and APP mice from birth until P241.  [Log Rank 

(Mantel-Cox) test: Chi square = 40.97, df = 1, p < 0.0001]. Asterisks denote significant differences identified by 

Bonferroni post hoc analysis ****p < 0.0001. Scale bar represents 200µm (c-h) or 55µm (i).     
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While microglia were present in the hippocampus of WT and APP mice at all ages examined, 

Iba1 expression increased noticeably by P180 in the APP mice, which is indicative of reactive 

microgliosis, and microglia were also found to accumulate around amyloid plaques (Figure 

4.1i). 

 

While APP transgenic mice developed amyloid plaques by P180, their survival was impaired 

prior to adulthood.  By quantifying the survival of WT and APP transgenic mice from birth 

until P180, we determined that ~60% of APP transgenic mice die prior to P180, compared with 

only ~2% of WT mice [Log-rank (Mantel-Cox) test, p < 0.0001, Figure 4.1j].  As we next 

aimed to characterise the behavioural consequences of APPSw,Ind overexpression, it should be 

noted that the impaired survival of APP transgenic mice introduces an unavoidable bias into 

our analyses, skewing our characterisation towards the less affected mice that survive to the 

older ages. 

 

4.2.2. APP mice exhibit hyperactive behaviour by P60 but do not develop spatial 

learning deficits by P180 

To compare the cognitive performance of WT and APP transgenic mice prior to and during 

plaque formation, WT and APP mice were subjected to a battery of behavioural tasks at P60, 

P90 or P180.  WT (Figure 4.2a) and APP transgenic mice (Figure 4.2b) were placed into an 

open field arena for 10 minutes, over which time the total distance each mouse travelled 

(Figure 4.2c), and the average velocity of that movement (Figure 4.1d) was recorded.  At all 

ages tested, APP mice travelled further (Figure 4.2c) and faster (Figure 4.2d) than their WT 

littermates, suggesting that these mice are hyperactive.  Additionally, WT and APP mice spent 

a similar proportion of time in the brightly lit centre of the open field at P60 and P90; however,  
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Figure 4.2. APP transgenic mice are hyperactive but show no overt learning and memory deficit by 6 months 

of age 

a-b) Representative track visualisation images (EthoVision XT) showing movement (black lines) of P180 WT (a) 

and APP (b) mice during the open field task. c) Quantification of the total distance travelled by WT and APP mice 

in the open field task at P60, P90 and P180 [Two-way ANOVA, genotype: F (1, 53) = 48.59, p < 0.0001; age: F 

(2, 53) = 2.30, p = 0.109; interaction: F (2, 53) = 3.18, p = 0.049]. d) Quantification of the average movement 

velocity of WT and APP mice during the open field task at P60, P90 and P180 [Two-way ANOVA, genotype: F 

(1, 53) = 47.83, p < 0.0001; age: F (2, 53) = 2.27, p = 0.113; interaction: F (2, 53) = 3.21, p = 0.047]. e) 

Quantification of the proportion of time spent in the centre of the open field of WT and APP mice during the open 

field task at P60, P90 and P180 [Two-way ANOVA, genotype: F (1, 53) = 8.05, p = 0.006; age: F (2, 53) = 0.51, 

p = 0.59; interaction: F (2, 53) = 2.431, p =0.097]. f) Quantification of the proportion incorrect arm choices 

(errors) made by P60, P90 and P180 WT and APP mice during the T-maze alternation task [Two-way ANOVA, 

genotype: F (1, 50) = 18.89, p < 0.0001; age: F (2, 50) = 1.20, p = 0.204; interaction: F (2, 50) = 0.064, p = 

0.937]. g-h) Representative track visualisation images (EthoVision XT) showing movement (black lines) of P180 

WT (g) and APP (h) mice during the Barnes maze long-term memory probe trial, carried out 2 weeks after mice 

learned the expected location of an escape box (red arrows). Blue shading indicates the quadrant of the maze 

defined as the target zone. i) Quantification of the proportion of time P60, P90, and P180 WT or APP mice spent 

within the target zone during the long-term memory probe trial [Two-way ANOVA, genotype: F (1, 52) = 1.93, p 

= 0.170; age: F (2, 52) = 3.06, p = 0.055; interaction: F (2, 52) = 0.16, p = 0.844]. j) Quantification of the time 

spent by P180 WT and APP mice in each quadrant of the Barnes maze during the short-term memory probe phase 

[Two-way ANOVA, genotype: F (1, 80) = 0.006, p = 0.935; maze quadrant: F (3, 80) = 41.96, p < 0.0001; 

interaction: F (3, 80) = 1.212, p = 0.310]. k) Quantification of the time spent by P180 WT and APP mice in each 

quadrant of the Barnes maze during the long-term memory probe phase [Two-way ANOVA, genotype: F (1, 80) 

= 0.004, p = 0.946; maze quadrant: F (3, 80) = 42.55, p < 0.0001; interaction: F (3, 80) = 1.77, p = 0.159]. 

Data are presented as mean ± SEM, n= 8-11 mice per group. Asterisks denote significant differences identified 

by Bonferroni post hoc analysis, *p < 0.05, **p < 0.01, ****p < 0.0001. TA: target quadrant; OP: opposite 

quadrant; AL: adjacent left quadrant; AR: adjacent right quadrant. Scale bars represent 5cm (a-b) and 20cm (g-

h). 
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by P180 APP mice spent less of their time in the centre region (Figure 4.2e), which is indicative 

of an increase in anxiety-like behaviour.   

 

Working-memory performance was subsequently evaluated by assessing spontaneous 

alternation in the T-maze.  We found that WT and APP mice performed similarly at P60, but 

that by P90 APP mice persistently made more repeat arm entries (errors) than their WT 

littermates (Figure 4.2f) suggesting that these mice have impaired working memory or 

attentional processing that is likely associated with their hyperactivity (Kim et al., 2017; 

Montarolo et al., 2019).  When evaluating short and long-term memory retention by WT 

(Figure 4.2g) and APP transgenic mice (Figure 4.2h) using the Barnes maze spatial navigation 

task, we found that regardless of age, APP mice and their WT littermates performed equally 

well in the short-term memory probe trial [P60: WT 35.11 ± 2.4, APP 34.02 ± 3.0; P90: WT 

40.35 ± 6.0, APP 44.90 ± 3.9; P180: WT 45.10 ± 3.8, APP 40.02 ± 3.5; mean ± SEM, time in 

target zone (%)] one day after learning the location of the escape box, and again two-weeks 

later during the long-term memory probe trial (Figure 4.2i).  This is highlighted by data 

showing that even at P180, WT and APP mice spend significantly more time in the target 

quadrant, compared to all other quadrants during the short-term (Figure 4.2j) and long-term 

(Figure 4.2k) memory trials, indicating that mice of both genotypes learned and remembered 

the location of the escape box.    

 

4.2.3. OPC density and membrane properties are unchanged, but the response to GABA 

is increased at P100 in APP mice 

To determine how OPC behaviour might be affected by amyloid pathology, we first quantified 

the density of PDGFRα+ OPCs in the hippocampus, entorhinal cortex and fimbria of WT and 
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APP mice (Figure 4.3a-i).  We found that OPC density was slightly reduced in the 

hippocampus of APP mice compared with control mice at P67; however, this difference was 

not maintained at later ages (Figure 4.3g).  In the entorhinal cortex (Figure 4.3h) and fimbria 

(Figure 4.3i), OPC density was not affected by genotype and remained stable over time.  To 

determine whether amyloid pathology affected the membrane properties of OPCs, we also 

performed whole cell patch clamp analysis of GFP+ OPCs in the hippocampus of brain slices 

collected from WT, MAPT or APP transgenic mice carrying the Pdgfrα–H2BGFP transgene.  

We report that neither the overexpression of human MAPTP301S or APPSw,Ind in neurons altered 

the OPC membrane capacitance (an approximate measure of cell size; Figure 4.3j), membrane 

resistance (Figure 4.3k) or RMP (Figure 4.3l), which were equivalent for WT, MAPT and 

APP transgenic mice at P30 and P100.  Furthermore, the magnitude of the inwards voltage-

gated sodium channel current recorded from P30 and P100 OPCs was equivalent for WT, 

MAPT and APP transgenic mice (Figure. 4.3m). 

 

As APP mice are hyperactive by P60, which may reflect altered neurotransmitter signalling or 

inhibitory-excitatory balance in the brain (Palop et al., 2007; Sanchez et al., 2012; Verret et al., 

2012; Snowden et al., 2019), we next used whole cell patch clamp electrophysiology to 

examine the ability of OPCs in the hippocampus of WT, MAPT and APP mice to respond to 

excitatory and inhibitory neurotransmitters.  GFP+ OPCs from WT mice were first held at -60 

mV and KA (100 μM) was bath applied to activate the ionotropic AMPA/KA subtype of 

glutamate receptors.  KA application evoked an inwards current that was sensitive to the 

AMPA/KA receptor antagonist CNQX (Figure 4.4a-c).   
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Figure 4.3. OPC density and membrane properties are normal in APP transgenic mice 

a-f) Coronal brain sections (30µm) from P120 WT and APP mice were stained to detect PDGFRα+ OPCs in the 

hippocampus, entorhinal cortex and fimbria.  g) Quantification of OPC density in the hippocampus of P60, P120, 

150 and P180 WT and APP transgenic mice [Two-way ANOVA, genotype: F (1, 30) = 13.66, p = 0.0009; age: F 

(3, 30) = 0.14, p = 0.93; interaction: F (3, 30) = 0.91, p = 0.44].  h) Quantification of OPC density in the 

entorhinal cortex of P60, P120 and P180 WT and APP transgenic mice [Two-way ANOVA, genotype: F (1, 18) 

= 0.85, p = 0.36; age: F (2, 18) = 0.22, p = 0.80; interaction: F (2, 18) = 0.20, p = 0.81].  i) Quantification of 

OPC density in the fimbria of P60, P120, 150 and P180 WT and APP transgenic mice [Two-way ANOVA, 

genotype: F (1, 27) = 0.0009, p = 0.97; age: F (3, 27) = 4.49, p = 0.01; interaction: F (3, 27) = 1.23, p = 0.31].  

.31]. Data are presented as mean ± SD, n=3-6 mice per group (g-i).  j) The membrane capacitance of OPCs in 

the hippocampus of P30 and P100 WT, MAPT and APP mice [Two Two-way ANOVA, genotype: F (2, 77) = 

3.748, p = 0.03; age: F (1, 77) = 0.03 p = 0.87; interaction: F (2, 77) = 0.45, p = 0.64, Bonferroni’s post-test 

P30 or P100 WT vs APP or MAPT p>0.05].  k)  The membrane resistance of OPCs in the hippocampus of P30 

and P100 WT, MAPT and APP mice [Two-way ANOVA, genotype: F (2, 67) = 1.173, p = 0.31; age: F (1, 67) = 

0.24, p = 0.63; interaction: F (2, 67) = 0.49, p = 0.61].  l) The resting membrane potential of OPCs in the 

hippocampus of P30 and P100 WT, MAPT and APP mice [Two-way ANOVA, genotype: F (2, 77) = 1.7166, p = 

0.18; age: F (1, 77) = 1.35, p = 0.25; interaction: F (2, 77) = 0.75, p = 0.48].  m) The voltage-gated sodium 

channel current (INa) recorded from OPCs in the hippocampus of P30 and P100 WT, MAPT and APP mice [Two-

way ANOVA, genotype: F (2, 73) = 0.002, p = 0.998; age: F (1, 73) = 4.1, p = 0.047; interaction: F (2, 73) = 

0.019, p = 0.98, Bonferroni’s post-test P30 or P100 WT vs APP or MAPT p>0.05].  Data are presented as mean 

± SEM, n=6-23 cells per group (j-m).  Scale bars represent 185 µm (a, b) and 70 µm (c-f).     
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Figure 4.4. OPCs from APP transgenic mice have a heightened response to GABA  

a) I-V relationship for the current evoked in hippocampal OPCs by the bath application of 100 µM KA (mean 

steady state baseline current was subtracted from the mean steady state current in the presence of KA) in P30 or 

P100 WT mice [Two-way ANOVA, genotype effect F (1,8) = 0.2372 p = 0.6393].  b) Quantification of KA (100 

µM) evoked currents when hippocampal OPCs are hyperpolarised to -100 mV in P30 or P100 WT mice in the 

presence or absence of CNQX (10 µM) [Two-way ANOVA, drug effect F (1,35) = 124.3 p < 0.0001, Bonferroni’s 

post-hoc test P30 or P100 KA vs KA+CNQX p <0.001].  c) Example traces show the baseline currents, currents 

in the presence of KA, or currents in the presence of KA + CNQX from OPCs of WT mice after a family of voltage 

steps from -100 to 20 mV (20 mV increments).  d) Quantification of KA-evoked currents measured after a 

hyperpolarising pulse (to -100 mV) for OPCs in the hippocampus of P30 or P100 WT, MAPT or APP transgenic 

mice [Two-way ANOVA, genotype effect F (2,54) = 0.1375 p = 0.2616].  e) Example traces showing KA-evoked 

currents (baseline current was subtracted from currents recorded in the presence of KA) after voltage steps form 

-100 mV to 20 mV (40 mV increments) in P30 or P100 WT, MAPT or APP mice.  f) I-V relationship for the current 

evoked in hippocampal OPCs by the bath application of 100 µM GABA (mean steady state baseline current 

subtracted from the mean steady state current in the presence of GABA) in P30 or P100 WT mice [Two-way 

ANOVA, genotype effect F (1,14) = 0.002744 p = 0.9590].  g)  Quantification of the GABA-evoked current 

measured after hyperpolarising hippocampal OPCs to -80 mV in the absence or presence of picrotoxin (50 µM) 

[Two-way ANOVA, drug effect F (1,14) = 46.75 p = 0.0001, Bonferroni’s post-hoc test P30 or P100 GABA vs 

GABA+PTX p <0.001].  h) Example traces showing the baseline currents, currents in the presence of GABA, or 

currents in the presence of GABA + picrotoxin from OPCs in hippocampal slices from WT mice after a family of 

voltage steps from -80 to 80 mV (20 mV increments).  i) Quantification of the GABA-evoked current measured 

after a hyperpolarising pulse to -80 mV in OPCs from P30 or P100 WT, MAPT or APP mice [Two-way ANOVA. 

genotype effect F (2,59) = 5.738 p = 0.0053, Bonferroni’s post-hoc test P100 WT vs APP p <0.001].  j) Example 

traces showing GABA-evoked currents (baseline current was subtracted from currents recorded in the presence 

of GABA) after voltage steps from -80 mV to 80 mV (40 mV increments) for hippocampal OPCs from P30 or P100 

WT, MAPT or APP mice. Values represent mean ± SEM, n=4-16 cells per group. *** = p <0.001 Two-way 

ANOVA with Bonferroni’s post-hoc test.  
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The KA-evoked current in OPCs at P30 and P100 was not linear and did not reverse (Figure 

4.4a), which is consistent with previous reports showing that in OPCs sodium entry through 

AMPA/KA receptors inhibits the voltage gated potassium channel current at depolarised 

potentials (Borges and Kettenmann, 1995).  We report that the amplitude of the KA-evoked 

current does not differ between P30 and P100, and is equivalent in WT, MAPT and APP 

transgenic mice (Figure 4.4d, e).  To assess the response of OPCs to the inhibitory 

neurotransmitter GABA (100 μM), OPCs were held at 0 mV while GABA was bath applied.  

At P30 and P100, GABA evoked an outwardly rectifying current that was completely abolished 

in the presence of PTX (100 μM; Figure 4.4f-h), indicating that the evoked currents resulted 

from the activation of ionotropic GABAA receptors.  There was no difference in the amplitude 

of current evoked by GABA in OPCs from P30 WT, MAPT and APP transgenic mice (Figure 

4.4i, j).  By contrast, OPCs in hippocampal slices generated from P100 APP transgenic mice 

responded more robustly to GABA at 80 mV than OPCs from P100 WT or MAPT mice (Figure 

4.4i, j).  These data suggest that early amyloid pathology is associated with a change in the 

subunit composition of GABAA receptors expressed by OPCs, or a change in the number of 

GABAA receptors expressed on the cell surface.   

  

4.2.4. Node of Ranvier length is decreased and paranode length increased in the 

hippocampus of P180 APP mice 

To determine whether myelin integrity was affected in young adult APP transgenic mice, we 

first examined the morphology of the nodes of Ranvier and their associated paranodes in P100 

WT and APP transgenic mice (Figure. 4.5).  Coronal brain cryosections containing the 

hippocampus (Figure 4.5a, b) and fimbria (Figure 4.5c, d) were immunolabelled to detect the 

nodal protein NaV1.6 (red) and the paranodal protein Caspr (green), and the length of each 

structure measured from confocal micrographs.  We found that node of Ranvier length was  
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Figure 4.5. Nodes of Ranvier are shorter and paranodes longer in the hippocampus of APP transgenic mice 

a-d) Coronal brain sections (30µm) from P107 WT and APP mice were stained to detect Caspr (green; paranodal 

marker) and Nav1.6 (red; used to mark nodes of Ranvier) in the hippocampus and fimbria.  Magnified panels 

demonstrate measurement of nodes of Ranvier.  e) Quantification of node length in the hippocampus of WT (n = 

229 nodes) and APP (n = 142 nodes) mice (Mann Whitney test: U = 11990, p < 0.0001).  f) Cumulative 

distribution plot on node length in the hippocampus of WT (open circles) and APP mice (grey diamonds) 

(Kolmogorov-Smirnov test: D = 0.2033, p = 0.0014).  g) Quantification of mean hippocampal node length for 

each mouse in WT (n = 4) or APP (n = 3) mice (Two -tailed, unpaired t-test: t = 2.664, df = 5, p = 0.0447).  h) 

Quantification of paranode length in the hippocampus of WT (n = 135 paranodes) and APP (n = 113 paranodes) 

mice (Mann Whitney test: U = 5568, p = 0.0003).  i) Cumulative distribution plot on paranode length in the 

hippocampus of WT and APP mice (Kolmogorov-Smirnov test: D = 0.2507, p = 0.0009).  j) Quantification of 

mean hippocampal paranode length for each mouse in WT (n = 4) or APP (n = 3) mice (Two-tailed, unpaired t-

test: t = 2.799, df = 5, p = 0.038).  k) Quantification of node length in the fimbria of WT (n = 278 nodes) and 

APP (n = 163 nodes) mice (Mann-Whitney test: U = 20500, p = 0.0947).  l) Cumulative distribution plot of node 

length in the fimbria of WT and APP mice (Kolmogorov-Smirnov test: D = 0.1190, p = 0.1091).  m) Quantification 

of mean hippocampal node length for each mouse in WT (n = 4) or APP (n = 3) mice (Two-tailed, unpaired t-

test: t = 1.293, df = 5, p = 0.2526).  n) Quantification of paranode length in the hippocampus of WT (n = 193 

paranodes) and APP (n = 134 paranodes) mice (Mann-Whitney test: U = 12280, p = 0.4374).  o) Cumulative 

distribution plot on paranode length in the hippocampus of WT and APP mice (Kolmogorov-Smirnov test: D = 

0.08391, p = 0.6336).  p) Quantification of mean hippocampal paranode length for each mouse in WT (n = 4) or 

APP (n = 3) mice (Two-tailed, unpaired t-test: t = 0.5096, df = 5, p = 0.6338).  Results are presented as mean ± 

SD. Scale bars represent 2.8µm (a-d), 1.4µm (magnified insets). 
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shorter in the hippocampus of APP transgenic compared to WT mice (Figure 4.5e), with node 

length distribution being significantly shifted towards the formation of shorter nodes (Figure 

4.5f).  Furthermore, average node length per mouse was also reduced with APPSw,Ind expression 

(Figure 4.5g).  The observed change in node length was accompanied by a lengthening of the 

paranodes in the hippocampus of APP transgenic mice (Figure 4.5h), as paranode length 

distribution was shifted towards the generation of longer paranodes (Figure 4.5i).  Within the 

hippocampus of APP transgenic mice, average paranode length was also increased per mouse 

(Figure 4.5j).  By contrast, node of Ranvier length (Figure 4.5k-m) and paranode length 

(Figure 4.5n-p) was equivalent for WT and APP transgenic mice in the fimbria, suggesting 

that this phenotype is region specific.   

 

4.2.5. Myelin thickness is increased in the hippocampus of P100 APP transgenic mice 

As paranode lengthening can result from myelin decompaction (Howell et al., 2006; Stojic et 

al., 2018) or increasing myelin thickness following myelin sheath addition (Snaidero et al., 

2014), we next examined the ultrastructure of hippocampal myelin in P100 WT (Figure 4.6a) 

and APP mice (Figure 4.6b) by TEM.  We found that axon density (Figure 4.6c), myelinated 

axon density (Figure 4.6d), and the proportion of axons that are myelinated (Figure 4.6e) was 

equivalent between WT and APP mice, suggesting that developmental myelination was largely 

normal in these mice.  However, the g-ratio [axon diameter / (axon + myelin diameter)] 

measured for myelinated axons in the hippocampus of APP mice was reduced compared to 

those measured in WT mice (Figure 4.6f-g), suggesting that APP mice have thicker myelin in 

this region.  By further quantifying axon diameter and the number of myelin wraps per axon 

(Figure 4.6h-k), we confirmed that myelinated axon diameter was equivalent in the 

hippocampus of WT and APP transgenic mice (Figure 4.6l); however, the number of myelin 

lamellae (wraps) was increased in APP compared to WT mice (Figure 4.6m).  These data  
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Figure 4.6. Myelin thickness is increased in APP transgenic mice 

a-b) Representative electron micrographs from the CA1 region of the hippocampus of WT (a) and APP (b) mice 

at P90. c) Quantification of total axon density (axons / µm2) in WT (open circles) and APP (grey diamonds) mice 

(Two-tailed, unpaired t-test: t = 2.46, df = 4, p = 0.06).  d) Quantification of myelinated axon density (axons / 

µm2) in WT and APP mice (Two-tailed, unpaired t-test: t = 1.69, df = 4, p = 0.16). e)  Quantification of the 

proportion of myelinated axons in the CA1 of WT and APP mice at P90 (Two-tailed, unpaired t-test: t = 0.46, df 

= 4, p = 0.66). f) Graphical representation of the g-ratio distribution based on axon diameter (Kolmogorov-

Smirnoff test, K-S D = 0.2926 p < 0.0001). g) Quantification of average g-ratio for WT and APP mice (Two-

tailed, unpaired t-test: t = 4.18, df = 4, p = 0.013).  h-k) Representative high magnification electron micrographs 

through a single myelinated axon within the CA1 region of WT (h-i) and APP mice (j-k) at P90.  l) Quantification 

of average myelinated axon diameter within the CA1 region of WT and APP mice (Two-tailed, unpaired t-test: t 

= 2.27, df = 4, p = 0.085).  m) Quantification of average number of myelin wraps for axons within the CA1 region 

of WT and APP mice at P90 (Two-tailed, unpaired t-test: t = 4.12, df = 4, p = 0.014). Scale bars represent: 1µm 

(a-b), 300nm (h, j) and 100nm (i, k). Results are presented as mean ± SD, n = 3 mice per genotype.  
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indicate that early amyloid pathology influences the myelinating behaviour of 

oligodendrocytes in the hippocampus.  

 

4.2.6. New oligodendrocyte number is elevated in the hippocampus, entorhinal cortex 

and fimbria of adult APP transgenic mice 

To determine whether the ability of OPCs to generate new oligodendrocytes was affected by 

early amyloid pathology, we performed cre-lox lineage tracing of adult OPCs from P60, 

comparing oligodendrocyte generation in control (Pdgfra-CreERT2::Rosa26-YFP) and APP 

(Pdgfra-CreERT2::Rosa26-YFP::PDGFb-hAPPSw,Ind) mice (Figure 4.7).  Coronal brain 

cryosections from P60+7, P60+60, P60+90 and P60+120 control and APP transgenic mice, 

containing the hippocampus, entorhinal cortex and fimbria, were stained to detect YFP (green), 

PDGFRα (red) and Hoechst 33342 (blue) (Figure 4.7a-l).  While PDGFRα+ YFP+ OPCs gave 

rise to new PDGFRα-neg YFP+ cells over time, essentially all YFP-labelled cells expressed the 

transcription factor OLIG2, even at P60+120, confirming that they remained in the 

oligodendrocyte lineage.  For example, at P60+120, ~97 ± 1% of YFP+ cells in the 

hippocampus of control mice and ~96 ± 2% of YFP+ cells in the hippocampus of APP 

transgenic mice were OLIG2+ (mean ± SD).  While we found that OPCs differentiated to 

produce new oligodendrocytes in the hippocampus (Figure 4.7a-d), entorhinal cortex (Figure 

4.7e-h) and fimbria (Figure 4.7i-l) of adult control and APP mice, the proportion of YFP+ cells 

that became new oligodendrocytes was significantly increased in the hippocampus of APP 

transgenic mice compared to control mice by P60+90 (Figure 4.7m).  By P60+120, the 

proportion of YFP+ cells that were new oligodendrocytes was also significantly higher in the 

entorhinal cortex (Figure 4.7n) and fimbria (Figure 4.7o) of APP transgenic mice compared 

to controls.  This increase in cell addition resulted in an increase in the density of newborn  
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Figure 4.7. Adult oligodendrogenesis is elevated in the APP transgenic mouse brain 

a-d) Confocal images of the hippocampus in coronal brain cryosections from P60+60 and P60+120 control and 

APP transgenic mice stained to detect YFP (green), PDGFRα (red) and Hoechst 33342 (blue).  e-h) Confocal 

images of the entorhinal cortex in coronal brain cryosections from P60+60 and P60+120 control and APP 

transgenic mice stained to detect YFP (green), PDGFRα (red) and Hoechst 33342 (blue).  i-l) Confocal images 

of the fimbria in coronal brain cryosections from P60+60 and P60+120 control and APP transgenic mice stained 

to detect YFP (green), PDGFRα (red) and Hoechst 33342 (blue).  m) Quantification of the proportion of YFP+ 

cells in the hippocampus of control and APP mice that have differentiated into PDGFRα-negative YFP+ 

oligodendrocytes [Two-way ANOVA, genotype: F (1, 30) = 21.35, p < 0.0001; age: F (3, 30) = 13.12, p < 0.0001; 

interaction: F (3, 30) = 3.62, p = 0.024].  n) Quantification of the proportion of YFP+ cells in the entorhinal 

cortex of control and APP mice that have differentiated into PDGFRα-negative YFP+ oligodendrocytes [Two-

way ANOVA, genotype: F (1, 18) = 7.01, p = 0.016; age: F (2, 18) = 11.61, p = 0.0006; interaction: F (2, 18) = 

2.03, p = 0.16].  o) Quantification of the proportion of YFP+ cells in the fimbria that have differentiated of control 

and APP mice that have differentiated into PDGFRα-negative YFP+ oligodendrocytes [Two-way ANOVA, 

genotype: F (1, 27) = 14.29, p = 0.0008; age: F (3, 27) = 45.15, p < 0.0001; interaction: F (3, 27) = 3.11, p = 

0.042].  p) Quantification of the density of YFP+ PDGFRα-negative newborn oligodendrocytes in the 

hippocampus of control and APP transgenic mice (cells per mm2 as adjusted for x-y area only) [Two-way ANOVA, 

genotype: F (1, 30) = 16.92, p = 0.0003; age: F (3, 30) = 9.97, p = 0.0001; interaction: F (3, 30) = 3.41, p = 

0.029].  q) Quantification of the density of YFP+ PDGFRα-negative newborn oligodendrocytes in the entorhinal 

cortex of control and APP transgenic mice (oligodendrocytes per mm2 as adjusted for x-y area only) [Two-way 

ANOVA, genotype: F (1, 18) = 16.16, p = 0.0008; age: F (2, 18) = 18.50, p < 0.0001; interaction: F (2, 18) = 

4.41, p = 0.027].  r) Quantification of the density of YFP+ PDGFRα-negative newborn oligodendrocytes in the 

fimbria of control and APP transgenic mice (oligodendrocytes per mm2 as adjusted for x-y area only) [Two-way 

ANOVA, genotype: F (1, 27) = 24.73, p < 0.0001; age: F (3, 27) = 23.68, p < 0.0001; interaction: F (3, 27) = 

8.55, p = 0.0004].  White arrows indicate YFP+ PDGFRα-negative newborn oligodendrocytes.  Data are 

presented as mean ± SD, n=3-6 mice per group. Scale bar represents 25 µm (a-h) or 33 µm (i-l).     
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YFP+ oligodendrocytes detected in the hippocampus (Figure 4.7p), entorhinal cortex (Figure 

4.7q) and fimbria (Figure 4.7r) of APP mice relative to controls. 

 

Surprisingly, the addition of new oligodendrocytes did not alter the total density of 

oligodendrocytes detected in the hippocampus, entorhinal cortex or fimbria of control or APP 

mice (Figure 4.8).  By performing immunohistochemistry on coronal brain cryosections from 

P120 or P180 WT and APP transgenic mice to detect the oligodendrocyte marker ASPA 

(Figure 4.8 a-l), we determined that the density of ASPA+ oligodendrocytes was higher in the 

fimbria (Figure 4.8o) and hippocampus (Figure 4.8m) than the entorhinal cortex (Figure 

4.8n), but consistent across age and between WT and APP transgenic mice.  However, as there 

are only 213 ± 65 (mean ± SD) oligodendrocytes per mm2 of hippocampus in APP mice at 

P180 (Figure 4.8m) and 71 ± 7 (mean ± SD) cells per mm2 are newborn oligodendrocytes 

(Figure 4.7p), these data suggest that ~33% of oligodendrocytes present in the hippocampus 

of P180 APP mice are newborn. This equates to ~49% and ~23% in the entorhinal cortex 

(Figure 4.8n; Figure 4.7q) and fimbria (Figure 4.8o; Figure 4.7r), respectively, which is a 

significant contribution to the total population and strongly suggests that amyloid pathology is 

associated with oligodendrocyte turnover by P180.  To determine whether newborn 

oligodendrocytes are mature oligodendrocytes, we immunolabelled coronal sections 

containing the hippocampus and fimbria, to detect PDGFRα+ (blue), YFP+ (green) and ASPA+ 

(red) (Figure 4.9a-h).  We found that YFP+ ASPA+ mature oligodendrocyte addition was 

significantly increased at P60+120 in the hippocampus (Figure 4.9.i) and fimbria (Figure 

4.9.j) of APP mice relative to controls, suggesting that new oligodendrocytes are added to 

replace myelin. 
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Figure 4.8. Oligodendrocyte number is normal in APP transgenic mice  

a-d) Confocal images of the hippocampus in coronal brain cryosections (30µm) from P120 and P180 WT and 

APP transgenic mice stained to detect the oligodendrocyte marker ASPA (red) and Hoechst 33342 (blue).  e-h) 

Confocal images of the entorhinal cortex in coronal brain cryosections from P120 and P180 WT and APP 

transgenic mice stained to detect the oligodendrocyte marker ASPA (red) and Hoechst 33342 (blue).  i-l) Confocal 

images of the fimbria in coronal brain cryosections from P120 and P180 WT and APP transgenic mice stained to 

detect the oligodendrocyte marker ASPA (red) and Hoechst 33342 (blue).  m) Quantification of the density of 

ASPA+ oligodendrocytes in the hippocampus of WT (black bars, open circles) and APP (grey bars, grey diamonds) 

transgenic mice (oligodendrocytes per mm2 as adjusted for x-y area only) [Two-way ANOVA, genotype: F (1, 16) 

= 2.11, p = 0.16; age: F (1, 16) = 1.48, p = 0.24; interaction: F (1, 16) = 1.27, p = 0.27].  n) Quantification of 

the density of ASPA+ oligodendrocytes in the entorhinal cortex of WT and APP transgenic mice (oligodendrocytes 

per mm2 as adjusted for x-y area only) [Two-way ANOVA, genotype: F (1, 18) = 2.08, p = 0.16; age: F (1, 18) = 

0.95, p = 0.34; interaction: F (2, 53) = 0.02, p = 0.87].  o) Quantification of the density of ASPA+ 

oligodendrocytes in the fimbria of WT and APP transgenic mice (oligodendrocytes per mm2 as adjusted for x-y 

area only) [Two-way ANOVA, genotype: F (1, 16) = 0.40, p = 0.53; age: F (1, 16) = 0.08, p = 0.77; interaction: 

F (1, 16) = 0.64, p = 0.43].  Results are presented as mean ± SD, n = 3-6 mice per group. Scale bars represent 

30 µm.      
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Figure 4.9. APP mice add more ASPA+ mature oligodendrocytes to the hippocampus and fimbria than control 

mice by 6 months of age.  

a-h) Confocal images showing ASPA (red), PDGFRα (blue) and YFP (green) in the hippocampus of P60 + 120 

Pdgfrα-CreERT2:: Rosa26-YFP (control; a-d) and Pdgfrα-CreERT2:: Rosa26-YFP:: PDGFb-APPSw,Ind (APP; e-

h) mice. i) Quantification of the density of all YFP+ cells that are PDGFRα-negative in the hippocampus of P60 

+ 120 control and APP mice, including those that are YFP+ PDGFRα-negative ASPA-negative premyelinating 

oligodendrocytes versus YFP+ PDGFRα-negative ASPA+ mature oligodendrocytes. [two-way ANOVA, genotype: 

F (1, 15) = 49.33, p < 0.0001; cell type: F (2, 15) = 80.29, p < 0.0001; interaction: F (2, 15), p = 0.0029]. j) 

Quantification of the density of all YFP+ cells that are PDGFRα-negative in the fimbria of P60 + 120 control and 

APP mice, including those that are YFP+ PDGFRα-negative ASPA-negative premyelinating oligodendrocytes 

versus YFP+ PDGFRα-negative ASPA+ mature oligodendrocytes. [two-way ANOVA, genotype: F (1, 15) = 81.97, 

p < 0.0001; cell type: F (2,15) = 96.15, p < 0.0001; interaction: F (2, 15) = 21.21, p < 0.0001]. Asterisks indicate 

significant differences identified by Bonferroni post hoc analysis, **p < .01, ***p < .001, ****p < .0001. White 

arrow heads indicate OPCs in which YFP expression has been enabled; yellow arrow head indicate YFP+ cells 

that do not stain for either an OPC marker or a mature oligodendrocyte marker, suggesting that they are immature 

(premyelinating) oligodendrocytes. White arrows indicate YFP+ (newborn) oligodendrocytes (ASPA+ cells). Scale 

bars represent 35μm. 
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4.3. Discussion 

Herein we show that APP transgenic mice have an increased level of human APP expression 

in the hippocampus at P180, which corresponds with their development of amyloid plaques 

(Figure 4.1).  Behaviourally these mice were hyperactive by 2 months of age, which impacted 

their performance in other behavioural assessments; however, they did not develop spatial 

memory deficit by 6 months of age (Figure 4.2).  OPCs within the hippocampus of APP 

transgenic mice are present at a normal density, but have an increased response to GABA by 

P100 (Figure 4.3 and Figure 4.4).  Additionally, developmental myelination was affected in 

APP transgenic mice, as the nodes of Ranvier along hippocampal axons were shorter and the 

paranodes longer in young adulthood, and this phenotype was associated with increased myelin 

thickness (Figure 4.5 and Figure 4.6).  OPCs in the hippocampus, entorhinal cortex and 

fimbria of young adult APP transgenic mice also produced a normal number of new 

oligodendrocytes; however, as pathology developed oligodendrogenesis increased (Figure 

4.7).  As this was not accompanied by a change in total oligodendrocyte number (Figure 4.8), 

but an increased addition of mature oligodendrocytes (Figure 4.9), we propose that APP 

transgenic mice have a higher level of oligodendrocyte turnover than their WT littermates by 

P180, which may be required to replace lost myelin. 

 

4.3.1. APP mice are hyperactive prior to amyloid plaque deposition 

APP or J20 mice express a human variant of APP containing the Swedish (K670N/M671L) 

and Indiana (V717F) familial AD-linked mutations, driven by the PDGFβ promoter (Mucke et 

al., 2000).  By performing a western blot analysis of hippocampal protein lysates from P30, 

P60, P90 and P180 WT, MAPT and APP mice,  detecting amino acids 1-16 of human APP 

using the 6E10 antibody, we found that human APP (~100kDa) was present in the hippocampus 
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of APP mice by P30 and was not present in WT mice (Mucke et al., 2000; Galvan et al., 2006).  

While a human APP band of ~100kDa was not present in the hippocampus of MAPT transgenic 

mice, the antibody bound to a protein of ~55kDa.  As peptide inhibitors designed to target a 

16-23 amino acid region of amyloid β to prevent its aggregation, can also prevent the 

aggregation of hyperphosphorylated tau, these two pathological proteins may share a common 

epitope (Griner et al., 2019).  Therefore, we propose that the protein band detected in MAPT 

mice using the 6E10 antibody corresponds to tau, usually detected at ~55kDa (Kalani et al., 

2017; Pu et al., 2018).  While human APP was present in APP mice by P30, APP expression 

increased significantly by P180, which coincided with the appearance of amyloid plaques.  

Wright et al. (2013) similarly found that APP mice express an increasing concentration of 

amyloid proteins over time, leading to amyloid plaque formation at 6 months of age, while 

others have reported the presence of amyloid plaques developing between 4-6 (Meilandt et al., 

2009) or 5-7 (Mucke et al., 2000) months of age, confirming that our APP mice follow the 

typical pattern of amyloid pathology reported for this strain.  Premature mortality has also been 

widely reported for APP mice, and is often attributed to a susceptibility to spontaneous seizures 

(Palop et al., 2007); however, the longevity described for these mice is highly varied, with 

survival rates ranging from 65-90% by 6 months of age (Cheng et al., 2007; Cissé et al., 2011; 

Murakami et al., 2011; Verret et al., 2012; Dubal et al., 2015).  We found that ~60% of APP 

mice died unexpectedly by 6 months of age, and it is reasonable to assume that the mice that 

died prematurely had developed greater pathology, such that the reduced survival of APP mice 

unavoidably biases our analyses, skewing our characterisation towards the less affected mice 

that survive to the older ages.  

 

By subjecting APP mice to a battery of behavioural tasks at 2, 3 or 6 months of age, we 

determined that APP mice were hyperactive, travelling further and faster than their WT 
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littermates in the open field task at all ages examined.  APP mice also developed episodic 

working memory deficits, observed in the T-maze spontaneous alternation task, by 3 months 

of age, and spent less time in the brightly lit centre of the open field by 6 months of age, which 

may suggest that these mice are developing anxiety-like behavioural traits.  However, these 

phenotypes may also be an artefact of the hyperactivity of these mice.  Hyperactivity is a 

consistent behavioural feature of APP mice (Cheng et al., 2007; Harris et al., 2010; Cissé et al., 

2011; Murakami et al., 2011; Sanchez et al., 2012; Verret et al., 2012; Wright et al., 2013; 

Dubal et al., 2015; Fujikawa et al., 2017; Flores et al., 2018); however, to our knowledge, we 

are the first to show a tendency towards increased anxiety-like behaviour in this strain.  Most 

studies report a decrease in anxiety-like behaviour, or a disinhibition of caution in APP mice 

demonstrated by an increase in open arm exploration time in the elevated plus maze as early 

as 2 months of age (Cheng et al., 2007; Harris et al., 2010; Cissé et al., 2011; Murakami et al., 

2011; Sanchez et al., 2012; Dubal et al., 2015).  However, others see no phenotype in the same 

test at 4, 6 or 11 months of age (Wright et al., 2013; Dekens et al., 2018) or no difference in 

performance in the light/dark emergence test at 5-8 months of age (Fujikawa et al., 2017).  It 

is interesting to note that mice expressing the Swedish (K670N/M671L), Iberian (I716F) and 

Artic (E693G) mutations in human APP (APPNL-G-F mice) have been shown to simultaneously 

exhibit anxiogenic behaviour in the open field (less time in the centre) and anxiolytic behaviour 

in the elevated plus maze (more time in the open arms) at 7-8 months of age (Pervolaraki et 

al., 2019) which the authors suggest is reflective of altered decision making processes, rather 

than a core deficit in emotional motivation.  

 

We report that APP mice were able to learn and remember the location of the escape box in 

the Barnes Maze task equally as well as their WT littermates for up to two weeks.  Our finding 

that APP mice have unimpaired spatial learning and memory function, even at 6 months of age, 
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is seemingly at odds with the field. Numerous studies have reported spatial learning and 

memory deficits in the Morris water maze task from as early as 3-4 months of age in this mouse 

strain, but most studies show the deficit develops between 5-8 months of age (Cheng et al., 

2007; Harris et al., 2010; Cissé et al., 2011; Sanchez et al., 2012; Mesquita et al., 2015). 

However, where other tests of spatial learning were used, the phenotype was less clear cut.  

Wright et al. (2013) reported that APP mice developed spatial learning deficits in the radial 

arm maze at 4 months of age, whereas Mably et al. (2015) did not see impairment in this task 

until 8 months of age. Similarly, Flores et al. (2018) reported that APP mice displayed spatial 

learning and memory impairment in the Barnes maze task from 5 months of age, while others 

reported no deficit in this task before 12 months of age (Nunes et al., 2015; Fujikawa et al., 

2017), suggesting that the Morris water maze has a greater sensitivity for identifying early 

spatial learning impairments in the APP mouse model.  Despite this, our data indicate that the 

cellular changes we observe in cells of the oligodendrocyte lineage before 6 months of age 

occur prior to the onset of overt amyloid pathology or cognitive decline.  

 

4.3.2. OPCs from P100 APP transgenic mice have a heightened response to GABA 

OPCs remained largely unchanged in APP transgenic mice, for example, their density, basic 

membrane properties and response to the AMPA/KA receptor agonist, KA, was unchanged; 

however, hippocampal OPCs from P100 APP mice responded more robustly to the bath 

application of the inhibitory neurotransmitter GABA.  APP is a synaptic protein and has been 

shown to modulate GABAergic signalling, predominantly modulating presynaptic 

metabotropic GABAB receptors or the reversal potential of chloride (reviewed by Tang, 2019).  

APP can bind to the GABAB1a subunit of presynaptic GABAB receptors, with secreted APP 

acting as a ligand at presynaptic GABAB receptors to modulate neurotransmission (Rice et al., 

2019); and the deletion of APP result in a deficit in GABAB mediated neurotransmitter release 
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(Dinamarca et al., 2019).  OPCs do express GABAB receptors (Luyt et al., 2003, 2007; Serrano-

Regal et al., 2019), but the currents evoked in OPCs by GABA application were completely 

antagonised by a selective GABAA receptor antagonist; however, it is possible that APP could 

modulate GABAB receptor activity on neurons to have a secondary effect on GABAA receptor 

expression or composition in OPCs, as the ability for GABAB to influence currents mediated 

by ion channels on OPCs has not been explored (Larson et al., 2016).   

 

APP has also been shown to affect the reversal potential for chloride in neurons via modulation 

of chloride transporters, particularly KCC2 (SLC12A5; Chen et al., 2017; Doshina et al., 2017), 

which, in turn, alters signalling through ionotropic GABAA receptors.  Within the CNS, 

NKCC1 (SlC12A2; Na+ K+ 2Cl- co-transporter 1) allows chloride to enter cells, while KCC2 

(K+-Cl- cotransporter 2) allows the efflux of chloride from cells (reviewed by Kaila et al., 

2014).  Together they maintain a gradient for chloride that determines the effect of GABAA 

receptor activation on cell membrane potential.  In E17 rat primary cortical neuron cultures, 

the overexpression of native human APP was found to decrease KCC2 expression by 

approximately 50%, but had no effect on NKCC1 (Doshina et al., 2017).  Consequently, GABA 

became more excitatory and the human APP-overexpressing neurons displayed a larger 

calcium increase in response to GABA application (Doshina et al., 2017).  KCC2 expression 

is also reduced in hippocampal CA1 neurons cultured from APP knockout mice, producing a 

depolarising shift in the chloride reversal potential relative to neurons from WT mice (Chen et 

al., 2017).  Relative to cortical neurons, OPCs have a high level of expression of NKCC1 and 

a low level of expression of KCC2 (Zhang et al., 2014), meaning that the chloride reversal 

potential in OPCs is depolarised compared with mature neurons, such that activation of 

GABAA receptors on OPCs is considered excitatory (Lin and Bergles, 2004); however, APP-
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induced changes in KCC2 may still have the capacity to influence GABAA receptor subunit 

expression to influence the GABA-mediated current recorded in these cells.   

 

GABAA receptors are pentameric ion channels made up from a number of different subunit 

combinations.  In APP knockout mouse hippocampal cultures have reduced KCC2 expression, 

but the amplitude of evoked unitary inhibitory post-synaptic currents recorded from 

glutamatergic neurons was reduced, as was the response of these neurons to the GABAA 

receptor agonist, isoguvacine (Chen et al., 2017).  This phenotype was associated with an ~50% 

reduction in expression of the α1 GABAA receptor subunit in the hippocampus of APP 

knockout mice that could be rescued by potentiating KCC2 function (Chen et al., 2017), 

suggesting that APP can modulate GABAA receptor subunit expression in a KCC2-dependent 

manner.  Miniature iPSCs recorded from hippocampal OPCs have slow decay kinetics 

compared to neurons and are insensitive to zolpidem, suggesting that OPCs have low 

expression of α1-containing GABAA receptors (Lin and Bergles, 2004), it is possible that the 

increased response to GABA detected in OPCs in the hippocampus of P100 APP mice could 

be the result of an APP mediated change in the expression of GABAA receptor subunits.  

 

A change in the OPC response to GABA may also be an indirect effect, as OPCs adapt to other 

changes in the APP transgenic mouse CNS.  Dysfunctional glutamatergic signalling has been 

demonstrated in AD (reviewed by Findley et al., 2019), and, while GABAA activation on OPCs 

is considered to be excitatory (Lin and Bergles, 2004), activation of GABAA receptors can still 

negatively modulate the response to glutamate by increasing membrane conductance 

(shunting) and/or altering intracellular chloride concentration.  Indeed, bath application of 5 

mM GABA significantly reduced the response to a 4 ms puff application of 200 µM KA in 
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hippocampal OPCs in acute brain slices prepared from P14 rat brains, an effect which persisted 

for several minutes after GABA had been washed off and the OPC membrane conductance had 

returned to baseline levels (Lin and Bergles, 2004), indicating that activation of GABAA 

receptors on OPCs could serve to dampen pathological glutamatergic signalling onto OPCs.  

 

It is currently unknown whether the altered response of adult OPCs in the hippocampus of APP 

transgenic mice to GABA could impact the behaviour of OPCs and the oligodendrocytes they 

produce.  Activating GABAA receptors by applying the agonist muscimol (20 µM) to rat OPC 

cultures has no effect on OPC differentiation or the expression of myelin proteins (MBP or 

MAG; Serrano-Regal et al., 2019); however, modulating GABAergic activity in vivo and in 

slice cultures, which preserve neuron and OPC interactions suggest that GABAergic signalling 

has a significant effect on the behaviour of cells of the oligodendrocyte lineage.  During 

development endogenous GABA acting at GABAA receptors can regulate oligodendrocyte 

lineage cell number. For example, when mice were injected with the GABAA receptor 

antagonist bicuculline (1mg/kg i.p., daily P5-P11), OPC number doubled, and this was 

accompanied by an ~40% decrease in the number of mature oligodendrocytes in the cerebellar 

white matter, while increasing the availability of endogenous GABA decreased OPC number 

and proliferation but increased the number of mature oligodendrocytes (Zonouzi et al., 2015), 

suggesting that GABAergic signalling in the cerebellum regulates OPC proliferation and 

differentiation.  The effect of GABAergic signalling on OPCs may differ between CNS region, 

as applying the GABAA receptor antagonist, GABAzine, to P8 mouse organotypic cortical slice 

cultures increased both the number of OPCs and the number of oligodendrocytes present at 6 

days in vitro (Hamilton et al., 2017).  Conversely, exposure of the slice cultures to the GABAA 

receptor agonist, muscimol, decreased the number of cells of the oligodendrocyte lineage 

detected in the cortex.   
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The effect of endogenous GABA on cell number may be restricted to early development, as 

OPC density was equivalent in young adult WT and APP transgenic mice, despite altered 

GABAergic signalling in OPCs, and the application of GABAzine to slice cultures was unable 

to further increase cell number after 14 days in vitro (Hamilton et al., 2017).  The complex 

pathology that develops in APP mice also makes it difficult to specifically dissect the role of 

GABAergic signalling, as changes to neuronal signalling can also influence this signalling 

pathway in OPCs.  For example, the effect of GABAzine on oligodendrocyte lineage cell 

number was prevented by blocking neuronal action potentials with tetrodotoxin, suggesting 

that the effect of GABAzine was dependent on the release of an activity-dependent factor from 

neurons (Hamilton et al., 2017).  Interestingly, tetrodotoxin alone had no effect on 

oligodendrocyte lineage cell number, implying an interaction between a direct action at 

GABAA receptors on OPCs concomitant with release of an activity-dependent neuronal factor 

(Hamilton et al., 2017).  As neither GABAzine nor muscimol altered node of Ranvier length 

in mouse cortical organotypic cortical slice cultures (Hamilton et al., 2017), it is likely that the 

changes detected in node length were independent of the increased responsiveness of OPCs to 

GABA, and the impact the GABAergic signalling has on myelin thickness has not been 

explored. 

 

4.3.3. Amyloid accumulation changes myelin ultrastructure 

We have shown that paranodes are longer and nodes of Ranvier shorter for axons in the 

hippocampus of 3-month old APP transgenic mice, compared with WT controls.  Paranodes 

form at the end of each myelin internode, flanking the node of Ranvier, facilitated by contact-

mediated signalling between proteins in the myelin sheath and the axon to maintain the 
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clustered voltage gated sodium channels at the nodes of Ranvier; and tether the myelin 

internode to the axon (reviewed by Pepper et al., 2018).  As APP can be found at the nodes of 

Ranvier (Xu et al., 2014) and can increase NaV1.6-mediated sodium currents (Li et al., 2016), 

it is possible that pathological human APP could directly induce narrowing of nodes of Ranvier 

in the hippocampus.  In the 3xTg transgenic mouse line, a qualitative decrease was noted in 

NaV1.6 expression in the CA1 region of the hippocampus and the entorhinal cortex at 6 months 

of age (Desai et al., 2009); however, this could be the result of myelin degradation and an 

overall reduction in nodes of Ranvier number, rather than a change in nodal structure.  As axon 

diameter was consistent between WT and APP transgenic mice, this is unlikely to be a 

contributing factor to the node of Ranvier length.  The effect of amyloid pathology on the node 

of Ranvier length is also unlikely to result from changes in axon diameter, as we found no 

correlation between the node of Ranvier length and node width (a proxy for axon diameter) in 

WT or APP transgenic mice [linear regression node length v node width deviation of slope 

from 0: WT slope = 0.04, F(1, 227) = 2.2, p = 0.14; APP slope = 0.04, F (1, 140), p=0.22], 

which is consistent with a previous analysis of node of Ranvier length and width in the optic 

nerve and frontoparietal motor cortex of Sprague-Dawley rats (Arancibia-Cárcamo et al., 

2017).  

 

It is likely that the increased paranode length measured for hippocampal axons in the APP 

transgenic mice is the direct result of APP transgenic mice having thicker myelin.  On average, 

oligodendrocytes that myelinated axons in the hippocampus of APP mice produced an extra 

myelin lamella, relative to those in WT mice.  The extra layer of myelin must be anchored at 

the paranode, and could readily explain the increased paranode length, and perhaps, if the 

myelin encroaches on the node of Ranvier, the decrease in nodes of Ranvier length.  Increased 

myelin thickness has also been reported for hippocampal axons in 2-month old 



124 
 

APPSwe/PSEN1dE9 transgenic mice, and was attributed to an upregulation in neuregulin-1 

type III (Wu et al., 2017), a known regulator of myelination and myelin thickness (Taveggia et 

al., 2005, 2008; Velanac et al., 2012), cleaved by the enzyme BACE1 that also cleaves APP 

(Luo et al., 2011).   

 

While physiological APP was suggested to be a modulator of myelination and remyelination 

in mice (Truong et al., 2019), it is unclear whether APP regulates myelin thickness.  Myelin 

thickness was unchanged in the sciatic nerve, optic nerve and corpus callosum of APP 

knockout mice at P14 and P77 (Truong et al., 2019); however, pathological overexpression of 

human APP695Swe increased myelin thickness by 1.3% in the spinal cord of 3 months old 

Tg2576 mice (Xu et al., 2014), and we found that myelin thickness was increased by ~10% in 

the hippocampus of APP mice overexpressing APPSw,Ind relative to WT at the same age.  The 

marked increase in myelin thickness in our experiment compared to the change observed in 

Tg2576 mice could be attributed to higher level of soluble Ab produced in our model at this 

age (Hsiao et al., 1996; Mucke et al., 2000).  As soluble Ab induces neuronal hyperactivity in 

the hippocampus (Busche et al., 2012; Willem et al., 2015), and neuronal activity regulates 

myelination (Gibson et al., 2014), Ab could indirectly promote the addition of new myelin 

layers.   

 

4.3.4. Amyloid accumulation increases oligodendrocyte turnover 

OPCs continue to generate new oligodendrocytes in the grey and white matter of the adult 

mouse brain (Dimou et al., 2008; Rivers et al., 2008; Kang et al., 2010; Hill et al., 2013; Young 

et al., 2013; Fukushima et al., 2015).  While the rate of OPC proliferation and oligodendrocyte 

addition slows with aging (reviewed by Wang and Young, 2014), OPCs can rapidly proliferate 
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and differentiate in response to a demyelinating event, to facilitate the replacement of lost 

oligodendrocytes and enable remyelination (Tripathi et al., 2010; Zawadzka et al., 2010; 

Assinck et al., 2017; Baxi et al., 2017).  By performing Cre-lox lineage tracing using Pdgfrα-

CreERT2::Rosa26-YFP transgenic mice, we have shown the number of new oligodendrocytes 

that accumulate in the hippocampus, entorhinal cortex and fimbria of APP transgenic mice 

between P60 and P180 is significantly higher than the number added to these regions in the 

WT mouse brain.  In the hippocampus, oligodendrocyte addition started to deviate between 

WT and APP transgenic mice between 4 and 5 months of age.  However, the effect of amyloid 

pathology on oligodendrogenesis was delayed in the entorhinal cortex and fimbria, being seen 

between 4 and 6 months of age.  Despite the increased number of new oligodendrocytes added 

to the brain of APP transgenic mice, immunolabelling to detect the mature oligodendrocyte 

marker ASPA revealed that oligodendrocyte density in the hippocampus, entorhinal cortex and 

fimbria was equivalent between WT and APP transgenic mice.  However, mature 

oligodendrocyte addition was significantly increased in the hippocampus and fimbria of APP 

mice relative to controls suggesting that the large number of new cells may serve to replace 

oligodendrocytes and myelin that are lost.  Oligodendrocyte turnover is likely to be enhanced 

by Ab toxicity to oligodendrocytes (Xu et al., 2001; Lee et al., 2004), APP accumulation in 

oligodendrocytes (Bauer et al., 2002), or myelin aberrations (Behrendt et al., 2013); but 

whether APP or Ab drives oligodendrocyte replacement remains undefined. 

 

Myelin abnormalities have been reported for a number of animal models of amyloid pathology 

(Chu et al., 2017; Tse et al., 2018), including focal myelin loss associated with amyloid plaques 

(Mitew et al., 2010; Schmued et al., 2013).  We found that the proportion of hippocampal axons 

that were myelinated in 3-month old WT and APP transgenic mice was equivalent; however, 

the marked increase in oligodendrogenesis observed between 4 and 6 months of age in the APP 
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transgenic mice may suggest that oligodendrocyte loss and demyelination are a later feature of 

the pathogenesis.  This time line differs significantly from that of APPSw (R1.40) mice in which 

myelin loss was not reported until 18-months of age (Tse et al., 2018), but would be consistent 

with the marked reduction in myelinated axon number in the hippocampus of 6-month old 

3xTg mice, which occurred prior to plaque deposition (Desai et al., 2009), and the myelin 

aberrations detected in APP/PS1 mice at 6 months, coincident with plaque detection (Behrendt 

et al., 2013).   
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Chapter 5: General discussion and future directions 

 

5.1. Thesis findings summary 

The aim of this thesis was to evaluate the impact that overexpressing human pathological 

variants of MAPT or APP in neurons had on the behaviour of cells of the oligodendrocyte 

lineage.  Specifically, I aimed to determine whether cells of the oligodendrocyte lineage were 

affected early in disease, prior to the development of overt cognitive impairment or 

histopathological hallmarks of disease.  By performing cre-lox lineage tracing, 

immunohistochemistry, electrophysiology and TEM, I found that the cells of the 

oligodendrocyte lineage respond differently to each pathological protein, with amyloid but not 

tau pathology influencing the capacity of OPCs to respond to GABAergic signalling and the 

myelinating capacity of oligodendrocytes.  However, both amyloid and tau pathologies resulted 

in elevated adult oligodendrogenesis, without a coincident increase in total oligodendrocyte 

number but instead an increase in mature oligodendrocyte addition, perhaps suggesting that 

both pathologies drive oligodendrocyte and myelin turnover in the brain.   

 

5.2.  Does early tau or amyloid pathology drive oligodendrocyte turnover?  

By labelling OPCs with YFP in young adulthood, and following their fate over time, I was able 

to determine that the number of new YFP-labelled oligodendrocytes added to the hippocampus, 

entorhinal cortex and fimbria was increased in MAPT and APP transgenic mice when compared 

with their respective controls.  In the MAPT mice, this increase in oligodendrogenesis was 

absent at P60+90, but was first detected at P60+120, which indicates that a large number of 

new oligodendrocytes are added between 5 and 6 months of age; however, in APP mice, 
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oligodendrogenesis was stimulated earlier, with a significant increase in new oligodendrocyte 

number first being noted in the hippocampus as P60+90.  Nonetheless, by P60+120 the 

magnitude of the increase was equivalent in the hippocampus, entorhinal cortex and fimbria of 

MAPT mice compared to APP mice.  Together, this suggests that oligodendrocyte pathology 

is hastened in APP mice, but ultimately reaches similar levels in APP and MAPT mice by 6 

months of age. 

 

New oligodendrocytes produced in adulthood are likely to comprise a combination of 

premyelinating and myelinating cells.  The proportion of premyelinating and myelinating 

oligodendrocytes could be evaluated in one of two ways.  By delivering tamoxifen to Pdgfrα-

CreERT2::Tau-mGFP transgenic mice (Young et al., 2013; Cullen et al., 2019) that lack or 

carry the MAPT or APP transgenes, it would be possible to induce the expression of a 

membrane-targeted GFP in OPCs and oligodendrocytes produced, and visualise the full 

oligodendrocyte morphology, to classify them as being premyelinating or myelinating cells.  

Alternatively, tissue from the control, MAPT or APP transgenic mice utilised for lineage 

tracing in this study were stained to detect YFP and the mature oligodendrocyte marker ASPA.  

If the majority of new oligodendrocytes produced in response to tau or amyloid pathologies 

were premyelinating oligodendrocytes (YFP+ ASPA-negative), they would be unable to 

contribute myelin to axons.  However, I showed that mature oligodendrocytes were mainly 

added in the hippocampus and fimbria of MAPT and APP transgenic mice relative to their 

respective controls, while the total number of oligodendrocytes was equivalent for control mice 

and either MAPT or APP transgenic mice.  These data suggest that oligodendrocytes are being 

lost at the same time that new oligodendrocytes are being added.  If the replacement cells were 

not myelinating oligodendrocytes, the fraction of myelinated axons should go down over time.  

However, for MAPT mice, I noted that the fraction of myelinated axons was the same as that 



129 
 

of control mice at 6 months of age.  This was not specifically examined for APP mice at the 

time of increased oligodendrogenesis and yet should be examined to confirm the addition of 

myelinating cells over time.   

 

For the number of newborn oligodendrocytes to increase significantly, but the total number of 

oligodendrocytes in the hippocampus, entorhinal cortex and fimbria to remain the same, a 

significant number of pre-existing, developmentally-born oligodendrocytes must die in 

response to tau and amyloid pathology.  In the developing and mature CNS ~80% of all 

newborn premyelinating oligodendrocytes die (Barres et al., 1992; Trapp et al., 1997; Hughes 

et al., 2018), and there is some evidence that mature oligodendrocytes can also die over time 

(Tripathi et al., 2017).  Detecting and quantifying oligodendrocyte cell death is challenging as, 

once initiated, it occurs rapidly with cells being completely cleared within two days (Hughes 

et al., 2018).  However, it would be valuable to confirm that oligodendrocyte death increases 

in response to tau and amyloid pathologies produced in the MAPT and APP mice, respectively.  

Particularly as myelin protein levels including CNP, MAG, oligodendrocyte myelin 

glycoprotein and PLP are decreased in late AD suggesting a loss of myelin but also 

oligodendrocytes (Zhang et al., 2018); however, whether oligodendrocytes are lost in early AD 

is still unclear.  This could be done by evaluating cell death using a TUNEL assay to detect 

oligodendrocyte death in MAPT and APP mice at multiple ages between 2 and 6 months of 

age.  This experiment would be necessary to confirm that adult-born oligodendrocytes, 

generated in response to tau and amyloid pathologies, produce new myelinating cells that act 

to replace those lost to disease. 

 



130 
 

As elevated concurrent oligodendrocyte loss and replacement resulting from tau and amyloid 

pathologies seems the most likely explanation for my data, they suggest that 

oligodendrogenesis is critical for sustaining myelin on axons in the hippocampus, entorhinal 

cortex and fimbria of MAPT and APP mice.  Consequently, I hypothesise that in the absence 

of continued adult oligodendrogenesis I would see a significant loss of oligodendrocytes and a 

loss of myelin in these regions.  It would be possible to determine the importance of adult 

oligodendrogenesis for myelin maintenance in the face of pathology, by preventing the addition 

of new oligodendrocytes in adulthood.  Pdgfra-CreERT2::MyRFflox/flox mice (Mckenzie et al., 

2014; Xiao et al., 2016) could be crossed with MAPT and APP mice, and the addition of 

tamoxifen would result in the loss of the transcription factor MyRF from OPCs and would 

ultimately prevent the maturation of OPCs into new oligodendrocytes.  I predict that this would 

result in a demyelination phenotype and ultimately precipitate or aggravate cognitive 

impairment in these mice.     

 

5.3. Does amyloid pathology alter the balance between inhibition and 

excitation in the brain?   

In APP but not MAPT transgenic mice, adult OPCs experienced enhanced depolarisation in 

response to the bath application of GABA; however, their depolarisation in response to the 

glutamate receptor agonist, KA, was normal.  Both GABA and KA exposure are known to 

depolarise OPCs, due to their low RMP (~-80mV) that results in chloride exiting the cell 

(Hoppe and Kettenmann, 1989; Lin and Bergles, 2004; Haberlandt et al., 2011; Hamilton et 

al., 2017), rather than entering the cell, which is the case for neurons.  However, these data 

suggest that between early development (P30) and early adulthood (P100) emerging amyloid 

pathology, driven by expression of the PDGFb-APPSw,Ind transgene, either results in a change 
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in the subunit composition of GABAA receptors, to allow more chloride efflux, or increases the 

number of GABAA receptors expressed on the surface of OPCs.   

 

A single-nucleus RNA sequencing study that compared gene expression in cells from healthy 

controls and people with AD, suggested that AD resulted in a reduction in GABA receptor 

subunit expression by OPCs and oligodendrocytes (Grubman et al., 2019).  This apparent 

discrepancy between our functional analysis of OPCs in transgenic APP mice and this gene 

expression analysis, is likely explained by changes that occur in receptor expression and 

activation susceptibility at different stages of disease.  My results could be explained by an 

increase in GABAA receptor expression on the surface of OPCs in APP transgenic mice. 

 

Under some circumstances, the cell surface expression of neurotransmitter receptors can be 

influenced by the level of the neurotransmitter expressed in the surrounding environment 

(Dulcis et al., 2013; Nair et al., 2013; Kwakowsky et al., 2018; Sanderson et al., 2018).  For 

example, a high level of neurotransmitter expression may be associated with the internalisation 

of receptors or downregulation of their expression by the target cells (Fuhrer et al., 2017; 

Kwakowsky et al., 2018; Sanderson et al., 2018).  Therefore, it may also be possible that a 

reduction in GABA expression in the brain could be associated with a change in GABAA 

receptor expression or composition by OPCs to allow them to respond more robustly to GABA 

within the environment.   Therefore, it would be interesting to determine and compare the level 

of GABA and glutamate expression within the brain of control, MAPT or APP transgenic mice 

by performing a Western blot analysis of glutamate decarboxylase (GAD67; to assess GABA 

production), glutamate dehydrogenase (GDH1; to measure glutamate production) and 

glutamine synthase (GLUL; to gauge homeostasis between glutamate and GABA production).  
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This is particularly interesting as previous reports have presented conflicting results on whether 

GABA and glutamate levels were increased (Madeira et al., 2018; Snowden et al., 2019) or 

decreased (Fayed et al., 2011; Gueli and Taibi, 2013; reviewed by Govindpani et al., 2017) in 

AD; which may result from differences in brain autopsy protocol, brain region variability and 

individual differences based on disease stage, age and gender (Roy et al., 2018). 

 

Altered GABAergic signalling can directly impact signalling by excitatory glutamatergic 

neurons in the CNS and there is some evidence that the level of inhibitory vs excitatory 

signalling is altered in mouse models of amyloidosis (Palop et al., 2007; Sun et al., 2009; Verret 

et al., 2012).  Interestingly, amyloid-induced neuronal overexcitation leads to an increase in 

aberrant GABAergic interneuron projections in the hippocampus of APP mice as a 

compensation attempt (Palop et al., 2007; Sun et al., 2009).  However, Nav1.1+ parvalbumin-

positive GABAergic interneurons are reduced in APP mice, which correlates with gamma 

oscillation deficits (Verret et al., 2012) and cognitive impairment in APP mice (Bender et al., 

2016).  Nonetheless, rescuing Nav1.1 levels in APP mice can restore cognitive function (Verret 

et al., 2012; Martinez-Losa et al., 2018); while transient enriched environment exposure, 

associated with cognitive improvement (Balthazar et al., 2018; Prado Lima et al., 2018), 

restores the number of parvalbumin-positive interneurons with a perineuronal net, which 

protects the cell integrity, in transgenic mice overexpressing APP (Tg2576) (Cattaud et al., 

2018).  As increased myelin thickness may result from neuronal hyperactivity in APP mice, it 

would be interesting to determine whether reducing glutamate signalling or enhancing GABA 

signalling in APP mice decreases myelin thickness. 
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Both GABAergic and glutamatergic signalling have been shown to influence 

oligodendrogenesis and myelination (Gibson et al., 2014; Corell et al., 2015; Gautier et al., 

2015; Hamilton et al., 2017; Kougioumtzidou et al., 2017).  This is interesting as both 

inhibitory interneurons and excitatory projection neurons are known to become myelinated 

(Micheva et al., 2018) and a change in the balance of excitation and inhibition has the capacity 

to alter myelination in the CNS (Gibson et al., 2014; Gautier et al., 2015; Mitew et al., 2018).  

While we found no change in the proportion of axons that were myelinated in APP mice and 

their WT littermates at 4 months of age, or the proportion of axons that were myelinated in 

MAPT mice and their WT littermates at 6 months of age, I did note that myelin thickness was 

increased in the hippocampus of APP mice.  Ab-induced increase in neuronal activity (Beraldo 

et al., 2016; reviewed by Findley et al., 2019) may result in increased myelin thickness (Gibson 

et al., 2014).  Optogenetic stimulation of the mouse premotor cortex results in a rapid increase 

in new oligodendrocyte addition in this area and the underlying corpus callosum, which was 

followed by an increase in myelin thickness within 4 weeks post-optogenetic stimulation 

(Gibson et al., 2014).  Furthermore, node length was increased and myelin thickness was 

decreased during development in the spinal cord and sciatic nerve of APP knock-out transgenic 

mice (Truong et al., 2019), but myelin thickness was increased in the developmental spinal 

cord of transgenic mice overexpressing human APP695 (Xu et al., 2014).  It would be interesting 

to determine whether the decrease in node length and increase in myelin thickness observed in 

my thesis is partially regulated by APP clustering at the node, and whether this clustering is 

regulated by neuronal hyperactivity as APP regulate Nav1.6 sodium channel currents (Li et al., 

2016), or whether Ab alone regulates myelin thickness through neuronal hyperactivity.   
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5.4. How does tau or amyloid pathology influence oligodendrogenesis? 

In APP and MAPT mice, adult oligodendrogenesis was increased by 5 and 6 months of age, 

respectively.  While tau is found to interact with MBP in vitro and is required for OPC 

differentiation and oligodendrocyte process outgrowth (Seiberlich et al., 2015), it is unlikely 

that MAPT overexpression would only promote an increase in adult oligodendrogenesis by 6 

months of age if it directly interacted with mature oligodendrocytes via exchange with neurons 

through the periaxonal space (Fünfschilling et al., 2012; Lee et al., 2012; reviewed by Stassart 

et al., 2018); or with OPC via synaptic and non-synaptic junctions with neurons (Bergles et al., 

2000; Lin and Bergles, 2004; Wake et al., 2015).  As a similar effect was observed in APP 

mice, it is possible that enhanced adult oligodendrogenesis occurs in response to the onset of 

neurodegeneration in both models, rather than an increase in neuronal activity.  Indeed, 

neuronal activity can regulate adult oligodendrogenesis (Gibson et al., 2014; Nagy et al., 2017; 

Cullen et al., 2019); however, as the increase in adult oligodendrogenesis was not observed at 

4 months of age in APP mice, it is likely that the increased neuronal activity previously reported 

in APP mice did not trigger new oligodendrocyte addition.  Instead, the increase in adult 

oligodendrogenesis was only observed from 5 months of age in the hippocampus, and only 

affected the entorhinal cortex and fimbria by 6 months of age coincident with amyloid plaque 

formation.  In close vicinity of amyloid plaques, oligodendrocytes and myelin are lost (Mitew 

et al., 2010), potentially playing a role in the increasing neuronal hypoactivity observed 

following amyloid plaque formation (Busche et al., 2012).  Interestingly, neuronal hypoactivity 

is prominent in tau pathology and dominates Ab-induced neuronal hyperactivity in intercrossed 

mice expressing both amyloid- and tau-pathology associated mutations (Busche et al., 2019).  

It was previously suggested that neuronal hypoactivity simply reflects excessive neuronal 

hyperactivity (reviewed by Zott et al., 2018), which may results in synaptic deficits and neuron 

loss of function.  This is particularly interesting as previous evidences in P301-htau mice 
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suggest that OPC differentiation is promoted following induced-spinal cord injury causing 

neuron loss (Ossola et al., 2016).  Furthermore, reactive microglia observed in APP and MAPT 

mice at 6 months of age may clear dysfunctional synapses in addition to amyloid plaques in 

APP mice (reviewed by Bar and Barak, 2019); and promote oligodendrogenesis and 

myelination (Miron et al., 2013; Shigemoto-Mogami et al., 2014; Naruse et al., 2018).  

Consequently, it would be interesting to determine whether new oligodendrocytes are added in 

APP and MAPT mice following synaptic deficits and whether reactive microglia promote adult 

oligodendrogenesis in APP and MAPT mice. 

 

5.5. Are OPCs potential targets for slowing dementia progression? 

In 2019, around 50 million people were diagnosed with dementia worldwide.  This figure is 

expected to reach 152 million by 2050 as reported by the world health organization.  AD is the 

main form of dementia and actually represents 60-70% of dementia cases making AD one of 

the main health care issues.  Most AD treatments include antipsychotic drugs (e.g. risperidone), 

antidepressants (e.g. sertraline, citalopram) and anticonvulsants (e.g. carbamazepine, 

valproate), anti-dementia drugs (e.g. memantine, donepezil and rivastigmine) and drugs to treat 

sleep disturbance.  While all treatments delay symptoms onset, they cannot be used as a long-

term solution.  Therapeutic development to slow down amyloid plaque formation in AD such 

as Solanezumab (Doody et al., 2014), marijuana (Ramírez et al., 2005) or immunotherapy 

(Oddo et al., 2004) have failed so far.  These multiple pharmaceutical failures show how 

complex neurodegenerative disease management is, particularly as we do not know what 

happens first, when and how it happens.  Consequently, some of these treatments may have 

some benefit if given at the right time; however, a proper early AD detection mechanism still 

needs to be developed and approved.   



136 
 

 

There are currently two ways to define AD progression: the evaluation of protein levels of Ab1-

42, total tau and phosphorylated tau at phosphorylation site 181 in the cerebrospinal fluid as AD 

biomarkers (Bouwman et al., 2009; Mattsson et al., 2017; Hansson et al., 2018); or a change in 

brain structure detected using magnetic resonance imaging (deToledo-Morrell et al., 2004; 

Defrancesco et al., 2014; Kavroulakis et al., 2018).  A few compounds have been created to 

detect amyloid plaques by positron emission tomography or PET scan such as the Pittsburgh 

Compound B (Klunk et al., 2004; Cohen et al., 2012).  Although progress have been made 

towards better and earlier detection of brain changes in AD and other neurodegenerative 

diseases, we currently lack appropriate detection and therapy.  Consequently, new therapeutic 

targets should be considered, and it is worth examining the suitability of OPC and 

oligodendrocyte changes as a biomarker or potential therapeutic target. 

 

OPCs are able to generate large number of oligodendrocytes in the mouse healthy brain, which 

is increased following demyelination (Baxi et al., 2017) and in AD models (Desai et al., 2010; 

Behrendt et al., 2013; Ossola et al., 2016; and as shown in this thesis).  However, new 

oligodendrocyte generation does not occur to the same extent in humans as only 1 out of 300 

oligodendrocytes is replaced per year (Yeung et al., 2014).  While an increase in new 

oligodendrocyte addition was observed in some patients diagnosed with multiple sclerosis 

(Yeung et al., 2019), most of the remyelination in the human CNS seems to occur through 

surviving mature oligodendrocytes generating new myelin internodes following demyelination 

(Duncan et al., 2018).   
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However, the expression of genes associated with newly generated and myelinating 

oligodendrocytes are upregulated in AD patients relative to age-matched controls, suggesting 

that some attempt is being made at repair (Itoh and Voskuhl, 2017), that could be 

therapeutically aided.  For example, increased Bridging-Integrator-1 (BIN1) mRNA (Chapuis 

et al., 2013; De Rossi et al., 2016) and altered expression of protein isoforms (Holler et al., 

2014) represent the second most prevalent risk factor for sporadic late-onset AD (Bertram et 

al., 2007), yet BIN1 function is still unknown.  However, BIN1 is highly expressed by mature 

oligodendrocytes (De Rossi et al., 2016) and upregulated in AD (Zhang et al., 2018).  

Interestingly, downregulation of neuronal BIN1 increases the flux of endosomes, in which tau 

aggregates, and endosomes are then damaged leaking tau aggregates into the cytoplasm for 

further seeding and tau pathology propagation (Calafate et al., 2016).  Furthermore, LINGO-1 

(Leucine rich repeat and Ig domain containing NOGO receptor interacting protein 1) is a 

negative regulator of neuronal survival, axonal integrity, oligodendrocyte differentiation and 

myelination, and LINGO-1 blockade was trialled as a remyelination therapy in multiple 

sclerosis (Biogen; Cadavid et al. 2019).  However, as LINGO-1 is significantly upregulated by 

excitatory neurons and oligodendrocytes in AD (Mathys et al., 2019), and anti-LINGO-1 

monoclonal antibodies reduce myelin impairment and improves spatial memory performance 

in the early phase of AD-like pathology in transgenic mice overexpressing human APP (Wu et 

al., 2018), anti-LINGO-1 may be a valid therapeutic to trial in AD.   

 

The development of novel AD treatment may benefit patients diagnosed with other forms of 

tauopathy, but clinical and pathological heterogeneity should be carefully considered.  

Tauopathies are defined by the presence of tau aggregates in neurons, astrocytes or 

oligodendrocytes (Ikeda et al., 1998; Arai et al., 2001; reviewed by Ferrer, 2018).  However, 

pathological tau strains extracted from post-mortem brains of corticobasal degeneration and 
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supranuclear palsy spread more rapidly throughout the non-transgenic mouse brain following 

injection, and targeted different cell populations than tau strains extracted from post-mortem 

AD brains (Narasimhan et al., 2017).  Oligodendrocytes developed tau coiled bodies and 

participated in tau seeding in a mouse injected with samples from corticobasal degeneration 

and supranuclear palsy post-mortem brains, while they did not when injected with samples 

from AD post-mortem brains (Narasimhan et al., 2017), therefore oligodendrocyte and OPC 

response may differ in other tauopathies.  OPC and oligodendrocyte behaviour should be 

assessed in additional tauopathy models to determine whether oligodendrocyte replacement 

could be a valid therapeutic target to delay the motor and cognitive deficit onset, if tau clearance 

is also ensured (Noack et al., 2014; Leyk et al., 2015; Noack and Richter-Landsberg, 2015) to 

avoid continuous spread of tau aggregates between oligodendrocytes (Ferrer et al., 2019). 

 

By demonstrating that MAPT and APP overexpression differently alter OPC response to 

neurotransmitters, oligodendrocyte myelinating capacity and adult oligodendrogenesis, this 

thesis improves our understanding of the early function of the cells of the oligodendrocyte 

lineage in AD pathology development.  This thesis suggests that OPCs and oligodendrocytes 

should be considered as potential therapeutic target in AD and other tauopathies.  Future studies 

should determine if enhancing adult oligodendrogenesis or myelination by mature 

oligodendrocytes and newly added oligodendrocytes can delay pathology onset; and whether 

changes in neuronal activity observed in AD affect OPCs and regulate adult 

oligodendrogenesis and myelination. 
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Appendix 1: Solutions 

 

Common Laboratory Reagents 

0.01M Phosphate Buffered Saline (PBS) 

MilliQ water       850ml 

90.0g/L sodium chloride     100ml 

28.0g/L di-sodium hydrogen orthophosphate  40ml 

31.2g/L sodium di-hydrogen orthophosphate  10ml 

 

Blocking solution for Immunohistochemistry  

       Add    Final Conc. 

FCS        1ml   10% 

Triton-X100       10μl   1% 

PBS        top up to 10ml  - 

 

Solutions for DNA Extraction 

DNA Extraction Buffer 

1M Tris-HCL (pH 8.5)     12ml 

0.5M EDTA (pH 8.0)      1.2ml 

5M NaCl       4.8ml 

10% SDS       0.2% 

NB: Autoclave before adding SDS 
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Thioflavin-S staining 

Thioflavin-S solution 

      Add   Final Conc. 

Thioflavin-S     0.1g   0.1% 

100% ethanol     60 mL   60% 

PBS      40 mL   40% 

 

Destain solution 

      Add   Final Conc. 

100% ethanol     50 mL   50% 

PBS      50 mL   50%  

 

Western blot solutions 

RIPA buffer (10ml) 

Add    Final Conc. 

MQ water      8190μl    - 

1M Tris-HCl (pH 7.4)    500μl    50mM 

5M NaCl      300μl    150mM 

10% NP-40      1mL    1% 

Sodium deoxycholate     100mg   1% 

10% SDS      10μl    0.1% 

Protease inhibitor tablets    1 per 10ml   - 

Aliquot and store at -20°C 
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Tris-buffered saline – Tween 20 (TBS-T) 

      Add (per L)  Final Conc.  

NaCl      8g   150mM 

Tris-Base     3g   25mM 

Tween 20     2mL   0.2% 

 

Transfer buffer 

Add    Final Conc. 

20X Bolt MES transfer buffer   50ml    1x 

Methanol     100ml    10% 

Bolt Antioxidant     1ml    1% 

MQ water      top up to 1L   - 

 

TEM solutions 

0.8% GA 2% PFA in 0.1M sodium cacodylate (200mL) 

      Add   Final Conc. 

8% glutaraldehyde    20mL   0.8% 

16% paraformaldehyde    25mL   2% 

0.2M Sodium cacodylate   100mL   0.1% 

Calcium chloride    10mL   5mM 

Magnesium chloride    10mL   5mM 

MQ water     top up to 200mL - 
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Osmium tetroxide and potassium ferrycianide (10mL) 

      Add   Final Conc. 

0.1M Sodium cacodylate   6.5mL   0.065M 

4% OsO4     2.5mL   1% 

15% K3Fe(III)(CN)6 freshly made  1mL   1.5%  

Epon pure 

          Add 

Embed 812 resin        20 mL 

Dodecenyl Succinic Anhydride Specially Distilled (DDSA)   16 mL 

Methyl-5-Norbornene-2,3-Dicarboxylic Anhydride (NMA)   8 mL 

Benzyldimethylamine (BDMA)      1.1 – 1.3 mL 
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Appendix 2 

Table 1. Transgenic mice 

Strains Allow to/use as 

C57BL/6  Control, wild type mouse. 

PDGFb-APPSw,Ind Induce amyloid pathology (APP) or tau pathology 

(MAPT) in the brain. Mutations expressed in 

neurons. 

Prnp-MAPTP301S 

Pdgfrα-CreERT2::Rosa26-YFP Enable the fluorescent labelling of OPCs in 

adulthood, and the tracing of their progeny in vivo.  

Pdgfrα-CreERT2::Rosa26-YFP:: 

PDGFb-APPSw,Ind 

Enable the fluorescent labelling of OPCs in 

adulthood, and the tracing of their progeny in vivo 

in an AD-like environment of amyloid pathology 

(APP) or tau pathology (MAPT). 

Pdgfrα-CreERT2::Rosa26-YFP::Prnp-

MAPTP301S 

Pdgfrα–H2BGFP Induce fluorescent labelling of OPCs in vivo 

Pdgfrα–H2BGFP::PDGFb-APPSw,Ind Induce fluorescent labelling of OPCs in vivo, in an 

AD-like environment of amyloid pathology (APP) 

or tau pathology (MAPT). 

Pdgfrα–H2BGFP:: Prnp-MAPTP301S 
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Table 2. PCR reaction for each transgene. 

Transgene Primer pairs Primer sequences PCR cycles 
(94°C-30s, 
62°C-45s, 

72°C-1min) 

PCR cycles 
(94°C-30s, 
57°C-45s, 

72°C-1min) 

Cre Cre 5’ CAG GTC TCA GGA GCT 

ATG TCC AAT TTA CTG 

ACC GTA 

34  

Cre 3’ GGT GTT ATA AGC AAT 

CCC CAG AA 

Rosa26 

WT 

Rosa26 WT 5’ AAA GTC GCT CTG AGT 

TGT TAT 

37  

Rosa26 WT 3’ GGA GCG GGA GAA ATG 

GAT ATG 

Rosa26 

MUT 

Rosa26 WT 5’ AAA GTC GCT CTG AGT 

TGT TAT 

37  

Rosa26 MUT 

5’ 

GCG AAG AGT TTG TCC 

TCA ACC 

 

hMAPT 

hMAPT 5’ GGG GAC ACG TCT CCA 

CGG CAT CTC AGC AAT 

GTC TCC 

 35 

hMAPT 3’ TCC CCC AGC CTA GAC 

CAC GAG AAT 

hAPP hAPP 5’ GGT GAG TTT GTA AGT 

GAT GCC 

 35 

hAPP 3’ TCT TCT TCT TCC ACC 

TCA GC 
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Appendix 3 

Table 3. Antibodies and concentrations used for Western blot analysis. 

Primary antibodies 

Antibody Concentration Supplier, Cat # 

Mouse anti-6E10 1:500 Covance, SIG-39320 

Rabbit anti-E178 (Tau) 1:1000 Abcam, AB32057 

Rabbit anti-THR 231 (pTau) 1:1000 Abcam, AB151559 

Mouse anti-b-actin 1:5000 Sigma-Aldrich, A1978 

Secondary antibodies 

Antibody Concentration Supplier, Cat # 

Goat anti-mouse HRP 1:10 000 Dako, P0447 

Goat anti-rabbit HRP 1:10 000 Dako, P0448 

Rabbit anti-rat HRP 1:10 000 Invitrogen, 61-9520 
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Table 4. Antibodies and concentrations used for immunohistochemistry. 

Primary antibodies 

Antibody Concentration Supplier, Cat # 

Goat anti-PDGFRa 1:200 R&D Systems, AF1062 

Guinea pig anti-Iba1 1:500 Synaptic Systems, 234 004 

Rabbit anti-ASPA 1:200 Merck Millipore, ABN1698 

Rat anti-GFP 1:2000 Nacali Tesque, 0440484 

Rabbit anti-Ki67 1:200 Abcam, AB15580 

Rabbit anti-Nav1.6 1:200 Alomone labs, ASC-009 

Rabbit anti-OLIG2 1:400 Merck Millipore, AB9610 

Mouse anti-Caspr 1:200 Neuromab, MABN69 

Secondary antibodies 

Antibody Concentration Supplier, Cat # 

Donkey anti-Rat 488 1:500 Life Technologies, A21208 

Goat anti-Guinea pig 488 1:1000 Life Technologies, A-11073 

Donkey anti-Rabbit 488 1:1000 Life Technologies, A21206 

Donkey anti-Rabbit 568 1:1000 Life Technologies, A10042 

Donkey anti-Goat 488 1:1000 Life Technologies, A11055 

Donkey anti-Goat 568 1:1000 Life Technologies, A-11057 

Donkey anti-Goat 647 1:1000 Life Technologies, A21447 

Donkey anti-mouse 647 1:1000 Life Technologies, A31571 

Hoechst nuclear stain 1:10 000 Invitrogen, H21492 
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