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Abstract 

Survivability is the ability of a naval vessel to survive a combat incident by avoiding 

(susceptibility), withstanding (vulnerability) or recovering (recoverability). Vulnerability 

assessment is often divided into the structural and system vulnerability assessment.  

System vulnerability assessments are traditionally performed using manually built fault and 

success trees that model a simplified version of the functional failure relationships. This 

traditional approach has been very limiting, but more accurate and realistic methods were 

too computationally expensive to use.  

Furthermore, traditional vulnerability assessments also assume that the onboard systems 

are perfectly reliable and fully functional, which is a further simplification that may have 

significant consequences on vulnerability assessments. System reliability has never been 

included in traditional vulnerability assessment methods mainly due to the limitation in 

available computational power. However, with increasing readily available computing 

power, such enhancements are now realisable. 

For an accurate vulnerability assessment of a naval vessel, it is important to know the 

functional failure relationships between the systems of that vessel is not prone and subject 

to human erroneous input. Furthermore, to include system reliability into the vulnerability 

assessment helps to understand the actual vulnerability performance of a vessel better and 

to support naval architects to make design decisions with regards of longevity vulnerability 

enhancement at minimal cost. 

The objective of this research is to demonstrate and to develop a framework that can 

automatically generate, via machine learning, the functional failure relationships from an 

actual design of a naval vessel and that then identifies critical and sensitive components that 

negatively contribute to the vulnerability performance of the vessel. Once these failure 

relationships are derived, they are then used to model the system reliability with the help of 

Bayesian Network operations. 

In order to derive the machine learned failure relationships of an actual naval vessel and to 

determine the reliability effect of the naval vessel’s equipment, the research is divided into 
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three major methodological chapters. The first part investigates contemporary and state of 

the art vulnerability assessment techniques and uses a selected tool to perform an actual 

survivability assessment of a chosen system. This study also served as a basis to become 

familiar with the nature of the research domain. The second part extends the model of the 

naval vessel and performs a vulnerability assessment with further naval systems modelled 

to complete a holistic and comprehensive naval model. The results of this model are then 

analysed with a Bayesian machine learning algorithm and built into various Bayesian 

Network models. These Bayesian Network models are then used for a sensitivity analysis to 

identify critical systems and single point of failures. The third part uses the derived Bayesian 

Network from the previous part and utilizes the learned failure relationships of an actual 

vessel to include the reliability effect of the naval vessel’s equipment into the survivability 

assessment. 

The results of this methodology are of diverse nature. The first study performing a state-of-

the-art vulnerability assessment for various firemain layouts with different automation 

levels resulted in an overview comparing different firemain systems across various levels of 

automation and their according vulnerability performance. The second part of this study 

resulted in the development of a complete naval vessel and a framework that has the ability 

to analyse output results from a vulnerability assessment of that vessel. The framework 

automatically derives probabilistic failure relationships between the naval vessel’s systems 

and to identify critical systems and single point of failures of that design. The third part of 

the methodology resulted in a study that demonstrates the proof of concept to include the 

naval vessel’s systems reliability and to predict the naval vessel’s vulnerability performance 

with respect to service time, resulting in a demonstration of the significance of system 

reliability in vulnerability assessments.  

The research has demonstrated the feasibility to use Bayesian Networks as a tool to analyse 

naval vessels and to improve their vulnerability performance. The developed framework 

uses Bayesian Networks to identify single point of failures, which when eliminated from the 

design, lead to an improved design. As the inputs from the survivability assessment are 

readily available, these inputs just have to be entered into the vulnerability analysing 

framework and their analysis is automated. This framework enables shipbuilders to quickly 
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analyse and assess naval ships, which can then be done in less time and with fewer 

resources.  

Furthermore, the developed framework produces probabilistic functional failure 

relationships that, when supplied with the information about the naval vessel’s system 

reliability, can estimate the degraded vulnerability performance of the naval vessel after a 

certain amount of service years. Thus, the results and outcome of this research can benefit 

the vulnerability assessment process as it allows for the quick identification of single points 

of failure and the ability to model the naval vessel’s future service behaviour. 
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1.1. Prologue – A brief overview of naval survivability 

The concept of naval survivability, defined by different national naval standards as the 

capability to survive combat and maintain mission capability, reaches back to antiquity 

when the first true warships were built by the Egyptians, Greeks and Persians (Kok 2012). 

Some of the more well-known recent examples that demonstrate the various aspects and 

design choices are briefly introduced in this section. Survivability has historically mainly 

been a naval vessel’s ability to withstand combat, which is primarily the aspect of 

vulnerability. 

To achieve a high performance in vulnerability it is not as simple as comparing each vessel’s 

features to its counterparts, but rather to understand that certain vessel features like high 

firepower can be rendered ineffective by another countering features that allows the target 

to avoid being hit be staying out of range, for example.  

One of most famous examples of this idea are the battles between the Spanish Armada and 

the English Navy in the Anglo-English war in 1588 (illustrated in Figure 1). The Spanish had 

built an armada of large and bulky ships with high superstructures and heavy firepower that 

were outmatched by the English fleet made up of seemingly inferior ships. The English ship’s 

better manoeuvrability enabled the English fleet to avoid unfavourable combat situations 

and enabled them to attack at moments where the Spanish Armada were left to bad 

manoeuvrability due to their lack of mobility of their bulky galleons. 
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Figure 1: Ships of the Spanish Armada attacked by English demolition ships which led to its 

demise (Loutherbourg 1796) 

As technological advances like explosive shells were introduced in the early 19th century, 

wooden sailing ship designs suddenly became very vulnerable to enemy gunfire. This led to 

changes in ship design like reinforced steel plating and integration of steam engine 

propulsion, which resulted in the first ironclad designs.  

The first encounter between traditional wooden ships and newly developed steel reinforced 

ships took place in the Battle of Hampton Roads in 1862 during the American Civil War, 

which is shown in Figure 2. The CSS Virginia destroyed a number of wooden naval ships on 

the first day, but after the USS Monitor had joined the battle on the 2nd day, it quickly 

became apparent that both ships armour was impervious to each other’s armaments and 

thus both resorted to ramming tactics (Quarstein 1886). The fast pace of the development 

and change of naval designs concluded in newly built ships already being obsolete by the 

time they were completed (Ireland 1996).  
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Figure 2: The first encounter between two ironclads took place in 1862 between the CSS 

Virginia and the USS Monitor in the Battle of Hampton Roads (Quarstein 1886) 

From the mid-19th century to the mid-20th century, naval ships were equipped and designed 

with stronger and heavier armament. This resulted in a naval design philosophy that lead to 

larger ships with larger displacement. Greater enemy firepower was countered with more 

armour and vice versa, but as history shows naval warships were never perfectly safe and 

thus always have remained vulnerable to some extent.  

One of the most famous examples of that era is the German battleship Bismarck (shown in 

Figure 3), which was one of the largest and most powerful ships of the 2nd World War. The 

ship was rendered unmaneuverability by a torpedo dropped from a plane and eventually led 

to its sinking in the following days (Ireland 1996). The heavy armour and armament could 

not save the battleship as even though the ship with exception of its rudder was undamaged, 

it had lost its ability to steer and leave the combat scene. 
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Figure 3: German Battleship Bismarck with its clearly visible weapon turrets (Garzke, Dulin 

et al. 2019) 

The navies during the 2nd World War learned that bigger and stronger ships weren’t always 

better and that a loss to one of these huge ships was a massive loss for the whole fleet. Thus, 

since the 1940s navies have decreased the size of their ships and the developed ship’s roles 

became more specific and sophisticated.  

It became clear that regardless of the size and armament, ships are always prone to fail in 

combat and there was no such thing as an invincible design. The post-war designs of naval 

vessels, such as the USS Zumwalt in Figure 4, became smaller and started to use novel 

technologies such as stealth as a measure to stay undetected and not get targeted or hit. It 

can be seen from the past couple of decades that the technological advances contributing to 

the survivability of the vessel are designed to keep the ships at a small size while expanding 

their operational roles and capabilities. 
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Figure 4: Characteristic for the USS Zumwalt is its lineal shape that helps to reduce the ship’s 

signature and grants the ship its stealth capability. 

1.2. Previous and related work 

Naval Survivability is one of the oldest shipbuilding disciplines and many attempts were 

undertaken to build better and more survivable ships. Through precise modelling and 

simulation, a vessel’s performance can be predicted from the early design stage. The nature 

of the simulation and modelling has changed over time, from rather simplistic calculations 

by hand through experimental simulation through to highly sophisticated computer-aided 

simulations. Particularly in the 20th century, major achievements were accomplished in 

developing new performance estimation methods. The new methods managed to more 

accurately simulate and quantify naval survivability performance and combat outcome due 

to the development of the personal computer. Many of the various aspects that can be 

simulated and predicted remain individual aspects that have not been linked up to present 

days. 

Among these research projects, there has been primarily interests to simulate individual 

mechanisms that drive the survivability performance of vessel such as fire-spread, blast and 

fragmentation, various types of signatures estimations and many more (Goodfriend 2015, 
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Stark 2016). Each of these individual mechanisms are very important and have a strong 

effect on survivability, however survivability must be seen as a multi-disciplinary concept as 

it is defined as “the ability of the vessel to perform its mission after impacted by a threat” 

(U.S.Navy 2012). 

The first report that laid the foundation and treated naval survivability as a multi-disciplinary 

research area (Ball and Calvano 1994) dates back to E. Ball, who transferred the concept of 

survivability from aircraft design onto naval design. In that work naval survivability was 

divided into three aspects, which are susceptibility, vulnerability and recoverability for the 

first time. This framework was adopted by many countries and has remained almost 

unchanged (Lloyd's_Register 2006, Royal_Australian_Navy 2010, U.S.Navy 2012). 

There have been diverse attempts to understand the nature and underpinning principal 

relationships within Survivability. One of the major research areas examines the use of 

regression analysis of modular auto-generated ship models followed by a parametric 

analysis to extract principles and relationships between design choices and their effect onto 

survivability (Brown and Mierzwicki 2004). However, as Brown’s approach to derive 

principal survivability relationships between design measures and the survivability 

performance is possible, but albeit adding more detail to the modelling of the simulation, 

this approach remains limited in realism due to the lack of computational power required to 

perform the vast amount of necessary exhaustive design permutation (Brown and Salcedo 

2003, Brown and Mierzwicki 2004). 

Another approach in the field of survivability research is attempting to link various 

survivability mechanisms resulting in the development of different models and tools that 

combine disparate survivability factors and effects from within susceptibility, vulnerability 

and recoverability (Konovessis, Cai et al. 2013, Liwång 2015).  

A wide range of vulnerability assessment tools that focus on the reduction of vulnerability 

through separation have been developed dealing with structural hardening, general layout 

modification and fire suppression (Kok 2012, Stark 2016). The change of a vessel’s layout 

and the hardening of the structure or components are usually major design changes that are 

difficult to achieve as they drastically affect the vessel’s design. The developed tools allow 
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vulnerability assessments at a very basic design stage as these tools require very little design 

detail. They often simulate weapon effects on a ship and then assess the failure of 

vulnerability capabilities through fault trees and deactivation diagrams to then identify 

critical areas of the vessel’s architecture (Stark 2016).  

Fault trees and deactivation diagrams are typically modelled through Boolean Logic as they 

are easy to build and comprehend. However, in offshore process engineering and other risk-

based engineering areas have successfully demonstrated the implementation of Bayesian 

Networks (BN) as a superior tool over Fault Trees (Khakzad 2011, Khakzad, Khan et al. 2013, 

Konovessis, Cai et al. 2013).  

Fault Trees can also model joint effects of system failures and events, when clear functional 

relationships are known, but as cause and effect relationships in naval vulnerability are very 

complex, the manual modelling of Fault Trees is predisposed to erroneous human input. 

Recent research on the deployment of Bayesian Networks applied on vulnerability, 

highlighted the lack of objective detailed vessel models and thus utilised subjective human 

modelling of the Bayesian Network (Liwång 2015).  

Manual modelling of BNs was shown to be capable of solving problems with a high amount 

of uncertainty and to identify root-cause effects (Lee and Misra 2005). Additionally, through 

the BN’s ability to support decision making, simple events and scenarios could be solved 

(Lee and Misra 2005). However, as these BN models are still developed by human experts, 

they’re prone to erroneous and subjective due to human input. Even though detailed 

vulnerability assessment tools are available at this point, various regression techniques and 

Bayesian machine learning algorithms remain still largely unexplored (Konovessis, Cai et al. 

2013, Liwång 2015). 

Bayesian machine learning algorithms have the capability to derive unbiased functional 

failure relationships and can present the relationships of graphical Bayesian Network 

models. Bayesian Networks don’t require any additional modelling of naval vulnerability 

models, because advanced naval vulnerability simulation models and their results can be 

entered readily as input into the learning algorithm of Bayesian Networks. Thus, Bayesian 

machine learning algorithms can bridge the gap to build complex Bayesian Networks and 
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display functional failure relationships from any vulnerability simulation data without any 

human interference (Koller and Friedman 2009, Friebe, Skahen et al. 2018).  

Bayesian Networks also have a particular strength in determining the cause of a failure and 

thus are very helpful to identify critical areas of a naval design of naval system’s architecture 

as the Bayesian Networks can be used to perform sensitivity analyses and update its 

probabilities (Konovessis, Cai et al. 2013, Liwång, Ringsberg et al. 2013). Furthermore, 

Bayesian Networks are particularly helpful when additional historic information is available, 

which then can be linked with each other through manual Bayesian Network expansion.  

All vulnerability assessment tools are built on the assumption of perfectly reliable systems 

and thus neglect conventional equipment failure situations that can be caused by fatigue 

and lessen the reliability of the system. Recent research argues that conventional 

equipment failures have an affect onto the performance of the vulnerability of a naval 

vessel as most systems have usually a reliability of between 85-95% (Malakhoff, Klinkhamer 

et al. 1998). However, no study of how conventional equipment failures, such as the 

reliability of the equipment, affect ship Vulnerability has been performed up to today (Guzie 

2004, Liwång 2015). 

1.3. Problem Description 

Current research to enable vulnerability design assessments, though promising in their 

continued development, presently employ statistical models which prohibit identification of 

unknown design inter-relations between naval vessel’s systems and operational capability 

(Goodfriend 2015). Currently, cause-failure relationships as part of naval vulnerability 

assessments are modelled manually and are thus prone to human error as they’re built 

subjectively by human experts. The error of a human expert can be accredited to different 

reasons, which can be categorized into 1) erroneous subjective human thinking and 2) lack 

of knowledge. Whereas, an automated tool is objective and does not makes mistakes like a 

human expert. 

Thus, it is necessary to develop a naval engineering vulnerability estimation framework to 

support industry in the design evaluation and assessment of vulnerability enhancements 
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applicable in identifying true objective causes of vulnerability performance failures of vessel 

designs when confronted with complex naval models at a detailed design stage.  

Though current tools allow the modelling and simulation of the interconnection between 

systems and equipment as part of the vulnerability assessment, the process to identify 

causes for the failure of the naval vessel’s operational requirement is very tedious and often 

underlying causes may stay undetected. Also, vulnerability assessments are always 

performed under the major assumption of perfectly reliable systems, which can lead to 

overly optimistic designs as the systems are in fact not perfectly reliable. Naval vessels are 

modelled for a high performance under the assumption of perfectly reliable systems, which 

cannot be achieved if the naval system reliability is taken into account. 

1.4. Purpose  

The purpose of this research is to derive probabilistic failure relationships that describe the 

vulnerability performance of a naval vessel’s systems and operational capability. For this 

purpose, a framework is developed to support industry in design evaluation and assessment 

of vulnerability enhancements within the already existing arrangement and complex model 

of a vessel. The aim is to improve the vulnerability performance through better 

understanding the underlying failure relationships and thus the resulting ability to perform 

smart design modifications that do not lead to additional space or weight of the vessel.  

The same novel framework can also be deployed on civil vessels to identify underlying 

failure relationships; however, the concept of vulnerability is only applied to naval vessels. 

The limitation to naval vessels is primarily due to the fact that vulnerability is defined as a 

vessel’s capability to withstand an attack – which is not a feature that civil vessels are 

currently designed for. 

The developed vulnerability estimation framework is applicable in assessing single point 

failure of a naval vessel’s vulnerability design while considering overly complex naval models 

that have a considerable amount of information and level of detail. The amount of detail is 

mainly due to the necessity to consider naval capabilities such as offensive capability, 

defensive capability, safe return to port and personnel protection. The framework will also 
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be capable of deriving probabilistic failure relationships and help to obtain a better 

understanding of the modelled vessel’s behaviour. 

The derived probabilistic failure relationships are then used to include reliability into the 

vulnerability assessment of a naval vessel. This will help to understand the aging effect of 

naval equipment onto the vulnerability performance of naval vessels and thus then support 

the naval architect to make design choices that affect the lifecycle of the naval vessel.  

The research focuses on the equipment analysis and excludes structural blast and 

fragmentation assessments. Furthermore, the developed framework enables identification 

of system-to-system, layout-to-system, and system-to-crew, inter-relations in order to 

identify single point of failures. Furthermore, this research attempts to include common 

system reliability factors into the vulnerability assessment, which enables the modelling of a 

more realistic ship’s vulnerability performance and enable the prediction of its future 

degradation effect to then feed the information back into the design process.  

1.5. Research Objective 

The first objective of this research is to perform a literature survey and identify a research 

area within vulnerability domain that allows the utilization of affordable tools and 

unclassified models. Thus, the opening research question for this research becomes: 

 

What is the state of the art in vulnerability assessment and how does one conduct a 

contemporary vulnerability assessment with the available tools? 

  

The primary objective of this research is to demonstrate whether and subsequently how 

Bayesian Networks (BN) are capable of identifying probabilistic failure relationships from 

models in vulnerability assessing software in order improve design and evaluation of 

vulnerability enhancements. Furthermore, the performance assessment of Bayesian 

machine learning algorithms and their ability to build BNs from output of vulnerability 

assessing software is of central essence and is studied.   
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Thus, the second research question for this project becomes: 

 

Can the Bayesian machine learning algorithm be used to automatically investigate the 

vulnerability performance of a vessel during the detail design stage? 

 

The vulnerability assessment and chosen Bayesian machine learning algorithm are used in 

the development of framework that enables, through the identification of probabilistic 

failure relationships, the inclusion of system reliability into an otherwise assumed perfectly 

reliable system.  

Therefore, the third research question of this project is: 

 

Can the developed framework and Bayesian Network be extended with system reliability 

values to model the aging effect of the vulnerability performance of the naval vessel? 

 

All three research questions and the previous research objectives were investigated and are 

outlined in chapter three, four and five. 

1.6. Hypothesis 

Bayesian machine learning algorithms and Bayesian Networks (BNs) allow building inference 

models by linking data of different sources such as historical data, simulation results and 

expert judgement. Machine learning algorithms have the ability to objectively identify 

correlations in complex systems that then can be modelled through Bayesian Networks, 

which then can be extended through expert manipulation to capture inference relationships 

not only within a single source of data but also between and across. 

Equipment vulnerability assessments are often overly complex and have a high amount of 

information that make them almost incomprehensible to manually identify cause failure 

relationships. It is evident that an automated algorithm to identify objective cause failure 
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relationships is necessary and very likely beneficial to the assessment process. The identified 

cause failure relationships of the vulnerability assessment are of probabilistic nature and 

allow the inclusion of additional equipment information such as system reliability, which will 

help to overcome the major assumption of perfectly reliable systems in vulnerability 

assessments.  

Equipment vulnerability assessments for naval vessels are still predominantly performed 

through Fault Trees and that full model simulations are overly complex and exclude 

uncertain information this research demonstrates an approach to include uncertain 

information into vulnerability assessments through the application machine learning 

algorithms and provide a more realistic few into the nature of naval vulnerability. 

1.7. Methodology 

As described in section 1.3, the difficulties in current vulnerability assessment research can 

be briefly summed up as the difficulty to identify failure relationships between systems and 

operational requirements, which is often caused by the detail and complexity of naval 

models, but also the usage of deterministic vulnerability assessments, which tends to ignore 

a lot of uncertain but likely effects such as system reliability. The approach chosen to answer 

the research questions and solve the research objectives from section 1.5 is outlined and 

described in the following section Figure 5. 

As shown in Figure 5, the research was structured in three main parts and publications. The 

first part starts off with a modelling and research exercise on a contemporary vulnerability 

assessment tool Integrated Recoverability Module (IRM). This study models a basic firemain 

system in different configurations and layouts to demonstrate the capability of the tool and 

obtain a better understanding of the latest vulnerability assessment techniques.  
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Figure 5 Top level methodology breakdown of the research project  

As can be seen in Figure 5, the research continues from chapter three to four by expanding 

the case study model from a single firemain system to a detailed design of a naval vessel, 

which is done in cooperation with the joint-industry ‘Test and Evaluation Solutions’, a US 

contractor for survivability assessments. The case study vessel is an Offshore Patrol Vessel 

(OPV), with a length of about 55m. Vulnerability goal and threshold requirements for ship 

survivability analysis in multiple areas such as the ship’s primary mission systems, 

propulsion, auxiliaries (electrical power), crew loss, DC/FF, and self-defence are created for 

the OPV to complete the model from chapter three. Next, the model of the vessel is loaded 

first into Measure of Total Integrated System Survivability (MOTISS) tool to assess the blast 

and fragmentation of a hostile attack and then the results are loaded back into the IRM and 

a dynamic demand and supply analysis is run to evaluate the post impact performance of 

the vessel. Thereby, flooding, fire and smoke are taken into account as well.  

The output from the vulnerability analysis then is parsed into a Bayesian machine learning 

algorithm, which tests the input data for correlation and sensitivity and builds many varying 
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BN and chooses automatically the best fit. Once the BN is built, it then becomes possible to 

perform sensitivity and criticality assessments on the model to identify critical components 

and single points of failure. The sensitivity analysis in the Bayesian Network is done through 

assessing the cross-entropy of the Bayesian Network and identifying components that have 

a high contribution rate to the failure of other systems and subsequently the performance 

of the vessel. The validation and verification are achieved by cross-checking the results of 

the Bayesian Network sensitivity study and the model of the vessel in the IRM. Also, the 

developed framework is tested for variability to estimate the performance of finding design 

issues depending on the Bayesian Network size. 

In the third part in Chapter 5 , the developed naval model is reduced to the electric system 

and the concept of including system reliability is included. As can be seen from Figure 5, this 

is achieved by deploying again the machine learning algorithm to construct a Bayesian 

Network through the validated approach from Chapter 4 . The Bayesian Network then is 

then manually extended through the inclusion of pre-calculated system reliability data, 

which affects each system and cascades its effect to the operational requirements of the 

naval vessel. Through altering states and in the Bayesian Network it then it becomes 

possible to predict the vessel’s degraded performance in a certain amount of service time. 

1.8. Novelty of Methodology 

The presented methodology is a holistic vulnerability assessment implementing BN and 

featuring concurrent assessment of vulnerability and recoverability design features. While 

reference to implementation of BN within naval design has been found within the current 

survey of literature (Friis-Hansen 2000, Lee and Misra 2005, Liwång 2015), the effective 

implementation of BN has been limited to individual system or feature relationships with a 

combined whole ship assessment of vulnerability and recoverability yet to be accomplished 

due to the inability to establish sufficient detailed information to effectively populate 

inclusive and non-subjective probabilities into a BN.  

Furthermore, present survivability assessing software (IRM), albeit capable of realistically 

simulating the effect of design choices onto the naval ship’s survivability performance, lacks 
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the ability to effectively analyse the cause failure relationships between survivability 

performance to design choice.  

The present methodology overcomes this failure by eliminating the causal traditional FT 

methods and uses Bayesian machine learning algorithms to evaluate the input and output of 

the survivability assessment. The machine learning algorithm is applied onto the data of an 

actual ship design to build a BN and populate according conditional probability tables 

automatically without any human input.  

In chapter 4, the developed framework creates a BN that is then used to detect single point 

of failures of naval vessel’s systems through testing the BN’s nodes, which represent 

systems and operational capabilities, for sensitivity with respect to other systems and 

operational capabilities. Through sensitivity tests and the according detection of single point 

of failures and following design modification, the design and the performance of the vessel 

can then be improved. Key benefit of this method is that no further information must be 

entered other than the available information from the classical vulnerability assessment 

process. 

Additionally, the developed framework to derive BNs representing the system and 

performance relationships assumes perfectly reliable systems. The systems as part of the 

vulnerability assessment are assumed to be perfectly reliable systems, which is an overly 

optimistic assumption, but the impact of this assumption has not been researched yet. Thus, 

the developed framework to derive a BN from vulnerability assessment is extended by 

introducing and including the reliability factors of each system into the developed BN. The 

BN from chapter 4 is taken and manually expanded by the inclusion of reliability factors 

through basic BN operations. The benefit of this approach is to include the systems 

reliability into the vulnerability assessment to obtain a more realistic performance 

prediction of the vessel and to model and predict the vessel’s future performance. 
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1.9. Thesis structure 

To achieve the outcomes of the study, the research questions from section 1.5 are 

addressed through following four main components that have been partially published and 

others are still under review:  

Chapter 2 : 

 The first publication is the main literature review and hypothesized the 

methodology of this research, that then had been refined and reused in 

(Friebe, Skahen et al. 2018). 

 A literature review on survivability has been performed to identify research 

gaps and available software. Limitation of previous research and current 

survivability assessment methods are addressed as well as benefits of the 

novel methodology are undertaken (Friebe and Waltham-Sajdak 2017) 

Chapter 3 : 

 Development of a basic naval model and familiarization with the provided 

software tool along with a comparison study. The study performs a 

comparison of different layouts of a firemain system modelled with different 

levels of automation implement in a generic design of a patrol boat. This 

study is performed on a rudimentary basic model that is extended in chapter 

4 to a holistic model. 

Chapter 4 : 

 Development and refinement of the framework from (Friebe and Waltham-

Sajdak 2017) to assess the vulnerability performance of a vessel and to derive 

the probabilistic failure relationships of a naval vessel. The rudimentary case 

study model from Chapter 3 is extended to fully and holistically model a naval 

vessel with all its equipment, systems, crew and operational capabilities. This 

phase demonstrates the development of a novel framework to derive the 

probabilistic failure relationships of a naval vessel through a Bayesian 

machine learning algorithm (Friebe, Skahen et al. 2018). 
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Chapter 5 : 

 This chapter reuses the model from Chapter 4 and reduces the data to only 

the electrical system. Then the developed framework is used to build a 

Bayesian Network, which then is used to include the system reliability into 

the derived Bayesian Network (Friebe 2019 under review) 
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 Literature Review Chapter 2 

As indicated in chapter 1.1, the naval design philosophy during the period of the 2nd world 

was a one-dimensional trend depending the size of guns of the vessels. That lead to bigger 

naval ships as the operational philosophy was simply to overwhelm the enemy. By the late 

40s, governments already realised that the oversized battleships, heavily armoured cruisers 

and very large frigates were un-economical and consequently the trend shifted towards 

smaller and more versatile designs (Smith 2013). 

This trend had been accelerated by the events of the Six-Day War in 1967, where the INS 

EILAT was the first destroyer sunk by a small missile boat and demonstrated the capacity of 

surface to surface radar guided launches in naval conflicts. This event marks a major 

milestone in naval surface warfare and aroused worldwide interest in the development of 

small missile boats (Stark 2016). 

Thus, since post 1968 the more survivable vessel was the one that could avoid being hit and 

as a consequence, the concept of naval warfare had changed to a more defensive strategy 

to disable the incoming threat by reducing the susceptibility, and thereby enabling an 

offensive return (Waltham-Sajdak 2012).  

During the Arab-Isreali War in 1973, it proved the advanced survivability of the new and 

modern defensive naval warfare doctrine at the Battle of Latakia. Almost 40 Styx missiles 

were fired, but the vessels which employed reduced susceptibility suffered no hits. Thereby, 

the Battle of Latakia confirmed there the potential of small, fast missile boats equipped with 

advanced Electronic Counter Measure (ECM) packages (Foos and Skahen 2008, Waltham-

Sajdak 2010). 

As ECM and susceptibility reduction measures improved the potential threats also improved, 

which resulted in the sinking of the HMS SHEFFIELD in 1982 during the Falklands War and 

the USS STARK in 1987 during the Iran-Iraq War (Navy 1988). 

In response to improved threats, the late 1980’s and early 1990’s produced the first ships 

designed fully for survivability, with the Arleigh Burke Class 1989 and the Sa’ar 5 Class in 

1993 were the first major stealth effort designs of naval vessels. 
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Albeit designed for stealth, the new century has proven that solely reducing susceptibility 

does not ensure survivability. This resulted in the modern concept of Naval Survivability 

(Waltham-Sajdak 2010) of the 21st century, which can be briefly described as: 

 Lower the Probability of Being Hit (but recognize that there always exists a 

probability of being be hit) 

 Increase the ability to sustain damage and continue fighting (but recognize that it’s 

possible to protect against all damage events) 

 Increase the ability to rapidly regain damaged mission critical systems (increase 

recoverability) 

Ship Survivability is the ship's capability to prevent the loss of mission capabilities under a 

given threat environment. The process by which Ship Survivability is assessed provides a 

useful and generalized framework for rationally setting requirements and making design 

decisions. 

However, it can be summarized that modern navies are no longer dominated by capital 

ships as they were during the 40s of the 20th century, but a number of medium to small 

ships, much of the time with different roles like, mine hunting, anti-submarine, air, surface 

and many more. The dogma of ‘the bigger, the better’ has shifted towards a design 

philosophy of having smaller ships with multiple purposes and to combine their abilities in 

combat when necessary.  

Since the 1950’s, the size of class of vessels being constructed has decreased as shown in 

Figure 6 (Smith 2013). During the same time, the numbers of more powerful systems 

installed onboard naval ship have increased in conjunction with reduced manning (Smith 

2013). Figure 6 shows that ships having grown in inverse relation to their number. As the 

size of ships decreases and the number of their installed systems grow, every ship becomes 

a more important and valuable asset. To protect these assets, ships have be able to survive 

combat and thus, one of the most important feature modern design features for a military 

vessel is that of Survivability (Said 1995). Survivability refers to the integrated capability of a 

ship and its systems to maintain mission performance when subjected to a hostile 

environment.  
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Figure 6: Number of USN Ships by Class by Decade 

As ships become smaller and change their roles from single-purpose to multi-purpose ships, 

the system density on-board of such ships grows and they become more difficult to build. 

This complexity makes it more difficult to understand the combat-related characteristics of 

a naval ship as the interaction between its active and defensive design features depends on 

a number of variables. 

The majority of survivability-related issues are addressed in detailed design stage, where 

models are overly complex and adaptations are heavily constrained by choices made in the 

earlier design stages (Piperakis 2013). The deficiency corrections can be prohibitively 

expensive as is illustrated in Figure 7. The cost to extract defects is shown to increase by a 

factor of 3 to 6 at the end of concept design, by a factor of 20 to 100 within detail design 

development and by a factor of 500 to 1000 within production (Doe 2006). Therefore, 

changes in the early stages of design are significantly less expensive than making the 

changes later design stages, if they are even possible at the later stages. 
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Figure 7: Committed Life Cycle Cost against Time (Doe 2006) 

Naval survivability is often discussed in context of the kill chain model (Figure 8) which 

represents a sequence events to be completed successfully by an aggressor in order to 

achieve target neutralization can be represented as the Probability of Kill (Pkill)- i.e., denying 

the ship the capability to complete its intended mission. Each event of the diagram of Figure 

8 is represented by a link whose name is derived from the aggressor’s state of progress 

against the target ship. Historically and for the scope of this thesis, this kill chain model is 

considered for conventional attacks that include explosives only. Attacks that are within the 

definition scope of Chemical, Biological, Radiological and Nuclear scenarios (CBRN) 

(Hernandez, Kotzian et al. 2012) are not considered, since the focus of this thesis is on the 

design modifications of naval ships, whereas CRB-attacks are mainly targeted towards the 

crew and that requires specialized equipment. Nuclear attacks however are not considered 

as the effort and potential gain to design against such an overpowered and very unlikely 

attack is disproportionally large (Hernandez, Kotzian et al. 2012, Waltham-Sajdak 2012). 

 

Figure 8: Kill Chain Model - The Aggressor Perspective 

DETECT CLASSIFY TARGET ENGAGE KILLHIT
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Within Figure 8, the state at the end of each link is defined as: 

1. Detect – the target ship has been detected by the aggressor’s sensors.   

2. Classify – The detected target ship has been classified by the aggressor as a friend, 

foe, or unidentified, as well as the type and class of the target. 

3. Target – The target ship has been designated as non-friendly, and is tracked (position, 

velocity, and direction are established). 

4. Engage – The aggressor’s fire control system has computed a firing solution (choice 

of weapon to be used, and intercept of the target ship’s position, velocity, and 

direction determined) and a weapon has been launched. 

5. Hit – The propagator has acquired the target ship, homed in, and hit it.  Within this 

model, the launching of a propagator may initiate an additional and separate kill 

chain, such as in the case of “fire and forget” weapons. 

6. Kill – The target ship has been neutralized as a consequence of its inability to 

withstand and recover from the weapon’s effects. 

For a given set of conditions leading into the kill chain, there is a probability associated with 

the survival of a ship (Psurvive), which is a complementary event to the probability of being 

killed (Pkill) which is stated as follows: 

  . (1) 

As the kill chain may be dissected into two successively occurring events: the susceptibility 

chain, which is concerned with the events leading to a hit (i.e. detect, classify, target, engage 

and hit), and the vulnerability and recoverability link, which is concerned with the 

consequences of the ship being hit. Therefore, the probability that the ship will be killed (Pkill) 

is the product of the probability that the ship will be hit (Phit) and the conditional probability 

that the ship will be killed given that it is hit (Pkill|hit). Consequently, the probability of being 

killed is given by,  

 
 

. (2) 

survive kill1P P 

kill hit kill|hitP P P 
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Wherein Equation 2 the conditional probability that the ship will be killed given that it is hit, 

is understood to encompass the likelihood that given that the ship’s capability is degraded 

beyond the level that the ship’s mission cannot be accomplished. The remaining available 

capabilities, and that the damage is such that the ship cannot recover lost capabilities to 

complete the mission within the intended timeline. Therefore, the probability of being killed 

is dependent on the conditional probability given by, 

  . (3) 

where,  

PCD|hit - Probability of capability degradation to the point of mission failure if hit 

PNRec|CD - Probability of failing to recover lost capability following damage 

And where substitution of Equation 2 and Equation 3 within Equation 1 yields the traditional 

formula for the probability of survivability, 

  . (4) 

Thus, the assessment of the survivability of a naval vessel is often divided into separate 

assessments (U.S.Navy 2012, Liwång 2015, Crawley 2016) of susceptibility, vulnerability and 

recoverability where, by formal definition: 

 Susceptibility is the measure used to define the capability of a vessel to avoid or 

defeat an attack (generally taken as Phit and most often concentrates on signatures 

that determine the detectability of the vessel such as Radar Cross Section, Infra-Red 

and Acoustics), 

 Vulnerability is the measure of the ability of a vessel’s and critical systems to 

withstand initial damage effects of an attack. Generally represented as PCD|hit and 

most often concentrates on internal and external blast and fragmentation damage as 

well as underwater shock and whipping damage yielding a binary state of equipment 

failure (functional or non-functional) used assess mission capability via some form of 

roll-up such as a fault tree, a deactivation diagram or a network diagrams - all of 

which are fundamentally based on reliability block diagrams (RBDs),  

kill|hit CD|hit NRec|CDP P P 

survive hit CD|hit NRec|CD1P P P P   
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 And Recoverability is the measure of the capability of a ship to control secondary 

damage and to regain mission performance. Generally represented as 1-PNRec|CD.and 

most often concentrates on the progression of fire and flooding as well as the 

capability of the crew to mitigate cascading damage by means of man-in-the-loop 

(MITL) operations). 

Within each of the three areas of survivability, various methods and software tools have 

been used to assess a wide range of a vessel’s features, with some of the more common 

features shown in Table 1. The individual metrics in Table 1 are leading to the determination 

of a vessel’s susceptibility, vulnerability or recoverability. 

Survivability Area Feature Assessment Method(s) / 

Tool(s) 

Susceptibility Radar Cross Section (Ross 1966, Knott 2012) 

Infra-red Signature (Thompson and Vaitekunas) 

Magnetic Signature (Poteete 2010, Naus 2013) 

Acoustic Signature (Noise) (A. Kinnas, Lee et al. 2007, 

Berg 2015) 

Probability of Raid 

Annihilation 

(Blake, Little et al. 2006) 

Active Countermeasures 

(Decoy) 

(Kok 2012) 

Vulnerability Air Explosions (Internal 

and External) 

 (Bharatram, Schimmels et 

al. , Baker 1974, D. Pritchard, 

Freeman et al. 1996, Kathryn 

Ackland, Michael Buckland et 

al. 2010, Stark 2016) 
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Survivability Area Feature Assessment Method(s) / 

Tool(s) 

Underwater Explosions 

(Shock and / or Whipping) 

(Geers and Hunter 2001, D. 

Sulfredge, R. H. Morris et al. 

2008) 

Fragmentation (and 

ballistics) 

(Karpp and Predebon 1975, 

Justice 1985, Wadley 2007, 

Choi Y.S. 2015) 

Shaped Charges (Jetting 

and Explosively Formed 

Penetrators) 

(Plooster 1982, Kwang and 

Jang 2012) 

Cascading Damage 

(System Degradation) 

(Kathryn Ackland, Michael 

Buckland et al. 2010) 

Recoverability Fire and / or Smoke 

Progression 

(Pitts 1994, Bailey 1995, 

LeBlanc 1998, Vegara 2000, 

Floyd 2004, Floyd and Hunt 

2005, Lee and Misra 2005, 

Henley 2008, Paik, Czujko et 

al. 2011) 

Flooding and stability (Andrewartha, Thomas et al. 

2008) 

Cascading Damage 

(System Isolation and 

Reconfiguration) 

(Doerry and Fireman 2006, 

Foos and Skahen 2008) 

Table 1 Tabulated survivability features with according assessment methods and tools 
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The disparate methods and tools (Table 1) have enabled naval engineers to assemble a 

collage of analytical techniques to ascertain a form of quantitative risk assessment (QRA) of 

the traditional formula for the probability of survivability (Equation 4). Within QRAs, fault 

and event tree techniques are utilized to analyse the hazards that arise from combinations 

and sequences of adverse circumstances by assuming each branch represents an 

independent outcome. These fault tree (FT) and event tree (ET) methods use a collection of 

statistical logic nodes or gates  to roll-up the mission capability of the ship and provide the 

probabilistic result (Psurvive) via a Monte-Carlo method employing multiple hit scenarios 

(Rausand 2013, Kim, Hwang et al. 2014) – i.e. Phit assumed equal to one (Phit = 1).  

Unfortunately, the assumption that each branch represents an independent outcome 

dictates that mutual dependencies must be pre-defined and known, or neglected (as done 

with the Phit = 1 assumption). This assumption of event independence limits the assessments 

effectiveness in identifying previously unknown inter-relations as well as mandates that the 

tree be expanded exponentially as new events are defined. Quantitatively therefore, as the 

trees increase in size and detail, eventually new data will be required which does not have 

any historical evidence. This consequently leads to a dependence on subjective sources 

where by the nature of the tree being a binary state evaluation, uncertainty, cannot be 

quantified (Konovessis, Cai et al. 2013). 

The disparate methods and tools (Table 1) have enabled naval engineers to assemble a 

collage of analytical techniques to ascertain a quantitative risk assessment (QRA). However, 

limited by the assumption of event independence, the primary complaint of both industry 

and naval customers has been the cost associated with needing multiple simulation models 

to achieve a single vessels survivability rating. More-over, as a result of this cost, the 

selection of assessed features eventually compiling Psurvive within a QRA is artificially 

constrained prior to determination of importance by assessment. For example, when 

customers select methods to assess events to determine a features effectiveness prior to 

ascertaining the relative importance of the event or feature to the design. 

Consequently, integrated approaches to assess survivability have recently been developed 

and implemented. Therein the assessments attempt to utilize a “one model one tool” 
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approach where the concepts of vulnerability and recoverability have been merged. This 

development addresses the total ship functionality (or capability) post impact (Foos and 

Skahen 2008) and at the point of impact or damage occurrence - referred to as zero-time1.  

Though more refined than traditional QRA, these conglomerate tools (such as MOTISS, 

SURMA, ASAP, PREVENT, SURVIVE, CETENA, RESIST)2 still utilize Event Tree and Fault Tree 

constructs and as such retain the limitations of event independence, namely: 

1. Cannot identify previously unknown system-to-system and system-to-operability and, 

2. neglect factors of uncertainty such as system reliability 

It is because of these two constraints within present day survivability assessments that 

identifying and including system uncertainty survivability-related issues is conducted only 

under major limiting assumptions by industry – which leads to a skewed perception of the 

vessel’s real behaviour.  

An attempt to overcome the limitations of the Fault Tree modelling lead to the 

development of the Integrated Recoverability Model (IRM). This process was driven 

primarily due to the events of the late 20th century as discussed earlier and the efforts of the 

US Government to adapt the needs of a more holistic survivability design process (Floyd, 

Hunt et al. 2005, Foos and Skahen 2008). The tool, which is also used throughout this 

research, is the only available survivability software which operates independent of Fault 

Tree deactivation logic and simultaneously manages to holistically integrate onboard 

systems, ship structures and to evaluate the vulnerability performance in a dynamic and bi-

                                                      

1
 Pre zero-time (0

-
) susceptibility assessments are strictly applied to enhance survivability as much as possible 

within given cost constraints and after zero-time (0
+
) functionality assessments (vulnerability and 

recoverability) are strictly applied to enhance survivability as much as possible within given cost constraints. 

2
 The author notes that most of these tools serve their intended purposes quite well and assess the 

survivability features they were developed for, but they do not serve to address the intended purpose of this 

research which is to assess relative values of a vessels’ survivability design  
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directionally (Friebe, Skahen et al. 2018). The IRM is a software tool that is used to model 

and assess the performance of different naval vessel systems and that allows the engineer 

through a unique approach of automatic system connectivity to track complex cross-

connection of systems, crew and progressive damage such as fire and flooding to evaluate 

the vulnerability of naval vessels (Foos and Skahen 2008). 

The automatic system connectivity allows the evaluation of the effect of different system 

layouts and system specifications to evaluate their impact on the vulnerability and 

recoverability of the naval vessel (Foos and Skahen 2008, R. Gregg Fresa, Zackary R. Stull et 

al. 2017, Friebe, Skahen et al. 2018).  

However, to address the limiting necessity of a vessel’s failure relationships between the 

systems and operational ability, also Brown (2003) established a novel approach to estimate 

the effect of survivability within an overall measure of design effectiveness at concept 

design.  

In the first stage of Browns work, a framework calculating an Overall Measure of 

Effectiveness (OMOE) was built utilizing Analytical Hierarchy Process (AHP) (Keeney and 

Raiffa 1993) and Multi-Attribute Utility Theory (MAUT) (Saaty 1996)  blended into a single 

method called Multi-Attribute Value Theory (MAVT) (Belton 1986). Using MAVT a hierarchy 

of critical ship attributes that follows a logical breakdown is generated with the top level 

being the OMOE comprised of subordinate Measure Of Effectiveness and Measures of 

Performances (MOPs) in a hierarchy as exampled in Figure 9.  

Within Browns MAVT approach a multiple-objective genetic design optimization using 

mission effectiveness, risk and acquisition cost, as objective attributes, was developed to 

search the design space. The optimization algorithm performs design trade-offs considering 

various combinations of hull form, hull materials, propulsion systems, combat systems and 

manning. A ship synthesis model balances these parameters within a total ship design to 

assure feasibility and to calculate cost, risk and effectiveness. The final feasible design 

combinations are then ranked by cost, risk and effectiveness, and presented as a series of 

non-dominated frontiers, representing ship designs in the design space that have the 

highest effectiveness for a given cost and risk compared to other designs in the design space. 
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Browns MAVT approach utilizes multiple-objective genetic optimization (MOGO) algorithms 

for their ability to explore design spaces that are very non-linear, discontinuous, and 

bounded by a variety of constraints and thresholds, which prevent application gradient-

based optimization techniques such as Lagrange multipliers, steepest ascent methods, linear 

programming, non-linear programming and dynamic programming. Within Browns initial 

MAVT approach (Brown and Salcedo 2003, Brown and Mierzwicki 2004, Demko 2005) the 

value and relationship of the MOPs to the OMOE was established using purely expert 

opinion and pair-wise comparison (via AHP) to establish relative weightings (w’s) and values 

of performance (VOPs) as depicted by Equation 5. 

Where a particular VOP is assigned a value of zero corresponding to the AHP MOP threshold, 

and a value of 1.0 corresponding to the AHP MOP goal as dictated by MAUT. Browns recent 

works (Goodfriend 2015) replaced expert opinion and pair-wise comparison methods for 

establishing the value and relationship of the MOPs to the OMOE (i.e. disbanding the need 

for VOPs by direct calculation of vulnerability based MOPs) with low-order physics based 

zonal damage methodologies (Brown and Salcedo 2003, Brown and Mierzwicki 2004) 

combined with simplified FT assessment methods (Waltham-Sajdak 2011). 

 

Figure 9. OMOE Hierarchy (Brown and Salcedo 2003) 

OMOE = ΣwiVOPi(MOPi) . (5) 
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These recent efforts have proved sufficiently effective in concept to understand a vessel’s 

survivability for the sacrifice of modelling detail. However, the use of FT assessment within 

the MAVT approach continues to promulgate the inability of survivability assessments to 

identify previously unknown system-to-system, or system-to-crew inter-relation limitation 

as previously identified within the QRA and conglomerate tools. Also, this work has not 

been able to include factors of uncertainty within approach due to the deterministic nature 

of this work. Furthermore, Brown’s approach is limited by the amount of required 

computational power to automatically design and assess detailed ships.  

Methods and tools from Table 1 share another deficiency, which is their inability to link 

different types of survivability assessment and information into a single tool. This fact has 

been highlighted (Friis-Hansen 2000, Liwång, Ringsberg et al. 2013) and is an essential step 

of achieving a realistic and holistic view into the performance of a ship in a combat situation. 

Previous research (Liwång 2015) highlighted the applicability of Bayesian Networks (BNs) for 

maritime platform survivability assessments and its capability to evaluate design choices 

and perform risk assessments effectively. BNs are particularly useful as they allow historical 

information to be included into the uncertainty treatment of risk assessments. However so 

far there is no probabilistic causal relationship model that is not subject to erroneous 

human input (Liwång 2015). 

The probabilistic causal relationships in the resultant BN model are then assessed using 

Bayes’ Theorem and Influence Diagrams to study cause and effect relationships on the 

design of a vessel. BNs and Influence Diagrams are especially useful when there is no 

empirical data and there is a need to identify the underlying causal relationships (IMO 2013). 

These causal failure relationships are then used to predict the expected cause of failures of 

systems or operational capabilities. Additionally, the strength of a BN is its capability to 

present probabilistic relationships and causal dependencies graphically and to facilitate the 

study of those dependencies (Liwång, Ringsberg et al. 2013, Musharraf, Khan et al. 2013). 

These probabilistic relationships can be either derived from simulation or historical data 

(Konovessis, Cai et al. 2013, Liwång, Ringsberg et al. 2013). 
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To derive the probabilistic failure relationships from a simulation it requires a precise and 

detailed model of a naval vessel in a combat scenario. As the current literature shows, no 

machine learning algorithm has been applied onto a naval vessel on an attempt derive the 

probabilistic failure relationships. Whereas, the aforementioned IRM software and its 

unique approach to track the demand and supply of various onboard systems can estimate 

the system and vessel’s behavioural performance in a combat scenario, the tool is limited in 

the identification of design choices that drive the vessel’s performance evaluation during 

the design. The current approach to identify causing system failure to a behavioural 

performance of a model is a manual data filtering that searches for the failed system a 

combat scenario. The methodological attempt to overcome this shortcoming is described in 

section 1.7. 
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 Valve Automation and Firemain Chapter 3 

Layout Study 

 

The literature review highlighted that all vulnerability assessments are operating on the 

assumption of perfectly reliable systems. The naval onboard systems are assumed to be 

perfectly reliable, always available and will never fail before or during a combat situation. To 

include and test the effect of system reliability on a naval vessel, a software license was 

required in order to perform a state-of-the-art vulnerability assessment. 

Throughout the beginning of the project it was challenging to find and obtain a license for a 

software package with the ability to perform vulnerability assessments as a lot of defence 

work is classified and not accessible to the public. Through fortunate circumstances, a 

cooperation with Test & Evaluation (TnE) Solutions, an American vulnerability assessment 

company, was set up. TnE Solutions provided the opportunity for a 10-month internship in 

order to investigate the most recent vulnerability assessment techniques and tools. Through 

joint effort, a rudimentary model of a naval vessel was developed. This model was used to 

study the most recent vulnerability assessment techniques and to investigate advantages 

and disadvantages of various firemain designs in a vulnerability context, which is explained 

further below in this chapter.  

The developed model served as a base model in the later research phases to include and 

test the inclusion of system reliability on a naval vessel. For that purpose, the base model of 

the naval vessel had to be enhanced to include additional systems and functionalities, which 

is demonstrated and discussed in Chapter 4 and Chapter 5  
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Title: The Effect of System Layout and Valve Automation on 

firemain survivability in a Naval Vessel 

3.1. Abstract 

Recent advances in automation technology and the need for naval vessels to respond 

quickly and with high performance require naval architects to make well-informed design 

decisions. This study assesses the effect of automation of various firemain layouts on the 

vulnerability performance of naval vessels through a case study. This study will assist design 

decisions that decrease the firemain response time while also increasing its capability 

following a damage incident.   

3.2. Introduction 

Survivability is defined as a naval vessel’s capability to maintain mission capability in a high 

threat environment (U.S.Navy 2012, Brett, Gamble et al. 2017). Survivability can be broken 

down into susceptibility – the platform’s ability to avoid detection, classification and 

successful targeting by an adversary; vulnerability – the ability to withstand damage effects; 

and recoverability – the ability to recover mission capability following damage effects, as 

shown conceptually in Figure 10.  
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Figure 10 Survivability Performance Curve 

This study focuses on the time frame after the naval vessel has suffered damage, that is, the 

vulnerability and recoverability of a vessel or, in other words, the ability to withstand the 

inflicted damage and the ability to recover mission capability. The inflicted damage affects 

the structure and systems and is the cause of the flooding and the fire. The goals of damage 

control actions, regarding firefighting on board a naval vessel, consist of containing and 

mitigating fires. These goals are achieved using firefighting agents (i.e. water, AFFF, Halon, 

etc.) that are usually applied by personnel or an installed automatic firefighting system. 

Much like in buildings, the firemain in a naval vessel is the backbone pipe network that 

supplies and enables these damage control capabilities. It supplies equipment used for fire 

extinction and suppression purposes. These include sprinklers, fireplugs and fire hoses, all of 

which are referred to as "end users" for simplicity in this study.  

The firemain system aboard a naval vessel has been designed in many different layouts by 

naval engineers through the years. These layouts are implemented to achieve specific 

requirements, and each has their benefits and limitations. In this study three of these 

layouts, shown in Figure 11, are assessed based on their survivability performance (Lestina, 

Runnerstrom et al. 1999, 2018, Friebe, Skahen et al. 2018) and are as follows: 
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 Single Main: Usually located on the centreline of the naval vessel and extends from 

fore to aft. It is often located in the central passageway and placed under the deck 

for ease of accessibility. 

 Horizontal Loop: Consists of two parallel longitudinal piping runs that are 

transversely cross-connected. The horizontal loop is located on one deck and 

supplies end users on other decks with risers.  

 Vertical Offset Loop: Consists of two longitudinal piping runs that are transversely 

cross-connected, but unlike the horizontal layout both longitudinal piping runs are 

on different decks and are separated vertically and transversely as far as possible. 

 

Figure 11 Firemain Layouts 

Naval vessels are at risk of suffering damage while in hostile environments. Damage 

tolerance and system restoration are important for a vessel to maintain and recover mission 

capability. For a firemain this includes piping and supply pump redundancy as well as 

appropriate valves to isolate damaged sections. Due to recent advances in automation 

across all engineering disciplines, system response times have decreased. However, system 

automation improvements often come at a high cost and are difficult to justify if not 

quantitatively compared to alternative solutions. Even though the automation technology 

has arrived in the commercial shipbuilding and other engineering industries, the naval 

defence industry relies on high crew numbers. As the current crew numbers of naval vessels 

are relatively high, the effect of automating a manual system on a naval vessel is commonly 

believed to be rather small. Thus, it is important to be able to measure and quantify the 

performance of different system variants with various automation levels to enable effective 
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comparison. Two possible comparison parameters for naval vulnerability requirements that 

can be taken from Figure 10 are the percent of capability recovered and the time it takes for 

a system to recover. 

Historically, naval vessels have operated their firemains manually due to the lack of 

automated design solutions. The high purchase price and maintenance costs of automated 

solutions slow the adoption of these systems. Additionally, the effect of automated 

solutions on a naval vessel’s vulnerability performance has not yet been measured so there 

is minimal evidence available for system designers to justify a system upgrade from manual 

to autonomous. However, cases such as the 2002 HNoMS Orkla incident (Navy 1988) show 

that it is critical to maintain the firemain’s operational capability in the event of damage to 

the vessel.  

In the early hours of November 19th in 2002 the HNoMS Orkla suffered shaft failure that 

resulted in a machinery room fire. The crew responded quickly and within 2 minutes of the 

fire alarm had connected five fire hoses to the firemain. Unfortunately, pressure was lost 

within 30 seconds interrupting the crew's firefighting efforts. It was not until later that the 

crew could resume firefighting, but by that time the fire had grown and spread to other 

compartments. Because the fire could not be mitigated quickly it continued to spread across 

much of the vessel and eventually resulted in the crew abandoning ship. This event showed 

that time delays in maintaining or recovering the damage control capabilities such as the 

firemain are essential to a naval vessel that is in imminent danger of complete loss. It is 

therefore crucial that after a naval vessel suffers damage that it can recover a high level of 

performance in a short period of time (Friebe, Skahen et al. 2018). This is especially true if 

the naval vessel is in a hostile environment and needs to maintain mission capability. 

One automation technology that can potentially improve damage control response times 

and has attracted a lot of interest by navies internationally is "smart" valves. "Smart" valves 

use integrated sensors and control logic to detect when they need to open or close and can 

operate independently of crew interaction (Lestina, Bradley et al. 2001, McCullagh, Fraser et 

al. 2013). This means that "smart" valves can isolate damage in a system within seconds of 

detecting a rupture in the piping and can restore pressure to the system. There have been 



38 | P a g e  

 

studies that show system implementation of "smart" valves can isolate damage faster than 

in systems with only manual valves (Durkin, Williams et al. 2000). This study assesses three 

levels of automation related to "smart" valve implementation as follows: 

1. Fully Manual: All valves in the firemain layout are manual valves that require crew to 

activate locally or via a remote handwheel. 

2. Fully Autonomous: All valves in the firemain layout are "smart" valves and can 

operate either independently of the crew or with local crew activation. 

3. Partially Autonomous: "smart" valves are placed at key locations on the firemain 

(watertight bulkheads, branches, etc.) with manual valves implemented throughout 

the rest of the layout. 

By taking into account the automation level as well as the firemain system layout this study 

attempts to assess the vulnerability performance of various firemain designs. A direct 

comparison between the designs is possible with the three layouts and automation levels 

described. 

3.3. Methodology and Software 

Using a case study, the authors explore the performance of the various firemain designs in 

this study as implemented on a generic naval vessel. Each firemain design is a combination 

of the three firemain layouts and three automation levels discussed previously. In order to 

appropriately compare the designs' performance a standard damage pattern must be 

assigned. In this study the authors applied two damage patterns: compartmental and zonal. 

The framework of this comparison process is shown in Figure 12.  

  

Figure 12 Flowchart of Comparison Study 
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First, a generic arrangement of a naval vessel is chosen that can appropriately facilitate the 

three firemain layouts. 

Second, the interface for the various firemain systems is modelled to ensure consistency for 

each firemain layout and automation level. The interface is defined by the number and 

location of available seachests, firemain pumps and end users to supply. Then the three 

firemain layouts are modelled and matched to the ship-interface. Once the firemain layouts 

are in place the three levels of automation are implemented. 

Third, the standard damage patterns are applied to the designs. These patterns consist of a 

compartmental pattern in which damage is limited to a single compartment and a zonal 

pattern in which damage is limited to a single zone, where a zone is a designated group of 

compartments. 

Fourth and last, the performance of the designs is measured based on how quickly they 

recover and how much capability is restored. 

3.4. The Integrated Recoverability Model 

The only market available survivability software which is operable independent of Fault Tree 

deactivation logic is Test and Evaluation Solutions (T&E Solutions) Integrated Recoverability 

Model (IRM). The IRM is a software tool that is used to model and assess the performance 

of different naval vessel systems. The IRM tool enables the engineer through the unique 

approach of automatic system connectivity to track the complex interaction of systems, 

crew and progressive damage such as fire and flooding to evaluate the vulnerability of naval 

vessels (Foos and Skahen 2008). 

The automatic system connectivity allows the study of the effect of different system layouts 

and system specifications to evaluate their impact on the vulnerability and recoverability of 

the naval vessel. Another important feature of the IRM is its capability to model the crew as 

an integral part of the system interactions and assess the significant role different crew 

actions and alignments have on the result of a damage scenario (Foos and Skahen 2008, R. 

Gregg Fresa, Zackary R. Stull et al. 2017, Friebe, Skahen et al. 2018). This enables the authors 

to assess the effect of crew actions and automation on the required firemain performance 
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and consequently the vulnerability of the naval vessel. The information used to populate the 

structural and equipment IRM model is derived from key system drawings. 

The IRM includes graphical database editing tools, Simulator, Fire Module, Flooding Module, 

Agent Module, Output Visualization, and Statistical Analysis tools and was initially 

developed to provide the naval ship programs a means to evaluate shipboard vulnerability 

over time, considering the effects of secondary damage (fire, smoke, and flooding), system 

interaction, and damage control and recovery efforts. The development of IRM was 

influenced by lessons learned from the DDG 51 Class Total Ship Survivability Trial (TSST), 

development of Automated Common Diagrams (ACD), and Ship Survivability Design 

Improvement (SSDI) studies. 

Since designing naval ship systems for survivability requires an understanding of the 

dynamic behaviour of threat hazard events (such as fire spread) and the dynamic 

interdependencies of critical systems (such as the shutdown of electronics equipment after 

cooling is lost), integrated recoverability assessments have become critical in understanding 

how to minimize the primary, or immediate, damage from a threat hazard, how to prevent 

cascading secondary damage and how to recover functions of surviving portions of systems. 

The IRM allows batch processing of thousands of scenarios using damage specifications and 

ship system initial conditions. Design studies can be conducted using compartment or 

design zone damage patterns or weapon specific battle damage predictions imported from 

various weapon effects models (e.g. ASAP, SURMA, MOTISS and CVAM) or finite element 

shock and whipping analysis tools (e.g. DYSMAS and LSDYNA). Initial conditions can be 

developed to include different crew manning assumptions, various configurations of on-line 

components and alignments of valves and breakers. Once a scenario is initialized, the IRM 

emulates the system response to piping ruptures, severed cables, damaged components, 

and injured personnel. Fire and flooding modules (such as the Fire and Smoke simulator – 

FSSIM, and the flooding model and advanced stability assessment - FLMASA) use a common 

database with the IRM to coordinate the state of the ship and location of secondary damage 

at every time step such that modelled components can become damaged when they are 

exposed to appropriate thresholds of heat or flood water. The FSSIM module is an algorithm 

that is based on a one-dimensional network representation of the real world. The FSSIM 
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model consists of nodes and edges that present spaces and connections respectively, where 

the nodes contain physical variables that allow the computation of the fire development 

and the edges the transfer in between spaces (Floyd, Hunt et al. 2005). The modelling with 

the IRM and FSSIM relied on the default values that are provided by the software packages 

i.e. temperature in a compartment, average amount of combustible material in a 

compartment, average amount and supply of oxygen in a compartment etc.  

Damage control efforts, including manual fire-fighting and dewatering, interact with the fire 

and flooding modules to determine the ability of the ship and crew to contain damage. The 

status of all components, resources, compartments, and crew over the course of each 

scenario coalesce into a single output log which can be played back for individual scenario 

analysis or mined for statistical results over many hundreds to thousands of runs. 

The unique ‘hive’ approach of the IRM’s network behaviour algorithm eliminates the need 

for traditional FTs and allows the impact of different system alignments to be analysed to 

determine their impact on the ships survivability. Within IRM, a hive is a set of components 

(called nodes) in the same system which are all connected to each other through pipes or 

cables (called edges). If a system is split into separate starboard and port loops, then the 

starboard and port loops would constitute separate hives. Similarly, if both the port and 

starboard sides of a system are connected (through a node representing an open valve) 

then they would form a single hive. Within the IRM, every pipe, cable, conduit, or wireless 

data stream (i.e. every edge) is a member of exactly one hive. Some forming a hive unto 

themselves, while others becoming part of huge hives with thousands of members. 

Equipment however, can be connected to as many hives as it has connections (i.e. input and 

output ports).  

From one time-step to the next, two hives might coalesce (because the nodes representing 

valves that separated them opened) or a single hive might split into two (because the nodes 

representing valves closed – thus ‘isolating’ the hives). Thus, hives do not necessarily persist 

from one time-step to the next and must be recomputed at each time-step – a capability 

not available within traditional FT assessments. Conceptually, a hive can be thought of as a 

pressure vessel to which all nodes of the system are directly connected. In this context, 
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pumps whose output is connected to the hive provide flow into the hive and users 

connected to the hive consume this flow (see Figure 13). The flow into, through, and out of 

a hive is the balancing equation which is recomputed each time-step and which can be used 

to determine where, within each hive construct, isolation is most advantageous in order to 

ensure maximum utilization of services (such as power, chilled water, fire water, 

compressed air, foam solution) to the surviving portions of the mission systems. 

 

Figure 13. IRM basic concept 

Thus, using IRM to conduct late stage survivability assessments an inference model of 

dependent probabilities can be developed to feed a Bayesian Network which can then be 

used on future vessel concept designs thereby overcoming the limitation of needing 

detailed early stage design models, while concurrently eliminating the shortcoming prior 

solution constraints as are present in the methods applying FT’s. 

 

3.5. Case Study 

The chosen naval vessel for this case study is a 68 m long patrol vessel. The vessel has a 

beam of 13 m and a draft of 4.6 m with a full displacement of 2300t. Driven by diesel-

electric propulsion it reaches approximately 40 knots. The vessel has multiple decks and 

watertight bulkheads that extend across decks as shown in Figure 14. This vessel’s 

arrangement was chosen as it can facilitate all three firemain layouts. There is a centreline 
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passageway for the single firemain layout, port and starboard separation for the loop 

layouts, and multiple decks for the vertical offset loop. Additionally, there are enough 

compartments and separation to place end users that allow for long piping runs increasing 

the vulnerable area of the firemain.  

 

Figure 14 IRM layout of model 

The naval vessel was modelled in IRM based on information derived from key system 

drawings. The IRM model consists of a structural as well as an equipment model of the 

vessel. The arrangement of the IRM structural model is shown in Figure 14. The naval 

vessel’s structure consists of six decks with compartments and passageways. Doors and 

hatches are modelled that allow for crew accessibility of the entire vessel. The red lines in 

Figure 14 highlight important watertight bulkheads that separate major sections of the 

firemain designs.  

The IRM equipment model is composed only of the firemain system which is categorized 

into three equipment groups: a) the water supply from the seachests b) the firemain piping 

c) the branch piping to the end users. In this study the water supply from the seachests and 

the branch piping to the end users remains constant while the firemain layout and 

automation level is varied.  
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The water supply is modelled with four seachests located in the hold of the vessel that are 

connected to four fire pumps. Valves on either side of the fire pumps are modelled as 

manual valves that can be operated either locally or from the main deck via handwheels. 

The four fire pumps supply the firemain. The most forward and most aft fire pumps are 

designed to have large pumping capacities whereas the two amidships are smaller pumps 

with relatively low pumping capacities. The two small fire pumps are initially off and are 

only turned on by the crew when the firemain does not have enough supply. An end user is 

modelled in every compartment on the ship. Each branch and riser from the firemain have 

valves to enable damage isolation. 

The three firemain layouts are modelled in IRM as shown in Figure 16. The single firemain is 

located on the main deck in the centre longitudinal passageway. The horizontal loop is on 

the main deck as well with longitudinal piping along both the port and starboard sides of the 

naval vessel. The offset loop consists of longitudinal piping starboard on the main deck and 

port on the 01 level. Additionally, for each firemain layout the valves on either side of the 

bulkhead at frame 52 are initially closed. This segregates the firemain into forward and aft 

sections which limits the effect of damage on the firemain across the naval vessel. 

Furthermore, each firemain layout is modelled given three different levels of automation: 

fully manual, fully autonomous and semi-autonomous. This is achieved by using "smart" 

valves with an activation time of 3 seconds in the design of the firemain. The activation time 

was chosen to demonstrate the rapid response of “smart” valves and is greater than the 

IRM time step of one second to enable analysis of firemain system response following 

“smart” valve actions. The fully autonomous design uses only "smart" valves except for the 

valves on either side of the fire pumps. The semi-autonomous design uses mostly manually 

operated valves except at key locations on the main where "smart" valves are used. These 

key locations are immediately off the firemain on branches and risers as well as the initially 

closed valves at frame 52 that segregate the firemain. The fully manual design uses only 

manually operated valves. There are a total of 3 crew members that form a single damage 

control team that is assumed to perform damage control activities during combat situation. 

Naval vessels can have multiple damage control teams, but it is assumed that this vessel 

operates only with one team to perform damage control actions. This includes actions such 
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as the operation of valves and fire pumps. The crew have an assumed 600 second delay 

before action to account for investigation and organisation of damage control activities.  

To model the water demand draining from the firemain, each compartment has end user 

equipment that is attached to the firemain. If damage occurs in a compartment the 

equipment and piping rupture, requiring the nearest valves to be closed and isolate the 

damage. In turn, if there is no rupture in the piping the valves are required to re-open.  

3.5.1. Damage Patterns 

The damage is applied using two methods. The first is a compartmental damage pattern 

that damages all the equipment and piping within a single compartment resulting in 80 

compartmental damage scenarios. The second is a zonal damage pattern that damages all 

the equipment and piping within a defined zonal area resulting in 22 zonal damage 

scenarios. Zones represent contiguous areas of the ship through which progressive damage 

such as fire could spread rather quickly. For the simplicity of the study, zones were assumed 

not to span multiple decks except where multi-level compartments are located. Figure 15 

shows the zones that were used for the analysis. Compartments without colour did not have 

equipment or piping and were therefore not included. The compartmental and zonal 

damage patterns are intended to represent the damage from a small and large threat, 

respectively. The water load of ruptured pipe is modelled to exceed the capacity of the 

firemain pumps and thus requiring damage isolation to nearest valves. 
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Figure 15 Damage Zones in the IRM Model 

3.5.2. Performance Metric 

To measure the vulnerability of the firemain after damage, pressure sensors are placed 

along each longitudinal run of the firemain in each zone as shown in Figure 16. The pressure 

sensors record a positive state when the supply to the firemain equals or exceeds the 

demand from end users and does not experience an unisolated rupture. The performance 

criteria is that a firemain recovers from the inflicted damage. The firemain is considered 

recovered when all but one of the sensors register a positive state. This design of the 

performance criteria ensures that the measurement is not skewed by the pressure sensor 

being isolated from rest of the firemain when its compartment is included in the damage 

zone. The performance level of each firemain design is then the number of damage 

scenarios that pass the performance criteria.  
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Figure 16 Firemain Layouts in IRM 

 

3.6. Assessment Results 

As described earlier the naval vessel was analysed with both compartmental and zonal 

damage patterns. The results of these analyses are presented in the following subsections. 

The compartment analysis consists of 80 damage scenarios, whereas the zonal damage 

analysis consists of 22 damage scenarios. The performance of each firemain design in the 

following figures is measured as the accumulated successful recovery of the firemain after 

the damage occurrence. 
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3.6.1. Compartmental Analysis – Small Threat 

The performance curves in Figure 17 show that the maximum performance level (total 

recovered damage scenarios) of each firemain layout is independent of the automation level 

and achieves the same maximum performance level over time for each automation level. 

The single firemain has the lowest recoverable performance, whereas the horizontal and 

offset loops both achieve very similar maximum performance level.  

The performance curves also show how quickly each layout recovers. In all three layouts 

there is a significant performance difference between the different levels of automation. In 

the first 600 seconds when the crew is investigating and organizing damage control actions 

the autonomous systems outperform the other two. The higher level of automation allows 

the firemain system to quickly adapt by isolating the damaged area and opening up supply 

from other sections of the firemain.  

The fully autonomous systems recover most scenarios within the first 10 seconds while the 

semi-autonomous systems recover a little over half as many in the same timeframe. The 

fully manual systems remain inoperable until the crew begins closing valves to isolate 

damage after 600 seconds. The recovery seen in the single firemain and horizontal loop 

layouts after 1000 seconds is from fire pumps turning on and adding supply to the firemain. 

This additional recovery is not necessary for the offset loop since the layout prevents 

damage that takes out supply from both large fire pumps. 

A difference between the loop layouts and the single firemain design is that the loops 

manual recovery at approximately 700 seconds takes longer. This is due to the larger 

number of valves in the design and thus a longer time is needed for the crew to fully isolate 

the system. Additionally, the horizontal and offset loops have different rates of 

recoverability. This is attributed to the distance the crew must move to reach access and 

operate the valves in the system. For all layouts, the crew is initially located on the 01 level 

and is thereby closer to the firemain in the offset loop since it spans the 01 level and main 

decks. This allows the crew to execute its damage control actions faster than in the case of 

the horizontal loop which is located entirely on the Main Deck.  
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Figure 17: Performance measurement as accumulated successful recovery of firemain for compartment 

analysis for manual, semi-manual and automated valves 
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3.6.2. Zonal analysis – Large Threat 

The results of the zonal analysis are very similar to those of the compartment analysis. The 

performance curves in Figure 18 show that the maximum performance level (total 

recovered damage scenarios) of each firemain layout is independent of the automation level. 

However, the single firemain and horizontal loop layout achieve the same maximum 

recoverable performance level in the zonal analysis. 

As in the compartment analysis, the fully autonomous designs outperform the semi-

autonomous and manual designs in the first 600 seconds while the crew response delay is in 

effect. The manual designs have no firemain capability during this time and do not begin to 

recover until after the crew begins turning the valves. The time delays before recovery of 

the different automation levels are similar to what is seen in the compartment analysis.  

The results also show that manual recovery at approximately 700 seconds of the single 

firemain is faster than the manual recovery of the two loop designs, which is attributed to 

the lesser complexity of the single firemain. Interestingly, the horizontal loop performs very 

similarly to the single firemain during the first 600 seconds. This is because large portions of 

the loop are cut in a similar manner to how the single firemain when one longitudinal 

section is damaged. Hence the horizontal firemain mimics the results of the single firemain. 

This problem is avoided by the offset loop since it spans two decks and retains connectivity 

throughout its loop despite the larger damage zone.   
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Figure 18. Performance measurement as accumulated successful recovery of firemain for zonal analysis for 

manual, semi-manual and automated valves 

3.7. Discussion 

A piecewise comparison of the different simulation results is necessary to differentiate 

between the various benefits and limitations of varying layouts and automation levels. 

A comparison of the compartmental and zonal damage assessment showed interesting 

findings. For the zonal damage assessment, the single and horizontal loop firemain layouts 

perform similarly and achieve the same percentage of recovered performance. The 

longitudinal piping of both of these firemain types are cut off by the zonal damage, 

removing the advantage the horizontal loop has over the single firemain. Without its loop 

intact, the horizontal loop layout behaves like a single firemain. This result is interpreted by 
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the authors to indicate that for large damage the horizontal loop is not an ideal choice as it 

would be costlier to implement than a single firemain. For better vulnerability at a similar 

cost to the horizontal loop it is best to use the offset loop design for the vessel studied. 

Likewise, for small damage scenarios there was no increased performance found between 

the offset and horizontal loops, whereas both have an increased performance over the 

single firemain. This implies that either layout provides sufficient vulnerability and the 

potentially more complex offset design provides little extra benefit. 

While the offset loop was found to have the greatest level of vulnerability across both 

damage patterns, it does have a downside. Manual recovery of the offset loop takes longer 

than the other designs because crew members must traverse two decks to reorient the 

firemain. However, the authors consider the added benefit of deck separation of the 

firemain to outweigh the effect of longer manual recovery. Furthermore, ship procedures 

may be able to adjust crew positioning for DC operations 

At this stage it is not realistic to build a fully autonomous firemain as the price for this would 

be staggeringly high. Semi-autonomous systems, however, have a lower price point and 

have only been partially implemented. Their immediate recovery capability is a significant 

factor allowing a naval vessel to quickly recover partial mission capability after damage is 

incurred. The “smart” valves instantly sense the pressure loss in the system and close to 

isolate the rupture and thus provide the rest of the system with sufficient water pressure.  

Due to the static nature of the damage, the maximum achievable recoverability 

performance for all three layouts is only determined by the layout of the system and not by 

the crew response time. In the event of progressive damage such as a fire, the performance 

of a manual system would be much lower than a semi-autonomous system since the 

additional damage would impede the damage control actions required by the crew to 

secure pressure to the firemain. 

The vulnerability performance of each firemain layout and automation level are sensitive to 

the naval vessel’s size and can vary for smaller and larger vessel designs. Also, it is important 

to note that an industrially performed vulnerability assessment will consider the most likely 

damage patterns and do not rely on equally distributed damage scenarios only. 
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3.8. Conclusion 

This case study intended to quantify and compare the recovery of different firemain layouts 

with various levels of automation for a generic naval vessel. This quantification and 

comparison were conducted on a dynamic simulation study under the application of all 

possible static damage patterns for three firemain layouts. The recovery time and 

recoverable performance for the different firemain layouts were then recorded and 

assessed. For firemains with only manually operated valves, the case study showed almost 

no firefighting capability for at least the first 10 minutes post damage impact under the 

assumption of crew decision making of about 10 minutes. It was found that partial 

automation at crucial points in the firemain has a significant positive effect on the 

availability of the firemain capability in the immediately post damage. 

It was also found that for larger threats (zonal damage) the intended redundancy of a 

horizontal firemain over a single firemain is rendered obsolete. For a relatively small threat 

(compartment damage) the effect of the offset loop over the horizontal loop is minimal as 

the damage enveloped is not sufficient to affect the redundancy of the horizontal main. 

Future work will have to address non-uniform damage patterns on single, but also multiple-

decks. Additionally, physics induced primary and secondary damage would emphasise even 

more the importance of high automation and quick response actions. 
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  Chapter 4 

A framework to improve naval designs  

This chapter has been published in the Journal of Engineering. The citation for the research 

article is:  Friebe, M., Skahen, D., & Aksu, S. (2018). A framework to improve the naval 

survivability design process based on the vulnerability of a platform’s systems. Journal of 

Ocean Engineering, pp. 677-686. doi:10.1016/j.oceaneng.2018.12.074 

In Chapter 3 the most recent vulnerability techniques were tested on a rudimentary model 

of a naval vessel. A base model was developed that possessed only a firemain system and a 

simplistic crew model. This chapter utilizes the developed base model and systems to 

further elaborate on this naval design and develop a complete naval design that then can be 

assessed. 

The objective of this chapter, as stated in Section 1.5, is to test the ability of Bayesian 

machine learning algorithms to improve the vulnerability performance of naval vessels. 

Therefore, a model containing all major and auxiliary systems and their interaction is 

required. Thus, in this chapter a more sophisticated naval model is developed that can serve 

as input into the Bayesian machine learning algorithm with realistic data of a naval vessel. 

The base model of the naval vessel was described in Chapter 3 . It contains the main 

dimensions of the naval vessel, the crew and their behaviour and a firemain system. In 

Chapter 4 , the model of the naval vessel was enhanced to include all major systems such as 

combat, communication, navigation and propulsion as well as its auxiliary systems such as 

cooling, power and the lube oil system. The enhanced model of the naval vessel was then 

evaluated in a vulnerability assessment and analysed by means of the framework developed 

in Chapter 4 .  

This novel framework utilizes the Bayesian machine learning algorithm to support naval 

architects in improving their naval design models. The Bayesian machine learning algorithm 

builds probabilistic failure relationships between system-system and system-crew 

interactions. Through the ability of Bayesian Networks to perform sensitivity checks, single 
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point of failures can be found, which are then validated and verified by naval vulnerability 

experts.  
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Title: A framework to improve the naval survivability design 

process based on the vulnerability of a platform’s systems 

4.1. Abstract 

Offshore Patrol Vessels (OPVs) are a relatively small type of vessel designed for quick naval 

defence response in littoral zone. OPVs also have a complex system layout, because they are 

constructed to include both commercial and naval aspects with functionality to facilitate its 

operational defence duties and capability. Furthermore, this complex system layout may not 

be optimised for survivability. This study presents a novel framework to examine 

survivability related system and functional dependencies of an actual OPV, combining 

different modelling techniques. The OPV is modelled and analysed using a physics-based 

vulnerability assessment model and integrated into a dynamic system supply and demand 

model. The output is then analysed through a machine learning algorithm to identify 

functional relationships between systems and the vessel’s operational capabilities to then 

build a Bayesian Network for further analysis. The Bayesian Network model is used to 

identify single point failures and analyse the OPV’s equipment/on-board systems for 

sensitivity to the survivability of the platform. The results demonstrate the ability of the 

machine learning algorithm to build a Bayesian Network that can effectively improve the 

naval design process and subsequently contribute to enhancing the survivability of OPVs.  

4.2. Introduction 

Offshore Patrol Vessels are relatively small compared to other naval combat vessels, but 

requirements to their capabilities are growing as more systems and technologies become 

commercially available. A major challenge in integrating new systems and functionalities lies 

within identifying single point of failures that make a system vulnerable. Survivability in the 

context of defence is defined as the capability of a vessel to survive a damaging event such 

as an engine fire or a weapon threat and maintain its mission capability. It is usually divided 

into three categories (Ball and Calvano 1994, U.S.Navy 2012) which are: 
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 Susceptibility - the ability to defeat an attack; 

 Vulnerability - the ability to withstand an attack structurally and operationally, and 

 Recoverability - the ability to recover mission capability. 

Though susceptibility, vulnerability and recoverability are interdependent, this paper 

focuses upon the vulnerability aspects of survivability only. 

Currently, vulnerability assessments of naval combat vessels are performed at the detailed 

design stage, when comprehensive information of the systems and associated equipment 

first become available. Often, design changes at this late design stage are costly and design 

errors are hard to resolve (Doe 2006, Haskins, Forsberg et al. 2006). It would thus be 

beneficial to know the critical relationships between a vessel’s systems and their 

contribution to a vessel’s operational capabilities at the early design stage (Waltham-Sajdak 

2012). These relationships can vary depending of the role and function of the vessel, but 

generally are similar with vessels of similar size (Brown and Salcedo 2003).  

Current vulnerability assessment tools for early stage design work with existing designs and 

are predisposed to erroneous results due to the assumptive nature of the design work (Ball 

and Calvano 1994, Goodfriend 2015, Friebe and Waltham-Sajdak 2017). Thus, it would be 

beneficial to know statistically significant dependencies between naval systems, events 

onboard the vessel and their effect onto the vessel’s operational capabilities. Furthermore, 

this research is based on a previously discussed methodology (Friebe and Waltham-Sajdak 

2017) using Bayesian Networks (BNs) to represent the failure relationships between systems 

and their effect onto the operational capability to assess the effect of parameters of 

uncertainty to the survivability performance. The parameters of uncertainty describe the 

scenarios of the naval vessel in combat and can vary from environmental effects, crew 

states and mission states, and can be extracted from historical databases (Friis-Hansen 2000, 

Khakzad, Khan et al. 2013, Liwång 2015). Previous research (Liwång, Ringsberg et al. 2013, Li, 

Chen et al. 2016) relied on subjective human BN modelling with limited naval vessel 

information, whereas this research attempts to model and learn BNs through a machine 

learning algorithm from a far more holistic and accurate model of a naval vessel. 
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This study provides a framework to identify complex failure relationships from an early 

design between platform systems, sub-systems and components to then link the various 

parameters of uncertainty through a machine learnt BN that is not prone to subjective 

human input. It also demonstrates how that framework can be utilized to improve the 

vulnerability performance of an existing vessel through possible design modifications. As 

part of this research a case study has been performed, which demonstrates that the 

survivability performance through the application of the developed process has improved as 

shown in Section 4.6. Furthermore, this research will enable naval architects to use the 

learnt critical relationships describing the functional state between the systems to study the 

change in the uncertainty of parameter values and evaluate their effect on vulnerability 

performance holistically.  

4.3. Theory and Methodology  

4.3.1. Background  

At the early design stage of a vessel, where little information is available, the uncertainty of 

the critical relationships between onboard systems may be large (Giachetti 2016). This 

uncertainty with the associated simplifications and assumptions made in the vessel and 

system models consequently decreases the confidence level of overall risk or survivability 

assessments (Abrahamsson 2002). 

Previous research (Liwång 2015) highlighted the applicability of Bayesian Networks (BNs) for 

maritime platform survivability assessments and its capability to evaluate design choices 

and perform risk assessments effectively. BNs are particularly useful as they allow historical 

information to be included into the uncertainty treatment of risk assessments, however so 

far there is no probabilistic causal relationship model that is not subject to erroneous 

human input (Liwång 2015). This paper demonstrates that the use of BN theory can mitigate 

model uncertainty in survivability predictions by deriving probabilistic causal relationships 

between a vessel’s functional systems from simulation results. 

The probabilistic causal relationships in the resultant BN model are then assessed using 

Bayes’ Theorem and Influence Diagrams to study cause and effect relationships on the 
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design of a vessel. BNs and Influence Diagrams are  especially useful when there is no 

empirical data and there is a need to identify the underlying causal relationships (IMO 2013). 

These causal relationships are then used to predict the expected cause of failures of systems 

or operational capabilities. Additionally, the strength of a BN is its capability to present 

probabilistic relationships and causal dependencies graphically and to facilitate the study of 

those dependencies (Liwång, Ringsberg et al. 2013, Musharraf, Khan et al. 2013). These 

probabilistic relationships can be either derived from simulation or historical data 

(Konovessis, Cai et al. 2013, Liwång, Ringsberg et al. 2013), but are learned through 

Bayesian machine learning algorithm in this study. 

4.3.2. Bayesian Network 

A BN is a probabilistic graphical model that represents a set of random variables and their 

conditional dependencies via a directed acyclic graph (DAG) (Khakzad, Khan et al. 2013). For 

example, a BN could represent the probabilistic relationship between damage imparted to a 

vessel by a weapon and the vessel’s survivability. For a specific vessel’s system configuration 

a BN can be used to predict the probability of the functional state of each modelled 

capability when subjected to a weapon threat (Liwång 2015). BNs are helpful in assessing 

the probability of each on-board system’s functional state and consequently, analyzing 

functional inter-system relationships where: 1. uncertainty of input is high (for example, a 

weapon strike location); 2. historical data is too limited to enable effective regression; 3. 

and/or where physical dependencies such as overly complex detailed engineering systems 

design (Liwång 2015).  

The BN was chosen due to its reverse reasoning capability, enabling the identification of 

those systems and design parameters that are critical to the survivability performance of the 

vessel, and also its ability to create the BN structure which builds conditional probabilistic 

relationships between them. It is then possible to assess the performance of multiple 

systems for a single threat size simulation with varying hit locations, and also to assess the 

effect of variables such as type of threat or crew. Also, BNs are graphical models and thus 

capable of clearly displaying causal relationships. 
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4.3.2.1. Bayes’ rule and inference 

A generic BN model comprises a set of variables representing nodes in the network. For 

example, in Figure 19 the nodes are ‘Rain’, ‘Grass Wet’ and ‘Sprinkler’. Links between the 

nodes represent the probabilistic relationships between them also shown in Figure 19. 

Nodes that are not connected represent variables that are causally unrelated, whereas 

arrows that proceed from one node to another represent a causal parent - child relationship. 

For example, in Figure 19 the relationships between ‘Rain’ and ‘Grass Wet’, ‘Sprinkler’ and 

‘Grass Wet’, and ‘Rain’ and ‘Sprinkler’ are shown in the computational probability tables 

(CPTs) next to their respective nodes with ‘T’ representing true and ‘F’ false as logical states 

of that node. The BN algorithm then performs backwards reasoning to identify the causes 

that led to the logical state of the node. For example, if ‘Grass Wet’ is showing wet, then the 

probability that ‘Rain’ is true can be determined, but it will be updated with the observation 

from the node ‘Sprinkler’.   

 

Figure 19 Exemplary BN with associated CPTs 

The key feature of a BN is its capability to form a risk-knowledge model enabling reasoning 

about the uncertainty of each variable. Each node is associated with a probability function 

that uses as input a particular set of values and returns the probability of the variable 

represented by the node. Furthermore, BNs represent the joint probability distribution P(U) 

of each variable in the network (Friis-Hansen 2000) as shown in Equation 1.   
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 (1) 

 

where Pa(Ai) are the parents of Ai. BN’s are also used as inference engines in accident 

analysis (Friis-Hansen 2000, Khakzad, Khan et al. 2013) for updating the prior occurrence 

probability of events given new information, called evidence E as shown in Equation 2. For 

any two events, U and E, where ‘P(E)’ reads as “the probability of E” and ‘P(U|E)’ as “the 

probability of U given that B has been observed”, the joint probability distribution P(U|E) 

can then be computed as in equation 2. 

 (2) 

 

4.3.2.2. Structure learning algorithm 

GeNIe, a software tool developed for BN applications, is used to create and analyse the 

structure of the BN because it contains a suite of analysis algorithms to choose from. One of 

these algorithms is the Bayesian Search structure algorithm which is commonly used 

(Cooper and Herskovits 1992).  

To find relationships between the variables and visualize them, the Bayesian Search 

algorithm learns the BN structure using set of a training data and a hill climbing procedure 

with random starts (Lestina, Runnerstrom et al. 1999). The Bayesian Search algorithm also 

requires, a scoring function and a set of possible structures to determine a BN having a 

maximized scoring function (Koller and Friedman 2009). The algorithm creates the BN by 

testing different network operations such as edge additions, edge removals and edge 

reversals to maximize the scoring function. A shortcoming of this algorithm is that it will find 

local maxima rather than a global maximum. Thus, the learning algorithm must be restarted 

using different seeds to find numerous BN’s, which are then evaluated by a scoring function 

to find the best fitting BN. 
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4.3.2.3. Cross-Entropy 

One measure that is commonly used to evaluate BNs is the cross-entropy. This is a method 

used to quantify the difference between two probability distributions. These are the actual 

probability distribution q(x) and the one that is created by the learning algorithm, p(x). The 

cross-entropy H(p,q) measures the summed difference between both as shown in Equation 

3. The cross-entropy in this study is used to evaluate the relative significance of parent 

nodes to their child nodes (Lestina, Runnerstrom et al. 1999, Koller and Friedman 2009). 

This is done through individual selective choice of observation nodes and estimation of the 

change in entropy of the questioned node in the BN. 

 (3) 

4.3.2.4. GeNIe  

GeNIe is graphical user-interface that allows the manual, but also machine-learned 

modelling of Bayesian Networks (BN). Where a Bayesian Network is a probabilistic graphical 

model that represents a set of random variables and their conditional dependencies via a 

directed acyclic graph (DAG) (Khakzad 2011). For example, a Bayesian network could 

represent the probabilistic relationship between damage imparted to a ship by a threat 

weapon (Liwång 2015) and the ships vulnerability when differing vulnerability features are 

applied. Given a vessels vulnerability configuration; the network can be used to compute 

the probabilities of the functional state of the ships systems (i.e. the vulnerability) when 

subjected to a threat weapon. Bayesian Networks (BN) are helpful in assessing probabilities 

and analysing relationships where uncertainty of input (e.g. a weapon strike location) is high, 

where historical data is too limited to enable effective regression, and / or where physical 

dependencies (such as detailed engineering systems design) are overly complex [31].  

A generic BN model comprises a set of nodes (typically representing design state variables), 

with links between the nodes representing the probabilistic relationships. Nodes that are 

not linked represent conditionally independent variables while nodes that are linked 

represent dependent variables. Therefore, in order to develop a useful BN model, it is 

necessary to establish both the state variable nodes as well as the probability links between 
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the dependant nodes – i.e. an inference library. Since BNs are applicable where historical 

data is too limited to enable effective regression, it is possible to construct an inference 

library based on a reduced set of detailed vulnerability assessments as would be conducted 

at late stage design and to use these assessments to construct the necessary inference 

library for the early stage BN model (Friis-Hansen 2000, Lee and Misra 2005, Konovessis, Cai 

et al. 2013).  

In order to avoid populating the BN with inferences which are tainted by the limitations of 

FT methods, including that the full system behaviour must be known in order to construct 

the FT deactivation logic (which on naval vessels is often too complex to capture precisely 

and accurately), the detailed vulnerability assessments used to construct the BN inference 

library must not employ FTs. 

4.4. Framework 

As discussed in section 4.2, a novel framework of assessing and improving a survivability of a 

vessel has been developed and is shown in Figure 20. This framework uses a novel 

combination of well-established tools for vessel structure and equipment modelling, threat 

simulation and system behaviour assessment and a machine learning algorithm to derive a 

BN. The equipment modelling combined with the threat simulation allows the simulation of 

realistic damage scenarios as they occur during real life combat scenarios. However, the 

major challenge lies in identifying which equipment is the most sensitive equipment with 

respect to failure of a specific operational capability. As the number of systems is so large 

and complex and often not the immediately adjacent system is the cause, but eventually a 

system that is indirectly linked that drives the failure of a system. Therefore, Bayesian 

Networks are used as it allows the learning and the assessment of the direct and indirect 

critical system relationships of the vessel. Furthermore, this process can be applied to a 

notional initial design which complies with the minimal survivability requirements 

(Goodfriend 2015) from traditional analyses (Foos and Skahen 2008). Simulation outputs 

from this process are then used to derive the critical causal system relationships within the 

vessel.  
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The machine Bayesian Learning algorithm is used to derive the critical causal system 

relationships between the systems and the operational requirements. This BN is then used 

as a basis for Bayesian sensitivity testing to identify sections of the BN that possess a 

relatively strong contribution to the survivability performance of the vessel and might be a 

single point of failure. If the survivability performance of the vessel does not meet its 

requirements, the supposedly single point failures are investigated, and the design is 

adjusted if deemed necessary. The process is then reiterated until the vessel’s design passes 

the survivability requirement. 

  

Figure 20 Framework flowchart depicting the process of improving a vessel’s survivability 

design 

4.4.1. Equipment modelling 

The framework begins with an initial vessel design at the basic design stage, when key 

system information first becomes available. The structure is modelled in the Integrated 

Recoverability Model (IRM) tool (Foos and Skahen 2008), and then populated with the 

equipment and its onboard location, and behavioural characteristics. Furthermore, the 

operational requirements are expressed through Fault Trees (FTs) as availability monitors of 

necessary equipment. The structure and equipment data are then transferred into the 
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Measure of Total Integrated System Survivability (MOTISS) tool (Stark 2016). Both software 

packages, IRM and MOTISS, are tested and validated by the US Navy and are frequently 

utilised for survivability assessments of ships of the US Navy.  

4.4.2. Apply threat and simulate blast and fragmentation  

Within the MOTISS tool a realistic threat scenario is applied to the vessel. This threat is 

assumed to be a weapon hit from a missile which will be matched to an appropriate 

warhead size such that the vessel could remain afloat. Then MOTISS simulates the blast and 

fragmentation damage resulting from the threat. MOTISS then evaluates the probability of a 

fire ignition and provides the damage results in the form of damage specifications. 

MOTISS integrates fragment and blast effects into a single vessel and equipment assessment. It 

uses Axis Aligned Bounding Blocks to model a vessel, which decreases the runtime to perform 

damage assessments. Using basic physics principles coupled with empirical data, MOTISS 

provides a rapid damage prediction to an event using Monte Carlo simulation, by varying each 

test threat parameter such as fragment size and flight direction (Waltham-Sajdak, 2011). 

Damage simulations are repeated hundreds of times with each simulation having different 

combinations of charge and detonation parameters such as fragment sizes, speeds and 

trajectories. This provides a set of results that captures the chaotic nature of the of the damage 

event. MOTISS stores the model information and performs damage assessments, to evaluate 

the survivability. This process creates a damage specification sheets that contains information 

relating to hull breaches and damaged equipment. Currently, MOTISS is capable of simulating 

and assessing blast, fragmentation, collision, grounding, flooding and fire (Stark, 2016) damage. 

4.4.3. Assess dynamic system behaviour 

The MOTISS damage specifications are then transferred back into the IRM tool, which then 

continuously interacts with  the Fire and Smoke Spread (FSSIM) tool (Floyd 2004). This 

network fire model dynamically computes the fire spread throughout the vessel’s 

compartments and takes into account the firefighting measures from the vessel modelled 

within the IRM. IRM then records the equipment’s state and survivability requirement 

performance, and then processes them into binary values as shown in the example in Table 

2. These binary values represent the availability of operational capabilities and are recorded 
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as ‘1’ if the requirement is met and ‘0’ if the requirement fails. Appendix A contains a 

detailed description of IRM. 

 

 

Equipment 1 Equipment 2 Equipment n Performance 1 Performance 2 Performance n 

Hit Location 1 1 0 1 0 1 0 

Hit Location 2 1 0 0 0 1 1 

Hit Location 3 0 1 1 0 1 0 

Hit Location n 0 1 0 0 1 1 

Table 2 Exemplary binary representation of equipment survivability requirement 

performance  

4.4.4. Bayesian Network structure and parameter learning 

The binary data in each column in Table 2 are then compared with every other column by 

GeNIe. Initially, a null hypothesis between all columns assumes that the columns are 

unrelated to each other. To determine the existence of a probabilistic relationship between 

the individual columns, the statistical significance of the null hypothesis rejections are 

tested (Lestina, Runnerstrom et al. 1999). Each column of data becomes an individual BN 

node in the BN structure and whenever a null hypothesis is rejected by a statistically 

significant test result, a link is formed between the two nodes tested, otherwise there is no 

link. 

Next, GeNIe is used to determine the BNs probabilistic values of the relationship between 

each node, i.e. each column in Table 1, and all others, using causal dependencies and 

correlations. These probabilistic values form the basis of the CPTs for each node, (see 

Section 4.3.2). To fill the CPT tables the nodes that have a probabilistic relationship are 

compared row by row to determine the parameters of conditional distributions between 

the nodes. The distributions within each CPT are then automatically optimized with a 

Maximum Likelihood Estimation (MLE) algorithm to fit the data holistically for the whole BN 

(Lestina, Runnerstrom et al. 1999). 
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4.4.5. Analyse Bayesian Networks 

Analysis of the BN’s sensitivity to critical systems and components enables single point of 

failures and design issues to be identified. If they are identified as significant, the design 

could be modified, and the improvement process repeated until the performance of the 

systems or the overall survivability performance of the vessel’s single points of failure are 

removed. 

4.5. Case study 

 The goal of this case study is to demonstrate the viability of the proposed novel framework 

combining the capabilities of three well-established software tools. A BN model describing 

the association between mission outcomes (i.e. functional survivability) and vulnerability of 

on-board systems/components of a typical vessel is derived. This BN is tested on its cross-

entropy, which makes it possible to identify critical equipment that has a significant 

contribution to the mission capability of the vessel. The outcome of this case study is 

considered successful if the vessel’s survivability can be improved by the process outlined in 

the framework. 

4.5.1. Vessel design and systems specifications and configuration 

The framework was applied to a notional design of a high-speed OPV equipped with rockets 

for fast counter-attacks. The vessel has an overall length of 50m and has a combined 

structure of steel hull and aluminum superstructure. The vessel is fitted with a propulsion 

system that is comprised of two waterjet propulsion systems, and a combat system with a 

forward and aft gun. The power is generated by two generator sets and supplied to the 

corresponding switchboards to distribute the power throughout the vessel. Necessary 

support systems for power generation, distribution and combat functions and the crew-

system interactions were modelled at the basic design stage level. This vessel has both 

internal and external communication systems. The internal communication system consists 

of three individually operating communication sub-systems which are: 1 Main Circuit (1MC), 

Wireless Calling System (WICS) and Sound Powered Telephone (SPT). The external 
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communication system is a radio system. In this case study, damage control is composed of 

a fire main and fire plugs. 

4.5.2. Vulnerability performance measures 

In this case study, it was assumed that for a minimal level of survivability of the vessel, the 

performance depends on the survivability of at least seven operational capabilities: power; 

propulsion; internal communications; external communications; damage control; combat; 

and the crew. Survivability requirements of each operational capability and crew were also 

assumed based on common knowledge and expert opinions (Skahen and Foos 2017). Expert 

opinions were gathered through interviews with seven survivability engineers from Test & 

Evaluation Solutions over a period of nine months, who then also verified the accurate 

representation of the system and the operational capabilities. The assumptions and scenario 

parameters for the performance requirements of the operational capabilities and the crew 

include: 

1. Power performance: This requires at least 50% of the generator systems and 

corresponding support systems to be functional.  

2. Propulsion performance: This requires 50% of the propulsion generating systems 

(steering and propulsion equipment) to be functional.  

3. Internal communications: This requires either Wireless Calling System (WICS) or Sound 

Powered Telephone (SPT) or 1 Main Circuit (1MC) to be functional. A WICS system is 

assumed operational if 50% of the WICS antennas are functional. The SPT is assumed to be 

working if it is possible to communicate at least between two out of the three SPTs.  

4. External Communications: This requires either the Radio equipment rack or the Radio 

operator console to be functional. This system has two components that can be used to 

perform emergency calls: a Radio equipment rack and a Radio operator console.  

5. Damage Control: This requires a minimum of 50% availability of the fire pumps and 50% 

availability of the fire plugs in both forward and aft of the vessel. 

6. Combat: The vessel has a 71mm forward Gun and an aft Rocket Launcher and requires 

both of them to be a 100% functional for combat missions. These system’s inputs such as 
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cooling, power and operator input is recorded temporally. To be operationally functional 

also requires the Combat Information Centre control console, which needs to be manned 

and supplied with power, and the sensory inputs from the Gyro, wind gauge and radar.  

7. Crew fatality limit: Fatalities are grouped into instant fatalities and from secondary 

weapon damage effects such as fire and smoke. The total number of fatalities should not 

exceed 80%, which are 18 out of the 22 crew members for this type of vessel (OPV). 

4.5.3. Modelling in IRM 

The model constructed in IRM is comprised of the vessel’s structure, and the main systems, 

those that are considered essential for vessel survivability, and the support systems that 

enable the main systems to function. The conceptual layout of the power system and the 

seawater system are shown in detail in Figure 21 and Figure 22 to demonstrate the depth of 

modelling. However, the remaining systems were modelled in similar detail. 

The system shown in Figure 21 is a power system that consists of two generators (GEN I and 

GEN II), providing power to the switchboards (SWBD I and SWBD II). From the switchboards, 

the power is distributed to either an ABT (Automatic Bus Tie breaker) or MBT (Manual Bus 

Tie breaker). These bus tie breakers operate as switches, and switch between a normal 

power source and an alternate power source when the former is not available. Furthermore, 

IRM allows the user to assign crew to specific systems if that system needs a trained crew 

member to operate the system (i.e. change state between ‘off’ and ‘on’). In total 22 crew 

members were modelled with specific skills such as the capabilities of a mechanic, 

electrician or a damage control personal and also incorporates how long it takes for the 

crew to perform recovery actions on the system. From the bus tie breakers, power is further 

distributed to the power panels (Power Panel I and Power Panel II), which are usually 

situated throughout the vessel to provide electrical supply to closely located equipment.  
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Figure 21 Conceptual layout of the power system 

The seawater system shown in Figure 22 is modelled in such that it always has a source, a 

pump and a sink. In this model there are six Sea Chests, each providing access to sea water. 

There are 2 Fire Main Pumps that provide flow from the sea chests then merge on a major 

Fire Main system through valves. This Fire Main can branch out into a sea water cooling 

system, providing cooling to various equipment. This is shown as the branch at Fitting III. 

This equipment is modelled to also have other necessary fluids set up to operate. For 

example, lubricate oil or fuel, which are operated similarly to the sea water system. At 

Fitting IV the Fire Main system also branches off into an installed firefighting system, (not 

shown in Figure 22). This firefighting system is comprised of sprinklers that are modelled 

with heat sensors and a water discharge rate. If the sensor detects a rise in temperature, it 

will release water and attempt to extinguish or suppress the fire. 

 

Figure 22 Conceptual layout of the seawater system 

The IRM enables modelling of survivability requirements of the vessel by utilizing a Fault 

Tree approach (Foos and Skahen 2008). The FT structure shows the required availability of 
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equipment necessary for successful operation. The Top-Level FT structure for the 

survivability of the OPV vessel is shown in Figure 23. 

 



72 | P a g e  

 

Figure 23 Top level performance measurement is defined by 7 high level requirements 

which are based on the availability of essential equipment 

4.5.4. MOTISS model imported from IRM 

To simulate weapon attacks and damage scenarios, the probabilistic vulnerability 

assessment tool called ‘MOTISS’ was utilised because model data can be transferred directly 

from IRM. This data includes vessel structure and corresponding system’s dimensions and 

locations. For weapon attack simulations, the MOTISS requires the size of the threat to be 

defined.  

In this case study a threat was selected such that it could cause structural damage, and also 

be small enough to allow the vessel to float and be stable. Survivability of a vessel from a 

weapon attack is defined as a function of warhead charge weight combined with the 

floodable length of the vessel as illustrated in Figure 24 (Waltham-Sajdak 2012). The 

correlation between the charge weight floodable length related to the warhead damage can 

be described through the empirical formula 

WD = 0.0135 × (FL_allowable)3 (4) 

Where, WD is the TNT equivalent warhead charge weight in kg and FL_allowable is the 

floodable allowable length which is assumed to be 12.5% of the length between the aft and 

forward perpendicular of the vessel (Waltham-Sajdak 2012). The vessel’s length is about 

50m and thus the threat size for this vessel was selected with a warhead size of 3.1kg TNT.  
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Figure 24 Selected threat size for a 50m long patrol vessel calculated based on equation 4 

The MOTISS tool also requires the user to input a weapon hit grid. These are uniformly and 

evenly distributed across the vessel as shown in Figure 25. The hit grid in this study consists 

of 11 locations in the longitudinal direction, 4 locations in the vertical and 5 locations in the 

transverse direction, that is, 220 locations. Most port and starboard locations were chosen 

to be in very close proximity to the hull, not further away than 30cm. Each of the 220 hit 

locations is simulated and an output file is created, that contains the damage information 

for each damaged piece of equipment and the location of potential fires.   

 

Figure 25 Uniformly distributed hit point locations marked as red spheres 

4.5.5. Re-importing into IRM and measurement states 

On completion of the assessment of the effect of threats on the vessel’s systems using 

MOTISS, the damage files are re-entered into IRM. This enables IRM to model the systems 
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performance for each hit simulation. The systems and their functioning performance are 

modelled from the moment of impact and for 30 minutes onward. Experts (Skahen and Foos 

2017) advised that simulating the vessel for 30 minutes after the weapon hit is reasonable, 

anything longer would be irrelevant as the combat scenario is not expected to last that long. 

A total of 220 hits were simulated once, with each simulation measuring the on / off state of 

750 single pieces of equipment. Additionally, 7 top performance levels and 12 sub-

performance requirements from Figure 23 were tracked, which totaled 769 columns of data 

with each them having 220 rows of binary data for each weapon hit. This data can now be 

imported into GeNIe.  

4.5.6. Bayesian Network settings 

GeNIe contains learning algorithms that consist of two analytical methods. The first is a 

heuristic search and scoring function and the second is an independence test. The Bayesian 

search algorithm was used in this study (Lestina, Runnerstrom et al. 1999). This algorithm 

uses a hill climbing scoring procedure with random restarts. As the required data storage for 

the probability table increases with the number of variables and states, it was found to be 

useful to limit the maximum number of parent nodes to five. The decision to limit the 

parent nodes does not have a significant negative impact, because the relative difference 

between the parent nodes to the child node diminishes as parent nodes are increased 

(Koller and Friedman 2009). The link probability was reduced to 10-6 in order to eliminate 

the accidental probabilistic relationships and build a lean BN, which in turn helped to keep 

the number of parent relationships low.  

4.6. Results 

The results are twofold. Firstly, the IRM simulation results show a detailed crew and system 

interaction for the first 30 minutes after the weapon hit. Secondly a BN is derived from the 

crew and system states at the 30-minute time interval. The results are separated into Initial 

Results (4.6.1) and into Model Iteration results (4.6.2) as the design was modified in 

between.  
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4.6.1. Initial results 

First the results of the stability analysis are discussed. It should be noted that any hit under 

the waterline that damages two sections at once leads to an ingress of seawater and a loss 

of floatability and consequently the loss of the vessel. Out of 220 hit locations, 55 are under 

the waterline. The damage two watertight compartments the hit needs to be in close 

proximity to the watertight bulkheads, which is the case in 23 out of 55 hit locations. 

Further details on the vessel’s damage stability and righting moment curve can not be 

obtained as each compartment is modelled box shaped and the vessel’s centre of buoyancy 

therefore is not realistic enough. 

Second, one of the major findings of this analysis is shown in Figure 26. The screenshot in 

Figure 26a. shows decks of the vessel from the hold up to the mast. The orange circles in the 

aft area on the decks: Platform, Main Deck and 01 Level indicate damage to the structure 

due to a hit aft on the deckhouse. The screenshot in Figure 26b shows that in this scenario 

the aft and forward guns are disabled 1 second after the weapon hit. A fire has also been 

caused by the weapon hit and is indicated by the red colour. Both guns are connected to the 

same power panel on the 01 Level and are lacking power because the power supply to the 

power panel has been interrupted. At 25 seconds, the power panel regains power after a 

crew member has operated the MBT on the 01 Level. At 75 seconds, the forward gun 

becomes non-functional again, due to overheating, because the cooling circuit is non-

functioning and without coolant the gun will not function.  

Both guns are dependent on the same power panel, which is a single point of failure. 

Existence of a single point of failure in a design is a critical design weakness that should be 

resolved. A viable solution to the problem could be to power each gun from a separate 

power panel. 
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a. Initial damage area showing holes 

marked with orange circles 

b. After 1 second the forward and aft Guns 

are disabled (grey) 

  

c. After 25 seconds the forward and aft 

Guns are functional (green) 

d. After75 seconds the forward Gun was 

non-functioning due to overheating 

Figure 26 One IRM sample hit simulation  

After the IRM simulation was completed, two BNs shown in Figure 27 were developed using 

the ‘learning algorithm’ (Koller and Friedman 2009). Figure 27 shows a sensitivity analysis of 

the Aft Gun. Sensitivity testing can be used to determine the relative influence of a system 

to another system or the vessel’s operational capabilities. Sensitivity is characterised as the 

expected shift in variation of a selected target node due to the structure and the 

computational probability tables of the BN. As an example in Figure 27, all nodes in red, 

with arrows pointing towards the Aft Gun, indicate a high sensitivity and contribution with 

Hold

Main Deck

Platform

01 Level

02 Level

Mast

Manual Bus Tie Breaker

Manual Bus Tie Breaker



Page | 77  

  

respect to the failure of the Aft Gun – the target node is indicated by a crosshair at the 

bottom right of the node. Nodes with lighter colouring, up to grey have less or zero 

sensitivity to the target node. It can be seen that the learning algorithm detected correctly 

that the aft gun is sensitive to failure of the ‘Main Switchboard 1’ (MSWBD1) as it supplies 

power directly and indirectly at the fire control console and display console.  

Furthermore, although both BNs are identical in Figure 27, the BN on the right shows the 

sensitivity analysis on the Forward Gun, which is the target node now. Again, the main 

switchboard is a sensitive component, by powering the Gun Control Console. It can be 

concluded that the learning algorithm with the help of a sensitivity analysis model correctly 

identified the single point of failure that was found in the IRM model. Both these cases 

indicated that the operational state of the main switchboard was necessary for the guns to 

be operational. Investigation of the power system design showed that critical gun 

components for the Forward Gun and Aft Gun systems were powered from the same power 

panel. 

   

Figure 27 A reduced BN with equipment sensitive to the Aft Gun on the left and to the 

Forward Gun on the right 

4.6.2. Model reiteration 

The power network then was reconfigured so that the forward gun is provided power from 

Main Switchboard 2 (MSWBD 2) which is not in the pilot house, but from in compartment 

next to the main engine room. The MOTISS and IRM model was adjusted accordingly and re-

run. As predicted, reconfiguring the power network and supplying the Forward Gun with 

power from MSWBD2 separated the critical equipment from the Forward and Aft Gun. The 
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red coloured equipment shown in Figure 28 on the left and right are clearly non-identical 

and therefore shows that both systems are independently powered. 

  

Figure 28 BNs sensitivity analysis showing the critical equipment for the Aft Gun on the left 

and the Forward Gun on the right 

It can also be inferred from comparing the BNs on the right side in Figure 27 and Figure 28 

that the main power source for the Forward Gun changed from MSWBD1 before the 

network reconfiguration. These are surrounded by a green dotted line on the both figures. 

To MSWBD2 surrounded by a green dotted line on the right figure after the reconfiguration. 

The different colours in Figure 28 represent a graphical interpretation of the quantified 

sensitivity of the critical equipment. 

Sensitivity analysis helps to identify critical systems that lead to the failure of other systems 

or the vessel’s operational capability.  As an example, table 2 shows the cross-entropy 

values of the critical systems ranked in order of their sensitivity with respect to the Forward 

Gun capability. The sensitivity values show a drop for the MSWBD1 and a rise for MSWBD2, 

which is beneficial as the MSWBD1 is supposed to supply power only to the Aft Gun as it 

would be otherwise a single point of failure. 
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Table 3 Results of the quantitative sensitivity comparison for the Forward Gun before 

reconfiguration on the left, and after reconfiguration on the right. Values represent 

calculated entropy3; the larger the value the greater its influence on the target node 

The design issues identified by the BN of the vessel were confirmed by naval experts and the 

combat requirement performance improved after the power system reconfiguration as 

shown in Figure 29. The combat system’s availability improved by 0.9% from 173/220 to 

175/220. The improvement of the combat system performance is attributed to the higher 

survivability rate of the ‘Display_Console’ and the ‘Rocket_130mm_Component’. This 

improvement appears small at first sight, but it is important to note that this improvement 

can be achieved through connecting the power differently and does not add any cost or 

weight to the vessel. The demonstrated design error was not found by naval architects as 

the model of vessel is very complex and comprised of many systems interacting. Also, it 

must be noted that the magnitude of the improvement probably would change with a 

different hit grid resolution, which has not been investigated yet. Eventually several small 

improvements with similar low costs can be found for a complex design, that then could 

accumulate to more significant impacts. 

  

Figure 29 shows the combat performance before and after the power reconfiguration 

                                                      

3
 Entropy is defined as the variation I of a query variable Q due to a finding F, and is computed as  

I=∑q∑fP(q,f)log[P(q,f)/P(f)], where q is a state of Q, f a state of F and the summations are the total sum of all 

states  f or q of variables F or Q. 

(before) (after)
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Also, the machine learning algorithm was tested for variability and its performance to 

successfully build a BN that can identify the same single point of failure from the preceding 

sections. The machine learning algorithm was trained 20 times with the same result 

database and was then reduced by the least sensitive nodes to contain only the critical 

systems in the BN. The results in Figure 30 show that the highest success rate of identifying 

the design issue is if the size of BN in the range between 15 to 30 nodes. When the size of 

the BN is reduced to less than 15 nodes, too much valuable information is cut out and thus 

identifying the design issue becomes impossible. On the contrary, when BN contains too 

many nodes and too much information, the relative sensitive of each node diminishes and 

the chance of successfully identifying the design error reduces. It was found that the highest 

possible chance of machine learning a BN that successfully identifies the error is if the size of 

the BN is at 20 nodes, which corresponds to a chance of 90% success as shown in Figure 30. 

 

Figure 30 Percentage of machine learned BNs that successfully identify the single point of 

failure depending on number of nodes and/or systems in the BN 

4.7. Discussion and future work 

The presented study links data from different parts of survivability assessments and 

combined them in a naval assembly, without requiring further human input, analysed a 

design of an actual vessel and provided insights into design issues and consequently 

suggestions to improve the design. The tool to perform this analysis is the BN theory that 
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enables naval architects not only to study the consequences of a failing system to the 

operational capability, but also to reason backwards as in which system caused the 

operational capability to fail.  

The case study is a model of a patrol boat. The model was chosen to be complex enough to 

demonstrate that the proposed process is capable of identifying human design errors and 

the same time allow verification by a human expert. The beneficial effects of this process 

are believed to grow with the complexity of models as the developed process can be 

automated and should outperform any human expert in the search for single point of 

failures. 

The damage predictions from MOTISS vary with each simulation, as the physical nature of 

fragmentation is probabilistic. However, in this study each hit location was simulated once 

only, which rendered the output deterministic. Thus, the next steps in this research are: 

 to produce more simulation runs for each hit location and produce a probabilistic 

damage output from MOTISS for input into IRM, and 

 to introduce a probability distribution at some nodes of the BN and analyse 

parameters of uncertainty to the systems. 

4.8. Conclusion 

The goal of this study was to create a framework that could improve the design of vessels 

through the probabilistic quantification of the failure relationships between its systems and 

the performance of the vessel. This resulted in the development of a framework that used a 

novel combination of three well-established software tools in the fields of survivability and 

risk assessment. Initially, the IRM and MOTISS tools were used to model an actual vessel’s 

structure and systems and assess its operational capabilities against the effect of a weapon 

strike. Then a Bayesian Network model describing the association between functional 

survivability and vulnerability of the vessel’s systems and components, was derived. This BN 

was able to successfully produce a recommendation for design change based on the 

identification of a single point of failure of the vessel. The framework was found to perform 

best when the BN was reduced to 20 nodes and to successfully identify the design issue in 
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90% of the tested cases. The design change was then used as the basis for the next design 

iteration and consequently resulted in an improved survivability performance of that vessel. 

Thus, the proposed framework was validated and has shown to be capable of improving an 

existing vessel’s survivability through smart design changes.  

It should be noted that the framework performed best at a sample size reduced to around 

20 nodes as shown in Figure 30. As discussed earlier, the original number of number of 

nodes therefore had to be manually reduced by the least sensitive nodes with the weakest 

statistical correlations to achieve the final Bayesian Network. As this manual Bayesian 

Network reduction can be mathematically expressed and automated, it is assumed by the 

author that the developed framework is not bound to any limitations in its applicability with 

regard to the size of the naval vessel. 
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  Chapter 5 

Inclusion of system reliability in survivability 

assessment 

This chapter has been submitted to the Journal of Ocean Engineering on February 19th, 2019.  

 

In Chapter 3 , a naval model was developed that then was enhanced in Chapter 4 to include 

the major and auxiliary systems of the naval vessel. Additionally, in Chapter 4  a framework 

to assess and improve the vulnerability performance of the model of a naval vessel was 

developed and demonstrated. One result of the framework from Chapter 4 was the 

probabilistic failure relationships between system-system and system-crew interactions. 

An inherent limitation of current vulnerability assessments and the vulnerability 

assessments in Chapter 3 and Chapter 4 is the assumption that systems are perfectly 

reliable. One objective of this research is to investigate the effect of the systems’ reliability 

on the performance of the naval vessel. To include the reliability of the naval vessel’s 

systems, the derived probabilistic failure relationships are extended using each system’s 

reliability function in the Bayesian Network. 

The result of this work is a join vulnerability and reliability model. This enables naval 

architects to predict random system failure in combat situations. Which in turn provides a 

more realistic model of naval vessels as systems random failure doesn’t have to be excluded 

from vulnerability assessments anymore. 
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Title: Inclusion of system reliability in a survivability 

assessment framework  

5.1. Abstract 

Naval vessels are designed to be survivable to protect their crew in combat. However, 

survivability assessments are performed under the assumption of perfectly reliable systems. 

This assumption may cause naval designs to be less survivable than predicted. This paper 

presents a proof of concept of an extension to a framework that derives the probabilistic 

failure relationships from a survivability assessment simulation. In the presented study, the 

probabilistic failure relationships are extended to include system reliability as part of the 

survivability assessment. The inclusion of system reliability into the survivability 

performance assessment of the power systems and related operational capability of the 

vessel provides a more realistic performance model of a naval vessel. This method also 

helps to predict vessel’s survivability performance during combat with regards to its years in 

service and furthermore will ensure the safety of the life of crews and the navies assets. 

Keywords: Vulnerability, Bayesian Network, Reliability, Survivability Assessment 

5.2. Introduction  

The design philosophy of naval vessels has significantly changed since the late 1940s and 

lead to a reduction of large naval vessels such as destroyers and an increase for smaller type 

vessels like frigates as shown in Figure 31 (Kok 2012, Stark 2016). Also, as modern naval 

vessels get smaller and more complex, the number of requirements on their performance 

increases (Waltham-Sajdak 2011). One method that can be used to manage this is called 

‘System Engineering’, which provides a methodology to integrate the growing number of 

requirements into the design of vessels. System Engineering also examines the reliability, 

availability, maintenance and safety which are also increasingly integrated into the design of 

commercial and vessels (Haskins, Forsberg et al. 2006).  
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Figure 31 Number of USN Ships by Class by Decade  

But, unlike commercial vessels, naval vessels require survivability (Piperakis 2013, Liwång 

2015) – where survivability in this context is limited to the vulnerability aspect, which 

describes the amount of damage a vessel can endure and keep functioning (U.S.Navy 2012). 

Naval vessels are usually designed with 85-95% equipment availability requirements 

(Malakhoff, Klinkhamer et al. 1998), whereas survivability assessments are performed with 

the assumption of 100% available systems (Foos and Skahen 2008, R. Gregg Fresa, Zackary R. 

Stull et al. 2017)  which leads to the conclusion that if the reliability of the equipment in a 

survivability assessment is neglected, the naval vessel might be less survivable than 

anticipated. To assume an only 85% reliable system to always function and never fail is a 

major assumption that may have a significant effect on the survivability performance in a 

combat scenario. Thus, the focus of this research is the inclusion of the reliability effect into 

the survivability assessment of an existing naval design. 

There are various possible design measures to improve the reliable performance of a vessel, 

such as providing physical redundancies of systems or by selecting more reliable 

components for a system (Kim, Haugen et al. 2016). Survivable rated vessels usually provide 

at least one level of physical redundancies of their systems. This level of redundancy can 
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absorb certain damage in a combat scenario, but the damaged vessel then requires the 

remaining system to be perfectly functional and reliable. Thus, it is important to include the 

effect of reliability into survivability assessments and estimate the reliability-corrected 

survivability performance.  

Holistic assessments considering the joint effect of reliability and survivability of a vessel 

during operations have not been performed and is thus the objective of this paper. 

5.3. Background  

Survivability is generally described as the complement of the probability of being killed (Ball 

and Calvano 1994) as shown in Equation 3.  

 

Equation 3 

With 

PS = the probability of survival and  

PK = the probability of being killed.  

 

It can be seen from Equation 2 that a vessel, needs to be detected, aimed at, targeted and 

hit in order to be killed (Ball and Calvano 1994, Kwang and Jang 2012). This can be equated 

and written in an equation as the following: 

 

Equation 4 

Where 

PD = the probability of being detected;  

PA = the probability of being aimed at;  

PT = the probability of being targeted;  

PH  = the probability of being hit; and  

PK = the probability of being killed. 

1S KP P 

K D A T HP P P P P   
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However, engineers working in the field of survivability also need to know the effect of 

reliability of systems so that design choices that affect the reliability of a system such as a 

system’s time in operation and the system and component specific Mean Time to Failure 

(MTTF) can be made. Fault Trees (FTs) have been used widely in the assessment of risk and 

fault diagnosis of equipment and reliability analysis (Khakzad, Khan et al. 2013). However, a 

FT’s major limitation is to assess large complex systems and their inability to effectively 

identify causes that lead to failure. Furthermore, FTs are incapable in calculating 

interdependencies between branches and decision-making aspects. Also, FTs are 

predisposed to erroneous human input as FT relationships are built based on empirical 

experience (Friebe and Waltham-Sajdak 2017).  

FT assessment is a deductive failure analysis that is structured top-down with the desired 

state at the top and a series of events combined through gates that operate by Boolean 

logic. The desired state in this case is the RRiC which is based on the simultaneous occurrence 

of the system’s successful survival and reliability. Since both events need to happen 

simultaneously, they can be expressed through an ‘and-gate’ as shown in Figure 32. 

 

Figure 32 Example gates are ‘or-gate’, ‘and-gate’ and ‘exclusive or-gate’ 

Recent research (Friebe and Waltham-Sajdak 2017) has shown that some of these 

limitations can be overcome through the application of Bayesian Networks (BN). BN is a 

probabilistic inference tool and has become a commonly used technique for reasoning 

under uncertainty conditions. The main advantage of BNs is its ability for reasoning and to 

update initial beliefs when new system information becomes available over time 

(Konovessis, Cai et al. 2013). Thus, BNs can also be used as decision making tools due to 

their inherent ability to calculate the difference between two probabilistic scenarios. 
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Another ability of BNs is its ability to link and include expert knowledge into probabilistic 

assessment (Khakzad, Khan et al. 2013, Yuan, Khakzad et al. 2015, Zhang and Thai 2016). 

However, even though BNs are powerful tools, their computational cost grows 

exponentially with network size (Druzdzel 1999).   

Also, a BN algorithm has the capability to automatically learn causal failure dependencies 

between the equipment and operational capability of vessels from simulation data 

(Druzdzel 1999). In this study that data is obtained from survivability simulations and used 

to build complex BNs that can then examine failure relationships between different 

equipment and their effect onto the operational performance of the vessel. However, that 

analysis data is collected under the assumption of perfect availability of its systems and thus 

requires post-processing to understand the effect of equipment reliability on the 

survivability of the naval vessel.  

5.3.1. Bayesian Network 

A generic BN model comprises a set of variables representing nodes in a network. For 

example, in Figure 33, the nodes are ‘Rain’, ‘Grass Wet’ and ‘Sprinkler’, and act as a ‘root 

node’, ‘intermediate node’ and leaf node’ respectively.  Links between the nodes represent 

the probabilistic relationships between them, also shown in Figure 33. Nodes that are not 

connected represent variables that are causally unrelated, whereas arrows that proceed 

from one node to another represent a causal parent - child relationship. For example, in 

Figure 33 the relationships between ‘Grass Wet’ and ‘Rain’, ‘Grass Wet’ and ‘Sprinkler’, and 

‘Sprinkler’ and ‘Rain’ are shown in the Computational Probability Tables (CPTs) next to their 

respective nodes with ‘T’ representing true and ‘F’ false as logical states of that node. The 

BN algorithm then performs backwards reasoning to identify the causes that led to the 

logical state of the node. For example, if ‘Grass Wet’ is showing wet, then the probability 

that ‘Rain’ is true can be determined, but it will be modified with the observation from the 

node ‘Sprinkler’.   
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Figure 33 Exemplary BN with associated CPTs 

The key feature of a BN is its capability to form a risk-knowledge model enabling reasoning 

about the uncertainty of each variable. Each node is associated with a probability function 

that uses as input a particular set of values and returns the probability of the variable 

represented by the node. Furthermore, BNs represent the joint probability distribution P(U) 

of each variable in the network (Friis-Hansen 2000) as shown in Equation 5.   

 

Equation 5 

 

where Pa(Ai) are the parents of Ai. BNs are also used as inference engines in accident 

analysis (Friis-Hansen 2000, Khakzad, Khan et al. 2013) for updating the prior occurrence 

probability of events given new information, called evidence E in Equation 6. For any two 

events, U and E, where P(E) is the probability of E occurring and P(U|E) as the probability of 

U given that E has been observed, the joint probability distribution P(U|E) is defined in 

Equation 6.  

 

Equation 6 
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5.3.2. Bayesian Network structure and parameter learning 

GeNIe, the utilized software tool for this study was specifically developed for Bayesian 

Network applications and has a wide range of Bayesian machine learning algorithms to 

choose from (Druzdzel 1999). The learning algorithm applied in this study is the Bayesian 

Search algorithm which is commonly used, and was developed in 1992 (Cooper and 

Herskovits 1992). 

To identify probabilistic relationships between the variables, the Bayesian Search algorithm 

learns the Bayesian Network structure using a set of training data and a hill climbing 

procedure with random start seeds (Koller and Friedman 2009). The Bayesian Search 

algorithm also needs a scoring function and a set of possible structures to determine which 

learned BN fits the training data best  (Koller and Friedman 2009). The Bayesian search 

algorithm creates the network by testing different network operations such as edge 

additions, edge removals and edge reversals to maximize the scoring function. A drawback 

of this Bayesian search algorithm is that it often finds local maxima rather than a global 

maximum. Therefore, the learning algorithm must be reiterated using different seeds to find 

several BN’s, which are then compared and evaluated by a scoring function to find the best 

fitting BN (Friebe, Skahen et al. 2018). 

5.3.3. Mapping Fault Trees to Bayesian Networks 

The process of mapping FTs to BNs has been previously described (Khakzad 2011) and is 

briefly explained in the following section. FTs consist of events, whereas BNs consist of 

nodes as shown in Figure 33. The events of the FT are connected in the same way as 

corresponding nodes in the BN. The numerical mapping depends on the type of gate 

(Khakzad 2011) and, for each leaf and intermediate nodes, individual CPTs are developed. 

Whereas in the BN the occurrence probability of primary events is assigned as prior 

probabilities of the root nodes.  
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Figure 34 Mapping FT to BN (Khakzad 2011) 

5.3.4. System Reliability 

The reliability function is shown in Equation 7 and is an expression of a system’s predicted 

MTTF and its service time, t (Birolini 2017).  

 

Equation 7 

 

Furthermore, survivability is the probability to survive an attack and reliability the 

probability of successful operation without accidental failure. Because both probabilities are 

independent of each other, they can be combined as shown in Equation 8. The combat 

survivability reliability including, RRiC, is denoted as the product of the probability of survival 

and the equipment’s reliability, R. 

 

Equation 8 
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5.4. Methodology 

This paper demonstrates how a reliability assessment of a system can be inserted into a 

machine learned BN and thus the need of engineers to integrate reliability into survivability 

assessment. It demonstrates the capability of extending a previously developed framework 

(Friebe, Skahen et al. 2018) using a case study to show the effect on the performance of 

naval vessels. 

A survivability assessing framework has been introduced that resulted in a BN representing 

the probabilistic failure relationships between systems and the operational capability of a 

vessel. After the survivability assessment has been performed and a BN developed the 

system reliability can be included into the BN. 

This BN, representing the failure relationships between systems of a vessel, can then be 

extended by multiplying each system’s individual reliability factor into each node of the BN. 

To multiply the reliability into the BN, the concept of a Fault Tree ‘and-gate’ was chosen and 

then converted into a BN operation. In the following subsections necessary concepts to 

multiply the reliability into a survivability assessment are explained. 

5.4.1. Survivability assessment framework 

This paper builds upon previous work where a BN learning algorithm was used to derive a 

BN from a survivability assessment of a naval vessel (Friebe, Skahen et al. 2018). The process 

of developing a BN from raw data was integral in developing a framework to improve the 

survivability performance of a naval vessel. This framework is presented in Figure 35. At the 

first step, a naval vessel is modelled in Integrated Recoverability Model (IRM), (Foos and 

Skahen 2008). This model is then imported into Measure of Total Integrated System 

Survivability (MOTISS) (Waltham-Sajdak 2011) and fragmentation and blast damage, 

induced by a missile, is simulated. The damage results are imported back into IRM where 

the supply and demand analysis assessment was conducted. The states of each equipment 

are recorded in binary format as either “working” or “failed” and then machine learned by a 

Bayesian Network learning algorithm in GeNIe (Cooper and Herskovits 1992, Koller and 

Friedman 2009). That machine learning algorithm makes it possible to obtain a graphical 
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representation of the equipment failure relationships and their relationship to the 

survivability performance measures.  

  

Figure 35 Framework to improve survivability through the application of a Bayesian Network 

(Friebe, Skahen et al. 2018) with the novel reliability extension marked with green 

These failure relationships are then analysed to identify single point of failures and 

anomalies in the BN. If a single point of failure is identified, the original model of naval 

vessel is modified in the IRM and the process is reiterated until no more single point of 

failures are identified and the naval vessel passes its requirements. 

5.4.2. Extending the Survivability Assessment Framework 

In this study the previously developed framework is extended by linking the reliability 

factors into the framework, as shown with the green marked process step in Figure 35. This 

step represents a manual extension of the machine learned BN and is performed prior the 

evaluation of the BN. The assumption in this study is that new root nodes can be created in 

the BN and linked through CPTs into the assessment. This manual extension of a BN will help 

to study the effect of system reliability onto the vessel.  
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5.5. Case study 

The goal of this case study is to exemplify the use of the reliability factor and the 

consequence to vessel’s survivability. In this case study a generic vessel is used to assess the 

reliability of the switchboards on the operational performance of the vessel. The effects on 

platform survivability will also be demonstrated. 

5.5.1. Learning a Bayesian Network from survivability simulation data 

The vessel was initially studied and assessed under minimal survivability performance 

requirements, such as the maintenance of power, propulsion, combat, communication and 

damage control capability under the assumption of 100% reliable systems. The model of the 

naval vessel was comprised of 769 naval components that formed the vessel’s auxiliary and 

major systems.  The output from the previous study (Friebe, Skahen et al. 2018) consisted of 

a 220 hit simulations and 769 binary measurements of equipment state and operational 

capability. This data is then utilised within the case study, but for simplicity, only the power 

system and its critical relationship to the operational capability of the platform’s combat 

performance are considered. The considered equipment that constitutes the power system 

are the generators, switchboards and their correspondingly connected gun resulting in the 

BN shown in Figure 36.  

The BN in Figure 36 represents the causal failure relationships between the generators, 

switchboards and guns and the platform’s operational requirement to perform the mission 

capability ‘Combat’ under the assumption of the equipment to be perfectly reliable. Due to 

the nature of the Bayesian learning algorithm, not only actual physical failure relationships 

between equipment are found, but the best fitting structural and numerical representation 

of the probabilistic relationships (Koller and Friedman 2009).  
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Figure 36 BN of the vessel assessed in (Friebe and Waltham-Sajdak 2017) under the 

assumption of the equipment to be perfectly reliable 

Also, it should be noted that there is a certain variability in the algorithm’s performance to 

find the best matching Bayesian Network for the entered simulation data. The two arcs that 

are affected by this variability of the learning algorithm are the one arc between 

Generator_1 and Generator_2, as well as the arc between Switchboard_1 and 

Switchboard_2 which are highlighted with green colour in Figure 36. The Bayesian machine 

learning process has been repeated 20 times resulting in two different BNs. In 16 out of 20 

repetitions the machine learning algorithm identified the BN from Figure 36, however in 4 of 

20 repetitions the two green arrows are found reversed. 

5.5.2. Developing a BN reliability value  

In section 5.5.1, the BN has been learnt from the relevant components and nodes, in this 

step the reliability of the equipment is linked into the developed BN. 

At first, the reliability value for the switchboards and generator is developed using and then 

mapped into the existing BN in Figure 36. Two exemplary MTTF, one of 500.000h and 

another of 900.000h are considered for the switchboards and generators. Also, three 

possible scenarios of service time are considered for the generators and switchboards: 12 

months, 24 months and 36 months. The resulting reliability values are then entered into the 

corresponding CPT, shown in Table 4. 
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Table 4 CPT reliability values 

The values in the CPT shown in Table 4 are shown in the BN in Figure 37. It can be seen the 

MTTF and service time are evenly distributed and result in an averaged reliability value of 

0.97. 

 

Figure 37 BN of reliability based on MTTF and service time  

5.5.3. Mapping reliability to the power system BN 

After the structure and the probabilistic relationship of the BN are learnt, the BN will be 

extended through the inclusion of the reliability node linked to both switchboards and both 

generators as shown in Figure 38. The reliability node has two possible states, the first is 

Unreliable and the second is Reliable. If the system Unreliable and fails, the state of 

Switchboard_1 and Switchboard_2 changes to Fail and thus a ‘1’ is entered in the respective 

cell of the CPT of the switchboard. If the switchboard does not fail, the CPT value stays 

unchanged and thus remains unaffected by the reliability.  

mtbf

service time 

in months

12 

(short)

24

(medium)

36

(long)

12 

(short)

24

(medium)

36

(long)

unreliable 0.02 0.04 0.05 0.01 0.02 0.03

reliable 0.98 0.96 0.95 0.99 0.98 0.97

500.000 (poor) 900.000 (good)
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Figure 38: Exemplary BN extension of switchboard_2 with a reliability factor and the 

according computational probability table for switchboard_2 and ingoing relationships 

marked with bold arrows 

The reliability factor affects the performance of the Generator_1, Generator_2, 

Switchboard_1 and Switchboard_2, which cascades through the BN and reduces the combat 

system performance from 63% in Figure 36 to 61% as shown in Figure 39. 

Genset_1 Fail Safe

Genset_2 Fail Safe Fail Safe

Reliability Reliable Unreliable Reliable Unreliable Reliable Unreliable Reliable Unreliable

Fail 1.000 0.252 1.000 0.245 1.000 0.547 1.000 0.285

Safe 0.000 0.748 0.000 0.755 0.000 0.453 0.000 0.715



98 | P a g e  

 

  

Figure 39 Effect of power system reliability on the combat system with hypothetical system 

functionality expansion 

5.5.4. Analysing the BN 

Comparing the combat system performance with a reliability factor of approximately 97% in 

Figure 39 and a reliability of 100% in Figure 36, it can be seen that the combat performance 

has dropped from 63% to 61%. This performance drop will most likely be amplified the more 

systems are included into the model.  

Setting the observed states of the service time in the BN from Short, to Medium and to Long 

the combat system performance can be seen to drop over the three states from 62%, to 61% 

and 60% respectively. This effect is a combination of maintenance and aging of the vessel 

over its years of service, because with longer service time the reliability of the equipment 

degrades and results in a lower performance of the combat system. 

5.6. Results, discussion and future work 

Without the integration of the reliability factor, the survivability performance of the combat 

system was observed to be 63%. Linking the reliability effect onto the switchboards, the 

control
system 

control 
support
system

reliability

reliability
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unreliability of the electric equipment propagates through the BN and results in a reduction 

of the operational capability of the combat system to 61%. A drop of the survivability 

performance of 2% is significant as often requirements are designed to exactly meet the 

requirement and rarely exceed them. Consequently, many vessels that are designed to meet 

a certain survivability criterion is very likely to not meet its requirements and pose a threat 

to the vessel’s crew. Considering that there are many other systems that are less reliable 

than generators and switchboards, the effect of reliability on the survivability is going to be 

even more severe as those systems are more likely to fail during combat.  

Only the power system of the original survivability assessment is considered for this study. 

However as indicated with grey circles in Figure 39, the forward gun is not only dependent 

on the power supply from the switchboard, but also a control system, which also depends 

on its own control support system. Both, the control system and the control support system 

have their own reliability, which if they were considered would contribute negatively to the 

availability of the combat performance. The same effect applies to the aft gun as well, and 

the more systems are affected by their reliability, the more severe will be the overall effect 

onto the naval vessel’s performance. Furthermore, the longer the chain of affected system 

with a connected reliability node, the larger the negative effect will apply to the system and 

system performance overall. 

Through selection of different states of the node ‘service time’, i.e. short, medium or long, 

the probability of the reliability is updated, and a drop of the survivability performance is 

observed from 62% for one year in service to 60% for three years of service. The observed 

effect is the degraded survivability performance of a vessel with aging systems. It should be 

noted that vessels are designed to meet their requirements at the time of construction as 

well as at any time in their service life. The reliability of the onboard systems degrades with 

every year and increases the risk for the crew to try to operate a failing or already failed 

system during combat. To counter the degrading effect and the reduction in survivability 

performance, the vessel’s design must be adjusted to account for the degradation and 

prevent the failure of an anticipated performance to protect the crew and the assets of the 

navy.  
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The true benefit of this method would amplify if the process of machine learning a BN and 

including the reliability parameters is automated further. This could potentially lead to the 

inclusion of various other uncertainty parameters that are neglected at this stage, such as 

weather condition, crew fatigue and sea state. A lot of these parameters are simplified and 

assumed to be constants, but the integration of each would enable the insight into the true 

nature of survivability. 

This study presents a proof of concept for the inclusion of system reliability into naval 

survivability through BNs. To validate and verify the results of this study it is necessary to 

test the proposed concept with Dynamic Bayesian Networks as they allow to fully capture 

the time-dependent behaviour of the system. 

5.7. Conclusion 

The purpose of this study was to include the reliability factor naval systems into the 

survivability process and evaluate the effect on the mission performance of the vessel. This 

resulted in the extension of a previously developed framework deriving a probabilistic 

model of the survivability assessment of a naval vessel and extending it to integrate a 

reliability factor.  

The reliability was linked into the assessment through the inclusion into the switchboards 

and generators, which led to a less reliable power system and consequently a reduction of 

the combat performance. The inclusion of the reliability effect provided a more realistic 

picture of the nature of survivability and showed that this effect reduced the performance 

of the combat system and the vessel. Thus, it demonstrated that under the consideration of 

the reliability of systems the operational requirements of the vessel are reduced and less 

than anticipated by the designers, which eventually could lead to negative combat outcome 

in real life. 

Also, it was shown that the effect of aging on a naval vessel’s power system can be 

modelled in survivability performance prediction in future. This was achieved through 

modelling the reliability as a function of time and the system’s mean time to failure, which 

enabled the prediction of the system’s diminishing reliability in the future. The inclusion of 
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the reliability effect into the survivability assessment enables the prediction of the 

availability and survivability performance of the equipment in a combat scenario, but also 

helps modelling the naval vessel’s future survivability performance.  

Furthermore, it became clear that the assumption of perfectly reliable systems and the 

omission of the reliability effect in a survivability assessment is overly optimistic and puts 

the Navy’s assets and crew in danger. Thus, the inclusion of relevant uncertainty factors of 

systems need to be considered in the assessment of survivability of vessels to ensure the life 

and safety of the crew. 

 

  



102 | P a g e  

 

  Chapter 6 

Summary, Conclusions and Future Work 

 

This chapter provides a summary of the thesis and analyses the findings of the individual 

chapters. It concludes the findings and outcomes and discusses their impact onto the field, 

its limitation and recommends work for future research. 
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6.1. Summary 

This chapter provides an overall evaluation of the results and findings and their effect to the 

research field. Furthermore, limitations are discussed thoroughly and future research to 

expand the developed methodology to increase its effectiveness and power. 

Chapter 3 is a case study, designed to compare the difference between layouts and 

automation levels to evaluate design decisions for the optimal vulnerability performance. 

The purpose of this study was primarily to gain familiarity with the IRM, which is one of the 

leading vulnerability assessment tools; and to build the foundation for a complete model of 

an actual vessel that then later was assessed as part of Chapter 4 . The outcome of this 

comparison study filled research gaps with new knowledge about the effectiveness of valve 

automation on the damage control process and highlighted the importance of valve 

automation as part of the firemain design.  

To answer the primary research question, Can the Bayesian machine learning algorithm be 

used to automatically investigate the vulnerability performance of a vessel during detail 

design stage?, a literature review was conducted on Bayesian Network machine learning 

and a framework to automatically investigate the design of a naval warship was 

hypothesized (Friebe and Waltham-Sajdak 2017). The framework was first hypothesized and 

published, before we refined it to successfully build the model of an actual vessel that then 

could be assessed through IRM, MOTISS and the Bayesian machine learning algorithm. This 

refinement resulted in a final framework (Friebe, Skahen et al. 2018), which enables system 

design issue identification, which can often be resolved through network reconfiguration. 

The framework had been validated and verified through a variability study, which 

demonstrated that the reiteration of the framework lead to similar results and quantified 

the performance of the framework through the alteration of process parameters  

The next stage of this research aimed at the question as to whether the developed BN and 

supporting Inference model also be extended by new knowledge that has not been processed 

in IRM. Therefore, the developed framework in Chapter 4 had been extended to link historic 

information and integrate the uncertainty of the system’s reliability into the assessment 

(Friebe 2019 under review). This study enabled the view on the interaction between the 
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vulnerability and reliability effect, resulting in the observation of the degrading effect on the 

equipment subsequently onto the prediction of the vulnerability performance of 

vulnerability of the vessel. 

6.2. Conclusions 

As a result of the various studies shown as part of the thesis, the following main conclusions 

can be drawn: 

6.2.1. General findings 

The case study in Chapter 3 focused on the comparison of different firemain layouts and 

different levels of automation. The primary purpose of this study was to demonstrate the 

complex manual work a user does during a vulnerability assessment. Findings of this 

research showed that a firemain equipped with only manually operated valves, the vessel 

had almost no firefighting capability for the first 10 minutes post damage impact. It was 

found that partial automation on crucial points in the firemain have a significant positive 

effect on the availability of the firemain capability the immediate moment post damage. 

It was also found and demonstrated that for larger threats (zonal damage) the intended 

redundancy of a horizontal main over a single main is rendered obsolete. For a relatively 

small threat (compartment damage) the effect of the offset loop over the horizontal loop is 

minimal as the damage enveloped is not enough to affect the redundancy of the horizontal 

main. The research resulted in the recommendation of a partial valve automation and to 

carefully choose the appropriate firemain layout depending on the expected hostile threat.  

However, a limitation of this study was that the system configuration was quite simple and 

every other system outside the firemain system was omitted. To increase the accuracy of 

the research in Chapter 3  a fully developed naval vessel as in Chapter 4 should 

accommodate the same various firemain systems and repeat the same kind of analysis. 

Chapter 3 is a proof of concept and compared for the first time the effect of different 

firemain systems layouts and automation levels on naval survivability scientifically. 
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6.2.2. Advantages of applying a Bayesian Network to a vulnerability 

assessment  

The purpose of Chapter 4 was to demonstrate the beneficial effects of applying BNs to 

vulnerability assessment. Through the application of a BN machine learning algorithm and 

the search for sensitive nodes and/or systems in the network it was shown that single points 

of failure can be detected semi-automatically. This means that no additional vessel model 

modifications were needed and that the machine learning algorithm independently 

recognized system-system and system-performance relationships.  

Single points of failure present high areas of risk that can lead to system failure as the 

system is lacking redundancy. The single points of failure that were found by the BN in the 

framework were mitigated through reconnecting and reconfiguring the system, which led to 

a vulnerability improvement without the otherwise necessary manual and tedious search 

for design error and design mitigation. This demonstrates that “Bayesian Network can be 

used to automatically investigate the vulnerability an early design stage”. The framework 

performed best at a sample size reduced to around 20 nodes as discussed in Chapter 4.8. 

The original number of number of nodes had to be manually reduced by the least sensitive 

to achieve the final Bayesian Network. As this manual Bayesian Network reduction can be 

mathematically expressed and automated, the developed framework is not bound to any 

limitations in its applicability with regard to the size of the naval vessel. 

Furthermore, the vessel’s vulnerability was improved without adding weight or an 

additional system and thus is considered a ‘smart’ improvement of the naval design as it 

leads to design improvement, but without the usual increase in weight or drastic change in 

arrangement. It should be noted that the magnitude of the improvement will eventually 

accumulate with several small improvements and similar low costs that are found.  

6.2.3. Further advantages of applying a Bayesian Network to a 

vulnerability assessment 

The results of Chapter 4 are obtained under the assumption of perfectly reliable systems. 

Chapter 5 demonstrates a method to include the reliability factor into the vulnerability 
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assessment and according BN to enable the possibility to observe the combined effect of 

both uncertainties. As a result of this study it was shown that the achieved vulnerability 

performance of the ship is less than what it had been designed for, which became 

quantifiable through the work in Chapter 5 . Also, the developed method demonstrates the 

ability to model the effect of system degradation onto the vulnerability performance over 

the time of the vessel’s service life answering as to whether the “developed BN and 

supporting Inference model also be extended by new knowledge that has not been processed 

in IRM” positively.  

6.3. Implications of the Research 

In this thesis, machine learning and Bayesian Network analysis were conducted to 

investigate the ability of linking historical data and information into the assessment of actual 

ship designs. This allowed the interaction between reliability and vulnerability to be the core 

of this study, thus enabling to assess the ships more realistic performance and model the 

vulnerability capabilities performance for future years in service. The results will help naval 

architects to gain deeper insights of the systems interactions and effects on the ships 

performance, but also could act as a reference improve designs through the detection of 

single point of failures and smart design choices as otherwise making drastic design changes, 

which usually lead to increase in cost and weight. Overall, the results from Chapter 4 

demonstrate that the framework can successfully identify probabilistic failure relationships 

from overly complex models and to identify critical and failure sensitive components.  

In addition to the research on behalf of the BNs within this research, various firemain 

systems with different layouts and automation levels have been assessed and compared. As 

the results in Chapter 3 indicated, already a small amount of automated valves enables the 

vessel to fight a fire onboard immediately after the vessel has been attacked, whereas the 

automation leaves the vessel for at least 10min without any firefighting capability. With 

more automation technology becoming available in the future, this research will be a strong 

advocate to automate critical parts of the firemain system to achieve at least a minimum 

level of damage control performance for ships in combat. 
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Furthermore, the results of Chapter 3 and Chapter 4  show a potential cross-over benefit. 

The machine learning Bayesian Network from Chapter 4 has the ability to identify sensitive 

components and systems with regards to vulnerability, whereas the demonstrated 

vulnerability assessment procedure in Chapter 3  has the capability to implement and test 

various automation levels for that naval design then. This could lead to a cost-benefit 

assessment approach for existing designs. Whereas automating all components will cost 

more in terms of initial build but could be more effective in terms of enhancing the vessel’s 

vulnerability. Thus, the approach enables naval architects to perform a cost-benefit 

assessment, but it would require a more developed method to drive the naval design 

towards a minimum cost solution for maximum design performance. 

6.4. Contribution to knowledge 

The thesis aims at researching an effective way to perform root-cause analyse to enable 

naval engineers to effectively design naval vessels for survivability as identified in section 1.3. 

As the literature and software survey suggests in Chapter 2 , the current state of art to 

perform root-cause analysis is achieved through a manual filtering procedure, that is time 

consuming and prone to human failure. 

Furthermore, the literature survey suggests that the research of Bayesian Networks in the 

domain of naval survivability is stalling and not progressing as there are is very limited 

published data on the actual behaviour of naval vessels in combat scenarios (Friis-Hansen 

2000, Liwång, Ringsberg et al. 2013). This is overcome through a novel approach to link 

MOTISS, a physics-based damage model and the IRM, a supply and demand-based 

representation of the physical model as demonstrated in Chapter 4 .  

Both software tools are combined to create the simulating environment to assess the 

survivability of naval vessels. The resulting contribution to the scientific domain of naval 

survivability links the need the necessity to derive probabilistic functional failure 

relationships with industrial demand to effectively perform root-cause analysis during a 

survivability assessment. Both challenges are solved through a suggested novel framework 
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(Chapter 4 ) that contains a Bayesian machine learning algorithm and manages to solve both 

research problems at simultaneously. 

This research is believed to open a wide field of possibilities to expand the developed 

Bayesian Network. As suggested, a Bayesian Network of an actual naval vessel, can be then 

expanded through expert knowledge and historical data, which up to now had not been 

possible. The major contribution of this research can be grouped into the following 

categories: 

 Methodological contribution 

o The developed framework provides an automated framework to enhance 

naval designs through simulation and automated sensitivity analysis 

o The research gap to derive probabilistic failure relationships has been 

overcome and can be arbitrarily modified to the engineers focus and interest 

 Industrial contribution 

o The developed methodology breaks ground to perform critical system 

analysis. 

o Through this research it becomes possible to effectively link design choices to 

the recoverability performance of the vessel and thus enable the naval 

engineer to make better informed design choices. 

This framework, albeit developed specifically for the survivability assessment within this 

thesis can be used in various domains and is not restricted to the type or size of the vessel. 

6.5. Future Work 

The long-term goal for this research is to have an automated process of including 

parameters of uncertainty into the assessment of vulnerability to obtain more insight in the 

interaction of the probabilistic nature of vulnerability. 

Extension of this research could lead to: 

1. Extend the simulation setup in Chapter 3  for testing the firemain system under 

dynamic and progressive fire. This would shift the results as the firemain 
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performance delay will be penalised due to the progressive damage of a fire. Also, it 

would be very interesting to examine the firemain system interact with more 

systems on differently sized naval vessels, which was not done since the time and 

scope was limited. 

2. One aspect that was not examined is a non-uniform hit distribution as part of the 

vulnerability assessment in Chapter 4 . The uniform hit distribution was assumed for 

simplicity, because realistic data was not available due to security classification 

restrictions. Through the application of a different hit distribution, a sensitivity 

analysis could be performed that can detect sensitive systems that are weak points 

in the onboard system architecture during combat. 

3. Extend the BN in Chapter 5  with further empirical information with regards to 

operational, environmental, and human conditions. This will provide more insight 

into the various areas of risk of the vulnerability assessment. A lot of research on 

human factors has been done that is currently not part of any deterministic 

vulnerability assessment. Furthermore, the reliability factor for each component 

could be included into the assessment of the whole naval vessel, which would signify 

the degrading effect of the onboard systems. 
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