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Abstract 51 

The Southern Ocean is home to a great diversity of marine predators 52 

(cetaceans, pinnipeds, flying and diving seabirds), many of high conservation value, 53 

and all well adapted to exploit their underwater habitats including coastal shelf, sea 54 

ice and oceanic zones. Marine divers are particularly interesting for studying the 55 

underlying principles related to foraging behavior and diving physiology. Their 56 

need to acquire enough food resources (determined by prey distribution, abundance, 57 

quality) is balanced against their physiological constraints (e.g., oxygen stores, 58 

body mass, diving capacity). This interplay between need and constraint is reflected 59 

in what is directly observable, that we can measure, i.e., their diving behavior, by 60 

using simple telemetry devices like time-depth recorders. This thesis examines the 61 

diving behavior of Southern Ocean marine predators, with a focus in the Indian 62 

sector. To do this I use dive datasets available for key Antarctic seal (Antarctic fur 63 

Arctocephalus gazella; southern elephant Mirounga leonina; Weddell64 

Leptonychotes weddellii) and penguin (Adélie Pygoscelis adeliae; emperor 65 

Aptenodytes forsteri; king A. patagonicus) species. 66 

This thesis is organised into three main chapters as follows: (1) a systematic 67 

literature review presenting common approaches for addressing physiological and 68 

foraging questions. This is followed by two chapters employing a comparative 69 

analytical approach to (2) examine the underlying factors, particularly body mass, 70 

that influence diving behavior, and (3) evaluate the dive capacity of air-breathing 71 

birds and mammals, and in particular their capacity to adapt their dive behavior 72 

when actively foraging. 73 

(1) A systematic literature review synthesizing approaches for addressing74 

physiological and foraging questions. Increasingly sophisticated electronic 75 

logging devices record behavioral, physiological and habitat variables, providing 76 

insight into the diving physiology and foraging behavior of marine mammals and 77 

seabirds. However, a variety of methods have been developed for dive data making 78 

comparative studies and syntheses difficult even amongst closely-related species. 79 

Adopting a question-driven orientation, I conducted a systematic literature review 80 

using dive telemetry data gathered in the Southern Ocean. I focused on the years 81 

2006–2016, as this was a period of considerable study when both well-established 82 
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sensors (e.g., time-depth recorders) and newly developed devices (e.g., 83 

accelerometers, animal-borne cameras) were employed. I identified key research 84 

questions emergent across Southern Ocean species, and explored two major 85 

sections focussing on the foraging and physiological inferences obtainable using 86 

diving data. Finally, I discuss key emergent areas in which dive telemetry data are 87 

being upscaled and more quantitatively integrated with movement and demographic 88 

information to link to population level consequences. This work is important 89 

because it highlights the benefits of a standardized approach and paves the way for 90 

more integrative multi-species meta-analyses.   91 

(2) Investigating diving patterns and body mass scaling within and across six92 

marine predators in the Indian sector of the Southern Ocean. Despite our 93 

greatly increased ability to study how marine predators regulate their dive cycle, 94 

proximate (e.g. limited oxygen stores, metabolic rate) and ultimate (dive capacity) 95 

influences controlling the diving behavior of individuals are still poorly understood. 96 

In my comparative analysis of diving data of three penguin and three seal species in 97 

the southern Indian Ocean, I examined the influence of body size on dive 98 

performance and the interdependencies of dive parameters. Across species, my 99 

results support the well-established expectations that dive duration and dive depth 100 

are tightly linked, and that mass is an important determinant of dive capacity. 101 

However, the body size effect within a species was not the same as the between-102 

species relationship, and more importantly the relationship varied amongst the 103 

species. Furthermore, unlike dive depth and duration, post-dive surface intervals 104 

were not influenced by body size within a species. This suggests that at the species 105 

level dive depth and dive duration are not simply driven by physiological allometry, 106 

but probably also by other ecological factors.107 

Ultimately, my examination of the interdependencies of diving parameters 108 

showed support for both between- and within-species effects. These results were 109 

more consistent than for the size-based analyses described above, suggesting 110 

universal principles to potentially at play. 111 

(3) Behavioral plasticity and observed limits of underwater dive behavior of112 

marine predators during intense foraging. In this chapter, I extend my 113 

characterization of the diving capacity of the six Southern Ocean marine predators. 114 
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I performed a comparative analysis of relationships between basic dive parameters. 115 

Using quantile regressions, I described diving limits of marine vertebrates in terms 116 

of these components. I then used a hunting time metric to identify dives as hunting 117 

(foraging) or other dives, and observed how diving performance may vary during 118 

different levels of activities (foraging vs non-foraging dives; short vs long hunting 119 

time dives). My results showed that most marine mammal and seabird species were 120 

able to adjust their dive cycle when foraging, generally diving deeper and for 121 

longer. Deeper dives corresponded with longer bottom time, but different species 122 

displayed different strategies to reduce their transit time. Moreover, most of the 123 

species were able to lengthen the duration of their shallower forage dives, but 124 

potentially showed less capacity to do so for the deeper, intensive hunting dives. 125 

My results quantifying dive limits of Antarctic marine predators showed that their 126 

dive plasticity is associated with their taxonomic position, the environmental 127 

conditions, and a species’ life history traits. 128 

General discussion. This study has provided important new insights into the diving 129 

ecology of Southern Ocean marine predators. Assembling high-resolution diving 130 

data across various species of marine mammals and seabirds, I developed and 131 

applied systematic approaches for dive-based indicators to make inferences about 132 

diving behavior, foraging and physiology. These multi-species comparative 133 

analysis of dive patterns and performances of Antarctic animals help identify which 134 

intrinsic and extinct factors may constrain animals’ diving ability. Understanding 135 

what determines an animal’s dive ability is essential to elucidating its feeding 136 

ecology; foraging is a fundamental requirement of all animals and has implications 137 

for the distribution, growth and persistence of wild populations. This study has 138 

shown how within their morphological and physiological specializations, some 139 

species may have considerable plasticity in response to changes in their energetic 140 

needs, while others seem to operate at their maximum diving capacity and are thus 141 

less likely to have the capacity to increase their foraging effort. The variations in 142 

capacity and ability could be used as input into ecological models, and for 143 

answering broader ecological questions regarding ecosystem energy flow. 144 

Marine predators have been recognized and monitored as indicators of 145 

ecosystem changes in the Southern Ocean for many years. The Southern Ocean is 146 
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one of the most seasonally dynamic oceans on our planet, and Antarctic marine life 147 

has already showed a radical response to a range of climate stressors. Developing 148 

an integrated and synthetic view of marine mammals’ and seabirds’ diving ecology 149 

is an important first step to enable the development of predictive models that will 150 

improve our understanding of how future climate change will affect this unique 151 

biota.152 

153 
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Chapter 1 1 

 2 

General Introduction 3 

 4 

 Marine mammals and seabirds play an important structuring role in the 5 

Southern Ocean marine ecosystem (Goedegebuure et al., 2017). Bio-telemetry 6 

technologies have significantly advanced our understanding of the foraging 7 

ecology and ecophysiology of these marine species. However, the proximate 8 

and ultimate factors that influence the diving behavior of individuals are still 9 

poorly understood. The analysis presented in this thesis, which involves six 10 

species of marine predators from the Eastern Antarctic sector of the Southern 11 

Ocean, utilizes basic diving components to broaden the knowledge of the 12 

diving ecology of marine mammal and seabird species. In particular, this study 13 

seeks to clarify the following key questions:  14 

(i) What are the best tools and approaches for comparative analysis of diving 15 

behavior across and within species that contrast in terms of body size, foraging 16 

requirements and phylogeny? 17 

(ii) How do intrinsic factors like body mass and extrinsic factors like prey 18 

availability determine the underwater movement for seals and penguins?  19 

(iii) How plastic is the behavior of Southern Ocean marine predators, with 20 

particular focus on their range of diving performances? 21 

Diving behavior and physiology 22 

 Marine mammals and seabirds undertake a special form of central-place 23 

foraging as they must obtain their food at depth yet are obliged to return to the 24 

surface to breathe. The depths to which individuals dive, and the amount of 25 

time they can spend submerged varies among species, is a function of their 26 

physical and physiological adaptations (Kooyman and Ponganis 1998), and 27 

their foraging strategy. 28 

 When diving, the main physiological challenges encountered by marine 29 

predators are the increase in pressure with the resulting mechanical 30 

compression of tissue and the lack of ad libitum access to oxygen (Kooyman 31 

and Ponganis 1998). To cope with these constraints cetaceans and seals have a 32 
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flexible rib cage and collapsible lungs, which reduce the effect of pressure that 33 

creates a mechanical compression of tissue and gas-filled spaces (Kooyman 34 

and Ponganis, 1998). Penguins have decreased their buoyancy by increasing 35 

bone density (Ksepka et al., 2015). Moreover, marine mammals and seabirds 36 

have also evolved the so-called "dive response" to manage their use of oxygen 37 

while diving. When the “dive response” is exhibited, the heart rate drops, the 38 

blood perfusion of selected organs is reduced and the body temperature 39 

decreases (Butler and Woakes, 2001; Meir and Ponganis, 2010; McDonald and 40 

Ponganis, 2014; Wright et al., 2014), resulting in an overall reduction in 41 

oxygen consumption. 42 

 A dive broadly comprises four phases: a descent phase, the period of 43 

active swimming to reach the desired depth (Williams et al., 2000); a bottom 44 

phase between the dive descent and ascent (often associated with foraging 45 

activity); an ascent phase when the animal makes its way to the surface 46 

(Williams et al., 2000); and a post-dive interval or surface phase (PDI) during 47 

which the animal re-oxygenates, rests or moves to a new area (Thompson and 48 

Fedak, 2001). Marine predators perform a suite of behaviors when hunting 49 

(discussed in more detail in Chapter 2), and the analysis of simple dive metrics, 50 

such as dive depth, duration and PDI, enable inferences about their foraging 51 

preferences (i.e., use of the water column) and diving physiology (i.e., dive 52 

limits). 53 

Telemetry and dive data 54 

 One of the greatest challenges to understanding the diving and foraging 55 

behavior of free-ranging marine animals is observing them while at depth. 56 

Historically, the dive capacity of marine predators was investigated using 57 

“forced submersion” as in the early experiments on beavers (Irving, 1939), 58 

pinnipeds (Bert, 1870) or ducks (Richet, 1899), but such studies were limited 59 

in their capacity to elucidate free-living behavior because they were unable to 60 

adequately replicate free-ranging conditions such as the effects of pressure.   61 

 The first study of diving in a free-ranging animal was by Scholander 62 

(1940) on a harpooned fin whale (Balaenoptera physalus) in Norway. The first 63 

experiments on Southern Ocean predators in 1964 used a pressure gauge and a 64 
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clock attached to a Weddell seal (Kooyman, 1966): the first recording lasted 30 65 

minutes. The first study of diving in a foraging seabird (an emperor penguin) 66 

followed a few years later (Kooyman et al., 1971).  67 

 68 

 69 
Figure 3. Example of time-depth recorder (TDR): miniaturized pressure sensor 70 
recording the depth of a tagged animal as a function of time. Data collected by TDR 71 
are stored in an internal memory. Model: TDR-Mk9, Wildlife Computers. The 72 
dimensions are 68 mm by 17 mm by 17 mm, weighing 30 g. 73 
 74 
 75 
 More than 50 years after the first dive loggers were deployed, our 76 

understanding has been significantly advanced of how taxonomically and 77 

ecologically diverse animals manage their dive cycles. For example, thanks to 78 

time-depth recorders (TDR, Fig. 3) we now know that Adélie penguins must 79 

spend more time at the surface after longer and deeper dives, but in southern 80 

elephant seals the duration of a dive does not correlate with the post-dive 81 

surface duration (see Chapter 4). A wide variety of analytical approaches have 82 

been used to process dive data obtained with data-loggers, and this has made 83 

comparative studies and syntheses difficult even amongst closely-related 84 

species.  85 

 In first part of my thesis, I discuss the tools and approaches addressing 86 

key ecological, behavioral and physiological questions. This will pave the way 87 

for integrative multi-species analyses that presented in Chapters 3 and 4. 88 

Conductivity sensors 
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Southern Ocean marine predators 89 

 The Southern Ocean (hereafter SO) region is a unique circumpolar 90 

biogeographic region, which supports a rich biodiversity with many species of 91 

high conservation value (De Broyer and Koubbi, 2014); many of these species 92 

are pursuit divers (Trathan and Hill, 2016).  93 

Marine biogeography 94 

 95 
Figure 1. Map of the Southern Ocean and Antarctica. The grey line shows the 96 
approximate position of the Antarctic Polar Front. Credits: Australian Antarctic Data 97 
Centre, Australian Antarctic division (2000).  98 
 99 

 The Southern Ocean (south of 40° S) is one of the most remote and 100 

dynamic marine systems in the world (Fig. 1). It covers 34.8 million km2 and 101 

comprises three deep oceanic basins (4000–6000 m deep) surrounding the 102 

Antarctic continent: Indian-Atlantic basin, Indian-Antarctic basin and Pacific-103 

Antarctic basin (De Broyer and Koubbi, 2014). In the north, these basins are 104 

partially connected by a series of ridges that reduce the water flow at the 105 

bottom, and in certain areas deflect the surface currents (Garabato et al., 2004). 106 

At approximately 1000 m, the continental shelf of the Antarctic continent is 107 

deeper than those of all other continents due to the large mass of the ice sheets 108 
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(Foldvik et al., 1985).  109 

 The SO is a cold ocean. The sea surface temperature ranges from as low 110 

as -1.8° C near the Antarctic coast to about 3.5° C at the Antarctic Polar Front 111 

(De Broyer and Koubbi, 2014). One of the most dramatic seasonal changes in 112 

the Southern Ocean is the distribution of sea ice cover; which ranges from 113 

approximately 20x10-6 km2 in late winter to 4x10-6 km2 in late summer 114 

(Comiso and Zwally, 1984). The sea ice provides a resting, breeding and 115 

foraging substrate for seals and penguins. It usually reaches its maximum 116 

extent is in September and October, and the minimum in February and March. 117 

When sea ice forms, the underlying water gets saltier and sinks, mixing the 118 

water column and bringing nutrients to the surface (Parkinson and Cavalieri, 119 

2012). When the sea ice thaws, the ocean is exposed again to sunlight. This 120 

spurs the photosynthesis of phytoplankton and stimulates its growth (Arrigo et 121 

al., 2010). Phytoplankton is an important food source for Antarctic krill 122 

(Euphausia superba) which in turn plays a major role in the diet of many 123 

higher order predators. 124 

 The climate of the SO is strongly influenced by wind. The Earth's 125 

rotation generates a predominantly easterly flow of wind around the Antarctic 126 

continent (Sokolov and Rintoul, 2009), and a westerly wind within the 127 

circumpolar belt at 50–60° S; maximum wind strength is concentrated in the 128 

region of the Antarctic Circumpolar Current (ACC). In the coastal regions, 129 

wind affects the redistribution of snow (Van Lipzig et al., 2004) and is the 130 

main driver of the SO circulation. Wind also drives ice-motion which 131 

contributes to inter-annual trends in sea ice concentration through both 132 

dynamic and thermodynamic effects (Holland and Kwok, 2012).  133 

 The SO water masses vary markedly with longitude (Gordon, 1988). 134 

The oceanic circulation is divided into the ACC-west wind drift (the only 135 

current that encircles the globe), the Antarctic Coastal Current-east drift (near 136 

the continent and following the coastline in the direction of the Ross and the 137 

Weddell sea), and the Circumpolar Frontal Zones, the most significant of 138 

which is the Polar Front that divides the SO into the subantarctic region (north) 139 

and the Antarctic region (south) (Deacon, 1977). The various fronts are 140 

characterized by variable width, steep gradients in sea-surface temperature, 141 
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changes in phytoplankton abundance, zooplankton distribution, pelagic species, 142 

weather conditions, and often maximum salinity at the surface 143 

(Sciermammano, 1989). Two key features of the SO's circumpolar zonation 144 

are: (i) the development of eddies of variable size and duration, where rings of 145 

cold and warm water are mixing (Gordon, 1988); and (ii) the formation of 146 

regions of long-lived open water (polynyas) as sea ice expands in winter. 147 

Polynyas affect Antarctic marine ecosystems in many ways by controlling the 148 

biogeochemical fluxes, regulating heat transfer from the oceans to the 149 

atmosphere, aiding ice production and the formation of dense shelf water, and 150 

influencing spring disintegration of sea ice, phytoplankton and zooplankton 151 

production, as well as the distribution of higher trophic animals (Smith and 152 

Nelson, 1990).  153 

 The Antarctic Intermediate Water masses (AAIW) are high in nutrients 154 

including nitrate, phosphate and silicate (El-Sayed and Turner, 1977). SO 155 

surface water is rich in oxygen and macro-nutrients but only a small amount of 156 

dissolved iron, which is critical for the primary production. The regions with a 157 

high concertation of dissolved iron in surface waters are north of the Polar 158 

Front, in the Subantarctic Zone, and south of the Antarctic Divergence, near 159 

the continent (David and Suacede, 2015). As a result, these areas have the 160 

highest production of phytoplankton.  161 

 Almost 8,800 species have been described for the SO (Jossart et al., 162 

2015). Its subantarctic and Antarctic regions provide habitats for very large 163 

populations of pinnipeds, seabirds and cetaceans, many of which are 164 

particularly relevant for our study of the underlying principles related to diving 165 

behavior and physiology (Trathan and Hill, 2016). The Southern Ocean fauna 166 

is adapted to extreme conditions, resulting in high levels of endemism which 167 

makes it potentially vulnerable to effects of climate change, such as ocean 168 

warming, ocean acidification, and changes in light or UV exposure (Brierley 169 

and Kingsford, 2009).  170 

Pinnipeds 171 

 There are seven species of seals in the SO, all with circumpolar 172 

distributions (Laws, 1977). These include two species of otariid: Antarctic 173 
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(Arctocephalus gazella) and Subantarctic fur seals (A. tropicalis), and five 174 

species of phocid: crabeater (Lobodon carcinophaga), leopard (Hydrurga 175 

leptonyx), Ross (Ommatophoca rossi), southern elephant (Mirounga leonina), 176 

and Weddell seals (Leptonychotes weddellii). These mammals are specialist 177 

divers, returning to shore (or sea ice) only to rest, molt or breed. Their 178 

distribution during the breeding season depends on the availability of suitable 179 

habitats (Siniff, 1991). Ninety five percent of Antarctic fur seals are found at 180 

South Georgia, and the remainder at Bouvetøya, Macquarie Island, Crozet 181 

Island, the Kerguelen Archipelago, Heard Island and the McDonald Islands, 182 

the South Shetland and the South Sandwich Islands (Ropert-Coudert et al., 183 

2014). In contrast, Subantarctic fur seals are generally found in more northerly 184 

locations than Antarctic fur seals, especially on Gough Island in the South 185 

Atlantic and Île Amsterdam in the southern Indian Ocean. Southern elephant 186 

seals predominantly breed and moult on the sandy and shingle coasts of the 187 

subantarctic islands. Crabeater, leopard and Ross seals mostly occupy the pack-188 

ice zone (Siniff, 1989), while Weddell seals generally inhabit both pack and 189 

fast sea ice. During the non-breeding period, fur, Ross, southern elephant and 190 

Weddell seals disperse widely (McCafferty et al., 1998; Arthur et al., 2016; 191 

Bornemann et al., 2000), while crabeater and leopard seals are likely to stay in 192 

the pack ice zone (Burns et al., 2008; Knox, 1994). 193 

 Antarctic seals prey on a wide range of species from Antarctic krill 194 

(Euphausia superba) to penguins, and consequently their foraging behavior 195 

varies among species (Laws, 1984). Crabeater and fur seals utilize the upper 196 

portion of the water column, generally foraging at night while resting or 197 

swimming at surface during the day (Burns et al., 2004; Lea et al., 2002). 198 

Crabeater seals are the true krill specialist, with a diet based 90% on krill and 199 

only a small amount of fish and squid (Kooyman, 1981). Weddell, Ross and 200 

southern elephant seals feed on fish and cephalopods with marked diurnal 201 

diving patterns, which may also change seasonally and with foraging area 202 

(Cherel et al., 2008; Hückstädt et al., 2012; Banks et al., 2014). Finally, leopard 203 

seals have a diverse diet, and consequently a broad range of foraging strategies, 204 

to feed on krill, fish, squid, penguins and other seals (Müller-Schwarze, 1975). 205 
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Understanding the foraging ecology of Antarctic pinnipeds is essential to 206 

elucidating the role of this group of taxa in the SO ecosystem. 207 

Antarctic fur seals are strongly sexually dimorphic: males grow up to 2 m 208 

long and weigh 110–230 kg; their coat is generally dark brown. Females reach 209 

up to 1.5 m in length and weigh 40 kg; their coat tends to be grey. Their 210 

relatively short flippers are structurally adapted for a semi-aquatic life enabling 211 

them to move rapidly on land and at sea (Berta and Churchill, 2012). This 212 

species is generally polygynous and forms rookeries on subantarctic islands 213 

(Boyd et al., 1998).  214 

 The deepest dive of an Antarctic Fur Seal was recorded at 354 m, and 215 

the longest dive lasting about 11 min (Staniland et al., 2008). The average 216 

foraging dive, however, lasts only a couple of minutes and the animals reach a 217 

depth of about 30 m (Arthur et al., 2016).  218 

Southern elephant seals are also strongly sexually dimorphic; males weigh up 219 

to 3700 kg and measure 4.5–6.5 m in length. Females weigh 400–800 kg and 220 

are 2.5–5 m long (Shirihai and Jarrett, 2006). Elephant seals have a short grey 221 

coat and males have an inflatable proboscis (Fig. 2). This species generally 222 

breeds in subantarctic locations; males tend to arrive in the colonies earlier than 223 

the females and fight for control of harems (De Bruyn et al., 2011). 224 

 Southern elephant seals dive on average to a maximal depth of 1049 ± 225 

315 m (female), and 1170 ± 411 m (male) (Hindell et al., 2016) for up to 20 226 

min. The deepest recorded dive reached a little over 2149 m (McIntyre et al., 227 

2010). 228 

Weddell seals are relatively large, with a short mouth line and similarities in 229 

the structure of the nose and whiskers to a cat. Males Weddell seals are slightly 230 

smaller than females measuring 2.5–3 m long and weighting 400–660 kg; 231 

females reach a length of up to 3.3 m and weigh the same as males. The coat is 232 

dark silvery grey with some white. This species has relatively the shortest fore-233 

flippers of all phocids (Shirihai and Jarrett, 2006). Weddell seals congregate at 234 

breathing holes in the fast ice only during the moult and breeding time 235 

(Stirling, 1969). Weddell seals can dive to ~740 m, and can spend up to 1 h 236 
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underwater (Plötz et al., 2002). The longest dives are undertaken when 237 

swimming under ice searching for new breathing holes. 238 

 239 
Figure 2. Species of pinnipeds and penguins studied in chapters (3, 4) of this thesis. 240 
From top left to bottom right: Antarctic fur seal, southern elephant seal, Weddell seal, 241 
Adélie penguin, emperor penguin and king penguin. Photo credit: www.archive.org. 242 
 243 
Seabirds 244 

 Over 80 non-vagrant species of flying seabirds from nine families in 245 

two orders have been recorded in the Southern Ocean (De Broyer and Koubbi, 246 

2014). The majority of flying seabirds belong to the Procellariiformes (e.g., 247 

prions, shearwaters, albatrosses, petrels), Charadriiformes (i.e., gulls, skuas, 248 

terns) and Suliformes (e.g., cormorants). Most of these birds are extremely 249 

wide ranging, travelling hundreds or even thousands of kilometers from the 250 

colony during the breeding season to feed on patchily distributed resources that 251 

include squids, fish and crustaceans (Woehler, 1997). 252 

 Penguins (Sphenisciformes) represent 90% of the Antarctic avian 253 

biomass (Woehler and Croxall, 1997). Penguins lost their ability to fly, 254 

evolving higher bone density and flipper-like wings to become highly 255 

specialized divers (Habib, 2010). In the SO, there are nine species of penguins 256 

belonging to three genera: Aptenodytes (emperor penguin A. forsteri, and king 257 

penguin A. patagonicus), Pygoscelis (Adélie penguin P. adeliae, chinstrap 258 

penguin P. antarcticus, gentoo penguin P. papua), Eudyptes (macaroni 259 
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penguin E. chrysolophus, northern E. moseleyi and southern E. chrysocome 260 

rockhopper penguin, royal penguin E. schlegeli). Penguins spend a substantial 261 

proportion of their time at sea, and when breeding they are most commonly 262 

coastal foragers (Wilson and Wilson, 1990). Only four species breed on the 263 

coast of the Antarctic continent: Adélie, emperor, chinstrap and gentoo. 264 

However, the latter two are mostly found on the islands at the Antarctic 265 

Peninsula, and the remaining species (king, macaroni, royal, rockhopper) form 266 

colonies only on subantarctic islands (Croxall, 1984). During the non-breeding 267 

period (generally in winter, except for emperor penguins), many species 268 

undertake extensive migrations. For example, Adélie penguins spend almost 8 269 

months at sea in the pack ice up to 2,790 km from their breeding colonies 270 

(Davis et al., 2001). 271 

 Crustaceans are the predominant item in the diets of Adélie penguins 272 

(Emmerson and Southwell, 2007), but Antarctic krill is replaced by E. 273 

crystallorophias near the Antarctic coast. Adélie, king and macaroni penguins 274 

are generally considered pelagic feeders, while gentoo, rockhopper and 275 

chinstrap penguins are benthic feeders that forage close to shore (Denhard et 276 

al., 2011). Emperors feed on benthic, bentho-pelagic, and pelagic prey 277 

(Roberson et al., 1994).  278 

Adélie penguins are mid-sized penguins: adults measure 70 cm from the tip of 279 

their beaks to the tip of their tails and weigh 3–6 kg. Adélie penguins often 280 

return to their natal colony to join the breeding population. Parents share the 35 281 

d incubation. Most young penguins are ready to leave their colony to forage 282 

independently after two months (Ainley and Schlatter, 1972). 283 

 This species can dive as deep as 180 m for about 3 min (Watanuki et 284 

al., 1997), although they usually hunt in far shallower waters (~ 18 m) for < 1 285 

min (Cottin et al., 2014). 286 

Emperor penguins are the tallest and heaviest of all penguins: adults are 100 287 

cm tall and weigh 23–45 kg; at the start of the breeding season, males generally 288 

weigh more than females. Adults have black dorsal feathers, and white feathers 289 

on the belly and ventral side of wings, which tend to become pale yellow on 290 

the upper breast. Ear patches are bright yellow (Fig. 2) (Borboroglu and 291 
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Boersma, 2015). Emperors breed in large colonies on Antarctic fast-ice and 292 

incubation lasts 60–68 days. Females lay a single egg in May–June; post-laying 293 

females migrate to sea to forage whilemales incubate the egg exclusively until 294 

mid-July. Once the chicks hatch, females return to the colony to relieve the 295 

males (Stonehouse, 1985). 296 

 When foraging, emperor penguins dive for 5–6 min (Wright et al., 297 

2014)); they usually dive to 150–250 m but depths of > 564 m have been 298 

recorded (Wienecke et al., 2007). 299 

 300 

King penguins are the second tallest penguin species in the world: adults stand 301 

up to 100 cm tall and weigh 9–18 kg. King penguins are monogamous and in 302 

most populations, they breed only twice in three years between November and 303 

March. Incubation duties are shared and last ~54 days. Juveniles fledge in 304 

spring/early summer (Stonehouse, 1985). During foraging trips, king penguins 305 

can dive repeatedly to > 148 m with a maximum depth of 343 m (Pütz et al., 306 

2005), and a mean dive duration of 4 min. 307 

 308 

Aims 309 

 The overarching aim of this thesis is to develop a broader 310 

understanding of the diving ecology of air-breathing marine predators, filling 311 

the gaps in knowledge about animal diving behavior and the biological factors 312 

that constrain it. 313 

The main recognized constraint to marine mammals’ diving behavior is 314 

their ability to store oxygen, which have been extensively discussed in previous 315 

published work (Kooyman and Ponganis, 1998; Goldbogen et al., 2013; Balmer et 316 

al., 2014; McIntyre, 2014; Hussey et al., 2015). However, there are other factors 317 

that can influence dive duration for marine mammals and seabirds and key 318 

amongst these is the metabolic rate (MR) -  the amount of energy expended by an 319 

animal over a specific period of time (Schmidt-Nielsen, 1970). The MR 320 

determines how rapidly oxygen stores are depleted and variation in metabolic rate 321 

can be due to: evolutionary morphological divergences – marine mammals have 322 

increased concentrations of the oxygen-carrying proteins (hemoglobin in blood 323 
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and myoglobin in muscle; Kooyman and Ponganis, 1998); size – larger animals 324 

having relatively lower metabolic rate than smaller ones (the so-called mouse-325 

elephant curve; Schmidt-Nielsen, 1970); and activity - energetic behaviors such as 326 

prey pursuit deplete oxygen stores more rapidly than sedentary behaviors (i.e. 327 

resting or transit; Mori, 1999; Kooyman, 1989). The interaction of these three 328 

factors is complex and will influence many fundamental aspects of a diving 329 

animals’ ecology: from foraging preferences (e.g. benthic vs pelagic feeders), 330 

hunting strategies (pursuit vs sit-and-wait) and even migration patterns (local vs 331 

distant foraging).  332 

         Because of the interwoven nature of these factors the best available tool for 333 

understanding them is a comparative approach where we contrast diving 334 

behaviors among species while simultaneously accounting for body size and 335 

activity. Previous reviews (Halsey et al., 2006a; b) have focused on meta-analyses 336 

aggregating diving metrics to the species level. This has provided important 337 

insights into broad-scale patterns but have not been able to investigate changes at 338 

more ecologically relevant scales. What is currently lacking are comparative 339 

analyses at the individual animal level, where factors such as body size might be 340 

of considerable importance; and the within animal level, where factors such as 341 

hunting behavior might come into play. 342 

 By reviewing the literature regarding dive data collected across pinnipeds, 343 

seabirds and cetaceans in the Southern Ocean, I address the main outstanding 344 

questions in the field: 345 

(i) What are the best metrics to measure diving behavior and what are the 346 

appropriate tools to use. This is covered in a new review of the diving literature 347 

which considers what ecological and physiological insights can be gained from 348 

simple time-depth-recorder data and what basic and complex dive metrics can tell 349 

us about predators’ foraging behavior and physiology. 350 

(ii) To what degree is diving behavior influenced by physiology and body size: do 351 

individuals within a species still follow patterns predicted by the mouse-elephant 352 

curve? To answer this, I undertake a series of comparative analysis using TDR 353 

datasets of three species of seals and three species of penguins tagged in the East 354 

Antarctic sector of the SO. Selecting animals that share the same habitat increases 355 
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the power of comparison and strengthens the application of my findings. 356 

(iii) To what degree does activity during a dive influence diving behavior? Do all 357 

species show the same degree of behavior plasticity? I extend here my comparison 358 

to specific dive behavior such as hunting and observe how different species 359 

respond to different scenarios. 360 

When completed my thesis will contributes to the existing knowledge on 361 

SO marine predators’ physiology and behavior, providing a deeper insight into a 362 

species ability to adapt to environmental changes (e.g. prey availability). My work 363 

has been one of the first attempts to establish a robust treatment of increasingly 364 

complex data streams paving the way for more integrative multi-species meta-365 

analyses. 366 

 367 

Thesis structure 368 

 The thesis has been written as a series of separate manuscripts and 369 

consequently some textual overlap occurs between chapters. The thesis consists 370 

of three chapters describing aspects of the diving ecology of SO predators, 371 

which are brought together and synthesized in a final discussion chapter. Data 372 

selected for this Thesis are publically available, they have been recorded in a 373 

restricted area of SO region, and they present a different range of taxa in terms 374 

of body size, age, and sex. The thesis structure is: 375 

 376 

Chapter 2 – Review of dive behavior and physiology 377 

In this review paper, I synthesize the variety of analytical approaches available 378 

for individual-based time-depth-record data for questions regarding three key 379 

areas: 380 

(i) Diving behavior: I describe the best devices and sensors to quantify diving 381 

behavior, and discuss the best dive metrics to analyze the data.  382 

(ii) Foraging behavior: I explain how to use TDR data to infer prey distribution 383 

and type, foraging strategies, prey density and quality, prey consumption. 384 

(iii) Diving physiology: I demonstrate how to use TDR data to learn about 385 

intrinsic determinants, physiological constraints, and physiological 386 
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mechanisms that influence dive behavior. 387 

(iv) Emergent areas in marine telemetry studies: I discuss the integration of 388 

dive and location data, and the integration of individual data and demographic 389 

and/or population data . 390 

 The next two chapters quantify the role of intrinsic factors (e.g., 391 

physiology and body mass) in diving behavior. Findings from these analyses 392 

allow me to show differences in dive performance and ability of mammals and 393 

birds, but also to determine the energetics behind dive behavior and foraging. 394 

Foraging is a fundamental requirement of all animals and has implications for 395 

their distribution and growth, and the persistence of wild populations (Pyke et 396 

al., 1977). 397 

Chapter 3 – Evaluation of relationship between dive behavior and metabolism  398 

Here I investigate patterns in dive cycle management (duration, depth, post-399 

dive surface interval) to evaluate the extent of intrinsic determinants, in 400 

particular body mass, of six species of SO predators. I address the following 401 

questions: 402 

(i) What is the influence of body mass on dive performance across species? 403 

(ii) Are there interdependencies among diving parameters? 404 

Chapter 4 – Examination of behavioral plasticity 405 

Here I extend my characterization of the diving behavior of a suite of marine 406 

predators foraging in the SO region, and examine: 407 

(i) What is an individual’s diving performance range in terms of maximum 408 

dive duration, maximum dive depth, post-dive duration interval? 409 

(ii) Do species' behaviors vary during foraging and if so, how do penguins and 410 

seals adjust their dive cycle? 411 

(iii) Are foraging dives longer, deeper, with longer bottom time and transit time 412 

than non-foraging dives? Do foraging dives have a higher energetic cost?  413 

 All the findings are drawn together in a final discussion chapter:  414 

Chapter 5 – Final discussion 415 
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This discussion provides a summary of the main findings and implications for 416 

the field of knowledge with respect to three major themes:  417 

(i) Benefits and limitations of dive-based indicators of physiological capacity; 418 

(ii) Diving ecology of Southern Ocean species;  419 

(iii) A final section which outlines proposed future directions for research in 420 

this area. 421 

The contribution of co-authors is outlined in the Statement of Co-authorship at 422 

the start of the thesis. A single bibliography is presented at the end of the thesis 423 

using the Journal of Animal Ecology referencing style.424 
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Abstract 32 

 Air-breathing marine animals, such as seals and seabirds, undertake a 33 

special form of central-place foraging as they must obtain their food at depth 34 

yet return to the surface to breathe. While telemetry technologies have 35 

advanced our understanding of the foraging behavior and physiology of these 36 

marine predators, the proximate and ultimate influences controlling the diving 37 

behavior of individuals are still poorly understood. Over time, a wide variety of 38 

analytical approaches have been developed for dive data obtained via 39 

telemetry, making comparative studies and syntheses difficult even amongst 40 

closely-related species. Here we review publications using dive telemetry for 41 

24 species (marine mammals and seabirds) in the Southern Ocean in the last 42 

decade (2006–2016). We determine the key questions asked, and examine how 43 

through the deployment of data loggers these questions are able to be 44 

answered. As part of this process we describe the measured and derived dive 45 

variables that have been used to make inferences about diving behavior, 46 

foraging, and physiology. Adopting a question-driven orientation highlights the 47 

benefits of a standardized approach for comparative analyses and the 48 

development of models. Ultimately, this should promote robust treatment of 49 

increasingly complex data streams, improved alignment across diverse research 50 

groups, and also pave the way for more integrative multi-species meta-51 

analyses. Finally, we discuss key emergent areas in which dive telemetry data 52 

are being upscaled and more quantitatively integrated with movement and 53 

demographic information to link to population level consequences. 54 

  55 
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Introduction 56 

 The Southern Ocean (hereafter SO) is a unique circumpolar 57 

biogeographic region, supporting a rich biodiversity with many species of high 58 

conservation value (De Broyer and Koubbi, 2014b). It is also one of the areas 59 

manifesting the most rapid climate-related changes (Larsen et al., 2014). The 60 

SO ecosystem supports diverse marine predators, many of which are pursuit 61 

divers (Trathan and Hill, 2016) that are particularly interesting for the study of 62 

the underlying principles related to foraging behavior and diving physiology. 63 

Seven species of seals are endemic to the SO, some breed on land while others 64 

use the sea-ice as breeding platform. Toothed whales (parvorder Odontoceti) 65 

may occupy the SO year-round while in contrast baleen whales (parvorder 66 

Mysticeti) typically migrate and are present only seasonally. Over 90% of the 67 

SO avian biomass comprises penguins (order Sphenisciformes) (Woehler and 68 

Croxall, 1997) but a large variety of seabirds, the majority of the order 69 

Procellariiformes (e.g., prions (genus Pachytila), shearwaters (genus Puffinus), 70 

albatross (family Diomedeidae), petrels (family Procellariidae)) and of the 71 

order Charadriiformes (i.e., gulls and terns (family Laridae), skuas (family 72 

Stercorariidae)), visit the Antarctic region during the austral summer. These 73 

species are all adapted to the extreme and highly seasonal ocean-ice 74 

environment and are likely to respond differently to changing climate and other 75 

human-induced influences and activities (Forcada et al., 2008; Constable et al., 76 

2014). 77 

 Historically, these highly mobile animals were almost impossible to 78 

observe across their range. Today, a multitude of data loggers and sensors 79 

provide a broad observational framework for acquiring detailed information 80 

about their lives at sea. Information on how animals use the environment in 81 

space and time are the central tenants that inform a synthetic overview of 82 

ecosystem structure and dynamics (Schick et al., 2013). The demographic 83 

performance (e.g., growth rates and reproductive behavior) of these animals 84 

provides an integrated measure of overall system function and health (Barbraud 85 

and Weimerskirch, 2001). As long-lived species, marine mammals and 86 

seabirds can be monitored long-term and act as indicators of ecosystem status 87 

across a range of spatiotemporal scales (Schick et al., 2013). Since many of 88 
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these species dive to several hundred meters (e.g., elephant seals (genus 89 

Mirounga, McIntyre et al., 2010) and beaked whales (family Ziphiidae; Tyack 90 

et al., 2006), they provide information from the surface to the deep ocean. 91 

Quantifying movement and diving behavior can therefore provide information 92 

on areas of high and low productivity, how these change over time, and may 93 

help provide insights into how animals will respond to global climate change. 94 

 Kooyman (1965) was the first to investigate the diving behavior of a 95 

Weddell seal (Leptonychotes weddellii) using an animal-borne device — a 96 

pressure gauge combined with a kitchen timer; the deployment lasted about an 97 

hour. This basic time-depth recorder (TDR) recorded for the first time not only 98 

dive depth and duration but also ascent and descent rates of the seal. This work 99 

revolutionized the study of marine mammals and other marine animals 100 

(Kooyman, 2004). From these origins we can now integrate in situ behavior 101 

and physical measurements to study direct links, e.g., between the 102 

characteristics of the environment (e.g., the water mass a seal uses) and animal 103 

behavior (e.g., how deep and long it dives) and performance (e.g., how often it 104 

breaths). These linkages can ultimately help to quantify how population growth 105 

rates are affected (e.g., Hindell et al., 2017; McMahon et al., 2017). 106 

 Diving predators need to acquire sufficient resources which among 107 

other factors are determined by prey distribution, abundance, and quality. 108 

These need to be balanced against their physiological constraints (e.g., oxygen 109 

stores, age/size or sex influencing diving capacity). The interplay between need 110 

and constraint is reflected in what is directly observable, and what can be 111 

measured, for example, dive behavior using data loggers. How these predators 112 

manage their dive cycle structure is the key from which inferences can be made 113 

about the “hidden” aspects of foraging and physiology (Fig. 1). 114 
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Figure 1. Diagram showing the interplay between what is directly measured 115 
“observable” and can be described using only basic dive parameters i.e., dive behavior 116 
and dive cycle management; and what can be inferred combining basic dive metrics 117 
into derived parameters, i.e., foraging preferences and ecophysiology, and may be 118 
considered “hidden” behavior. 119 
 120 

 In our study, we conducted a systematic literature review of 121 

publications using dive telemetry in the Southern Ocean with a focus on 2006–122 

2016 (Supplementary Material), as this was a period of considerable study 123 

employing both well-established sensors (e.g., time-depth recorders) and 124 

emerging techniques (e.g., accelerometry, animal-borne cameras). We searched 125 

for peer-reviewed literature, published in English, containing the words: dive 126 

data, tag, time-depth recorder, TDR, Southern Ocean, Antarctic, marine 127 

mammals, penguins, seabirds, seals, cetaceans, and species names. For 128 
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identifying SO birds and mammals, we follow Ropert-Coudert et al. (2014). 129 

Most research data is from south of 40° S (De Broyer and Koubbi, 2014a, b), 130 

although some species are clearly limited to the Antarctic region (i.e., south of 131 

60° S). This substantial field of telemetry work comprises 218 studies of 24 132 

species, including 10 species of marine mammals and 14 species of seabirds 133 

that used a variety of different data loggers and sensors. The full literature 134 

database is made available under Supplementary Material. 135 

 Where pertinent, we do refer to literature published outside the 2006–136 

2016 time frame, as key studies obviously occurred either before this decade, 137 

or studies were conducted on species similar to those included in this review. 138 

We do not intend this as a general review of advances in the bio-logging field 139 

(see, for example, Halsey et al., 2006a, b, 2007a; Mate et al., 2007; Goldbogen 140 

et al., 2013; Balmer et al., 2014; McIntyre, 2014; Ceia and Ramos, 2015; 141 

Hussey et al., 2015). Rather we aim to examine the richness of information and 142 

insights gained, from relatively simple dive data streams, about the underwater 143 

lives of Southern Ocean marine predators. While focusing on mammals or 144 

birds only (e.g., Goldbogen et al., 2013; McIntyre, 2014; Carter et al., 2016) 145 

would allow a more detailed coverage, it is timely for a more holistic 146 

perspective of the Southern Ocean. We hope this review provides a useful 147 

synthesis particularly for new researchers commencing Southern Ocean 148 

biotelemetry research. 149 

 First, we briefly cover the main observational platforms used (devices 150 

and sensors), and the general coverage across SO species and geographical 151 

areas. Following a basic explanation of diving behavior, we then synthesize the 152 

literature by adopting a question-driven approach: exploring the foraging and 153 

physiological inferences achievable using dive data. Adopting this approach 154 

organizes the insights obtained from dive telemetry under an ecological 155 

framework which, we suggest, provides a useful context for aligning the 156 

analyses of dive metrics. This perspective might thereby serve to facilitate 157 

comparative multi-species analyses and meta-analyses. The scope of the review 158 

covers what has been learnt about important SO predators, and particularly 159 

how tags, data and analytical methods were used. The review closes with a 160 

perspectives section considering the outstanding questions being addressed in 161 
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emergent areas. 162 

  163 
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Observational Platforms 164 

Devices and Sensors 165 

 Animal-borne data loggers enable the remote study of various aspects 166 

of the biology of free-living animals with regard to behavior, physiology and 167 

energetics (Cooke et al., 2004). Data loggers are devices that record 168 

information using sensors measuring physical (e.g., light, temperature, or 169 

pressure) or physiological properties such as heart rate.  170 

 171 
Table 1. Commercially available sensor types for data loggers and their use for marine 172 
mammal and seabird research. For further information regarding scales of movement 173 
and location errors associated with different positioning sensors see: Bryant (2007), 174 
Block et al. 2010), Costa et al. (2010), Patterson et al. (2010), Winship et al. (2012) 175 
and references therein. 176 

SENSOR USE 

Time Activity information: duration, 
time of the day 

Pressure Activity information: depth 
reached diving 

Accelerometer Activity information: active 
swim speed 

Speed sensor Activity information: swim 
velocity 

Wet/dry sensor Activity information: in/on 
water 

Gyroscope Activity information: change 
in direction 

Magnetometer Environmental information, 
orientation, inertia, position of 
each sensor relative to the 
transmitter 

Camera Movie information processed 
via image processing software 
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Hydrophone Sound information 

Heart rate  Physiological information as 
energy expenditure 

Stomach or oesophagus temperature Physiological information as 
ingestion 

Temperature Environmental information: 
use of currents 

Salinity Environmental information: 
ocean circulation 

Light Environmental information, 
day/night, seasonality 

POSITION SENSOR  

Argos transmitter Local- to meso-scale 
movement information 

GPS (Global Positioning System) Fine-scale movement 
information 

GLS (Global Location Sensing) Meso- to basin-scale 
movement information  

 177 

 Throughout the 1970s and most of the 1980s, TDRs were 178 

predominantly archival, needing to be recovered to retrieve the information. 179 

Taking into account difficulties often experienced in recapturing a tagged 180 

animal, satellite-linked depth recorders (SLDR) were developed (Bengtson et 181 

al., 1993). These typically use the Argos satellite system to relay data which, 182 

due the system's limited bandwidth, often requires high temporal resolution 183 

data to be summarized either into user-defined bins (Fedak et al., 2001, 2002) 184 

or greatly simplified time depth profiles (e.g., Photopoulou et al., 2015). 185 

Satellite-relayed information offers the only solution to studying animals 186 

without prospect of recapture, such as fledglings, non-breeding individuals 187 

and/or those not bound to land (or ice) based colonies. 188 

Usage in Southern Ocean Species 189 

 From 2006–2016, data loggers were used to study 24 air-breathing 190 
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species in the SO: 7 pinnipeds, 7 penguins, 3 cetaceans, and 7 flying seabirds. 191 

Most studies focused on pinnipeds (44%) and penguins (41%), while studies on 192 

flying seabirds and cetaceans accounted for only 6 and 9% of publications, 193 

respectively (Table 2). The reasons for this disparity are likely due to 194 

differences in the catchability and accessibility of the different species. More 195 

than half of the species studied (n = 16) were subantarctic (40–60° S) species 196 

and 8 were high Antarctic species (>60° S) (Fig. 2). The sampling effort was 197 

greatest in the South Atlantic.  198 
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Table 2. Southern Ocean literature review results showing the number of studies 199 
conducted by species from 2006–2016. Examples of reported grand mean dive 200 
durations (sec) and grand mean depths (m) among individual are given as mean ± SD 201 
or range (min – max) as available. Sample sizes are given in brackets. For species with 202 
few studies (≤ 5) all references are given here, otherwise the three most recent studies 203 
are shown. Abbreviations: nr = numeric value not reported; m = males, f = females, p 204 
= pups, j = juveniles. In some case multiple values are given for separate seasons. The 205 
full database containing all literature references (n = 218) is made available under 206 
Supplementary material S1. * Indicates mean maximum dive depth was reported; 207 
**binned data from satellite-linked recorders. 208 
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Figure 2. Spatial distribution of sampling effort/data logger deployment in the 214 
Southern Ocean during 2006–2016 for each species. Circle size and white number 215 
represent the total number of studies carried out in each location. Color-coded 216 
numbers correspond to the species cited in Table 2. The database containing all 217 
literature references is made available under Supplementary Material. 218 
 219 
Fourteen of 28 studies on Antarctic fur seals (Arctocephalus gazella) took 220 

place in the South Georgia region. Southern elephant seals (Mirounga leonina) 221 

were tagged mostly at breeding colonies on South Georgia, Kerguelen, Crozet, 222 

and Prince Edward islands but also at haulouts near Antarctic continental 223 

stations. Crabeater (Lobodon carcinophaga), leopard (Hydrurga leptonyx), 224 

Ross (Ommatophoca rossii), and Weddell seals were tagged on or near the 225 

continent, especially near the Antarctic Peninsula or near the coast on the sea 226 

ice, and occasionally on Subantarctic islands. Access to these dispersed ice-227 

affiliated species remains challenging over large areas of the SO. Some 80% of 228 

https://www.frontiersin.org/articles/10.3389/fmars.2018.00464/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Marine_Science&id=401360#T2
https://www.frontiersin.org/articles/10.3389/fmars.2018.00464/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Marine_Science&id=401360#SM1
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studies on Adélie penguins (Pygoscelis adeliae) were carried out in Adélie 229 

Land. Macaroni penguins (Eudyptes chrysolophus) were most commonly 230 

tagged at South Georgia and Subantarctic islands within the Indian sector. A 231 

few rockhopper penguin (E. chrysocome) colonies off Argentina and the 232 

Falkland Islands fall within the Southern Ocean (i.e., < 40° S). Chinstrap 233 

penguins (P. antarctica) were studied at Subantarctic islands including South 234 

Georgia, South Orkney (Takahashi et al., 2003), and South Shetland (Croll et 235 

al., 2006). Finally, emperor penguins (Aptenodytes forsteri) were studied at 236 

various colonies along the coast of the Antarctic continent (Wienecke et al., 237 

2007). Albatrosses and diving petrels were studied at South Georgia and the 238 

South Orkney Islands (Phillips et al., 2005, 2007; Rollinson et al., 2014). The 239 

only site where the diving ability of cormorants (Phalacrocorax spp.) was 240 

studied in the last 10 years is the Crozet archipelago (Cook et al., 2008a, b). 241 

For cetaceans, the studies were carried out near the Auckland Islands, the 242 

Falkland Islands and in South America, and in the Antarctic Peninsula region. 243 

 Cetacean telemetry studies have lagged somewhat behind those of seals 244 

and penguins largely due to accessibility, as well as technological issues with 245 

tag attachments. These are resolving and beginning to provide valuable longer 246 

term tracking datasets (e.g., Reisinger et al., 2015; Weinstein and Friedlaender, 247 

2017). Additionally, the tag design for DTAGs (multisensor archival digital 248 

acoustic recording tags, Johnson and Tyack, 2003; Goldbogen et al., 2013) 249 

provides some of the most sophisticated diving data achievable for the study of 250 

free-living animals, albeit still usually at short time scales (typically a day or 251 

so, using suction cup attachments, e.g., Tyson et al., 2016). Taking these 252 

developments into account we can expect a maturation of this field and 253 

consequent major expansion of these data over the next decade. The study of 254 

SO seabirds also largely remains focused on movement studies, often with the 255 

addition of simple wet/dry activity sensors (e.g., Phalan et al., 2007). Seabird 256 

diving studies continue only in relatively low numbers, but we may similarly 257 

expect an increase in future with the ongoing miniaturization of data loggers 258 

and sensors. 259 

 260 
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The Basics of Diving Behavior 261 

 Diving behavior occurs at a series of scales: the individual dive scale, 262 

the bout scale (being made up of a series of dives) and the trip scale (a trip 263 

from land being made up of a series of bouts). Furthermore, diving behavior 264 

can vary on different temporal scales (daily, monthly, seasonally) and may also 265 

be influenced by the lunar cycle (e.g., Horning and Trillmich, 1999; Biuw et 266 

al., 2010; Heerah et al., 2013; Guinet et al., 2014) as expanded in the next 267 

section on Foraging Inference. 268 

 Each dive can be divided into distinct phases (Fig. 3). The descent 269 

phase (DESC) represents a period of active swimming using sequential, large 270 

amplitude strokes of flippers, flukes or feet to reach the desired depth 271 

(Williams et al., 2000). The bottom phase (BOT) is defined as the period 272 

between the dive descent and ascent. Often this is simplified as the time 273 

between the first and last recorded depth that is some fraction (e.g., 80%, but 274 

also 60–85% depending on the species) of the maximum depth (Austin et al., 275 

2006; Bailleul et al., 2008). Halsey et al. (2007a) proposed the definition as 276 

between the first and the last wiggle or step, being deeper than a given 277 

proportional depth threshold, assigned per species. The bottom phase is 278 

generally assumed to be connected to feeding activity. During the ascent phase 279 

(ASC) when the animal returns to the surface, it experiences a decrease in 280 

pressure and the re-inflation of the lungs (Williams et al., 2000). The final 281 

phase is the post-dive surface interval (PDSI) during which the animal 282 

replenishes its oxygen stores before a new dive (Houston, 2011). Time at the 283 

surface can also be used for preening, resting, food processing or moving to a 284 

new area (traveling or searching) (Thompson and Fedak, 2001). This is a 285 

generalized structure of a dive and a useful conceptual framework. However, in 286 

reality many dives diverge from this pattern, either having no or a greatly 287 

limited bottom phase (“V” and “U” shaped dives), or multiple bottom phases at 288 

different depths (Heerah et al., 2014, 2015). 289 
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 290 
Figure 3. Stylized graphic representation showing a general dive of a marine predator. 291 
The diving phases are summarized using different colors: descent phase (red); bottom 292 
phase (violet); ascent phase (green); surface phase (blue). Designed by: Charlie 293 
Armstrong. 294 
 295 

On the basis of their profiles, dives may be classified typically as square dives 296 

(DESC = ASC with BOT); V-shaped (DESC = ASC without BOT); skewed 297 

right (DESC < ASC) or left dive (DESC > ASC) (Schreer et al., 2001). Among 298 

all species and groups, square dives are generally regarded as foraging dives, 299 

although Weddell seals may use V-shape dives for feeding (Fuiman et al., 300 

2007). In contrast, left and right skewed dives generally have a different 301 

purpose and are usually performed during traveling and searching activities. 302 

However, among elephant seals skewed right dives may be linked with food 303 

processing (Crocker et al., 1997). 304 

 Individual dives often occur in clusters or bouts. Bouts as defined by 305 

Boyd and Croxall (1992) are: “a series of four or more dives not separated by a 306 

surface period exceeding a few minutes.” The end of a bout is derived from the 307 

post-dive surface interval of the last dive, but can be difficult to determine. 308 

Luque and Guinet (2007b) suggested that employing a maximum likelihood 309 

estimation method delivers the most accurate means to determine when a bout 310 

has ended. Bout durations and locations can provide information on the spatial 311 

scale of prey patches (Mori, 2012), as the animal moves between successive 312 

patches (Hooker et al., 2002). Information about bouts can also be used to 313 
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make inferences about foraging preferences (e.g., prey type, Elliott et al., 314 

2008), or foraging effort (Della Penna et al., 2015). 315 

 A trip comprises the entire time an animal spends at sea from the time it 316 

leaves land (or sea ice) to the time it returns; generally, many dive bouts are 317 

performed during this period. Depending on the species and breeding status, 318 

trips may range from several days to many weeks, and short and long trips may 319 

be alternated (e.g., Chaurand and Weimerskirch, 1994; Croxall and Davis, 320 

1999; Luque et al., 2007a; Green et al., 2009a). At the Kerguelen and Crozet 321 

islands, rockhopper penguins performed daily trips during the brooding period, 322 

but as chicks grew older trip durations increased (Tremblay and Cherel, 2005). 323 

For some taxa, such as cetaceans or pack-ice seals, the concept of a trip is not 324 

necessarily as well defined but can be regarded as the time spent moving 325 

between regions to which they demonstrate some fidelity. For example, 326 

Antarctic seal-hunting (B type) killer whales (Orcinus orca) from the Antarctic 327 

Peninsula make periodic round trips to the South American coasts and back 328 

probably for physiological maintenance rather than for feeding or breeding 329 

purpose (Durban and Pitman, 2012). 330 

 Multiple factors including body condition (e.g., Miller et al., 2012; 331 

Richard et al., 2014; Gordine et al., 2015), age (Le Vaillant et al., 2012, 2013), 332 

sex (Beck et al., 2003; Baird et al., 2005), life history stage (Schulz and 333 

Bowen, 2004; Verrier et al., 2011), and body size (Irvine et al., 2000; Mori, 334 

2002; Navarro et al., 2014) can all influence an animal's diving behavior. An 335 

example of how dive capabilities (depth and duration) vary across SO species 336 

is presented in Fig. 4. In general, larger seabirds and marine mammals dive 337 

longer and deeper than smaller species (Schreer et al., 2001). However, there 338 

are exceptions: for example, among petrels and albatrosses, smaller species 339 

tend to diver deeper in relation to their body mass than larger species (Prince et 340 

al., 1994; Navarro et al., 2014). 341 
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342 
Figure 4. The relationship between dive duration (s) and depth (m) across the most 343 
commonly researched SO marine predators described in Table 2 (species 344 
abbreviations given in table). Values shown as mean ± SD. Inset panel provides a 345 
closer look at shorter (< 100 s) and shallower (< 100 m) dives. Data collected from 346 
studies undertaken from 2006–2016 (see Supplementary Material). 347 
 348 

Foraging Inference 349 

 Southern Ocean predators use diverse habitats and feed on a wide 350 

variety of prey. By understanding the diving behavior of these species we are 351 

able to address a number of key ecological questions including: What is the 352 

distribution of their prey (spatial, vertical, among habitats, and seasonally)? 353 

What is their prey type (schooling/individual, benthic, or pelagic)? What are 354 

the foraging strategies adopted? What is the prey density (relative abundance) 355 

and quality? How much is eaten? Ultimately, integrating these observations 356 

can help explain the foraging activity and success for individual animals in 357 

time and space, as well as their functional response when facing environmental 358 

changes. 359 

Prey Distribution and Type 360 

 Marine predators change their diving behavior in relation to the spatial 361 

https://www.frontiersin.org/articles/10.3389/fmars.2018.00464/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Marine_Science&id=401360#T2
https://www.frontiersin.org/articles/10.3389/fmars.2018.00464/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Marine_Science&id=401360#SM1


 
 

37 
 

distribution of their prey (Thompson and Fedak, 2001). Basic information 362 

about where prey is located in the water column is obtained from simple dive 363 

depth metrics (maximum, mean, daily and seasonal variability, position relative 364 

to the ocean floor or other physical features such as seasonal mixed layer 365 

depth). Temporal patterns in these metrics can indicate whether prey species 366 

migrate vertically over a diurnal (e.g., Robison, 2003) or lunar cycle (e.g., 367 

Benoit-Bird et al., 2009). For example, gentoo penguins dive deeper during the 368 

day and shallower at night, probably to follow the vertical krill migration (Lee 369 

et al., 2015). Similarly, the large number of dives Antarctic fur seals undertake 370 

at night may be due to the shallower night time occurrence of a krill patch 371 

rather than the quality of the prey patch (Iwata et al., 2012). In general, pelagic 372 

foragers tend to dive deeper and longer during the day than at night (e.g., 373 

Weddell seals, female southern elephant seals, and Adélie and gentoo 374 

penguins; Schreer et al., 2001). Benthic foragers (e.g., blue-eyed shags 375 

(Phalacrocorax atriceps), male southern elephant seals) in general show little 376 

to no diel patterns in maximum depth and duration (Schreer et al., 2001). The 377 

depth of benthic dives is clearly determined by the bathymetry of the foraging 378 

area. At Signy Island, chinstrap and Adélie penguins hunt the same prey, but 379 

foraging chinstraps perform shallower dives than Adélies and feed inshore, 380 

while Adélies forage farther offshore (Takahashi et al., 2003). Interpretation of 381 

pelagic and benthic foraging behavior clearly requires a spatial context and 382 

may be hampered by poorly resolved bathymetry. 383 

 The size of prey items consumed by an animal is highly variable and 384 

not linearly related to the body size of the predator. For example, some marine 385 

predators ingest very large numbers of small prey items at a time (e.g., whales 386 

feeding on krill swarms; Kawamura, 1994) while others chase a single large 387 

prey item (e.g., Weddell seals eating large lipid-rich toothfish; Ainley and 388 

Siniff, 2009). The diet of marine mammals and seabirds has traditionally been 389 

studied through of the enumeration of stomach contents and/or scats, and is 390 

increasingly approached though methods, such as fatty-acid analyses (Pierce 391 

and Boyle, 1991), stable isotope signatures (Cherel et al., 2007; Cherel, 2008) 392 

and DNA-based methods (Deagle et al., 2007; McInnes et al., 2016, 2017). 393 

Such information may be powerfully integrated with tracking data to provide a 394 



 
 

38 
 

spatial context (e.g., Bailleul et al., 2010; Walters et al., 2014), and dive data 395 

may also be used to infer what SO species consume (Hocking et al., 2017). 396 

 Dive bout duration and inter-bout intervals can provide a relative 397 

indication of the size of prey patches and dispersion of prey types (Boyd and 398 

Croxall, 1996; Mori, 1998). Depending on the particular predator and prey 399 

combination, a bout may correspond to a single or multiple prey patches. Bout 400 

types or structures may be differentiated by combined parameters, such as 401 

timing (day/night/dusk), length (short/long), and depth (shallow/deep) (e.g., 402 

Boyd et al., 1994; Lea et al., 2002), and can help discriminate the prey item(s) 403 

that are being targeted by a predator (e.g., Elliott et al., 2008). Bout duration 404 

and timing between bouts can provide information on the temporal distribution 405 

of foraging patches (Luque et al., 2008). In a study of provisioning Adélie 406 

penguins, Watanuki et al. (2010) found longer dive bouts tended to occur 407 

toward the end of foraging trips, and were associated with higher meal mass. 408 

Combined information on dive depth distribution and dive bout characteristics 409 

(e.g., proportion of dives in a bout, number of dives per bout, bout type) can 410 

identify prey as being epipelagic (e.g., surface-swarming krill; Lee et al., 411 

2015), or mesopelagic (e.g., myctophid fish and cephalopod species; Georges 412 

et al., 2000), and whether prey are more aggregated (high number of dives per 413 

bout) or dispersed (low number of dives per bout) (Lea et al., 2002). 414 

 Without ascribing bout structure, Hart et al. (2010) focused on the 415 

autocorrelation in raw TDR data (depth and time) as an indicator of the 416 

persistence or periodicity of dive behaviors in macaroni penguins. Evidence for 417 

foraging flexibility or prey switching may come from high variability and/or 418 

temporal (e.g., seasonal) changes in individual dive (Deagle et al., 2007) or 419 

bout (Harcourt et al., 2002) characteristics which can be difficult to detect. 420 

When animals are large enough, prey selection can be directly observed using 421 

miniature cameras mounted on a data logger, as has been done successfully on 422 

Antarctic fur seals (Hooker et al., 2002, 2015; Heaslip and Hooker, 2008). 423 

Cameras were also deployed on gentoo and Adélie penguins foraging on krill 424 

and fishes schooling underneath sea ice (Takahashi et al., 2008; Watanabe and 425 

Takahashi, 2013). Using cameras in combination with a number of sensors in 426 

Weddell seals, Madden et al. (2015) documented alternative foraging behaviors 427 
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(deep anaerobic and shallow aerobic dives) both exploiting the same prey type 428 

(Antarctic silverfish (Pleuragramma antarcticum)), and hypothesized an 429 

energy-saving strategy where the seals were exploiting shallow schools of 430 

silverfish. However, animal-borne videos typically represent short observation 431 

periods relative to other behavioral records, and efficient image storage and 432 

processing methods are currently an active area of research. 433 

Foraging Strategies 434 

 Optimal foraging theory (OFT) (Stephens and Krebs, 1986) is a 435 

conceptual framework widely employed to examine the strategies animals use 436 

to acquire food. Under the OFT framework, animal movement and behaviors 437 

are expected to be as efficient as possible. Translated to air-breathing divers, 438 

OFT suggests these animals should minimize the costs associated with feeding 439 

underwater (e.g., dive transit time, oxygen consumption) and maximize the 440 

benefits using some fitness related criterion (e.g., time spent at foraging depths, 441 

net energy gain or energy efficiency, load size, prey capture rate) (Kramer, 442 

1988; Houston and Carbone, 1992; Mori, 1998). The most commonly 443 

developed dive optimality models are “time allocation models” (Houston, 444 

2011) that seek to optimize the foraging and surfacing time of animals in 445 

response to changing conditions, such as prey depth (Mori and Boyd, 2004) or 446 

prey encounter rate (Thompson and Fedak, 2001). In the latter case, Thompson 447 

and Fedak (2001) investigated the effects of a “giving up” rule to demonstrate 448 

cases where a net benefit was obtained by terminating dives that are likely to 449 

be unproductive. While this general held true for shallow divers, it was unclear 450 

for deep divers such as southern elephant seals. Moreover, in the controlled 451 

environment of captive experiments where the model was tested on gray seals 452 

(Halichoerus grypus), it was not clear if the effect held true in all situations 453 

(Sparling et al., 2007). 454 

 Time-depth recorders and other bio-logging tools such as 455 

accelerometers have allowed OFT models to be developed, and predictions 456 

tested, across a wide array of free-ranging marine predators. A non-exhaustive 457 

list of applications to SO species include Antarctic fur seals (Mori and Boyd, 458 

2004), southern elephant seals (Gallon et al., 2013), Adélie penguins 459 



 
 

40 
 

(Watanabe et al., 2014), macaroni and gentoo penguins (Mori and Boyd, 2004), 460 

king penguins (A. patagonicus) (Hanuise et al., 2013), humpback (Megaptera 461 

novaeangliae) (Tyson et al., 2016) and fin (Balaenoptera physalus) whales 462 

(Acevedo-Gutiérrez et al., 2002; outside SO). The results of Acevedo-Gutiérrez 463 

et al. (2002), who compared observed TDR dive times to those predicted by an 464 

OFT model, suggested that the foraging strategies of fin whales are 465 

energetically expensive and limit the dive time of these large predators. More 466 

recently, Tyson et al. (2016) tested a suite of OFT models for humpback 467 

whales foraging at the western Antarctic Peninsula using high-resolution multi-468 

sensor data loggers. They found that the agreement between observed and 469 

optimal behaviors varied widely depending on the physiological and behavioral 470 

values used to derive optimal predictions, and highlighted the need for an 471 

improved understanding of cetacean physiology. 472 

 In their seminal paper, Mori et al. (2005) used an optimality framework 473 

to derive prey indices from Weddell seal diving profiles, in conjunction with 474 

prey richness estimates from animal-borne camera data. The authors generally 475 

found positive correlations between these two indices (dive profiles and prey 476 

richness), but highlighted the importance of identifying the relationship 477 

between the diving behavior of predators and the type of prey they take (see 478 

above) in order to estimate prey abundance using diving profiles. Smaller 479 

numbers of larger prey are sufficient in terms of energy intake; for example, a 480 

single large high-quality items such as Antarctic toothfish (Dissostichus 481 

mawsoni) delivers possibly more energy per ingestion than smaller prey like 482 

Antarctic silverfish which may require several dives to obtain the same amount 483 

of biomass comparable to a single toothfish. However, there may be an 484 

increased energetic cost when digesting one large prey item whose temperature 485 

is much lower than that of the predator's core (see Prey consumption, below). 486 

 Dive profiles can also provide more general information on predation 487 

strategies, for example whether foraging animals approach their prey from 488 

above or below. Using a time-depth-speed logger, Ropert-Coudert et al. (2000) 489 

reported steep acceleration events where king penguins swam rapidly upwards 490 

mainly during the bottom and early ascent phases of dives. This appears to 491 

reflect an upward-looking attack strategy, whereby prey is detected and 492 
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approached from below. It is likely that multiple prey approach and capture 493 

techniques are employed by individuals, depending on factors, such as light, 494 

bioluminescence and seasonal progressions in prey type, and abundance and 495 

density. Antarctic marine predators seem to employ active-search hunting 496 

rather than ambush (sit-and-wait) strategies, although a passive-gliding 497 

approach from above the prey target has been recently documented in elephant 498 

seals (Jouma'a et al., 2017). Using time-depth data in conjunction with animal-499 

borne video, Krause et al. (2015) reported novel observations on foraging 500 

leopard seals such as unique prey-specific hunting tactics when targeting 501 

Antarctic fur seal pups and fishes including stalking, flushing, and ambush 502 

behaviors. 503 

Prey Density and Quality 504 

 Drawing mainly from the OFT framework, a large research effort has 505 

focused on developing indices from diving telemetry data of predators that can 506 

provide information on prey quality or density. For example, if animals reduce 507 

transit time in a patch, then changes in basic components of the dive, such as 508 

descent and ascent rates, might be indicative of patch quality, where rates 509 

increase when patch quality is high (Thompson and Fedak, 2001). Steep 510 

descent and ascent angles may assist to reduce transit time. In general, deeper 511 

dives are associated with steeper angles and higher transit rates, and may be the 512 

result of more predictably distributed prey at greater depths, as may be the case 513 

over shelf areas (Pütz et al., 2006) or at the base of the mixed layer in oceanic 514 

areas (Georges et al., 2000). There is some support for the optimality 515 

expectation using in situ measurements of patch quality (as determined from 516 

relative body lipid content, high quality areas being indicated from lipid gain): 517 

female southern elephant seals from Macquarie Island descended and ascended 518 

faster in high-quality patches than in low quality patches (Thums et al., 2013). 519 

However, this was not achieved by increasing speed or dive angle, but rather 520 

the relative body lipid content was an important predictor of dive behavior 521 

(e.g., Thums et al., 2013; Richard et al., 2014; Jouma'a et al., 2015). 522 

 Similarly, a straightforward interpretation under an optimality 523 

framework might expect maximized time spent at the bottom of a dive to 524 
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represent greater prey density and/or quality and enhanced foraging benefit for 525 

marine predators. Many indices have been derived to investigate bottom time 526 

relationships (Table 3) attempting to account for deeper dives in the water 527 

column that necessarily take more time, with less time subsequently to be spent 528 

at the bottom. These include dive residuals (Bestley et al., 2015), residual 529 

bottom time (Dragon et al., 2012), and residual “first bottom time” (Bailleul et 530 

al., 2008). The latter attempts to translate classical first passage time (Fauchald 531 

and Tveraa, 2003), widely used to analyse area-restricted search in horizontal 532 

movements, into the vertical dimension. 533 

Table 3. Examples of derived dive parameters to investigate diving patterns, foraging 534 
behavior, and physiology of SO marine predators. 535 

DERIVED 
PARAMETERS 

QUESTION EXPLANATION EXAMPLES 
OF USAGE 

Dive rate or 
dive frequency 

Diving 
intensity 

Number of dives per unit 
time (e.g., per hour of 
night or day; per bout; 
per trip). 

Staniland 
(2008), 
Antarctic fur 
seals. 

Vertical 
distance or 
vertical extent 
(VD or VE) 

Diving 
intensity 

Total vertical distance 
travelled (m or km) 
summed or averaged per 
unit time (per hour, bout, 
night, 24h etc.). For 
example: cumulative dive 
depth x 2 per night 
divided by night period 
(units of km h-1) 

Pütz (2006), 
southern 
rockhopper 
penguins; 
Zimmer et 
al. (2008a; 
2008b), 
emperor 
penguins. 

Dive residual Measure of 
relative 
forage effort 

Residuals obtained from 
Linear Mixed Model 
(random slope and 
intercept per individual):  
dive duration ~ dive 
depth 

Bestley et al. 
(2015) 
southern 
elephant, 
Weddell, 
Antarctic 
fur, and 
crabeater 
seals. 

Residual 
bottom time 
(RBT) 

Measure of 
relative 
forage effort 

Residuals from 
multivariate linear 
regression:  
Bottom time ∼ maximum 
dive depth + dive 
duration 

Dragon et al. 
(2012) 
southern 
elephant 
seals. 

Residual first 
bottom time 
(rFBT) 

Measure of 
relative 
forage effort 

Modification of the First-
Passage Time (FPT) 
approach using the RBTs 
described above. The 

Bailleul et 
al. (2008) 
southern 
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variance of the RBTs is 
calculated within circles 
of increasing radius (r), 
as Var(log(t(r))), where 
t(r) is the sum of the 
absolute values of the 
RBTs. The spatial scale 
of most intensive search 
behavior determined via 
the maximum peak in 
variance. Once this scale 
was determined, the sum 
of the residuals (not 
absolute) is calculated 
within each circle to give 
rFBT values. 
 

elephant 
seals. 

Wiggles Foraging 
behavior 

Detected as anomalies in 
diving profiles: when an 
animal is spending some 
time at a particular depth, 
and travelling up and 
down while at this depth 
(zig-zags). 

Hanuise et 
al. (2010) 
king 
penguins. 

Bottom 
sinuosity 

Foraging 
behavior 

Calculated as the total 
distance swum in the 
bottom of the dive 
divided by the sum of the 
Euclidean distances from 
the depth at the 
beginning of the bottom 
phase to the maximum 
depth and from there to 
the depth at the end of 
the bottom phase: 
Bottom sinuosity 
=𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒

 

Dragon et al. 
(2012b) 
southern 
elephant 
seals  

Hunting time 
(HT) 

Foraging 
behavior 

Iterative application of a 
broken stick algorithm to 
identify the optimum 
number of segments per 
dive, and allocation of 
dive segments as 
“hunting” or “transit” 
using a threshold value 
(0.9) of vertical 
sinuosity. 

Heerah et al. 
(2014) 
southern 
elephant 
seals and 
Weddell 
seals. 

Prey encounter 
events (PEE) 

Inference 
about 
foraging 
attempts 
(prey 
encounter 

Coefficients from a 
Generalized Linear 
Mixed Model applied to 
multiple dive parameters 
(dive duration, bottom 
duration, hunting-time, 

Labrousse et 
al. (2015) 
southern 
elephant 
seals. 
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but not 
necessarily 
capture 
success) 

maximum depth, ascent 
speed, descent speed of 
subsequent dive, track 
sinuosity and horizontal 
speed) used to predict 
PEE. 

Proportion of 
observed dive 
time to the 
standard dive 
time (POS) 

Diving 
behavior 
optimality 

Proportion of observed 
dive time to the 
standard dive time, 
obtained by adopting a 
rate  
maximisation model. 

Mori (2012) 
chinstrap 
penguins 

Surface 
residual 

Measure of 
dive cost 

Linear Mixed Model 
fitted to minimum post-
dive surface interval (SI) 
observed for each 
(binned) dive duration 
(random slope and 
intercept per individual). 
Residual then calculated 
as the difference between 
observed and predicted 
values:  
log(1+(SIobs -
SIpred)/SIpred) 

Bestley et al. 
(2015) 
southern 
elephant, 
Weddell, 
Antarctic 
fur, and 
crabeater 
seals.  

Dive efficiency 
(DE) 

Optimal 
diving 

DE = bottom time/ (dive 
duration + post-dive 
surface interval) 

Lee et al. 
(2015) 
gentoo 
penguins. 

Dive:pause 
ratio 

Dive cycle 
management 
and time 
allocation 

The ratio of dive duration 
(time underwater) to time 
at the surface: (t + τ)/s 
where dive duration 
includes the time spent 
foraging (t) and the round 
trip travel time (τ) from 
the foraging area to the 
surface. 

Houston 
(2011) 
seabirds and 
marine 
mammals. 

 536 

Validation with external datasets has not clearly resolved whether longer 537 

bottom phases are indicative of higher or lower prey quality or density, and 538 

hence foraging success. For example, short-term measurements of head jerks in 539 

southern elephant seals using accelerometers suggested increased prey capture 540 

attempts with increased bottom durations (Gallon et al., 2013). However, in 541 

Antarctic fur seals, the relationship between head jerks and dive metrics — 542 

including bottom duration — varied markedly with temporal scale (i.e., dive to 543 

all-night scale) (Viviant et al., 2014). In a related study, Viviant et al. (2016) 544 
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showed Antarctic fur seals adjust their time in the dive bottom phase mainly 545 

according to prey patch accessibility (depth) and their physiological constraints 546 

(behavioral aerobic dive limit), rather than their prey encounters (mouth-547 

opening events). In king penguins, heart rate loggers showed increased heart 548 

rates, and hence energetic costs, associated with shorter dive durations, shorter 549 

bottom times, and longer surface durations (Halsey et al., 2007b). Similar 550 

patterns in elephant and Weddell seals appear to represent high activity dives in 551 

higher quality areas (Bestley et al., 2015). Furthermore, faster descent speeds, 552 

shorter dive durations, and reduced bottom times in higher-quality habitat were 553 

linked to body condition indices of elephant seals (Thums et al., 2013). Longer 554 

dive and bottom durations occurred when patches were of relatively low 555 

quality consistent with the predictions of the marginal value theorem (MVT, 556 

Charnov, 1976). Qualitative support for the MVT has also been provided for 557 

Adélie penguins, with opposing effects of patch-quality on duration at the dive- 558 

(positive) and bout- scale (negative), respectively (Watanabe et al., 2014). The 559 

way predators balance their dive budgets in terms of transit speed, bottom 560 

duration, and surface intervals is likely a function of interacting factors, such as 561 

the quality, size, vertical distribution and behavior of the prey, and the optimal 562 

approach will be changeable with prey-switching as discussed above. Bottom 563 

durations may also differ markedly between habitats — benthic, epipelagic or 564 

midwater — with potentially longer bottom phases during benthic dives (e.g., 565 

gentoo penguins, see Kokubun et al., 2010). 566 

 The complexity of diving depth profiles has been widely investigated to 567 

make inferences about feeding activities. In particular, the vertical undulations 568 

or “wiggles” — changes in swim direction occurring at depth — are indicators 569 

of prey encounter rates or prey capture attempts. These are commonly simply 570 

counted (e.g., Bost et al., 2007), although a number of metrics have been 571 

developed to evaluate vertical sinuosity of dives (e.g., Dragon et al., 2012) and 572 

optimally allocate segments within dives as “hunting” or “transit” time on the 573 

basis of sinuosity thresholds (e.g., Heerah et al., 2014, 2015). Validations of 574 

such depth variations as feeding proxies have been based on various external 575 

measurements including oesophageal temperature (Adélie and king penguins, 576 

Bost et al., 2007), stomach temperature (southern elephant seals, Horsburgh et 577 
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al., 2008), and accelerometers to detect mouth opening events (king penguins, 578 

Hanuise et al., 2010; Antarctic fur seals, Viviant et al., 2014). These studies 579 

generally reported good correspondence between dive profile variations and 580 

other more direct measures of feeding activity. However, not all vertical 581 

undulations are prey encounters, not all encounters have an undulation, and 582 

only a proportion of prey encounters result in capture and ingestion. 583 

Consequently, in free-living animals it remains difficult to validate the actual 584 

success of prey encounters or capture attempts as unsuccessful attempts may 585 

still result in ingestion of cold water. Thus, the above mentioned variables 586 

ought to be considered mainly as indicators of forage effort rather than forage 587 

success. 588 

Prey Consumption 589 

 A key question with regard to dynamics of ecosystems is how much 590 

food is eaten by marine predators. To obtain actual information on foraging 591 

success requires ancillary data to simple dive traces. Short-term direct 592 

observations of feeding activity can be obtained with tag-mounted cameras 593 

(Mori et al., 2005; Watanabe and Takahashi, 2013). As mentioned briefly 594 

above, methods like stomach or esophageal temperature sensors for seabirds 595 

(Bost et al., 2007, 2015; Hanuise et al., 2010) and seals (Austin et al., 2006; 596 

Horsburgh et al., 2008; Kuhn et al., 2009) can provide information on prey 597 

capture attempts; since birds and mammals in the SO have a higher core body 598 

temperature than their prey, their stomach temperature drops during ingestion 599 

(Wilson et al., 1992). However, unsuccessful attempts may still result in 600 

ingestion of cold water and need to be clearly distinguished from successful 601 

feeding events. Head or jaw mounted accelerometers and speed sensors have 602 

also been used to provide feeding proxies in several seal species (Weddell, 603 

Naito et al., 2010; Antarctic fur, Iwata et al., 2012; southern elephant, Gallon et 604 

al., 2013; Guinet et al., 2014; Richard et al., 2014; Vacquié-Garcia et al., 605 

2015), and penguins (king, Hanuise et al., 2010; chinstrap and gentoo, 606 

Kokubun et al., 2011). 607 

 Typically, feeding telemetry delivers smaller sample sizes; the data 608 

series are more complex, difficult to obtain and short-term relative to TDR 609 
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time-series. Also, issues still remain to be solved on how to keep the sensors in 610 

place. Therefore, efforts have been made to develop predictive models from the 611 

feeding indices that may be applied across longer dive time-series to estimate 612 

prey items from time-depth data alone (e.g., Simeone and Wilson, 2003; 613 

Horsburgh et al., 2008; Viviant et al., 2010; Labrousse et al., 2015). For 614 

example, Labrousse et al. (2015) developed predictive models for Prey 615 

Encounter Events using high-resolution accelerometer data and used these to 616 

predict these events for low-resolution dive profiles available over longer 617 

periods. Informative variables included ascent speed, maximum depth, bottom 618 

time, and horizontal speed (pelagic strategy), compared with just ascent speed 619 

and dive duration (demersal strategy). 620 

 These modeling approaches may greatly increase the utility of both data 621 

types and provide some indicator of feeding activity over whole migration 622 

trips. However, information on actual feeding success is available in very few 623 

cases for free-living animals. One high-profile example is how buoyancy 624 

changes associated with relative lipid content measured from drift dive data in 625 

elephant seals (northern, Crocker et al., 1997; Robinson et al., 2010; and 626 

southern, Biuw et al., 2003; Bailleul et al., 2007; Thums et al., 2008, 2013; 627 

Gordine et al., 2015), with changes in passive vertical drift rates, provide an 628 

integrated in situ measure of foraging success. This approach has given insight 629 

into the location and characteristics of successful Southern Ocean foraging 630 

areas (Biuw et al., 2007; Hindell et al., 2016), and was incorporated into 631 

population-level models integrating the physiological and movement ecology 632 

of predators (Schick et al., 2013; New et al., 2014). Efforts have been made to 633 

validate relationships between descent rates and drift rates (Richard et al., 634 

2014), which represent a promising extension of inference to basic dive 635 

profiles and potentially broader application across other species. A recent study 636 

on Antarctic fur seals (Jeanniard-du-Dot et al., 2017) incorporated information 637 

of prey capture attempts into an energetics framework to estimate foraging 638 

efficiency and the consequences for reproductive success (pup growth). Such 639 

applications, linking individual foraging behavior with demographic 640 

consequences (see also Hiruki-Raring et al., 2012), are important avenues for 641 

future biotelemetry research in the Southern Ocean. 642 
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 Overall, relatively simple dive data streams continue to provide 643 

increasingly powerful insights into marine predator foraging. However, when 644 

used alone these telemetry data remain largely limited to providing information 645 

on effort. Dive metrics cannot confirm success; indeed dive metrics (e.g., 646 

residuals: positive and negative from a fitted relationship) may be obtained 647 

from an animal that in fact fails to forage at all. Combined usage of TDRs with 648 

other devices that provide more direct observations (e.g., accelerometers, 649 

miniature cameras, speed turbines, internal sensors), even on a subset of 650 

individuals, greatly assists in maximizing inference. In addition, the caveats of 651 

inferring from dive data may be alleviated by combining data from different 652 

sources, such as isotopes and DNA methods (diet), mass or lipid gain 653 

(success), reproductive outputs (energetic costs) thereby achieving a broader 654 

perspective on the foraging of Southern Ocean marine predators. 655 

Intrinsic Determinants of Diving — Physiological Inference 656 

 The foraging strategies adopted by marine predators are not only 657 

dictated by prey abundance and distribution but also by intrinsic factors, such 658 

as oxygen stores, metabolism, body size, and age (Kooyman and Ponganis, 659 

1998; Costa, 2007; Ponganis et al., 2009; Ponganis, 2011; Castellini, 2012; 660 

Elliott, 2016). Relatively few data have been collected on the at-sea 661 

metabolism of marine birds and mammals given the practical difficulties of 662 

collecting respiration and activity data in the field. Consequently, much of 663 

what is known has been inferred from simple dive data. Information on dive 664 

duration and post-dive surface intervals provide valuable insights into diving 665 

metabolic rate, and on how animals balance time underwater using oxygen 666 

stores with time on the surface replenishing them, i.e., dive cycle management. 667 

Determining how these intrinsic factors scale with size, sex or age of the 668 

animal are key questions that remain largely unanswered. This section 669 

discusses how the use of classic dive data information provides valuable 670 

insights into dive energetics and the physiological adaptations of SO marine 671 

animals, drawing also upon examples from temperate species in a few cases. 672 

 673 

Physiological Determinants and Constraints 674 
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 Castellini (2012) and Ponganis and Kooyman (2000) reviewed the 675 

physiological adaptations among marine mammals and polar seabirds, 676 

respectively. We provide a summary here as a base for the following 677 

discussion. Many animals dive, but deep divers face a number of challenges, 678 

such as the increase in pressure with the resulting mechanical compression of 679 

tissue and gas-filled spaces, and the lack of ad libitum access to oxygen 680 

(Kooyman and Ponganis, 1998; Costa, 2007; Ponganis, 2011). The former is to 681 

some extent dealt with using morphological adaptations, such as flexible rib 682 

cages (e.g., Cozzi et al., 2010) and collapsible lungs (e.g., Falke et al., 1985; 683 

McDonald and Ponganis, 2012), while the lack of continuous access to oxygen 684 

requires a complex suite of physiological adaptations. 685 

 A number of adaptations evolved convergently among marine 686 

mammals and seabirds to enable deep diving, but there are also important 687 

differences, for example with regard to the distribution of oxygen stores in the 688 

body and the reliance on anaerobic metabolism (see below). These animals 689 

depend on adaptions that increase intrinsic oxygen stores. Body size is one 690 

factor which influences both oxygen storage and metabolic rate or oxygen use 691 

(e.g., Noren and Williams, 2000). Furthermore, to expand their breath holding 692 

capacity, deep divers have large volumes of blood. For example, in Weddell 693 

seals about 14% of their body weight is due to blood; this is 63 l for a 450 kg 694 

seal, or 140 ml kg−1 (Zapol, 1996). In comparison, in human blood makes up 695 

only about 7% of body weight (Zapol, 1996). In penguins, the blood volume is 696 

less than in seals; emperor penguins comprise about 100 ml blood kg−1 body 697 

weight (Ponganis et al., 1997a), and for Adélie penguins the value is about 93 698 

ml kg−1 (Lenfant et al., 1969). 699 

 Oxygen stores are also increased through increased concentrations of 700 

the oxygen-carrying proteins hemoglobin (Hb, in blood) and myoglobin (Mb, 701 

in muscle). The size of the total oxygen store and the proportions in which it is 702 

compartmentalized differ among species. Weddell seals have 26 g 100 ml−1 Hb 703 

and 5.4 g 100 g−1 Mb (Ponganis et al., 1993). In comparison, Adélie penguins 704 

16 g 100 ml−1 Hb (Lenfant et al., 1969) and 3.0 g 100 g−1 Mb (Weber et al., 705 

1974). Although hemoglobin concentrations in emperor penguins are similar to 706 

those of Adélie penguins (18 g 100 ml−1), their Mb concentration is twice as 707 
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high (6.4 g 100 g−1) (Ponganis et al., 1997b). The three major compartments 708 

are the respiratory and vascular systems and muscles. Generally, marine 709 

mammals carry most of their oxygen stores in the blood and muscle tissue, but 710 

again there are species specific differences. The percentage distribution of 711 

oxygen among Weddell seals (body mass ~ 400 kg) is 66% in blood, 29% in 712 

muscle and only 5% is available through the respiratory system. For the 713 

smaller Californian sea lions (Zalophus californianus) (~35 kg) the values are 714 

45, 34, and 21% for blood, muscle, and respiratory system, respectively 715 

(Kooyman and Ponganis, 1998). In comparison, Adélie penguins (~5 kg) store 716 

most of their oxygen in the respiratory system (45%), and only 29% in blood 717 

and 26% in muscle tissue. The larger emperor penguin (~25 kg) has values 718 

more similar to the sea lion with 34 and 47% oxygen in blood and muscle, 719 

respectively, and only 19% in the respiratory system (Kooyman and Ponganis, 720 

1998). 721 

 The regulation of oxygen use during dives underlies complex 722 

physiological processes and depends on a variety of factors, such as dive depth 723 

and duration, level of muscle activity (Hindle et al., 2010), and body 724 

temperature (Kooyman and Ponganis, 1998). Air-breathing diving vertebrates 725 

adjust oxygen consumption through a process known as the “dive response,” a 726 

process characterized by a drop in heart rates, decreased blood perfusion of 727 

organs (except the brain) and a drop in body temperature (Butler and Woakes, 728 

2001); the result is an overall reduction of oxygen consumption. The dive 729 

response essentially manages how long an animal can stay submerged, how 730 

much oxygen it has available, and the rate at which this oxygen is consumed. 731 

Since in deep diving endotherms a great concentration of oxygen is stored in 732 

the muscles (see above), the reduction of the blood flow causes a hypoxia 733 

facilitating the oxygen dissociation from myoglobin. This mechanism enhances 734 

aerobic metabolism in exercising muscles, despite the reduced blood flow 735 

during diving (Davis, 2014). If oxygen stores become depleted during a dive, 736 

animals can switch to anaerobic metabolism. However, anaerobic production 737 

of energy (glycolysis) is less efficient than aerobic pathways as less adenosine 738 

triphosphate (ATP, high-energy molecule) is produced and the muscle tissues 739 

accumulate lactic acid. Excessive amounts of lactic acid result in metabolic 740 
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acidosis and consequently severe depression of the heart and the central 741 

nervous system (Wildenthal et al., 1968; Siesj, 1988). To remove lactic acid the 742 

animal must pay an oxygen debt. This is commonly achieved by spending 743 

extended periods at the surface to re-oxygenate tissues (Kooyman et al., 1980) 744 

which in turn can reduce foraging time and limit opportunities (Butler, 2006). 745 

However, it can be advantageous for individuals to incur such a metabolic debt. 746 

 The change from aerobic to anaerobic metabolism is determined by the 747 

Aerobic Dive Limit (ADL) or diving lactate threshold (DLT), i.e., the time an 748 

animal can remain submerged after which there is an increase in the levels of 749 

lactate exceed those present when an animal is resting (Butler, 2006). This 750 

value has only been measured in freely diving Weddell seals and emperor 751 

penguins, for all other species we referred to cADL (calculated aerobic dive 752 

limit) i.e. obtained by dividing usable oxygen stores with an estimation of the 753 

rate of oxygen consumption during diving (Butler, 2004). Post-dive partial 754 

pressures of oxygen in venous blood (PO2) were measured in free-living 755 

Weddell seals and bottlenose dolphins (Tursiops truncatus) and ranged from 756 

15–20 mmHg (Ridgway et al., 1969; Ponganis et al., 1993) which is less than 757 

the values obtained from terrestrial mammals after intense exercise (27–34 758 

mmHg; e.g., Taylor et al., 1987). Among free-diving emperor penguins, PO2 759 

levels were < 20 mmHg in 29% of dives and even dropped to 1–6 mmHg at 760 

times (Ponganis et al., 2007). Blood oxygen stores were also nearly completely 761 

exhausted in northern elephant seals (M. angustirostris) in whom venous PO2 762 

was reduced to 2–10 mmHg after dives that lasted > 10 min (Meir et al., 2009). 763 

To withstand such extreme levels of hypoxemia various adaptations such as an 764 

enlarged density of capillaries are necessary, but these are not yet fully 765 

understood (Ponganis et al., 2007). Some species constantly exceed their 766 

estimated cADL. In a review of 6 marine predators at South Georgia, all 767 

species except Antarctic fur seals (≤ 5%), frequently surpassed their estimated 768 

cADL (Boyd and Croxall, 1996). Benthic feeding otariids (e.g., Australian sea 769 

lions (Nephoca cinerea)) tended to exceed their cADL more often than pelagic 770 

foraging species (e.g., Antarctic fur seals, Costa et al., 2004). Female southern 771 

elephant seals went beyond their calculated cADL in 40% of dives, in 772 

comparison with only 1% in males (Hindell et al., 1992). Emperor (20% of 773 
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dives, Butler, 2004), king (20% of dives, Kooyman et al., 1992) and gentoo 774 

penguins (40–50% of dives, Williams et al., 1992) also regularly exceeded 775 

their cADL, as did Macquarie shags (P. purpurascens) (e.g., 19% of male 776 

dives, Kato et al., 2000) and blue-eyed shags (36% of dives; Boyd and Croxall, 777 

1996). The pattern of few anaerobic dives observed among fur seals might be 778 

consistent with the maintenance of a high metabolic rate while diving, whereas 779 

the bimodality observed in other species suggests fundamentally different 780 

strategies may be used to regulate oxygen consumption between short and long 781 

dives (Boyd and Croxall, 1996). More recent work has focused on anatomical 782 

adaptions and dive capacity (Meir et al., 2008; Ponganis et al. 2009, 2010b; 783 

Wright et al., 2014). However, little has been done to empirically determine the 784 

ADL for the remaining Southern Ocean species. 785 

 Longer post-dive surface intervals do not always indicate an oxygen 786 

debt. Even after aerobic dives, the time required to re-oxygenate tissues may be 787 

longer after extended dives due to the mechanical restrictions of respiration and 788 

airway structure. The “dive:pause ratio” measures the ratio of dive duration to 789 

time at the surface. Larger ratios indicate that post-dive surface intervals are 790 

long relative to the dive, reflecting the relatively greater time required to 791 

replenish oxygen stores. Cormorants have to spend more time at the surface 792 

after longer dives, resulting in a dive:pause ratio equal to 1 (Lea et al., 1996). 793 

Gentoo penguins have a dive:pause ratio for deep dives of 1.2–2.2 and of 0.3–794 

0.4 for shallow dives (Williams et al., 1992). 795 

 Elephant seals did not have appreciably longer surface intervals even 796 

for the longest dives; irrespective of the preceding dive, surface intervals last 797 

typically only 2–3 min (Hindell et al., 1992). This was considerably shorter 798 

than the 50 min surface intervals made by Weddell seals known to have 799 

exceeded their ADL (Kooyman et al., 1980). This provides strong evidence 800 

that many, if not all, of the female elephant seal dives that surpassed their 801 

cADL were in fact aerobic. Thus, the diving metabolic rate of elephant seals 802 

may be less than the allometrically derived estimates of metabolic rate used in 803 

the calculation of the cADL. Reduced metabolic rate during diving is a well-804 

known consequence of the dive reflex, and the simple metric of dive depth and 805 

PDSI can be used to infer the magnitude of this reduction, at least in aerobic 806 
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dives. The estimate of the metabolic rate in emperor penguins, which was 807 

relatively low when foraging, could be used to calculate with a better 808 

approximation the ADL for this species than the O2 store data (Nagy et al., 809 

2001). This has implications for energetic models commonly used in 810 

ecosystem and fisheries models, as deep diving predators may use less energy 811 

than expected from allometric estimations. 812 

 Basic diving data (dive and surface duration), along with estimates of 813 

total body oxygen stores and metabolic rate, can provide the basis for 814 

quantifying dive limits of an individual. These may address fundamental bio-815 

physiology questions for species-specific studies and also be relevant for those 816 

focusing on broader ecological questions and ecosystem energy flow studies 817 

(Williams et al., 2000). Data loggers can also provide insights into the 818 

mechanisms that underpin the dive response. Simple time depth data are 819 

insufficient to demonstrate some types of behaviors, but augmentation with an 820 

additional sensor (such as velocity from accelerometers) expands the capacity 821 

for inference. For example, accelerometers in combination with TDRs revealed 822 

that southern elephant and Weddell seals use strategies, such as passive sinking 823 

and burst-glide swimming, to reduce their oxygen consumption during diving 824 

(Hindell et al., 2000; Williams et al., 2000). Kerguelen shags (P. verrucosus) 825 

adapt their stroking activity depending on the body buoyancy variation (Cook 826 

et al., 2010). A similar mechanism is used by cetaceans (whales, Acevedo-827 

Gutiérrez et al., 2002; dolphins, Williams et al., 2017). 828 

Behavioral Mechanisms as Proxies for Physiological Mechanisms 829 

 An animal's buoyancy plays an important role in diving: increased 830 

buoyancy provides challenges for animals during descent and is energetically 831 

expensive, given that animals require additional work, for example, to maintain 832 

their position in the water column (Webb et al., 1998). However, buoyancy 833 

varies at a range of temporal scales, firstly within an individual annual cycle 834 

(e.g., gestation in elephant seals, Crocker et al., 1997) and also throughout its 835 

life as an animal grows and develops different traits (e.g., becoming a 836 

dominant male for elephant seals, Galimberti et al., 2007). Buoyancy can, 837 

however, also be used as a measure of an animal's body condition because 838 
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lipids are less dense than water making fatter animals more buoyant than leaner 839 

conspecifics (Miller et al., 2012). Some species perform “drift” dives where 840 

they stop swimming and are stationary in the water column. The rate and 841 

direction of drift has been related to the animal's total lipid content at that time 842 

(Biuw et al., 2003). This means that spatio-temporal dynamics of lipid gain 843 

(and loss) can be measured, identifying regions of poor and good foraging. An 844 

analysis of elephant seal drift data from many of the major breeding sites 845 

indicated that some regions such as the Antarctic Circumpolar Current frontal 846 

systems in the Atlantic sector may be better quality habitat than other sectors of 847 

the SO. For example, seals from the declining Macquarie Island population had 848 

to travel for over a month to reach prime habitats (Biuw et al., 2007). Finer-849 

scale measurements of burst and glide behavior have also been used to measure 850 

changes in buoyancy, opening the use of this approach to a wide range of 851 

species (Williams et al., 2000; Oliver et al., 2013; Jouma'a et al., 2015). 852 

 Tri-axial accelerometers were employed to measure overall dynamic 853 

body acceleration (ODBA) which is considered a proxy for energy expended 854 

by animals during different diving phases (Wilson et al., 2006; Gleiss et al., 855 

2011). Acceleration is used to measure movement, and since muscle motion 856 

involves oxygen consumption, acceleration could be used as a proxy for O2 857 

consumption itself. When foraging, Magellanic penguins descended faster than 858 

they ascended, which means their descent phase was energetically much 859 

costlier than their return to the surface (Wilson et al., 2010). Previous studies 860 

conducted on cormorants and pinnipeds have shown how ODBA offers a better 861 

estimation of energy expenditure than doubly labeled water method (Wilson et 862 

al., 2006; Fahlman et al., 2008) or flipper stroke evaluation (Jeanniard-du-Dot 863 

et al., 2016). However, ODBA is best used for quantifying energy during 864 

individual diving phases only rather than the full foraging trip (Wilson et al., 865 

2010) because it might be affected by animal mass, number of strokes, and the 866 

relationship between heart rate and O2 consumption (e.g., change of heart rate 867 

during dive response). 868 

 Other sensors can measure an animal's physiology more directly. Heart 869 

rate can be measured with externally (Hindell and Lea, 1998; Elmegaard et al., 870 

2016) or subcutaneously (Meir et al., 2008; Wright et al., 2014) mounted 871 
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electrodes or acoustic transmitters (Green et al., 2005). Heart rate loggers can 872 

demonstrate the degree of bradycardia during diving and anticipatory 873 

tachycardia before PSDI (Wright et al., 2014). In elephant seals, heart rates can 874 

drop to lower than 10 beats min−1, even during active dives (Andrews et al., 875 

1997). The degree of bradycardia is negatively related to dive duration, so that 876 

longer dives have lower heart rates once they pass a certain threshold duration. 877 

If the relationship between heart rate and metabolic rate is known, heart rate 878 

can be used to estimate metabolic rate during an animal's time at sea (see 879 

Green, 2011 for a full review). This approach has been used successfully for 880 

several species of penguin (Froget et al., 2002; Green et al., 2005, 2009b; Meir 881 

et al., 2008). It requires an initial calibration of the heart rate/metabolic rate 882 

relationship, usually in a laboratory, followed by deployment of the heart rate 883 

loggers that record heart rate continuously. Based on this approach, the field 884 

metabolic rate of macaroni penguins has been estimated to be 9.03 ± 0.39 W 885 

kg−1, three times the estimated Basal Metabolic Rate (Green et al., 2002). The 886 

utility of using heart rate to measure metabolic rate is hampered by technical 887 

issues such as device attachment, as well as the need for the relationship to be 888 

calibrated in the lab for each individual (Butler et al., 2004). 889 

 In summary, even simple dive data can provide valuable insights into 890 

how diving animals manage their oxygen stores and the implications that this 891 

has for diving metabolic rate. Nonetheless, more complex data streams are 892 

required to address these questions in a fully quantitative way. Additional 893 

sensors, such as accelerometers and heart rate recorders, can quantify energy 894 

expenditure. However, to obtain accurate estimates laboratory based 895 

calibrations are likely to be needed (Green et al., 2007), and the logistic 896 

difficulties of doing this in the Antarctic may explain why this has rarely been 897 

done on Southern Ocean species. Understanding the underlying mechanisms 898 

that control metabolism requires even more specialized equipment, for example 899 

to enable serial blood samples to measure oxygen levels (McDonald and 900 

Ponganis, 2013). For this work, the isolated hole experimental paradigm is 901 

something that is well suited to Antarctic field studies, at least for some species 902 

(Ponganis et al., 2010a, 2011), and it is to be hoped that more of this work will 903 

be conducted in the future. 904 
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Perspectives and Emergent Areas 905 

 The aim of this review was to examine the foraging behavior and 906 

physiology of marine mammals and seabirds of the SO using data loggers as the 907 

main method for collecting the information. The last decade has seen substantial 908 

progress in this endeavor, and we now have a solid understanding of these 909 

factors for many SO birds and mammals. However, as certain questions are 910 

answered, others emerge and a number of key areas are a focus for further work; 911 

in this final section we highlight some of these. 912 

 Adopting a question-based approach, as we have done in this review, 913 

helps to provide a framework so there is a logical flow for how dive analyses 914 

may be carried out, depending on the biological or ecological question that is 915 

driving the research. Obviously, a massive suite of diving variables is available 916 

to be utilized in such analyses, and there is a proliferation of approaches used to 917 

infer foraging behavior and diving physiology. Advancements in analytical and 918 

statistical approaches, together with generally increasing sample sizes, are 919 

providing improved tools for learning more about diving ecology. An excellent 920 

example is the now readily accessible software for implementing mixed-effect 921 

models (e.g., Wood and Scheipl, 2017; Pinheiro et al., 2018). These enable 922 

inferences to be made at the individual level (via the random effects), as well as 923 

at the population level (via the fixed effects) while taking account of individual 924 

variability. Such techniques provide an appropriate analytical framework for 925 

researchers to deal with large, serially (spatially and temporally) correlated, and 926 

individual-based datasets, and are increasingly being adopted. Advancements in 927 

computationally efficient approaches for fitting models with discrete latent states 928 

to time series data, which have been widely used in animal movement modeling 929 

(Langrock et al., 2012; Michelot et al., 2016), may similarly promise a step-930 

function in improving capabilities for dive analyses in the near future (e.g., 931 

Quick et al., 2017). Finally, hierarchical approaches, enabling information from 932 

multiple data sources to be integrated, are also available (Clark, 2007) and 933 

present important opportunities particularly for population-level analyses which 934 

we return to at the close of this section. 935 

 An important research area this review has considered only incidentally 936 

is the association of animal diving with the physical environment. This is largely 937 
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beyond our scope since the vast majority of telemetry studies investigating how 938 

the environment influences the foraging and physiology of Southern Ocean 939 

marine predators (i.e., bottom-up processes) do so by integrating spatially-940 

explicit movement (location) data with external habitat information (e.g., from 941 

satellite remote sensing, and/or oceanographic models). However, significant 942 

advances have been made over the last decade through the in situ collection of 943 

environmental data by animal-borne sensors, which has opened our eyes to the 944 

subsurface environment in a way that is not possible from remotely-sensed data. 945 

A prime example is the improved knowledge of how elephant seals use specific 946 

water masses and oceanographic features obtained from high-quality 947 

temperature-salinity profiles collected onboard tags (e.g., Biuw et al., 2007; 948 

Labrousse et al., 2015; Hindell et al., 2016). Other novel approaches include the 949 

usage of onboard light-levels (Guinet et al., 2014) to infer bio-optical properties 950 

of the water column, including phytoplankton concentrations (Jaud et al., 2012; 951 

O'Toole et al., 2014), as well as direct fluorometry measurements (Guinet et al., 952 

2013) to evaluate productivity influences on animal foraging. These clearly 953 

demonstrate the benefits gained from collecting environmental information 954 

onboard the same tag that is collecting the behavioral (dive) information. The 955 

coupling of oceanographic studies with ecological studies is an opportunity that 956 

has not reached its full potential yet, but this growing area likely warrants a 957 

review in its own right. 958 

 Our improved understanding of the at-sea vertical movements, foraging 959 

strategies and prey distributions now needs to be placed into a larger population 960 

and community context. This has three components. The first upscaling is to 961 

combine multiple species-specific studies to obtain community level 962 

assessments of diving behavior. This approach is increasingly being adopted in 963 

tracking work in the SO (Friedlaender et al., 2011; Thiebot et al., 2012; 964 

Raymond et al., 2015; Reisinger et al., 2018) and is providing powerful insights 965 

into regions that are of particular ecological significance. However, this only 966 

applies to the horizontal dimension (latitude and longitude), and dive studies will 967 

enable this approach to move into a third dimension, namely depth (e.g., Hindell 968 

et al., 2011). An integrated understanding of how diving animals use the water 969 

column will enable us to identify key features, such as the deep scattering layer 970 
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(Naito et al., 2013), thermoclines (Bost et al., 2015) and specific water masses 971 

(Biuw et al., 2007) that are important to the community of diving predators. This 972 

can be matched to highly resolved modern Regional Ocean Models (e.g., 973 

Malpress et al., 2017) to estimate how access to prey and foraging efficiencies 974 

may change into the future. 975 

 Upscaling can also be in a temporal sense. Long time series of diving 976 

data sets enable us to address questions of environmental determinants of 977 

foraging success and prey distribution (see Trathan et al., 1996; Hindell et al., 978 

2017). Data-logging has the potential to play a key role in ecological monitoring 979 

(IMOS reference, Hussey et al., 2015), but this requires long-term funding, 980 

which in the past has been difficult to secure for tagging studies. 981 

 Better linkage of diving and location data will also lead to better 982 

understanding of habitat usage of SO bird and mammals. Describing and 983 

modeling of key habitats has been a focus of research for a long time but 984 

emerging statistical methods are now able to integrate diving behavior into 985 

movement models. For example, Bestley et al. (2015) incorporated several 986 

diving indices (dive residual, surface residual) into a state-space movement 987 

model to study at-sea foraging behavior. There was a general tendency for the 988 

probability of switching into “resident” movement state to be positively 989 

associated with shorter dive durations (for a given depth) and longer post-dive 990 

surface intervals (for a given dive duration), potentially indicating high energy 991 

diving. A growing body of literature demonstrates that simplistic interpretations 992 

of optimal foraging theory, based only on horizontal movements, do not directly 993 

translate into the vertical dimension in dynamic marine environments. Analyses 994 

that incorporate dive data can test more sophisticated models of foraging 995 

behavior. Further efforts to integrate multiple data streams (e.g., movement, 996 

haulout, diving activity) and thereby represent more realistic movement 997 

behaviors (such as at-sea resting) can also lead to improve at-sea activity 998 

budgets (Russell et al., 2015; Bestley et al., 2016). 999 

 Currently bio-logging studies remain somewhat limited in their scope 1000 

given that most still focus largely on observations of individual animals that are 1001 

then extrapolated across the population. This is mainly because instruments are 1002 

expensive and consequently sample sizes are small. But with increasing 1003 
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availability of inexpensive GPS loggers, light sensors, and accelerometers it is 1004 

increasingly possible to achieve large samples. A related question is how many 1005 

individuals need to be tagged to obtain a population level measure while still 1006 

minimizing the number of animals that are equipped. Several studies of habitat 1007 

use have approached this by making cumulative area curves (sequentially 1008 

increasing the number of animals and calculating the total area used) (Hindell et 1009 

al., 2003; Arthur et al., 2017). Our new insights into foraging at sea also need to 1010 

be linked to demography and population level consequences. For many SO 1011 

species, broad-scale relationships between demographic performance 1012 

parameters, such as breeding success and recruitment in relation to climate 1013 

variables (e.g., ice extent and ocean temperature), are well established for some 1014 

species — Adélie penguins and ice at the western Antarctic Peninsula (Smith et 1015 

al., 2003), and elephant seals and the Southern Ocean oscillation index (Le 1016 

Boeuf and Crocker, 2005). But the proximate drivers of these relationships are 1017 

not clear. Tagging studies have the potential to bridge this gap. For example, the 1018 

diving behavior of female Antarctic fur seals is linked to prey availability, and 1019 

forage location; diving activity, diet, and foraging efficiency all change 1020 

significantly between years as ocean conditions vary (Lea and Dubroca, 2003; 1021 

Lea et al., 2006). In warmer years, mothers dive deeper and make longer 1022 

foraging trips. This reduces both maternal and pup body condition, and 1023 

suppresses pup growth rates (Lea et al., 2006). Increasingly sophisticated 1024 

approaches are enabling diving behavior to be linked to energetics (Jeanniard-1025 

du-Dot et al., 2017) and predator-prey (Hiruki-Raring et al., 2012) frameworks 1026 

to estimate reproductive consequences at the population level. These expand 1027 

important research avenues as biotelemetry in the Southern Ocean enters its 1028 

mature phase. Finally, linking at-sea behavior to demography and population 1029 

level consequences is now much more feasible, and will provide an advance on 1030 

traditional individual-based studies, and provide an overarching view of how 1031 

behavior is linked to population growth and persistence. 1032 

  1033 
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Supplementary material 1039 

Materials and methods 1040 

 Since 1950 nearly 3000 studies investigating diving and foraging 1041 

behavior of predators in the SO have been carried out. However, the majority 1042 

of this work was carried out in the decade 2006–2016. Recent advances in 1043 

telemetry have facilitated this investigation greatly. In our study, we conducted 1044 

a qualitative literature analysis to gain insights to assess the diving behavior of 1045 

SO predators based on data obtained through a variety of data loggers and 1046 

sensors. A systematic literature review was conducted of the last 10 years of 1047 

published work on the diving telemetry of marine mammals and seabirds of the 1048 

SO. Online databases such as Google Scholar, Medline, Web of Science, were 1049 

searched for peer-reviewed literature containing the words: dive data, tag, 1050 

TDR, Southern Ocean, Antarctic, marine mammals, penguins, seabirds, seals, 1051 

cetaceans, species name. Publications were only included in the analysis if 1052 

written in English and published from 2006 to 2016. Furthermore, we only 1053 

considered studies that employed data loggers designed to measure the 1054 

underwater behavior within the SO region and on SO species (pinnipeds, 1055 

cetaceans or seabirds). No fish or turtles were considered in this study. These 1056 

criteria were chosen to limit the amount of literature to analyze.  1057 

 For the purpose of the analysis we created a database using the 1058 

Mendeley Reference Manager (www.mendeley.com). We chose this software 1059 

over others because of the possibility to search words or full-text in all whole 1060 

documents added to the library. First we imported all publications that fulfilled 1061 

out criteria (n = 218) into the database. From each article we collected the 1062 

following metadata: author and year, species studied, subject (foraging, 1063 

physiology, energetic, other), location of data logger deployment, aim of the 1064 
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study, type of data logger used, analysis software used, plots shown and diving 1065 

variables collected. We entered all metadata into an excel spreadsheet 1066 

(Microsoft Excel 2010) and identified and synthesised the most commonly 1067 

used basic dive parameters (dive duration and depth, see Table 2) and derived 1068 

parameters (see Table 3). Note that not all publications reported all possible 1069 

dive variables. Based on the publications that reported mean dive duration and 1070 

depth, we used R software (Ihaka and Gentleman, 1996) to carry out a 1071 

comparative analysis of the relationship between these two variables for all 1072 

species (see Fig. 4). Publications were grouped according to the fundamental 1073 

question being addressed: characterization of the diving behavior as the vertical 1074 

component of animal movement (30%), foraging as diving activity linked with 1075 

food research and acquisition (56%), energetics (14%). The latter referred to 1076 

allocation of energy for maintenance functions, metabolic work, growth, 1077 

reproduction, and locomotion. From this we examined which variables and 1078 

methods were used to answer those questions.  1079 

Library access 1080 

A public access to the review library is available at www.mendeley.com, 1081 

Mendeley group name: “Supplementary Material: View from below” please 1082 

email the corresponding author for further details.1083 
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Abstract 34 

 The diving behavior of marine predators is influenced by their physiology, foraging 35 

behavior and the environment. Body mass is generally assumed to be related to diving ability: 36 

large body mass confers various benefits such as the ability to dive deeper and for longer. 37 

Much of what is known about the diving ability of free-ranging marine mammals and seabirds 38 

has been inferred from biotelemetry loggers and earlier meta-analyses have typically 39 

summarized diving parameters to a single value per species. Here to examine the effect of 40 

body mass on dive behavior, we present comparative analyses from six time-depth recorder 41 

datasets for three penguin species and three seal species studied in the southern Indian Ocean. 42 

Thus, our dataset encompasses animals of different species, sizes and sex as well as 43 

substantial intra-specific size variation which allows us to quantify the effects of size between 44 

species, but also within species, and to better understand the relationship drivers. 45 

 Our results show that the diving ability of seabirds and marine mammals scales 46 

positively with mass between species for dive duration and dive depth. However, this general 47 

rule did not hold true within species and for post-dive intervals, suggesting that most of our 48 

studied species perform generally aerobic dives given the limits imposed by the chemical 49 

processes whereby oxygen and CO2 are exchanged. 50 

 Moreover, our analysis of interdependencies of diving parameters demonstrated both 51 

between- and within-species effects, meaning that independently from their mass, individuals 52 

may be able to adjust dive behavior to respond to the environmental conditions they 53 

experience, but their range of responses is narrower at the within-species level.  54 

  55 
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Introduction 56 

 Making their living within a complex, three-dimensional environment, air-breathing 57 

marine predators balance two competing needs: acquiring food resources at depth and oxygen 58 

at the surface. Hence, diving seabirds and mammals are well adapted to carefully regulate 59 

their dive cycle, maximizing the benefits of time spent underwater (using oxygen stores) and 60 

minimizing its cost (Mori, 1998; Mori, 1999). Studying their underwater behavior requires 61 

special instruments; among the simplest are time-depth-recorders. From these, fundamental 62 

information on dive depth, duration and post-dive interval may be used to investigate diving 63 

capacity, and how different species face and solve the constraints, and use opportunities 64 

linked to the separation of their essential resources. 65 

 One of the principal determinants of diving ability is body mass (Piatt and Nettleship, 66 

1985; Watanuki et al., 1996; Butler and Jones, 1997), particularly for endotherms whose 67 

physiological adaptations are tightly linked to respiration and metabolism. Mass directly 68 

influences both the ability to store oxygen which in general scales isometrically with mass 69 

(Lasiewski and Calder, 1971), and oxygen usage which scales allometrically with an exponent 70 

of 0.67 or 0.75 (Butler and Jones, 1982; Noren and Williams, 2000; White and Seymour, 71 

2003). Thus, smaller animals require more energy, and consume more oxygen, to reach the 72 

same absolute depth as larger ones (Kooyman, 1989). From a physiological perspective, 73 

larger animals have the capacity to dive for longer than smaller ones (the oxygen store/usage 74 

hypothesis). However, there are variations to this generality as some species exhibit 75 

physiological adaptations specialized for diving, for example, to enhance oxygen storage (e.g., 76 

via total blood volume, increased hemoglobin and myoglobin, or differential allocation of 77 

oxygen in the blood, muscle and respiratory system), and to reduce oxygen usage (e.g., via 78 

reduced diving metabolic rates, tolerance to anaerobic metabolism, energetically efficient 79 

movements). Hence, extensive allometric comparative analyses (Boyd and Croxall, 1996; 80 

Schreer and Kovacs, 1997; Halsey et al., 2006a, 2006b; Isaac and Carbone, 2010; Gillooly et 81 

al., 2016; Hayward et al., 2016) examining the extent to which size is preserved as a 82 

fundamental determinant have adopted a phylogenetic approach.  83 

 Such high-level comparative diving studies have typically summarized dive 84 

characteristics (e.g., dive depth, duration and post-dive interval (PDI)) into a single data point 85 

per species (i.e., pooling data from individuals within a species) (Boyd and Croxall, 1996; 86 

Schreer and Kovacs, 1997; Watanuki and Burger, 1999; Halsey et al., 2006a, 2006b; 87 

Brischoux et al., 2008; Isaac and Carbone, 2010; Gillooly et al., 2016; Hayward et al., 2016). 88 
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These studies clearly demonstrate that dive duration is fundamentally related to dive depth, 89 

PDI is related to duration, and that in general these parameters scale with mass. Early work 90 

from Boyd and Croxall (1996) differentiated between pinnipeds and seabirds and showed a 91 

positive relationship between body mass and dive duration. Schreer and Kovacs (1997) 92 

extended this across dive duration and depth for a large data set, including turtles and 93 

cetaceans, and identified phocid seals and penguins as exceptional divers relative to their 94 

masses. More recently, the extensive comparative analysis by Halsey et al. (2006) 95 

demonstrated that many diving variables co-vary strongly with body mass, with allometric 96 

exponents close to 0.33, showing some support for the oxygen store/usage hypothesis. 97 

 In our regional-scale study, we investigate diving patterns and body mass scaling for 98 

six air-breathing marine predators that were studied in the Indian sector of the Southern 99 

Ocean. We consider information beyond the typical highly summarized level described above 100 

by applying mixed-model analyses including data available at the intra-specific level. 101 

Adopting this approach should enable a more detailed look into the potential relationship 102 

drivers and the relative roles of within-species effects. For example, phenotypically plastic or 103 

facultative behavioral responses from between-species effects may reflect higher-order 104 

evolutionarily fixed physiological and/or behavioral responses acting on the species group. 105 

 The aim of the study is to examine the effect of body mass on dive behavior and the 106 

extent to which this is governed by a between-species effect (Table 1), and to explore whether 107 

this effect is also expressed at the within-species level. We assess three basic components of 108 

dive behavior (dive depth, dive duration and post-dive interval), and additionally consider the 109 

inter-dependencies between these three parameters using the same modelling approach. We 110 

discuss our findings in the context of expected body mass influences, the biology of our study 111 

species, and other factors (environmental, ecological) likely to contribute to shaping marine 112 

predators’ diving performance. 113 

 114 

Materials and Methods  115 

 We compiled previously published and contemporary time-depth recorder (TDR) 116 

datasets for three penguin and three seal species tagged at various locations within the Indian 117 

sector of the Southern Ocean (Supplementary S1). For each species, the TDR datasets used 118 

provide measurements for multiple individuals from the same population, within the same 119 

region and time period. Raw TDR files were processed using the Wildlife Computer Data 120 

Analysis Program, WC-DAP software (v3.0.369.0 5 Jan 2016). The time-depth datasets were 121 
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then analyzed with the package diveMove v1.2.6 (Luque, 2007) in R software v3.6.1 (Ihaka 122 

and Gentleman 1996; R Development Core Team 2007). The three principal dive parameters 123 

dive depth (m), dive duration (s), and post-dive surface interval (s) were investigated in 124 

relation to body mass (kg). A natural logarithmic transformation was applied to all data. For 125 

the analyses described below, all measurements from the same individual were aggregated 126 

into an average value.  127 

 We tested the influence of body mass on diving behavior by fitting linear mixed-effect 128 

models (LMMs). To test for species-level plasticity, we followed the method described by 129 

Van de Pol and Wright (2009) using the technique called ‘within-group centring’ to 130 

distinguish within-species level effects from between-species level effects. This simply 131 

involves subtracting the species’ mean value from each individual’s value �𝑥𝑥𝐷𝐷𝑖𝑖 − 𝑥𝑥𝑖𝑖� where 132 

𝑥𝑥𝐷𝐷𝑖𝑖 is the 𝑥𝑥 value for individual i from species j. In the LMMs, the new predictor variable 133 

�𝑥𝑥𝐷𝐷𝑖𝑖 − 𝑥𝑥𝑖𝑖� consequently reflects only the within-species variation component, while the 134 

species’ means �𝑥𝑥𝑖𝑖� reflects only the between-species variation component. Working with 135 

these two new fixed effects allowed us to model whether the unbiased estimate of either the 136 

within-species effect (𝛽𝛽𝑊𝑊) or the between-species effect (𝛽𝛽𝐵𝐵) is itself significant, as well as 137 

whether these two effects (slopes) are statistically different from each other (van de Pol and 138 

Wright, 2009). The estimate of (𝛽𝛽𝐵𝐵 − 𝛽𝛽𝑊𝑊) is expected to be close to zero and nonsignificant 139 

when the within- and between-individual effects are effectively the same. In the above LMMs, 140 

species was included as a random intercept (𝜇𝜇0𝑖𝑖), but where we found a significant within-141 

species effect (𝛽𝛽𝑊𝑊), and/or (𝛽𝛽𝐵𝐵 − 𝛽𝛽𝑊𝑊) was non-zero (i.e., the within- and between-subject 142 

effects were not effectively the same), the degree of between-species variation in within-143 

species slopes around 𝛽𝛽𝑊𝑊 was quantified by adding a random slope (𝜇𝜇𝑊𝑊𝑖𝑖) to give a final 144 

model: 145 

 146 

𝑦𝑦𝐷𝐷𝑖𝑖 =  �𝛽𝛽0 + 𝜇𝜇0𝑖𝑖� +  �𝛽𝛽𝑊𝑊 +  𝜇𝜇𝑊𝑊𝑖𝑖��𝑥𝑥𝐷𝐷𝑖𝑖 − 𝑥𝑥𝑖𝑖� + 𝛽𝛽𝐵𝐵𝑥𝑥𝑖𝑖 +  𝜀𝜀0𝐷𝐷𝑖𝑖 147 

 148 

Where the intercept term is given by 𝛽𝛽0, and the random intercept (𝜇𝜇0𝑖𝑖), random slope (𝜇𝜇𝑊𝑊𝑖𝑖) 149 

and residual error �𝜀𝜀0𝐷𝐷𝑖𝑖� terms are assumed to be normally distributed; for example, 𝜇𝜇𝑊𝑊𝑖𝑖 is 150 

assumed to be drawn from a normal distribution with zero mean and between-subject variance 151 

𝜎𝜎2𝜇𝜇𝑊𝑊𝑊𝑊  ((Van de Pol and Wright, 2009, eqn. 4). A likelihood ratio (LR) statistic based on the 152 
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restricted maximum likelihood (REML) was used to test between the random-effects structure 153 

of the two model forms with/without a random slope 𝜇𝜇𝑊𝑊𝑖𝑖 (Venables and Ripley, 2002). 154 

 We applied the same approach to examine the expected dependencies between diving 155 

parameters, namely the relationship between dive duration and dive depth, and the 156 

relationship between post-surface dive interval and dive duration. This allowed us to examine 157 

the extent of species-level plasticity with respect to the fundamental controls of body size, but 158 

also with respect to the fundamental constraints on dive-cycle management. 159 

 All LMMs were fitted using the R package nlme v3.1-14124. All data are presented as 160 

mean ± s.d. across individual animals, and all parameter estimates refer to mean ± s.e. 161 

throughout. For best-fit LMMs, we report marginal R2 values (R2
m, for the variance explained 162 

only by fixed effects) and conditional R2 values (R2
c, based on the variance explained by both 163 

fixed and random effects) calculated following Nakagawa and Schielzeth (2013). 164 
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Table 1. Within- and between-species hypotheses examined for diving behavior of marine predators inthe Indian sector of the Southern Ocean. 165 
 166 
Behavioral analyses Between-species hypothesis Within-species hypothesis 

Body size effects: 
Diving behavior in 
relation to body mass 

Among air-breathing marine 
predator species, larger body size 
confers advantages enabling 
deeper, longer dives, with 
subsequently longer post-dive 
intervals to recover oxygen stores 
at the surface.   

Within species’ populations, larger individuals may demonstrate 
greater diving capacity, and ability to adjust their diving 
behavior to access deeper waters, with longer dives and 
subsequent PDIs. 

Diving constraints: 
Dependencies between 
diving parameters 

Among air-breathing marine 
predator species occupying epi- to 
meso-pelagic depths, deeper dives 
fundamentally necessitate longer 
dive durations and, hence, larger 
PDI consequences. 

Within the range of forage depths generally accessed by a species’ 
population, individuals may adjust dive durations and associated 
PDIs to adapt to the conditions they experience. 

167 
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Results 168 

 High resolution time-depth datasets were available for three pinniped and three 169 

penguin species studied in this region: the Antarctic fur (Arctocephalus gazella), Weddell 170 

(Leptonychotes weddellii) and southern elephant (Mirounga leonina) seals, and Adélie 171 

(Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins. The 172 

mean dive depths of the six species spanned the upper epipelagic to mesopelagic, ranging 173 

from ~20 m for Adélie penguins, the smallest species examined, to ~500 m for female 174 

southern elephant seals (Table 2). Mean dive durations ranged from approximately 1 min for 175 

Adélie penguins, to 2–3 min for king and emperor penguins and Antarctic fur seals, to 10 and 176 

30 min for the larger Weddell and elephant seals. Subsequent post-dive intervals at the surface 177 

followed similar patterns, but typically with much less variance across species ranging from 178 

about 0.5–3 min. 179 
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Table 2. Summary of dive variables collated for penguin and seal datasets in the Indian sector of the Southern Ocean. Data presented as 180 
mean ± S.D. across all individuals. PDI = post-dive surface interval. 181 
 182 

Species Number of 
individuals 

Number of 
dives Depth (m) Duration (s) PDI (s) Mass (kg) 

Adélie penguin (P. adeliae) 18 (8 F, 10 M) 36,683 22 ± 5 67 ± 8 38 ± 7 4 ± 0.4 

King penguin (A. patagonicus) 26 (17 F, 9 M) 45,598 67 ± 9 149 ± 20 71 ± 9 10 ± 0.8 

Emperor penguin (A. forsteri) 14 F 10,253 83 ± 20 196 ± 40 86 ± 30 25 ± 2 

Antarctic fur seal (A. gazelle) 26 F 37,160 52 ± 9 123 ± 13 63 ± 15 38 ± 4 

Weddell seal (L. weddellii) 18 F 49,842 191 ± 45 763 ± 123 182 ± 22 369 ± 57 

Southern elephant seal  
(M. leonina) 

6 F 62,013 508 ± 58 1729 ± 145 136 ± 12 347 ± 40 

        6 M 59,363 448 ± 77 1638 ± 259 136 ± 14 613 ± 167 

Total/Range 114 300,912 22–508 67–1729 38–182 4–613 

 183 
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Body mass relationships 184 

 Our LMM results confirmed that body mass effects on dive depth were significant at 185 

the between-species-level (Fig. 1a; Table 3) and also identified the within-species and 186 

between-species level effects to be statistically different (t = 3.18, p = 0.034). Including 187 

between-species variation in within-species slopes around 𝛽𝛽𝑊𝑊 improved the model fit ((1) 188 

versus (3), Table 3; likelihood ratio (LR) = 9.95, p = 0.007; estimated 𝜎𝜎𝑊𝑊𝑊𝑊 = 0.51), indicating 189 

a significant degree of plasticity. Best linear unbiased predictors (BLUPs) for the within-190 

species slopes ranged from -0.65–0.59 (ADE:0.16, KP: -0.65, EMP: 0.02, FUR: 0.38, WED: 191 

0.59, SES: -0.50), thus showed opposing trends in some cases; hence, the fixed-effect estimate 192 

of 𝛽𝛽𝑊𝑊 was close to zero. The between-species effect 𝛽𝛽𝐵𝐵 was estimated at 0.56 ± 0.07 (t = 8.38, 193 

p = 0.0011) with the final (best-supported) model explaining 96% of the variance (R2
M = 0.76, 194 

R2
C = 0.96). 195 

 The LMM results for dive duration were similar to those reported for depth, again 196 

confirming strong body mass effects on dive duration at the between-species-level (Fig. 1b; 197 

Table 3) and identifying within- and between-species level effects to be statistically different 198 

(t = 4.25, p = 0.013). Significant between-species variation in within-species slopes ((1) 199 

versus (3), Table 3; likelihood ratio (LR) = 9.53, p = 0.009; estimated 𝜎𝜎𝑊𝑊𝑊𝑊 = 0.49) provides 200 

some evidence for the existence of variation in phenotypic plasticity and/or behavioral 201 

strategies. BLUPs for the within-species slopes ranged from -0.58–0.55 (ADE: 0.20, KP: -202 

0.15, EMP: -0.58, FUR: 0.29, WED: 0.55, SES: -0.31); the between-species effect 𝛽𝛽𝐵𝐵 was 203 

estimated at 0.62 ± 0.09 (t = 6.66, p = 0.0026), with the best-supported model explaining 98% 204 

of the variance (R2
M = 0.83, R2

C = 0.98). 205 

 The PDI models showed body mass effects on PDI to be significant only at the 206 

between-species-level (Fig. 1c, Table 3; estimated 𝛽𝛽𝐵𝐵 = 0.28 ± 0.06, t = 4.43, p = 0.011) and 207 

identified the within- and between-species level effects to be effectively the same (t = 1.64, p 208 

= 0.18). There wasno evidence for between-species variation in within-species slopes (LR = 209 

0.31, p = 0.85). This model explained 87% of the variance (R2
M = 0.66, R2

C = 0.87). 210 
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Table 3. Result summaries of parameter estimates from the linear mixed models using ‘within-group centring’ to examine relationships 211 
between dive parameters and body mass. The model sequence enables testing of whether (1) the within-species (𝛽𝛽𝑊𝑊) and between-species (𝛽𝛽𝐵𝐵) 212 
effects are significant, (2) the difference (𝛽𝛽𝐵𝐵 − 𝛽𝛽𝑊𝑊) between these two effects is significant, and if so (3) whether substantial between-species variation 213 
in within-species slopes around 𝛽𝛽𝑊𝑊 warrants the inclusion of a random slope (𝜇𝜇𝑊𝑊𝑖𝑖) (see Methods). Model comparison between random effects structures 214 
in 1) and 3) is based on likelihood ratio tests (LRTs) using restricted maximum likelihood (REML); shading highlights best-supported model. Table 215 
reports the parameter estimates and their approximate standard errors; statistical significance is given for predictor covariates based on the ratios 216 
between the estimates and their standard errors, and the associated p-value from a t distribution. The important significant effects are highlighted in bold 217 
and the nonsignificant effects underlined. Random terms are reported as S.D. 218 

 Model parameter Log(depth) v log(mass) Log(duration) v log(mass) Log(PDI) v log(mass) 
(1) 𝑦𝑦𝐷𝐷𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽𝑊𝑊�𝑥𝑥𝐷𝐷𝑖𝑖 − 𝑥𝑥𝑖𝑖� + 𝛽𝛽𝐵𝐵𝑥𝑥𝑖𝑖 + 𝜇𝜇0𝑖𝑖 +  𝜀𝜀0𝐷𝐷𝑖𝑖    
𝛽𝛽0 (intercept) 2.22 ± 0.48 3.16 ± 0.43 3.21 ± 0.26 
𝛽𝛽𝑊𝑊 (within-species effect) -0.07 ± 0.15 (p = 0.64) -0.01 ± 0.10 (p = 0.91) 0.04 ± 0.13 (p = 0.73) 
𝛽𝛽𝐵𝐵 (between-species effect) 0.53 ± 0.12 (p = 0.01) 0.61 ± 0.10 (p = 0.004) 0.28 ± 0.06 (p = 

0.011) 
𝜎𝜎𝜇𝜇0𝑊𝑊(random intercept) 0.49 0.44 0.27 
𝜎𝜎𝜀𝜀0𝑒𝑒𝑊𝑊(residual error) 0.23 0.16 0.20 
(2) 𝑦𝑦𝐷𝐷𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽𝑊𝑊𝑥𝑥𝐷𝐷𝑖𝑖 + (𝛽𝛽𝐵𝐵 −  𝛽𝛽𝑊𝑊)𝑥𝑥𝑖𝑖 + 𝜇𝜇0𝑖𝑖 +  𝜀𝜀0𝐷𝐷𝑖𝑖    
𝛽𝛽0 (intercept) 2.22 ± 0.48 3.16 ± 0.43 3.21 ± 0.26 
𝛽𝛽𝑊𝑊 (within-species effect) -0.07 ± 0.15 (p = 0.64) -0.01 ± 0.10 (p = 0.91) 0.04 ± 0.13 (p = 0.73) 
(𝛽𝛽𝐵𝐵 − 𝛽𝛽𝑊𝑊) (within- versus between-species 
difference) 

0.60 ± 0.19 (p = 0.034) 0.62 ± 0.15 (p = 0.013) 0.24 ± 0.15 (p = 0.18) 

𝜎𝜎𝜇𝜇0𝑊𝑊(random intercept) 0.49 0.44 0.27 
𝜎𝜎𝜀𝜀0𝑒𝑒𝑊𝑊(residual error) 0.23 0.16 0.20 
(3) 𝑦𝑦𝐷𝐷𝑖𝑖 =  �𝛽𝛽0 + 𝜇𝜇0𝑖𝑖� +  �𝛽𝛽𝑊𝑊 +  𝜇𝜇𝑊𝑊𝑖𝑖��𝑥𝑥𝐷𝐷𝑖𝑖 − 𝑥𝑥𝑖𝑖� +
𝛽𝛽𝐵𝐵𝑥𝑥𝑖𝑖 + 𝜀𝜀0𝐷𝐷𝑖𝑖 

   

𝛽𝛽0 (intercept) 2.12 ± 0.31 3.12 ± 0.39 3.20 ± 0.25 
𝛽𝛽𝑊𝑊 (within-species effect) 0.10 ± 0.27 (p = 0.71) 0.06 ± 0.24 (p = 0.81) 0.04 ± 0.15 (p = 0.79) 
𝛽𝛽𝐵𝐵 (between-species effect) 0.56 ± 0.07 (p = 0.0011) 0.62 ± 0.09 (p = 0.003) 0.28 ± 0.06 (p = 

0.010) 
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𝜎𝜎𝜇𝜇0𝑊𝑊(random intercept) 0.46 0.43 0.26 
𝜎𝜎𝑊𝑊𝑊𝑊(random slope) 0.51 0.49 0.13 
𝜎𝜎𝜀𝜀0𝑒𝑒𝑊𝑊(residual error) 0.22 0.15 0.20 

219 
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Figure 1. Results from mixed model analyses investigating within- and between species effects on 220 
the relationship between three dive parameters and body mass a) dive depth, b) dive duration, and 221 
c) post-dive interval (PDI). All variables were natural log-transformed. Full model results are given in 222 
Table 3. Colour shows species means (large circles) and estimated within-species-level slopes (lines), 223 
black line represents the between-species-level effect. For a) and b) the LMM results indicated a 224 
significant between-species (𝛽𝛽𝐵𝐵) effect, and for this to be statistically different from the within-species 225 
effect (i.e., 𝛽𝛽𝐵𝐵 − 𝛽𝛽𝑊𝑊 is non-zero); a random slopes model was supported in both cases indicating 226 
substantial between-species variation in within-species slopes around 𝛽𝛽𝑊𝑊. For c) the LMM results 227 
indicated a nonsignificant within-species (𝛽𝛽𝑊𝑊) effect, a significant between-species (𝛽𝛽𝐵𝐵) effect, and 228 
𝛽𝛽𝐵𝐵 − 𝛽𝛽𝑊𝑊 to be close zero (i.e. a random intercept only model was supported). For comparative 229 
purposes also shown are results from the large-scale analysis of Halsey et al. (2006, grey dashed lines). 230 
For a) log depth vs log mass, Halsey, et al., 13 reported separate intercepts for birds (log(10.5)) and 231 
mammals (log(3.8)), but a common slope of 0.389; b) log duration vs log mass (intercept: log(21.2), 232 
slope: 0.368), c) PDI  (intercept: log(18.8), slope: 0.331). Species (spp) abbreviations are: ade = Adélie 233 
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penguins, kp = king penguins, emp = emperor penguins, fur = Antarctic fur seals, wed = Weddell 234 
seals, ses = southern elephant seals. 235 
 236 
Dive parameter relationships 237 

 The LMMs examining the relationship between dive duration and depth (Table 4) 238 

showed both the within-species effects (𝛽𝛽𝑊𝑊 = 0.54 ± 0.04, t = 13.65, p < 0.0001) and the 239 

between-species effects (𝛽𝛽𝐵𝐵 = 1.08 ± 0.10, t = 10.43, p = 0.0005) of depth on duration were 240 

significant, and that these estimated effects were statistically different (t = 4.84, p = 0.0084). 241 

There was no evidence for between-species variation in within-species slopes (LR = 0.27, p = 242 

0.87). This model explained 99% of the variance (R2
M = 0.93, R2

C = 0.99). 243 

 The LMMs examining the relationship between post-dive interval and dive duration 244 

(Table 4) also showed both the within- (𝛽𝛽𝑊𝑊 = 0.77 ± 0.11, t = 6.90, p < 0.0001) and between-245 

species (𝛽𝛽𝐵𝐵 = 0.45 ± 0.08, t = 5.53, p = 0.0052) level effects were significant, but identified 246 

the within- and between-species slopes to effectively the same (t = -2.30, p = 0.083). There 247 

was no evidence for variation in within-species slopes (LR = 0.49, p = 0.78). This model 248 

explained 90% of the variance (R2
M = 0.74, R2

C = 0.90). 249 
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Table 4. Result summaries reporting parameter estimates from the linear mixed models using ‘within-group centring’ to examine 250 
relationships between dive parameters. Presentation as in Table 3.  251 

 Model parameter Log(duration) v log(depth) Log(PDI) v log(duration) 
(1) 𝑦𝑦𝐷𝐷𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽𝑊𝑊�𝑥𝑥𝐷𝐷𝑖𝑖 − 𝑥𝑥𝑖𝑖� + 𝛽𝛽𝐵𝐵𝑥𝑥𝑖𝑖 + 𝜇𝜇0𝑖𝑖 +  𝜀𝜀0𝐷𝐷𝑖𝑖   
𝛽𝛽0 (intercept) 0.86 ± 0.45 1.79 ± 0.46 
𝛽𝛽𝑊𝑊 (within-species effect) 0.54 ± 0.04 (p < 0.0001) 0.77 ± 0.11 (p < 0.0001) 
𝛽𝛽𝐵𝐵 (between-species effect) 1.08 ± 0.10 (p = 0.0005) 0.45 ± 0.08 (p = 0.0052) 
𝜎𝜎𝜇𝜇0𝑊𝑊(random intercept) 0.26 0.22 
𝜎𝜎𝜀𝜀0𝑒𝑒𝑊𝑊(residual error) 0.10 0.17 

(2) 𝑦𝑦𝐷𝐷𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽𝑊𝑊𝑥𝑥𝐷𝐷𝑖𝑖 + (𝛽𝛽𝐵𝐵 −  𝛽𝛽𝑊𝑊)𝑥𝑥𝑖𝑖 + 𝜇𝜇0𝑖𝑖 +  𝜀𝜀0𝐷𝐷𝑖𝑖   
𝛽𝛽0 (intercept) 0.86 ± 0.45 1.79 ± 0.46 
𝛽𝛽𝑊𝑊 (within-species effect) 0.54 ± 0.04 (p < 0.0001) 0.77 ± 0.11 (p < 0.0001) 
(𝛽𝛽𝐵𝐵 − 𝛽𝛽𝑊𝑊) (within- versus between-species difference) 0.54 ± 0.11 (p = 0.0084) -0.32 ± 0.14 (p = 0.083) 
𝜎𝜎𝜇𝜇0𝑊𝑊(random intercept) 0.26 0.22 
𝜎𝜎𝜀𝜀0𝑒𝑒𝑊𝑊(residual error) 0.10 0.17 

(3) 𝑦𝑦𝐷𝐷𝑖𝑖 =  �𝛽𝛽0 + 𝜇𝜇0𝑖𝑖� +  �𝛽𝛽𝑊𝑊 +  𝜇𝜇𝑊𝑊𝑖𝑖��𝑥𝑥𝐷𝐷𝑖𝑖 − 𝑥𝑥𝑖𝑖� +
𝛽𝛽𝐵𝐵𝑥𝑥𝑖𝑖 + 𝜀𝜀0𝐷𝐷𝑖𝑖 

  

𝛽𝛽0 (intercept) 0.84 ± 0.44 2.03 ± 0.44 
𝛽𝛽𝑊𝑊 (within-species effect) 0.55 ± 0.04 (p < 0.0001) 0.80 ± 0.12 (p < 0.0001) 
𝛽𝛽𝐵𝐵 (between-species effect) 1.09 ± 0.10 (p = 0.0004) 0.41 ± 0.08 (p = 0.0065) 
𝜎𝜎𝜇𝜇0𝑊𝑊(random intercept) 0.25 0.22 
𝜎𝜎𝑊𝑊𝑊𝑊(random slope) 0.02 0.12 
𝜎𝜎𝜀𝜀0𝑒𝑒𝑊𝑊(residual error) 0.10 0.17 

252 
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 253 

 

 
 
  
Figure 2. Results from mixed model analyses investigating within- and between species 
effects on the relationships between dive parameters a) dive duration vs depth, b) post-dive 
interval (PDI) vs dive duration. Presentation as in Fig. 1, with full model results given in Table 4. 
For a) and b) the LMM results indicated both a significant within-species (𝛽𝛽𝑊𝑊) effect and a 
significant between-species (𝛽𝛽𝐵𝐵) effect. For a) these slopes were statistically different (i.e., 
𝛽𝛽𝐵𝐵 − 𝛽𝛽𝑊𝑊 is non-zero), whereas for b) 𝛽𝛽𝐵𝐵 − 𝛽𝛽𝑊𝑊 was close zero indicating these slopes were not 
statistically different. In both cases there was no substantial variation in within-species slopes 
around 𝛽𝛽𝑊𝑊 (i.e. a random intercept only model was supported). 
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Table 5. Summary of main findings from LMMs using ‘within-group centring’ to examine relationships between body mass and diving 255 
parameters, and the inter-dependencies between these parameters. 256 

 Between-
species effect 

Within-
species effect 

Between- and 
within-species 
effect different 

Between-species 
variation in within-

species effect 

% Variance 
explained  
R2M (R2C) 

Body size effects      
Depth v Mass     76 (96) 

Duration v Mass     83 (98) 

PDI v Mass     66 (87) 

Dive constraints      
Duration v Depth     93 (99) 

PDI v Duration     74 (90) 

257 
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Discussion  258 

 Our study compiles a valuable multispecies dataset of six different marine 259 

predators of the Southern Ocean that allowed us to explore hypotheses regarding (i) the 260 

effect of body size on dive performance, and (ii) the interdependencies of dive parameters. 261 

Our results support the well-established expectations that dive performance is tightly 262 

linked to species size (Boyd and Croxall, 1996; Schreer and Kovacs, 1997; Halsey et al., 263 

2006a; b); smaller species make shorter, shallower dives with correspondingly shorter 264 

surfacing intervals than larger species. This is a result of the allometric relationship 265 

between body size and metabolic rate (Schmidt-Nielsen, 1970): smaller animals have 266 

relatively higher metabolic rates than larger animals (the so-called “mouse-elephant” 267 

curve). However, the slopes for our between-species relationships were considerably 268 

higher for dive depth and duration than described by Halsey et al. (2006a). This suggests 269 

that, for their size, all six species dive longer for a given depth than expected for average 270 

birds or mammals. The species sample examined by Halsey et al. (2006a)included a more 271 

diverse range of taxa (ducks and grebes, as well as sea lions and cetaceans) and a wide 272 

range of ecotypes (including deep diving specialists and surface-feeding lunge divers) than 273 

this study; the authors noted differences in the relationships among some of these groups. 274 

Most notably, both the phocid seals and penguins fall above the global relationship. These 275 

species are specialist pursuit divers and have adaptations that allow them to maximize the 276 

time spent underwater. This is in contrast to animals with a different suite of 277 

morphological and physiological adaptations that use other feeding types (e.g., surface 278 

lunge feeding of baleen whales (Friedlander et al., 2014).  279 

The influence of body mass on dive performance within a species 280 

 Although our study confirmed the universal nature of the relationship of body size 281 

and dive performance among species, we found that these relationships did not hold within 282 

species for dive duration and dive depth (although they did for post-dive surface interval). 283 

There was a within-species body size effect different to the between-species relationships. 284 

This within-species relationship varied amongst the species. Thus, at the species level, 285 

dive depth and dive duration are not simply driven by physiological allometry. For two 286 

species, elephant seals and king penguins, the slope of the relationship was negative, 287 

indicating that larger individuals made shorter and shallower dives than smaller ones. This 288 

suggests there are other factors at play, perhaps ecological in nature. For example, our 289 

sample included both male and female elephant seals (males are much larger than females, 290 
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Table 2). Males typically feed on benthic prey in relatively shallow shelf waters, while 291 

females feed predominantly on mesopelagic prey in the open ocean (Hindell et al., 2016; 292 

Green et al., 2020). These very different foraging environments and prey types require 293 

different hunting strategies within the species. Age and sex related differences in foraging 294 

exist in king penguins. Older birds generally forage more efficiently than younger ones, 295 

and older females made shorter trips than males, and also dive deeper (Le Vaillant et al. 296 

2013). In contrast, the two species performing relatively short, shallow dives for their size 297 

(Weddell seals and fur seals) the dive depth vs duration relationship had positive slopes. 298 

We note though that all our data for fur seals were obtained from females. It would be 299 

useful to conduct the analyses on data from males. Overall, the different nature of the 300 

intra-specific relationships precludes the use of the global inter-specific relationships to 301 

predict dive behavior for individuals within a species.  302 

 Unlike dive depth and duration, post-dive surface intervals were not influenced by 303 

body size within a species. This suggests that the different dive durations described above 304 

are not incurring a physiological cost, or requiring individuals within a species to spend 305 

longer periods on the surface to re-oxygenate the storage tissues. One explanation is that 306 

individuals operate within their aerobic range and, hence, do not incur an oxygen debt 307 

when diving. Several studies have shown that diving animals rarely use anaerobic 308 

metabolism when diving, because the resultant oxygen debt leads to a disproportionately 309 

long surface interval, and ultimately  to a reduced foraging time (Mori, 1999; Kooyman, 310 

1989).  However, there were differences among the species in their absolute post-dive 311 

surface intervals. For example, king penguins have the longest post-dive surface intervals 312 

relative to that expected for their body size, whereas Antarctic fur seals have the shortest. 313 

Despite the apparent greater dive effort in the king penguins (demonstrated by the 314 

relatively long recovery times), they are still operating within their aerobic capacity. Thus, 315 

some species may have physiological and morphological mechanisms that enable them to 316 

stay submerged, and that these mechanisms are most developed in deep diving species. 317 

The interdependencies of dive parameters 318 

 Our examination of the interdependencies of diving parameters showed support for 319 

both between- and within-species effects. These results were more consistent than for the 320 

size-based analyses described above, suggesting universal principles may be at play. As 321 

expected, all relationships were consistently positive, but within- and between-species the 322 

dependency of dive duration upon depth was statistically different; the within-species 323 
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slope was essentially half (𝛽𝛽𝑊𝑊= 0.55 c.f. 𝛽𝛽𝐵𝐵= 1.09, Table 4) and, importantly, the same for 324 

all species considered here. Hence, individuals remain within the general range of foraging 325 

depths of their species, but may adjust dive durations to adapt to the conditions they 326 

experience. This result indicates a narrower range of possible responses at the within-327 

species level. Within species, phenotypically plastic or facultative behavioral responses 328 

are limited, probably because of some combination of body size, oxygen stores and rate of 329 

consumption that fundamentally constrains a species’ dive capacity (Kooyman and 330 

Ponganis, 1998). This is an important finding as it demonstrates that we cannot use the 331 

between-species relationship to predict how individuals respond within a species.  332 

 Conversely, our results indicate that PDI can potentially be predicted within a 333 

species based either on body size (see above) or on dive duration. While the PDI/duration 334 

dependency was important at both the within- and between-species levels, these were not 335 

statistically different. This suggests the relationship always scales the same way, inter- and 336 

intra-specifically, potentially due to a universality of the laws governing reoxygenation 337 

mechanisms. This might relate to either anatomical or physiological mechanisms 338 

controlling the rate at which oxygen can return to cells. However, PDI can be difficult to 339 

allocate precisely dive-by-dive, and oxygen debts can be deferred. Our data show some 340 

noise, and it is possible that a greater sample size would more clearly differentiate these 341 

estimated parameters (𝛽𝛽𝑊𝑊= 0.77 c.f. 𝛽𝛽𝐵𝐵= 0.45, Table 4). Nevertheless, our study 342 

demonstrates that adopting this approach enables a deeper look into the relative roles of 343 

phenotypic plasticity or facultative behavioral responses, as compared with evolutionarily 344 

fixed physiological or behavioral responses acting on this species group. While confirming 345 

previous findings from comparative analyses on body size, we have illustrated that within 346 

species these relationships differ, and highlighted the role of ecological and other 347 

influential factors. In particular, our study suggests universal principles to be at play with 348 

regard to PDI, probably related to the mechanical processes of reoxygenating blood.  349 
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Supplementary material 357 

 358 

Supplementary S1. Dive telemetry details  359 

We compiled a suite of historical and contemporary time-depth recorder (TDR) datasets 360 

collected for six species studied in the Indian sector of the Southern Ocean (Table S1.1, 361 

Fig. S1.1). Where possible the datasets also included metadata regarding sex, body mass 362 

and/or age of the animals. 363 

Penguin data 364 

• Adélie penguins (n = 19) were fitted with Wildlife Computers (Redmond, WA, USA) 365 

Mk7 TDRs (1 s sampling rate) and tracked using Argos platform terminal transmittors 366 

(PTTs) in January 2001, 2002, 2003 during guard/créche at Béchervaise Island, 367 

Antarctica (62.82° E, 67.58° S). Tracking details can be found in Clarke et al., (2006); 368 

however, the TDR data are previously unpublished. 369 

• Incubating king penguins (n = 26) were equipped with Wildlife Computers Mk9 TDRs 370 

(2 s sampling rate) and ST-10 satellite trackers from December 2003 to February 2004 371 

at Spit Bay on Heard Island (73.75° E, 53.10° S) (Wienecke and Robertson, 2006).  372 

• Emperor penguins (n = 14) were equipped with Wildlife Computers Mk7 TDRs (5 s 373 

sampling rate) during the breeding season between May and October 1993 and 1994 374 

at Auster rookery, East Antarctica (63.82° E, 67.43° S) (Wienecke et al., 2007).  375 

Seal data 376 

• Lactating female Antarctic fur seals (n = 26) were equipped with Wildlife Computers 377 

Mk7 and Mk9 TDRs (2 s sampling rate) and PTTs from December 2003 to January 378 

2004 at Spit Bay, Heard Island (73.75° E, 53.10° S) (Frydman and Gales, 2007; 379 

Staniland et al., 2010; Hindell et al., 2011). 380 

• Southern elephant seals (n = 12) were equipped with Satellite Relayed Data Loggers 381 

Conductivity Temperature Depth (SRDL-CTDs, manufactured by Sea Mammal 382 

Research Unit, University of St Andrews) (4 s sampling rate) during February 2012, 383 

2013 and January 2014 near Davis station (77.97° E, 68.58° S), Antarctica, and at the 384 

Kerguelen Archipelago (13.70° E , 21.49° S). These data are available from the 385 

Australian Integrated Marine Observing System (IMOS, 2017 online).  386 
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• Female Weddell seals (n = 17) were equipped with SRDL (30 s sampling rate) during 387 

late Febraury–March 2011 at Davis station (77.97°E, 68.58°S) Antarctica, as part of 388 

the multi-annual IMOS program (IMOS, 2017 online). 389 

 390 

 391 

Figure S1.1 Map showing general spatial distribution of diving data compiled in this study. 392 
Tagging locations are indicated with a star. Shading indicates species: Adélie (pink), king (brown) 393 
and emperor (green) penguins; Antarctic fur (azure), Weddell (blue) and southern elephant (violet) 394 
seals. See Table S1.1 for data sources.395 
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Table S1.1. Summary information on the dive data collated for six marine predators from tagging studies in the Indian sector of the Southern Ocean. No. 396 
dives indicates the total number of dives available for each species. Species-specific minimum depth and duration thresholds (Table S1.2) were applied 397 
prior to further analyses.  398 

Species Tagging Location Source Number of 
individuals 

Number of 
dives 

Sampling 
frequency (s) 

Sampling period (d) 

Adélie penguin  
P. adeliae 

Béchervaise Island, 
Antarctica  
(62.82° E, 67.58° S) 

Clarke et al., 2006 (PTT 
tracking data); TDR data 
unpubl.  

19  
(9 F, 11 M) 

78,082 1 
5 ± 3.8 

(0.5 – 12.1) 

King penguin  
A. patagonicus 

Spit Bay, Heard 
Island  
(73.75° E, 53.10° S) 

Wienecke and 
Robertson, 2006 

26  
(17 F, 9 M) 

58,344 2 
15 ± 4.77 

(7.8 – 27.7) 

Emperor penguin  
A. forsteri 

Emperor penguins, 
Auster rookery, 
Antarctica 
(63.82° E, 67.43° S) 

Wienecke et al., 2007 14 F 12,340 2 
16 ± 9.2 

(1.4 – 30.2) 

Antarctic fur seal   
A. gazella 

Spit Bay, Heard 
Island  
(73.75° E, 53.10° S) 

Frydman and Gales, 
2007; Staniland et al., 
2010; Hindell et al., 
2011 

26 F 69,082 2 
7 ± 2.46 

(5.3 – 13.4) 

 
Weddell seal  
L. weddellii 

 
Davis Station, 
Antarctica  
(77.97° E, 68.58° S) 

 
IMOS, 2017; Bestley et 
al., 2015 

 
17 F 
 

 
89,563 

 
30 

 
132 ± 63 

(37.2 – 285.5) 

 
Southern 
elephant seal  
M. leonina 

 
Davis Station, 
Antarctica  
(77.97° E, 68.58° S) 

 
IMOS, 2017 

 
12  
(6 F, 6 M) 

 
131,390 

 
4* 

 
245 ± 60.3 

(96.5 – 312.9) 

*Indicates original sampling frequency programmed for the Satellite-Relayed-Data-Loggers (SRDLs, manufactured by Sea Mammal Research Unit, 399 
University of St Andrews, Scotland, UK). Complete archival records were retrieved for the Southern elephant seal dataset, from recovered tags. Data for 400 
the Weddell seals consists of summary records for a randomized subset of individual dives (Photopoulou et al., 2015), including the dive duration, 401 
maximum depth and post-dive surface interval for each dive402 
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Abstract 16 

 Data-logger technologies have greatly increased our ability to the study in situ diving 17 

behavior of free-ranging marine animals, and time-depth recorders (TDR) have delivered detailed 18 

information on dive patterns from many Antarctic marine predators. New analytical methods enable 19 

hunting dives to be classified, on the basis of vertical sinuosity, providing the opportunity to 20 

investigate how species vary their behavior and characterize the underwater behavioral plasticity 21 

across species during intense foraging. Here, I apply a cross-taxa comparative approach using TDR 22 

data from three species of seals and three species of penguins (spanning a range of size classes and 23 

prey types), to investigate their dive plasticity and to quantify how these animals change dive 24 

behavior when foraging. Foraging is a fundamental requirement to all animals, but different species 25 

manage differently their dive cycle during such events and not all species showed consistent 26 

changes. Notably for Adélie penguins, our approach did not detect significant changes between dive 27 

characteristics during non-foraging, low- and high- hunting dives. However, my study provides 28 

evidence of how most penguins and seals adjust their dive behavior when foraging and dive longer 29 

and deeper. Deeper dives correspond also to longer time at the bottom and this is achieved 30 

adjusting their transit time. Finally, due to the energetic cost of intense foraging dives, only few 31 

species are able to extend their dive duration and bottom time in these scenarios.   32 
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Introduction 33 

 To exploit the abundance of food available in the marine environment, aquatic birds and 34 

mammals have evolved a suite of morphological, physiological and behavioral adaptations 35 

(Schaefer, 1965). To understand the behavioral adaptations different species demonstrate within 36 

their marine habitat, research often focuses on marine predators' diving ecology, particularly 37 

whilst actively foraging. Three principal factors affect the underwater performances of marine 38 

mammals and seabirds: (1) the physical properties of the water (i.e., viscosity, pressure); (2) the 39 

lack of access to oxygen, as these species must return to the surface to breathe, and (3) the 40 

distribution and abundance of their prey. 41 

 Most aquatic species display physical adaptations to maximize their efficiencies 42 

underwater, such as a streamlined body; some have greatly reduced the length of their hair (e.g., 43 

southern elephant seals) to minimize the viscosity effects of water. Others have maintained long 44 

fur and feathers that trap air and help in the ascent phase of a dive (Fish et al., 2002). However, 45 

to counteract their positive buoyancy, marine birds like penguins have increased their bones 46 

density (Ksepka et al., 2015), and pinnipeds have evolved a flexible rib cage (Cozzi et al., 2010) 47 

and collapsible lungs (McDonald and Ponganis, 2012) that also help to deal with the increase in 48 

pressure when diving.  49 

 Since the time air-breathing animals can spend underwater is limited, all marine 50 

mammals and seabirds have physiological adaptations to both increase their capacity to store 51 

oxygen as well as minimise the rate of consumption whilst diving. The oxygen consumed during 52 

a breath hold dive is stored in three main compartments: the respiratory system, the blood, and 53 

the body musculature (Castellini et al., 1992). The total oxygen store and the proportions in 54 

which it is compartmentalised differ among species, but in general oxygen stores scale 55 

isometrically with body mass (Halsey et al., 2006a). As the rate of oxygen consumption per 56 

gram of body mass is much higher in smaller species, body size constrains their dive time 57 

(Schmidt-Nielsen, 1970). Consequently, we expect dive duration to be shorter in seabirds than 58 

marine mammals, but recent work has shown that some birds can dive deeper and longer than 59 

mammals of equivalent mass (Halsey et al., 2006a; Chapter 3). The reason is that lung volumes 60 

of birds are 3–5 times bigger than those of mammals, and their respiratory surface area is 15% 61 

greater than similarly sized mammals (Maina, 2006). Moreover, birds have a faster metabolism, 62 

and oxygen is delivered at higher rates, so the absolute quantity to meet the minimum energetic 63 

needs of small species is less than larger ones (Halsey et al., 2006a). Lastly, both seabirds and 64 

marine mammals have developed a physiological mechanism  the so called “dive response”  65 
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that allows marine predators to reduce their oxygen consumption when diving. Penguins and 66 

seals can switch from aerobic to anaerobic metabolism to overcome the metabolic demand of 67 

oxygen when diving, although this is probably relatively rare as it induces an oxygen debt 68 

(Roncon et al., 2018).  69 

 The diving behavior of marine mammals and seabirds is also determined by the nature of 70 

their prey (Boyd et al., 1994). Ecological factors, such as the depth at which prey is found 71 

(pelagic/benthic), type of prey species and the prey biology (krill/squid/fish), prey distribution 72 

(homogeneous/patchy), all characterise the diving behavior of seals and penguins (Chapter 2). 73 

Invoking optimal foraging theory (OFT) (Stephens and Krebs, 1986), marine predators' diving 74 

behavior should be as efficient as possible, minimizing the costs associated with feeding 75 

underwater (e.g., oxygen consumption, dive transit time) and maximizing its benefits (e.g., net 76 

energy gain) (Kramer, 1988; Mori, 1998).  77 

How marine predators manage their dive cycles in response to ecological variability may 78 

be observed by evaluating changes in multiple dive parameters, such as descent and ascent rates 79 

or dive bottom time, that may be indicative of prey patch quality (Thompson and Fedak, 2001). 80 

For example, Thums et al. (2013) demonstrated that female southern elephant seals from 81 

Macquarie Island descended and ascended faster in high-quality patches than in low quality 82 

patches. Dive data may also provide information about how predators compensate for declining 83 

prey abundance by increasing their foraging effort (Harcourt et al., 2001).  84 

Previous studies have shown that species consistently operating near their maximum 85 

physiological capacity are less likely to have the ability to increase their foraging effort in 86 

response to reductions in prey. For example, probably due to their capacity to exploit a variety of 87 

pelagic prey types, Antarctic fur seals are abundant in the Southern Ocean, and draw upon a 88 

great energy reserve to pursue prey if it moves deeper (Costa et al., 2006). In comparison,  89 

populations of pinnipeds that feed on benthic species are stable or declining, possibly because 90 

these animals regularly their aerobic dive limit (hereafter ADL; Kooyman, 1980) switching to 91 

anaerobic metabolism to increase their foraging effort (Costa et al., 2004). 92 

 As discussed in Chapters 2 and 3, parameters, such as dive duration, depth and post-dive 93 

surface interval (hereafter PDI), can be used to describe the basic dive performance of marine 94 

predators, and characterise their behavioral plasticity as well as explore which factors may 95 

constrain their diving. In the comparative analyses undertaken in the previous chapter, all dives 96 

were considered together. But dives may serve many purposes and not all dives are likely to be 97 

foraging dives (Crocker et al., 1997). This chapter specifically investigates how seabirds and 98 

pinnipeds behave during foraging (hunting) and non-foraging dives, differentiating also between 99 
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high- and low-intensity foraging. I investigated the same six marine predator species discussed 100 

in previous chapters. To discriminate between “hunting” (hereafter HT) and “non hunting” 101 

(no.HT) dives, the hunting time approach developed by Heerah et al. (2014) is utilized.  102 

This chapter builds on the previous (Chapter 3) to:  103 

1. Investigate marine predators’ behavioral plasticity in terms of the observed ranges 104 

(minimum/maximum) of dive duration, dive depth, and PDI, using a quantile regression 105 

approach to identify the observation envelope. Despite their anatomical and physiological 106 

constraints, there is still a wide range of diving plasticity among species that could be potentially 107 

explained by allometry (Schreer and Kovacs, 1997) and behavioral adaptations.  108 

 2. Quantify how seals and penguins change dive behavior when foraging by exploring 109 

the following questions: 110 

(i) Do predators vary their dive cycle by potentially diving deeper and longer, and 111 

lengthening bottom time when resource distribution may be suboptimal? Marine mammals and 112 

seabirds have many different strategies to secure aquatic prey, and according to OFT, we expect 113 

them to maximize resource acquisition by adapting their diving patterns.  114 

(ii) Can they respond to environmental fluctuation (e.g., prey distribution) with low and 115 

high foraging intensity? These species are expected to dive longer when prey is more plentiful 116 

and vice-versa (Thompson and Fedak, 2001). But animals operating at the upper edge of their 117 

performance are less likely to be able to increase their hunting time in response to reductions in 118 

prey (Costa, 2004).  119 

(iii) Is there an increased cost associated with high intensity foraging, requiring longer 120 

time at the surface to compensate the oxygen debt? Some species like elephant seals routinely 121 

perform very deep benthic dives, and compensate later for their dive effort by spending more 122 

time resting once hauled out (Butler and Jones, 1997).  123 

Material and methods 124 

Time-depth recorder (TDR) data 125 

 I compiled time-depth recorder (TDR) data for three penguin and three seal species 126 

tagged in Eastern Antarctica from 1992 to 2015 (see Supplementary Material S1, Chapter 3 and 127 

4). The raw files were processed using the Wildlife Computer Data Analysis Program, WC-DAP 128 

software (v3.0.369.0 05-Jan-2016). For each species, the obtained time-depth datasets were then 129 

analysed in the R package diveMove v1.2.6 (Luque, 2007) to extract dive parameters, such as 130 

maximum dive depth (m), dive duration (s), post-dive surface interval (PDI, s), descent and 131 

ascent time (s), and bottom time (s) for each individual dive. The descent and ascent times for 132 
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each dive were summed to give overall transit time (s). For the purpose of an across-species 133 

comparison, I only considered dives with clearly identifiable descent, bottom, ascent and surface 134 

phase. A natural log transformation was applied to all data prior to analyses, and data are 135 

presented as mean ± s.d. across individual animals. Note that only high-resolution time-depth 136 

recorder (TDR) datasets (sample interval <4 s) were used for this study; for Weddell seals, the 137 

dataset of only one individual was available. This was included here as a reference 138 

(Supplementary Material S1). Female and male elephant seals were considered separately due to 139 

the different diving ecology [Hindell et al., 1991]. 140 

Part 1: Marine predators' diving performance range 141 

 To visually represent the range of marine predator diving performances, I evaluated the 142 

relationships between dive duration and depth, and PDI and dive duration across species using 143 

quantile regressions. I used a linear quantile regression analysis (Koenker and Bassett, 1978) 144 

because it enables fitting of conditional regressions through a specified quantile (in this case, 145 

lower quantile = 2.5%; upper quantile = 97.5%) of a response variable (see Fig.1). As a result, I 146 

could determine the observed range of dive behavior and quantify the minimum and maximum 147 

edges of these observation envelopes, as reflected in the lower “edge” (red line) and upper 148 

“edge” (blue line) of the plot (Fig.1).  149 

I described the distribution of dive data for each case and calculated the slope of each 150 

regression line (see Fig. 2). I then compared the slope of lower and upper edges across species 151 

and examined these slope values in relation to mass. I also reported the distribution of dive 152 

duration data above the calculated ADL (cADL) for all species which was obtained from the 153 

literature (Adélie penguins = 110 s, Culik et al., 1994; king penguins = 300 s, Culik et al., 1996; 154 

emperor penguins = 480 s, Ponganis et al., 1999; Antarctic fur seals = 245 s, Costa et al., 2001; 155 

Weddell seals = 1140 s, Ponganis et al., 1993; southern elephant seals female = 1731 s, Hindell 156 

et al., 1992; southern elephant seals male = 2802 s, Hindell et al., 1992). 157 

 158 
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 159 
Figure 1. The application of quantile regression analysis on dive data: dive duration vs depth. The 160 
results presented here are from a quantile regression on Adélie penguins dive data. The red line shows the 161 
lower quantile = 2.5%; the blue line shows the upper quantile = 97.5%.  162 

 Part 2: Marine predators' dive plasticity during foraging dives 163 

 To investigate dive plasticity during foraging dives, the hunting time method of Heerah 164 

et al. (2014) was used to identify likely foraging activity within each dive. This method was 165 

originally developed for Weddell seals. Each seal’s dive is broken into different segments 166 

corresponding to different dive phases, and the vertical sinuosity of the segments is used to infer 167 

the behaviors: high-sinuosity segments correspond to "hunting" and less sinuous segments 168 

indicates non-hunting activity, such as "transiting" (Heerah et al., 2014). Although all species 169 

considered here perform U dives similar to Weddell seals, the threshold of high vertical sinuosity 170 

was adapted separately for each species (species thresholds: > 0.9 Weddell, southern elephant 171 

and Antarctic fur seals; > 0.7 king and emperor penguins; 0.5 Adélie penguins) to identify 172 

“hunting” segments (Heerah et al., 2014). Each dive containing a hunting segment was defined 173 

as a foraging dive, and the duration of all hunting segments identified within a dive was summed 174 

to obtain total hunting time (s).  175 
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Foraging dives were further separated into those with ‘low’ hunting time (comprising the 176 

lower 33% of each species dataset, with quantile applied per individual animal) and ‘high’ 177 

hunting time (representing the upper 33% of each species dataset) dives. These quantiles were 178 

selected to retain a high number of individual dive observations (thousands per species) yet 179 

discriminate well away from the median (i.e., excludes dives within the 33–66% percentiles). 180 

Linear mixed effect models (LMMs, nlme package, Pinheiro et al., 2018) were used to 181 

investigate the variation of dive parameters in foraging (high and low HT) dives compared to 182 

non-foraging (no HT) dives. First, I examined dive depth (m), dive duration (s), bottom duration 183 

(s), and transit time (s), taking into account the dependence of these parameters on depth. I also 184 

investigated PDI, taking into account the dependence of this parameter on dive duration. 185 

'Individual animal' was included as the random effect (intercept only). Important significant effects 186 
were evaluated at p <0.001; a conservative threshold was used given the large sample sizes for models 187 
fitted to dive-level data. Note that where LMMs are reported for other species, an equivalent linear 188 

model was fitted to the Weddell seal data (see Supplementary Material S1). Male and female 189 

southern elephant seals were modelled separately due to their different foraging environments 190 

and dive characteristics (Chapter 2 and Table 1). Where I present model predictions (Table 3), 191 

the estimate and the 95% confidence intervals associated with the fixed effects are reported.  192 
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Table 1. Summary table of dive activity collated for penguin and seal datasets in the Indian sector of the Southern Ocean. Data given as mean ± 193 
S.D. and range across individuals. HT = hunting time. ADL = Aerobic diving limit. 194 

Species Number of 
individuals 

Number of 
dives 

Percent forage 
dives 

HT (s) Number of 
dives 

>cADL 

Percent dives 
>cADL  

Mass (kg) 

Adélie penguin  
P. adeliae 

16 (8 F, 8 M) 21,115 51 ± 3 
14–81 

35.7 ± 47.1  
20–198.3 

3,517 
 

11 4 ± 0.4 

King penguin  
A. patagonicus 

26 (17 F, 9 M) 36,223 79 ± 1 
71–90 

38.3 ± 22.8  
4.1–134.5 

596 

 

1.5 10 ± 0.9 

Emperor penguin  
A. forsteri 

9 F 5,723 26 ± 6 
13–34 

65 ± 44.7, 
8–250.4 

0 0 25 ± 1 

Antarctic fur seal   
A. gazella 

26 F 35,380 41 ± 45 
17–74 

78.3 ± 15.1  
80–250.7 

31 0.07 37 ± 4 

Weddell seal  
L. weddellii 

1 F 7,241 28 515.2 ± 324.8  
60–2,100 

3,115 
 

43 379 ± 66 

Southern elephant 
seal M. leonina  

(F) 

 

6 

 

46,282 
 

74 ± 25 
61–82 

 
595.1 ± 40.1  
148–4,084 

 
27,657 

 

 
61 

 

 
346 ± 39 

(M) 6 40,396 88 ± 32 
67–110 

886.1 ± 25.3 
146–3,472 

2,789 
 

6.7 
 

613 ± 167 

195 
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Results 196 

Part 1: Diving ranges 197 

This section describes the range of dive performances (‘envelope') observed in the 198 

seal and penguin species. Most species performed their dives within the estimated cADL. 199 

The proportion of dives exceeding the cADL varied in different species (Table 1). For 200 

example, female southern elephant and Weddell seals exceeded their published cADL in 201 

61% and 43% of dives, respectively, suggesting these cADL values may be incorrect. In 202 

comparison, emperor penguins (0%) and Antarctic fur seals (<1%) rarely if at all exceeded 203 

cADL, i.e., they rarely incurred an oxygen debt. This may also reflect how well cADL 204 

values have been measured for these two species. King penguins  (1.5%) and Adélie 205 

penguins: (11%) as well as male southern elephant seals (7%) also generally performed 206 

aerobic dives. 207 

  All species exhibited relatively pronounced lower and upper edges to the dive 208 

duration/depth distribution, which describes how marine species allocate their time when 209 

diving (Fig. 2). Here, the lower quantile regression line (‘edge’) of the dive duration/depth 210 

relationship describes the near-minimal duration associated with dives to a particular 211 

depth. The upper quantile regression line describes near-maximal dive duration associated 212 

with dives to particular depth. (see Table S1). Within these envelopes of observed diving 213 

recordings, the density contours (demarcated at 10% intervals to 90%) describe the 214 

concentration of dive observations for each species. King penguins, and Weddell and 215 

southern elephant seals predominantly performed deep and long dives while Adélie and 216 

emperor penguins appeared to be more variable in their dive performance, encompassing a 217 

broader envelope from shallower and shorter dives to deeper and longer dives.  218 

  219 
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 220 
Figure 2. The relationships between dive duration/depth and across species. The results 221 
presented here are from a quantile regression (lower= 2.5%, upper= 97.5%). Full details of 222 
quantile regression results are given in Table S1. Grey dots are data observations. Solid lines show 223 
the lower and upper quantile edges. Blue lines show data density contours (demarcated at 10% 224 
intervals to 90%). The ADL values (red dashed lines) were obtained from literature. Species 225 
abbreviations are: ADE = Adélie penguins, KP = king penguins, EMP = emperor penguins, FUR = 226 
Antarctic fur seals, WED = Weddell seals, SESf = female southern elephant seals, SESm = male 227 
elephant selas. PDI= post-dive interval.  228 
 229 

  230 
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The quantile regression slopes from Fig. 2 are plotted together for all species in 231 

Fig. 4a. This illustrates the differences in the diving range, ordive envelopes, demonstrated 232 

across species. Comparing the smaller species (excluding the phocid seals), Fig. 4a 233 

implies that emperor penguins have the broadest envelopes of possible operation, that is, 234 

they show greater variability in duration for a given depth. They perform both shorter and 235 

longer dives for a given depth than Antarctic fur seals, king or Adélie penguins. The 236 

narrower envelopes observed for these three species largely nestle within that of emperor 237 

penguins. The lower edge slope for emperor penguins is also the steepest (m = 0.87 ± 238 

0.004, see Supplementary Materials, Table S2). In comparison, southern elephant seals, 239 

performed quite steadily and dive duration generally varied less for a given depth.  240 

The duration/depth quantile regression slopes in relation to body mass (Fig. 4c) 241 

shows that masss is not the sole determinant of dive capacity. However, with the caveat 242 

that this is based on only a few species, the upper edge slopes declined somewhat with 243 

increasing body mass (linear regression: m = -0.07 ± 0.01, t = -4.67, p = 0.005). The 244 

relationship for the lower edge slopes was not statistically significant (m = -0.08 ± 0.04, 245 

t = -1.72, p = 0.15). 246 

With regard to the relationship between dive duration and subsequent PDI (Fig. 3), 247 

the quantile regressions provided less evidence for a clearly defined envelope: when 248 

compared across species, these envelopes are not very distinct; a large envelope of 249 

performance was observed across all. The density contours show this relationship to be 250 

generally less clear with highly variable PDI for a given duration in all species: for 251 

example, both male and female southern elephant seals consistently performed long dives 252 

with relatively invariant PDIs (spanning only 2–3 mins) (Fig. 4b). High variability in PDI 253 

was evident for Adélie, king, emperor penguins and particularly Antarctic fur seals (lower 254 

edge: m = 1.15 ± 0.01; upper edge: m = 1.02 ± 0.04; Supplementary, Table S2). When 255 

these relationships were plotted together (Fig. 4b) there was no clear pattern across 256 

species, nor any indication that body mass influenced the PDI/duration relationships (Fig. 257 

4d; linear regression for lower edge: m = -0.07 ± 0.08, t = -0.95, p = 0.39; linear regression 258 

for upper edge: m = -0.04 ± 0.08, t = -0.49, p = 0.67). 259 
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 260 
Figure 3. The relationships between PDI/dive duration across species. The results presented 261 
here are from a quantile regression (lower = 2.5%, upper = 97.5%). Full details of quantile 262 
regression results are given in Table S1. Grey dots are data observations. Solid lines show the 263 
lower and upper quantile edges. Blue lines show data density contours (demarcated at 10% 264 
intervals to 90%). Note axes vary across panels. For species abbreviations see Fig. 2. 265 
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 266 
Figure 4. Lower (2.5%) and upper (97.5%) quantile regressions from Fig. 2 and 3 co-plotted for 267 
all six seal and penguin species. a) shows the dive duration/depth relationship and b) shows the 268 
PDI/duration relationship. Full details of quantile regression results are given in Table S1. The 269 
regression coefficients (slopes) are plotted against mass for c) duration/depth and d) PDI/duration. 270 
In c) and d), triangles correspond to lower quantile slopes; circles correspond to upper quantile 271 
slopes (see Fig. 2, 3).  272 
 273 

 274 

  275 
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Part 2: Behavioral changes during non-foraging and foraging (high and low hunting 276 

time) dives 277 

 Across species, the hunting time method identified the majority of dives (60%) as 278 

foraging dives, i.e. containing sinuous vertical segments indicative of active hunting. 279 

Using this approach, king penguins and southern elephant seals seemed to dive 280 

predominantly to forage (king penguins: 79%; southern elephant seals: 74% female, 88% 281 

male) (Table 1). The average hunting time per dive differed substantially between the six 282 

species, ranging from 35.7 ± 47.1 – 886.1 ± 25.3 s (i.e., about 0.5 – 15 min).  283 

 The depth distribution of hunting time was apparently deeper in several species 284 

(Fig. 5, and Table 2). The model results confirmed that high-HT dives were typically 285 

deeper than low-HT dives for all species except Adélie penguins, which showed no 286 

difference. Differences between no- and low-HT dives were more variable among species; 287 

no-HT dives were either slightly shallower (emperor penguins and fur seals), deeper (male 288 

SES) or statistically not different (Adélie and king penguins, and female SES) (Table 2). 289 

  290 
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 291 
Figure 5. Histogram with density distributions for depth, duration and PDI of dive 292 
observations during non-foraging and foraging dives across species. Blue area corresponds to 293 
“no-HT” dive distribution, pink area corresponds to “HT” dive distribution, histogram shows all 294 
observations. Densities were fitted separately to hunting and no-hunting data. Species 295 
abbreviations as in Fig. 2.  296 
 297 
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Table 2. Summary of models examining depth changes during no-, low- and high-hunting time dives across species. The results showed here 298 
are from single factor linear mixed-effect models fit including individual as a random intercept and a temporal autocorrelation term (corAR1) to 299 
account for serial non-independence in the time-series data*. Dives (total N = 185,119) were separated as non-foraging (no-HT), low foraging 300 
intensity (low-HT) and high foraging intensity (high-HT) for each species (see Methods). Low-HT was the reference level in the predictor variable. 301 
Model predictions show mean and 95% CI of dive depth during each different type of dive for each species (predicted values are back-transformed 302 
from log-scale). The important significant effects (p <0.001) are highlighted in bold. Note zero probabilities simplify very small values <0.00001. 303 
 Predictor  

(categorical 
factor) 

Coefficient  
(m) ± s.e. t p 

Predicted  
no-HT 

Predicted 
low-HT 

Predicted 
high-HT 

Adélie penguin  
(N = 21115 dives, n = 16 
individuals) 

 
No-HT 0.015 ± 0.013  -1.12 0.26  

16 
(13 – 19) 

 
16 
(14 – 19) 

 
16 
(14 – 19) Low-HT 2.79 ± 0.07 37.91 0 

High-HT 0.006 ± 0.009 0.65 0.51 
        

King penguin  
(N = 36223, n = 26) 

No-HT 0.014 ± 0.005 3.05 0.0023 52  
(46 –59) 

52  
(46 – 58) 

73 
(64 – 82) Low-HT 3.94 ± 0.06 70.28 0 

High-HT 0.34 ± 0.005 68.36 0 
        

Emperor penguin  
(N = 5723, n = 9) 

No-HT -0.18 ± 0.04 -5.31 0 43 
(36 – 52) 

52 
(46 – 58) 

78 
(66 – 92) Low-HT 3.95 ± 0.06 66.63 0 

High-HT 0.40 ± 0.02 16.73 0 
        

Antarctic fur seal   
(N = 35380, n = 26) 

No-HT -0.02 ± 0.003 -6.12 0  43 
(42 – 44) 

44 
(43 – 45) 

46 
(45 – 48) Low-HT 3.78 ± 0.01 327.48 0 

High-HT 0.06 ± 0.002 22.01 0 
        

Southern elephant seal (F)   
(N = 46282, n = 6) 

No-HT 0.008 ± 0.005 1.70 0.09 449 
(391 – 515) 

445 
(392 – 506) 

465 
(406 – 533) Low-HT 6.10 ± 0.07 93.55 0 

High-HT 0.04 ± 0.004 10.19 0 
        

Southern elephant seal (M) 
(N = 40396, n = 6) 

No-HT 0.10 ± 0.004 23.34 0 397 
(335 – 471)  

361 
(307 – 424) 

398 
(336 – 473) Low-HT 5.89 ± 0.08 71.25 0 

High-HT 0.10 ± 0.005 20.90 0 
*Note that an equivalent linear model was fit to the Weddell seal data (see Supplementary Material S1). 304 
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Following on from the dive range investigation in Part 1, I evaluated the extent to which 305 

the relationships in a suite of dive parameters varied when animals forage. Accounting for 306 

the dependencies between dive parameters, the LMMs (Table 3 – 6) provide insight into 307 

how dive performances may change with different levels of activity (i.e., between dives 308 

containing no-, low- and high-hunting time).  309 

How does dive duration change when air-breathing marine predators are actively 310 

hunting? 311 

 Dive duration increased with dive depth in all species; however, not all predators 312 

exhibited the same changes in duration during high-, low-, and no-HT dives (Table 3, Fig. 313 

6). There was no difference in dive duration in Adélie penguins, or the nature of their 314 

duration/depth relationship in the three dive types examined. However, in king penguins, 315 

fur seals, female and male elephant seals (accounting for the depth dependency) dive 316 

durations were consistently longer during high-HT dives than low- or no-HT dives, and in 317 

most cases this difference was most pronounced at shallower dive depths (significant 318 

negative depth:high-HT interaction term in all cases except for female elephant seals). In 319 

contrast, emperor penguins were predicted to dive longer at deeper depths during high-HT 320 

dives. Low- and no-HT dives patterns differed across species, but among king penguins, 321 

female and male elephant seals dive durations changed more strongly in relation to depth, 322 

i.e., varied more strongly during no-HT dives (significant positive depth:no-HT interaction 323 

term).  324 

Are longer dive bottom times evident during high-hunting dives? 325 

 Results of dive bottom time (Table 4, Fig. 7) were generally in accordance with 326 

those described above for duration. For Adélie penguins, there was again no differences 327 

between dive types. Species with longer dive durations during high-HT dives generally 328 

also had longer bottom times (king penguins, fur seals and male elephant seals). Notably, 329 

while in most cases bottom times increased during deeper, longer dives, for fur seals 330 

bottom time significantly decreased with depth during all dive types.  331 

Do air-breathing marine predators show reduced dive transit times when hunting? 332 

 Total dive transit time was positively correlated with dive depth in all species for 333 

all dive types (Table 5, Fig. 8), but predicted changes during no-, low- and high-HT dives 334 

varied considerably across species. For example, at shallower dive depths predicted transit 335 
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times could be higher (fur seals, emperor penguins and male southern elephant seals) or 336 

lower (king penguins) during non-hunting dives, or did not change (Adélie penguins). 337 

Is there an increased cost associated with high-intensity foraging, requiring increased 338 

PDI? 339 

 Post-dive surface intervals increased with longer dive durations in all cases (Table 340 

6, Fig. 9), but for Adélie and emperor penguins this relationship was statistically not 341 

different between low-, no- and high-HT dives. For king penguins, fur seals, male and 342 

female elephant seals, PDI increased more strongly with increased dive duration during 343 

low-HT dives than predicted during high-HT dives (significant negative duration:high-HT 344 

interaction term in all four cases). This indicates that PDIs are more consistent (i.e., vary 345 

less with dive duration) during high-HT dives, and can result in shorter PDIs associated 346 

with longer dives. This implies that actively foraging animals shortened PDIs, potentially 347 

in an effort to return quickly to the forage patch.   348 
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Table 3. Results of linear mixed effects models examining dive duration in relation to depth 349 
for no-, low- and high-hunting dives. Models are fit separately to each species, see Methods for 350 
details of diving parameters and model fitting. Low-HT was the reference level in the dive type 351 
predictor variable. The important significant effects (p < 0.001) are highlighted in bold. See Fig. 2 352 
for species abbreviation. 353 
 354 

Species Dive 
variable 

Predictor variable Coefficients 
 

Slope (m) ± s.e. t p 
ADE Duration low-HT  2.36 ± 0.030 78.71 0 

log.depth 0.61 ± 0.008  77.71 0 
no-HT -0.002 ± 0.024 -0.08 0.94 
high-HT -0.028 ± 0.034 -0.80 0.41 
log.depth*no-HT 0.002 ± 0.008 0.25 0.80 
log.depth*high-HT 0.008 ± 0.011 0.67 0.50 
    

KP Duration low-HT 3.21 ± 0.02 0 146.10 0 
log.depth 0.42 ± 0.004 96.51 0 
no-HT -0.41 ± 0.020 -20.79 0 
high-HT 0.42 ± 0.030 16.50 0 
log.depth*no-HT 0.09 ± 0.005 19.61 0 
log.depth*high-HT -0.06 ± 0.006 -10.67 0 
    

EMP Duration low-HT 3.02 ± 0.100 32.24 0 
log.depth 0.50 ± 0.020 26.76 0 
no-HT -0.21 ± 0.090 -2.33 0.02 
high-HT -0.29 ± 0.100 -2.79 0.005 
log.depth*no-HT 0.05 ± 0.020 2.38 0.02 
log.depth*high-HT 0.10 ± 0.020 4.15 0 
    

FUR Duration low-HT 3.44 ± 0.030 121.32  0 
log.depth 0.36 ± 0.006 58.35 0 
no-HT -0.13 ± 0.030 -5.10 0 
high-HT 0.37 ± 0.030 11.98 0 
log.depth*no-HT 0.005 ± 0.006 0.75 0.45 
log.depth*high-HT -0.05 ± 0.008 -6.71 0 
    

SESf Duration low-HT 4.47 ± 0.040 105.04  0 
log.depth 0.47 ± 0.004 104.31  0 
no-HT -0.27 ± 0.040 -6.87 0 
high-HT 0.33 ± 0.050 6.39 0 
log.depth*no-HT 0.05 ± 0.006 7.08 0 
log.depth*high-HT -0.02 ± 0.008 -2.66 0.008 
    

SESm Duration low-HT 4.03 ± 0.05 88.45 0 
log.depth 0.52 ± 0.003 155.85 0 
no-HT -0.64 ± 0.040 -16.84 0 
high-HT 1.96 ± 0.030 59.03 0 
log.depth*no-HT 0.13 ± 0.007 20.04 0 
log.depth*high-HT 
 

-0.26 ± 0.006 -46.74 0 

355 
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Figure 6. Results from linear mixed effects models examining dive duration in relation to depth for no-, low- and high-hunting dives. Solid lines 356 
show the prediction from the linear mixed models fitted separately for each species; shading gives confidence intervals. Full model results are given in 357 
Table 3. Species abbreviations are as in Fig. 1. 358 
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Table 4. Results of linear mixed effects models examining dive bottom time in relation to 359 
depth for no-, low- and high-hunting dives. Results presented as in Table 3. 360 

Species Dive variable Predictor variable Coefficients 
Slope (m)  

± s.e. t p 

ADE Bottom time low-HT  2.61 ± 0.05 58.27 0 
log.depth 0.45 ± 0.01 40.23 0 
no-HT -0.06 ± 0.03 -1.73 0.08 
high-HT -0.05 ± 0.05 -0.94 0.35 
log.depth*no-HT 0.03 ± 0.01 2.19 0.03 
log.depth*high-HT 0.014 ± 0.01 0.86 0.39 
    

KP Bottom time low-HT  3.98 ± 0.05 76.97 0 
log.depth 0.06 ± 0.01 5.57 0 
no-HT -0.49 ± 0.05 -9.91 0 
high-HT 0.26 ± 0.06 4.14 0 
log.depth*no-HT 0.05 ± 0.01 4.53 0 
log.depth*high-HT 0.02 ± 0.01 1.17 0.24 
    

EMP Bottom time low-HT  3.07 ± 0.1 28.98 0 
log.depth 0.47 ± 0.02 21.88 0 
no-HT -0.28 ± 0.10 -2.81 0.005 
high-HT -0.39 ± 0.12 -3.24 0.001 
log.depth*no-HT 0.06 ± 0.02 2.83 0.005 
log.depth*high-HT 0.12 ± 0.03 4.57 0 
    

FUR Bottom time low-HT  4.62 ± 0.11 42.44 0 
log.depth -0.21 ± 0.03 -8.35 0 
no-HT -0.70 ± 0.11 -6.52 0 
high-HT -0.17 ± 0.13 -1.34 0.17 
log.depth*no-HT 0.03 ± 0.03 1.32 0.19 
log.depth*high-HT 0.14 ± 0.03 4.51 0 
    

SESf Bottom time low-HT  4.71 ± 0.08 59.56 0 
log.depth 0.34 ± 0.008 42.86 0 
no-HT -0.99 ± 0.07 -14.41 0 
high-HT -0.50 ± 0.09 -5.47 0 
log.depth*no-HT 0.16 ± 0.01 13.92 0 
log.depth*high-HT 0.12 ± 0.01 8.37 0 
    

SESm Bottom time low-HT  4.50 ± 0.06 71.73 0 
log.depth 0.34 ± 0.007 48.51 0 
no-HT -2.88 ± 0.08 -36.61 0 
high-HT 2.10 ± 0.07 30.90 0 
log.depth*no-HT 0.46 ± 0.01 34.22 0 
log.depth*high-HT -0.23 ± 0.01 -20.30 0 

 
361 
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Figure 7. Results from linear mixed effects models examining dive bottom time in relation to dive depth during no-, low- and high-hunting dives. 362 
Results are presented as in Fig. 6. 363 
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Table 5. Results of linear mixed effects models examining dive transit time in relation to 364 
dive depth for no-, low- and high-hunting dives. Results presented as in Table 3. 365 

Species Dive variable Predictor variable Coefficients 
Slope (m) 

 ± s.e. t p 

ADE Transit time low-HT  -1.20 ± 0.08 -15.35 0 
log.depth 1.08 ± 0.03 42.37 0 
no-HT 0.07 ± 0.08  0.95 0.34 
high-HT -0.10 ± 0.11 -0.91 0.36 
log.depth*no-HT -0.03 ± 0.03 -1.23 0.22 
log.depth*high-HT 0.04 ± 0.04 1.09 0.28 
    

KP Transit time low-HT  -0.19 ± 0.05 -4.05 0.0001 
log.depth 1.04 ± 0.01 95.76 0 
no-HT -0.60 ± 0.05 -12.39 0 
high-HT -0.05 ± 0.06 -0.77 0.44 
log.depth*no-HT 0.17 ± 0.01 14.28 0 
log.depth*high-HT 0.004 ± 0.01 0.27 0.79 
    

EMP Transit time low-HT  -0.41 ± 0.19 -2.23 0.03 
log.depth 0.60 ± 0.03 17.66 0 
no-HT 0.56 ± 0.16 3.49 0.0005 
high-HT 0.43 ± 0.19 2.30 0.02 
log.depth*no-HT -0.12 ± 0.04 -3.43 0.0006 
log.depth*high-HT -0.10 ± 0.04 -2.38 0.02 
    

FUR Transit time low-HT  1.90 ± 0.030 63.11 0 
log.depth 0.62 ± 0.007 91.92 0 
no-HT 0.31 ± 0.030 10.66 0 
high-HT 0.10 ± 0.030 3.01 0.003 
log.depth*no-HT -0.07 ± 0.007 -10.11 0 
log.depth*high-HT -0.02 ± 0.008 -2.03 0.04 
    

SESf Transit time low-HT  1.43 ± 0.050 30.83 0 
log.depth 0.79 ± 0.006 127.10 0 
no-HT 0.11 ± 0.050 2.11 0.03 
high-HT 0.53 ± 0.070 7.38 0 
log.depth*no-HT -0.01 ± 0.009 -1.49 0.14 
log.depth*high-HT -0.07 ± 0.010 -6.33 0 
    

SESm Transit time low-HT  1.06 ± 0.070 14.10 0 
log.depth 0.86 ± 0.006 156.23 0 
no-HT 0.82 ± 0.060 13.03 0 
high-HT 0.42 ± 0.050 7.69 0 
log.depth*no-HT -0.10 ± 0.010 -9.43 0 
log.depth*high-HT -0.0 8± 0.009 -8.88 0 
    

366 
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 367 
Figure 8. Results from linear mixed effects models examining transit time in relation to dive depth during no-, low- and high-hunting dives. 368 
Results are presented as in Fig. 6. 369 
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Table 6. Results of linear mixed effects models examining PDI in relation to dive duration for 370 
no-, low- and high-hunting dives. Results presented as in Table 3. 371 

Species Dive 
variable 

Predictor variable Coefficients 
Slope (m) 

± s.e. 
t p 

ADE PDI low-HT  2.15 ± 0.20 10.70 0 
log.duration 0.31 ± 0.04 7.25 0 
no-HT -0.48 ± 0.18 -2.63 0.009 
high-HT 0.11 ± 0.26 0.43 0.66 
log.duration*no-HT 0.12 ± 0.04 2.77 0.006 
log.duration*high-HT -0.02 ± 0.06 -0.03 0.76 
    

KP PDI low-HT  0.90 ± 0.16 5.53 0 
log.duration 0.67 ± 0.03 22.69 0 
no-HT 0.91 ± 0.16 5.72 0 
high-HT 1.04 ± 0.22 4.71 0 
log.duration*no-HT -0.16 ± 0.03 -4.98 0 
log.duration*high-
HT -0.23 ± 0.04 -5.37 0 

    
EMP PDI low-HT  1.42 ± 0.44 3.23 0.001 

log.duration 0.57 ± 0.08 7.25 0 
no-HT 0.84 ± 0.43 1.96 0.05 
high-HT 1.15 ± 0.50 2.30 0.02 
log.duration*no-HT -0.18 ± 0.08 -2.16 0.03 
log.duration*high-HT -0.23 ± 0.09 -2.42 0.02 
    

FUR PDI low-HT  -8.21 ± 0.28 -29.80 0 
log.duration 2.52 ± 0.06 45.33 0 
no-HT 2.25 ± 0.28 7.96 0 
high-HT 1.52 ± 0.35 4.33 0 
log.duration*no-HT -0.44 ± 0.06 -7.63 0 
log.duration*high-
HT -0.36 ± 0.07 -5.10 0 

    
SESf PDI low-HT  2.17 ± 0.060 34.84 0 

log.duration 0.36 ± 0.007 48.76 0 
no-HT 0.13 ± 0.070 1.79 0.07 
high-HT 1.16 ± 0.100 11.19 0 
log.duration*no-HT -0.02 ± 0.010 -1.75 0.08 
log.duration*high-
HT -0.16 ± 0.010 -11.19 0 

    
SESm PDI low-HT  1.49 ± 0.070 22.04 0 

log.duration 0.46 ± 0.008 55.53 0 
no-HT 0.75 ± 0.10 7.91 0 
high-HT 2.40 ± 0.11 21.10 0 
log.duration*no-HT -0.10 ± 0.01 -7.71 0 
log.duration*high-
HT -0.32 ± 0.02 -21.13 0 

    
372 
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Figure 9. Results from linear mixed effects models examining PDI in relation to dive duration during no-, low- and high-hunting dives. Results are 373 
presented as in Fig. 6. 374 



 
 

115 
 

Discussion  375 

 Despite the many morphological and physiological specializations for feeding underwater, marine 376 

predator diving behavior is constrained by the animal’s need to return to the surface to breathe (Boyd, 377 

1997). Within these limits, I observed high levels of variation and plasticity within among East Antarctic 378 

seals and penguins.  379 

Part 1: Marine predators' performance range 380 

 Across species, seals and penguins perform a wide range of diving behaviors with regard to depth, 381 

dive duration and PDI (Table 2). Most species remained well within their cADL while diving (Fig. 2), 382 

performing predominantly aerobic dives. Anaerobic dives are costly in terms of oxygen consumption and 383 

the longer time spent at the surface to metabolise the lactic acid (Kooyman et al., 1985), which may be 384 

the reason why predators tend to remain within their aerobic dive limit. My results agreed with those in 385 

previous studies and showed that only a relatively small percentage of dives was anaerobic (Adélie 386 

penguins 10%, Culik at al., 1994; king penguins 30%, Culik et al., 1996; emperor penguins 5%, Ponganis 387 

et al., 1999; Antarctic fur seals 17%, Costa et al., 2001; Weddell seals 10-20%, Ponganis et al., 1993; 388 

southern elephant seals female 44%, southern elephant seals male 1%, Hindell at al. 1992). However, 389 

larger species like Weddell seals and southern elephant seals appeared to methodically exceed their 390 

cADL suggesting that these species might use other physiological mechanisms that reduce their 391 

metabolic rate (Wright and Davis, 2006). 392 

 Typically, dive depth was positively related to dive duration so that deeper dives tend to be longer 393 

(Fig. 2) in smaller species, such Adélie and emperor penguins; both species performed short and long 394 

dives, while southern elephant seals had the capacity to constantly perform very long and deep dives 395 

without substantially changing their PDIs (Fig. 3). Butler and Jones (1997) demonstrated that southern 396 

elephant seals represent an extreme example of divers, performing continuous long dives at sea and 397 

compensating the oxygen debt only during periodical haulout later at the beach. Halsey et al. (2006a) 398 

reported that body mass has a greater influence on dive relationships in smaller species (diving shallower 399 

and shorter than larger ones) because of the correlation between oxygen stores and body size (Butler and 400 

Jones 1982). Dive duration is limited by the physiological adaptations that determine an animal's capacity 401 

of storing oxygen, as well as minimising its consumption while swimming. Consequently, similar-sized 402 

species like emperor, Antarctic fur seals and king penguins were expected to reach the same depth, and 403 

spend the same amount of time underwater. But my results showed that emperor penguins dived deeper 404 

and longer than the other two species (Fig. 3). Arthur et al. (2016) noted that Antarctic fur seals change 405 

their diving behavior seasonally, swimming shallower and for shorter time during the breeding season. 406 

Similarly, king penguin data used here were recorded during the breeding season when these animals 407 

generally travel to areas of predictable food resources to maximize their foraging success (Wienecke and 408 

Robertson, 2006). Moreover, during winter, the sea-ice extent reduces access to the water preventing 409 
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emperor penguins to hunt over the continental shelf. Therefore, emperor penguins foraged at the shelf 410 

slope, and dive longer and deeper to reach their prey (Wienecke et al., 2007). 411 

 Species dive behavior is also influenced by factors such as the habitat where animals are feeding 412 

(benthos vs pelagic), prey assemblages and prey types. Narwhals (Monodon Monoceros) and belugas 413 

(Delphinapterus leucas) are similar in size to southern elephant seals, and have been recorded to dive to 414 

similar depths (Laindre et al., 2003; Martin and Smith, 1992); however, these species generally dive 415 

within the top 500 m of the water column, and only occasionally dive to < 1000 m. Narwhals and belugas 416 

are pelagic feeders hunting predominantly on polar cod (Boreogadus saida) which occurs in shallow near 417 

shore and deep offshore habitats (>500 m) (Bradstreet, 1982; Marcoux et al., 2012). In contrast, male 418 

southern elephant seals are benthic feeders; previously they have been described to continuously dive to 419 

the seafloor (McConnell et al., 1996). Sperm whales and beaked whales are also feeding on benthic 420 

species, the former spending ~ 75% of their time foraging cephalopods at depth (Whitehead and 421 

Weilgart, 1991), and the latter targets high-quality prey near the seafloor (Madsen et al., 2005). Pelagic 422 

feeders may also constantly target the same depth. King penguins, for example, specialist consumers of 423 

myctophid fish at Falkland Islands (Cherel et al., 2002), are able to dive to > 300 m. However, they 424 

usually dive to a depth of 55 ± 16 m where they probably encounter aggregations of their prey 425 

particularlyduring twilight hours) (Püttz and Cherel, 2005). Blue-eyed shags at South Georgia, feeding on 426 

small crustaceans, tend capture their prey during short, shallow dives (Wanless et al., 1992).  427 

Part 2: Dive plasticity 428 

 Air-breathing marine animals find their food resources underwater, and because these are not 429 

evenly distributed in space and time, they need to maximize their time underwater while simultaneously 430 

minimizing their cost (Houston and Carbone, 1992). Consequently, their diving behavior is a reflection of 431 

the strategies used by a given species to search and catch prey (Boyd et al., 1994). 432 

 I used the hunting index to discriminate between foraging and non-foraging dives, and found 433 

that the majority of dives were performed to forage (Table 2). The hunting time method evaluates the 434 

vertical sinuosity of each segment of a dive and segments with high sinuosity are identified as hunting 435 

phase (Heerah et al., 2014). This method was originally developed on Weddell seals (~ 500 kg) dive data 436 

(Heerah et al., 2004), and its usage in the study of smaller species (< 40 kg) did not provide consistent 437 

results, especially for Adélie penguins. Adélie penguins are shallow divers and use ‘wiggles’ as foraging 438 

strategy (Bost et al., 2007).  Wiggles or undulations, a common dive pattern in penguins (Hanuise et al., 439 

2010), may have missed some foraging events when applying a discrimination method based on the 440 

hunting index. In future, different metrics like descent/ascent rate (Gallon et al., 2013; Richard et al., 441 

2014) or speed (Horsburgh et al., 2008; Kokubun et al., 2011; Viviant et al., 2014) should be 442 

considered. It is also possible to combine TDR data with other independent source of information, such 443 
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as cameras (Hooker et al., 2015; Watanabe and Takahashi, 2013) and/or stomach and esophagial 444 

thermometers (Bost et al., 2007; Horsburgh et al., 2008) to confirm foraging events.    445 

 In general, most species in this study performed deeper and longer dives when hunting than 446 

when not hunting (Table 3). I sought to determine whether air-breathing marine predators can extend 447 

their performance during intensive foraging dives. Four of the five species examined were able to adjust 448 

their foraging behavior during low- and high-hunting dives, prolonging dive times when hunting most 449 

intensively; this was most pronounced for the shallow dives. Only one species, the emperor penguin, was 450 

able to lengthen dive duration during deep foraging dives (Table 3 and Fig. 6). This species seems to 451 

have more capacity to modify behavior in deep divespossibly because emperor penguins are able to 452 

recover quickly after long dives, and the decline of lactic acid appears to be more rapid compared to 453 

larger species (Ponganis et al., 1997). Other studied species may have a limited capacity to adjust the 454 

duration of deep dives possibly due to physiological constraints. 455 

This analysis demonstrated that emperor, king penguins, Antarctic fur, and southern elephant 456 

seals are flexible in their diving behavior, and can adjust their behavior to respond to the shifts in prey 457 

distribution in the water column (Table 3). Adélie penguins did not make any significant changes, 458 

possibly due to their small body size. They may already operate close to their dive limits, and are unable 459 

to draw upon a greater energy reserve to pursue prey at deeper depth (Costa, 2004). 460 

 Foraging dives had longer bottom times and transit times than non-foraging dives across all 461 

species. As expected, longer dives corresponded to longer bottom phases. However, in Antarctic fur 462 

seals the increase in depth shortened the duration of the bottom time (Table 4). These animals are 463 

generally shallow divers and, as showed in Chapter 3, multiple ecological factors play an important role 464 

in determine their dive behavior. Moreover, although positive in all species, the relationship between 465 

transit time and depth (Table 5) varied across different activity levels among the taxa. This may reflect 466 

the fact that marine predators employ different strategies to minimize their transit time, for example, by 467 

diving more vertically or swimming faster at the same angle or a mix of both. This cannot be 468 

distinguished in this study as I did not have the swim speed data needed to calculate dive angles. 469 

However, my findings concur with those of king penguins from the Crozet Archipelago that increased 470 

their swim speed during the bottom and early ascent phases of dives (Ropert-Coudert et al., 2000). 471 

Beaked whales also increased their swimming speed when actively hunting to quickly reach the seafloor; 472 

they also use the echolocation to search, select and capture the prey item (Madsen et al., 2005). Similarly, 473 

harbour seals (Phoca vitulina) performed shallower dives at a steeper angle to maximize their time at 474 

depth when foraging (Heitmaus et al., 2017), and sperm whales increased their ascent pitch angle when 475 

feeding (Watwood et al., 2006).  476 

This comparative analysis demonstrated that diving species have considerable flexibility in their 477 

dive behavior. Most species were able to increase their dive effort when foraging except for the small 478 
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species with constraints related to the allometric relationships of O2 stores and consumption. However, a 479 

greater effort is offset by longer surface intervals. Although this influenced their overall cumulative time 480 

at depth in the foraging zone, the differences were relatively slight. In fact, when animals have sufficient 481 

oxygen buffers they are able to reduce surface times if needed, or at least reduce the time, which allows 482 

them to exploit patchy resources effectively (Table 6). Adélie and emperor penguins did not significantly 483 

change their behaviors during no-, low- and high-hunting dives possibly because they may already 484 

operate close to their dive limits, and are unable to draw upon a greater energy reserve to pursue prey at 485 

deeper (Costa, 2004). For the remaining species, PDI increased mostly with increased dive duration 486 

during low-HT dives. This implies that when actively foraging, these animals shortened their PDIs 487 

potentially in an effort to return quickly to the forage patch. 488 

Conclusion 489 

  This study across a diverse group of seals and penguins provides evidence that some species 490 

appear to have more plastic dive behaviors than others and, hence, may be able to respond better to 491 

changes in their food resources. Consequently, some seabirds and marine mammal species might be more 492 

vulnerable to fluctuations in prey abundance mediated through environmental change. Additionally, this 493 

work has provided a deeper insight into what determines marine predators’ diving capacity and foraging 494 

behavior intrinsically (e.g., taxa, body size, sex) and extrinsically (e.g., prey type and distribution). 495 

 496 

Supplementary Material 497 

Supplementary S1. Dive telemetry details  498 

We compiled time-depth recorder (TDR) data for three penguin and three seal species tagged in Eastern 499 

Antarctica deployed between 1992 - 2015 recording time and dive depth. The datasets might also include 500 

metadata regarding sex, body mass and/or age of the animals. Details regarding the datasets for most 501 

species are identical to that reported in Chapter 3 - Supplementary Material. However, only one Weddell 502 

seal high-resolution TDR dataset was available to be used in this study (details below). Since the hunting 503 

time method was originally developed for Weddell seals, we retain this dataset as something akin to a 504 

“reference level”. While inference cannot be drawn for this species from one individual, it enables some 505 

evaluation of the method and its performace across the other species. Note that where LMMs are reported 506 

across other species, an equivalent linear model was fit to the Weddell seal data. 507 

Weddell seal 508 

Female Weddell seal (n = 1) equipped with TDR (30 s sampling rate) during late January-November 509 

2003 at Davis station (77.97°E, 68.58°S) Antarctica. 510 
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Table 2.* Summary of the linear model examining depth changes during no-, low- and high-hunting time 511 
dives across species. The results showed here are from single factor linear model fit including individual as a 512 
random intercept and a temporal autocorrelation term (corAR1) to account for serial non-independence in the time-513 
series data*. Dives (total N = 7241) were separated as non-foraging (no-HT), low foraging intensity (low-HT) and 514 
high foraging intensity (high-HT) for each species (see Methods). Low-HT was the reference level in the predictor 515 
variable. Model predictions show mean and 95% CI of dive depth during each different type of dive for each 516 
species (predicted values are back-transformed from log-scale). The important significant effects (p < 0.001) are 517 
highlighted in bold. 518 

 Predictor 
(categorical 

factor) 

Coefficient 
(m) ± s.e. 

t p Predicted 
no-HT 

Predicted 
low-HT 

Predicted 
high-HT 

Weddell 
seal  
(N = 7241, 
 n = 1)   

No-HT 4.98 ± 0.03 186.29 0 38 
(35 – 40)  

62 
(58 – 66) 

195 
(191 –199) 

 Low-HT 5.67 ± 0.04 147.03 0    
 High-HT 5.56 ± 0.04 148.22 0    
        

Table 3-6*. Results of linear mixed effects models examining dive duration in relation to depth for no-, low- 519 
and high-hunting dives. Models are fit separately to each species, see Methods for details of diving parameters 520 
and model fitting. Low-HT was the reference level in the dive type predictor variable. The important significant 521 
effects (p < 0.001) are highlighted in bold. See Fig.2 for species abbreviation. 522 

Species Dive 
variable 

Predictor variable Coefficients 
Slope (m) 

± s.e. 
t p 

WED Duration log.depth 0.07 ± 0.02 3.10 0.002 
no.HT 4.36 ± 0.03 163.28 0 
low.HT 6.82 ± 0.14 48.55 0 
high.HT 7.34 ± 0.09 74.99 0 
log.depth*no.HT 0.38 ± 0.02 15.22 0 
log.depth*high.HT -0.05 ± 0.03 -1.62 0.1 
    

PDI log.dur 0.25 ± 0.16 1.51 0.13 
no.HT 4.70 ± 0.11 42.02 0.004 
low.HT 3.46 ± 1.20 2.87 0 
high.HT 2.53 ± 1.23 2.05 0.04 
log.dur*no.HT -0.18 ± 0.16 -1.07 0.28 
log.dur*high.HT 0.14 ± 0.23 0.62 0.54 
    

Bottom time log.depth -0.12 ± 0.40 -2.95 0.31 
no.HT 4.02 ± 0.05 85.97 0 
low.HT 7.68 ± 0.24 31.28 0 
high.HT 7.82 ± 0.17 45.72 0 
log.depth*no.HT 0.57 ± 0.04 13.10 0 
log.depth*high.HT 0.03 ± 0.05 0.50 0.61 
    

Transit time log.depth 0.64 ± 0.06 11.29 0 
no.HT 2.89 ± 0.06 46.54 0 
low.HT 1.78 ± 0.33 5.43 0 
high.HT 2.54 ± 0.23 11.16 0 
log.depth*no.HT -0.22 ± 0.06 -3.73 0.0002 
log.depth*high.HT -0.12 ± 0.07 -1.71 0.08 
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Supplementary S2. Performance range 523 

Table S1.  The relationships between dive duration/depth and PDI/dive duration across taxonomic groups. 524 
The results presented here are from a quantile regression (Lower= 0.025; Upper= 0.0975). The regression was 525 
fitted across the complete dataset of each species. 526 

 Lower Quantile Line   Upper Quantile Line 
  

  Slope (m)  
± s.e. t p Slope (m)  

± s.e. t p 

Log(duration) 
v log(depth) 

       

Adélie 
penguin  
(N = 21,115 
dives; n = 16) 

0.70 ± 0.005 125.47 0 0.48 ± 0.004 115.09 0 

King penguin  
(N = 36,223; n 
= 26) 

0.67 ± 0.007 91.33 0 0.34 ±0.005 62.93 0 

Emperor 
penguin  
(N = 5,723; n 
= 9) 

0.87 ± 0.004 181.72 0 0.33 ± 0.01 25.68 0 

Antarctic fur 
seal  
(N = 35,380; n 
= 26) 

0.56 ± 0.002 191.21 0 0.38 ± 0.004 82.87 0 

Weddell seal  
(N = 7,241; n 
= 1)   

0.73 ± 0.01 64.33 0 0.16 ± 0.01 13.55 0 

Southern 
elephant seal 
(F)  
(N = 46,282; n 
= 6) 

0.22 ± 0.006 34.47 0 0.05 ± 0.006 8.33 0 

Southern 
elephant seal 
(M)  
(N = 40,396; n 
= 6) 

0.22 ± 0.003 68.41 0 0.18 ± 0.006 29.19 0 

Log(duration) 
v log(depth) 

      

Adélie 
penguin  0.24 ± 0.007 30.47 0 0.10 ± 0.02 6.08 0 

King penguin  0.61 ± 0.01 54.95 0 -0.2 ± 0.02 -0.84 0 
Emperor 
penguin  0.29 ± 0.02 17.31 0 0.13 ± 0.02 6.20 0 

Antarctic fur 
seal   1.15 ± 0.01 75.74 0 1.02 ± 0.04 26.88 0 

Weddell seal  0.04 ± 0.01 33.59 0 -0.07 ± 0.01 -4.78 0 
Southern 
elephant seal 
(F) 

0.2 ± 0.001 139.78 0 -0.04 ± 0.007 -6.29 0 

Southern 
elephant seal 
(M) 

0.2 ± 0.003 69.28 0 0.03 ± 0.006 5.31 0 

 527 
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Chapter 5 1 

General Discussion 2 

 The aim of this thesis was to describe the diving ecology of a suite of Southern Ocean air-3 

breathing vertebrates, and to gain new insights into the processes underlying the diving ability of marine 4 

predators. By using high-resolution diving data from six species of marine mammals and seabirds, I 5 

developed systematic approaches for dive-based indicators under a framework of ecological questions 6 

with emphasis on species’ morphology, physiology, and life history. Through a comparative analysis of 7 

diving behaviors, I determined how specialist pursuit divers manage their dive cycle during foraging and 8 

non-foraging dives and I described which intrinsic and extinct factors may constrain an animal’s diving 9 

performances. 10 

 Here I summarize the major findings of my work in a broader ecological context, in particular 11 

with regards to three main areas: (1) benefits and limitations of dive-based indicators to describe marine 12 

mammal and penguin dive behavior; (2) diving ecology of SO species; (3) a final section integrating my 13 

findings into ecosystem modelling. 14 

 Marine predators have been recognized and monitored as indicators of ecosystem changes in the 15 

Southern Ocean for many years. Developing an integrated and synthetic view of marine mammals’ and 16 

seabirds’ diving ecology is an important first step to be able to develop predictive models for 17 

understanding how future climate change will affect this unique biota. 18 

Benefits and limitations of dive-based indicators 19 

 Bio-logging studies have used a range of parameters to describe diving behavior of marine 20 

animals offering considerable insights into their underwater exploits (Mate et al., 2007; Goldbogen et al., 21 

2013; McIntyre, 2014; Hussey et al., 2015; Naito, 2016; Carter et al., 2016). Simple depth and time data 22 

 although giving a greatly simplified representation of the very complex and dynamic three-23 

dimensional environment that marine animals inhabit (Heerah et al., 2014)  nonetheless are invaluable 24 

for quantifying underwater behavior, and my work has used best practise techniques to maximise the 25 

insights from these basic time-depth records. 26 

Benefits 27 

 Telemetry applications have advanced the understanding of how ecologically and taxonomically 28 

diverse animals manage their dive cycles and effectively exploit their three dimensional marine 29 

environment by investigating dive behavior in their natural habitat (Halsey et al., 2007a; Lyver et al., 30 

2011; Tyson et al., 2012). Ongoing technological innovation has allowed the miniaturization of logger 31 

components (especially data-storage and battery), allowing loggers to be attached to a wide range of 32 
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species of diverse sizes and minimized the effect of loggers on animal at-sea performance. This has 33 

resulted in new insights on at-sea animal migrations and behavior from a wide range of species (e.g., 34 

Davis and Boersma, 1996; Takahashi et al., 2018, van Beest et al., 2018, Burns and Castellini, Schorr et 35 

al., 2012, Roncon et al., 2018) that provides the critical information needed to inform long-term 36 

conservation and management (Hays et al., 2019; Hindell et al., 2020) and have played a central role in 37 

long-term monitoring programs for marine birds and mammals in the SO (Trathan et al., 1996; Hussey et 38 

al., 2015; Hindell et al., 2017). 39 

 The review of dive telemetry presented in Chapter 2 demonstrated how dive data have been used 40 

as a tool to make inferences about foraging behavior and diving physiology of Southern Ocean marine 41 

predators in the last decade (2006–2016). I found that predator-prey relationships, abundance of prey and 42 

their distribution, and foraging strategies, could be studied using simple (e.g., dive bottom time) and/or 43 

derived dive-based indicators (e.g., dive residual or hunting time, see Table 3 - Chapter 2), and how 44 

adding sensors to a simple time depth package provides invaluable new insights. For example, Takahashi 45 

et al. (2008) combined a depth sensor and camera into one data-logger to confirm how the dive pattern of 46 

gentoo penguins at King George Island (Antarctica) was influenced by krill swarms’ change from benthic 47 

to pelagic habitats. Heerah et al. (2013) described which water masses were used by Weddell seals 48 

foraging in winter, using a logger that combined dive depth with environmental variables (i.e., 49 

Conductivity Temperature Depth Satellite Relayed Data Loggers or CTD-SRDL). 50 

The analytical Chapters 3 and 4 showed how TDR data can be used to quantify the diving 51 

performance and/or dive effort of marine predators across a suite of species and also within species. For 52 

example, in Chapter 3, I observed that smaller species make shorter, shallower dives with 53 

correspondingly shorter surfacing intervals than larger species, and how rarely penguins and seals exceed 54 

their cADL, while generally diving performing predominantly aerobic dives (see Chapter 4). This 55 

approach was very useful to estimate diving capacity allowing the comparison between species for 56 

understanding the general allometric relationships of diving behavior by knowing what is flexible and 57 

what is not. Above all, my analysis demonstrated how robust treatment of dive data, applied across a 58 

range of species and utilizing the same basic (Chapter 3) and derived (Chapter 4) parameters, can pave 59 

the way for integrative multi-species meta-analyses. The results of my work about the influence of body 60 

size on dive ability could be easily integrated and compared with those obtained by Schreer and Kovacs 61 

(1997) and Halsey et al. (2006a). However, the slopes I found for between-species relationships were 62 

considerably higher for dive depth and duration than described by Halsey et al. (2006a). The species I 63 

examined are all specialist pursuit divers, and their behaviors offer great insight into how highly adapted 64 

species can maximise the time spent underwater. 65 

  66 
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Limitations  67 

Acquiring information on SO marine mammals and seabirds is expensive and logistically difficult 68 

due the remote locations and adverse conditions, resulting in relatively small samples sizes. 69 

Consequently, studies are often limited in their inference by the use of repeated time series of relatively 70 

few individuals. Nonetheless, combining multiple small datasets of different species can help to develop 71 

comparative analyses and strengthen the interpretations of the results (Chapter 3 and 4).  Moreover, it is 72 

important to scale up from observations of individual animals to the population level, and analytical and 73 

statistical approaches linking dive behavior to demography and population size are developing (Hindell et 74 

al., 2003; Nevins, 2004; Frydman and Gales, 2007). 75 

 Combining multiple sensors on a data-logger maximizes the behavioral inferences that can be 76 

made. However, it is usually still difficult to confirm foraging success (Ancel et al., 1992), as for example 77 

parameters such as “wiggle” or “bottom time duration” may not indicate prey encounter or capture (see 78 

Chapter 2).  79 

 The integration of location and environmental data with diving data has the potential to further the 80 

understanding of the foraging ecology of marine species (Hindell et al., 2016). How the environment 81 

influences marine predators’ foraging has been described in seals (Dracon et al., 2010; O’Toole et al., 82 

2014; Labrousse et al., 2015; Hindell et al., 2016), penguins (Kahl et al., 2010; Rey et al., 2009; Lescroël 83 

et al., 2015) and cetaceans (Baumgartner et al., 2003; Hazen et al., 2009; Friedlaender et al., 2014). 84 

However, more accurate information of predators’ behavior remains crucial to identifying their foraging 85 

preferences, habitat selection and spatial population ecology. Once these data are obtained, they might be 86 

used as inputs for ecosystem modelling (Langrock et al., 2012) and for identifying critical habitat for 87 

marine species that could be designed as Marine Protected Areas (Carter et al., 2016), or evaluating 88 

existing MPAs (Patterson et al., 2016). 89 

 Regarding the physiological adaptions that enable penguins and seals to hunt underwater, precise 90 

estimations of physiological variables (e.g., respiration and hormones) are still needed to quantify energy 91 

expenditure and allocation for most marine predators. It is difficult and expensive to obtain these 92 

measurements in the field. Despite this, successful field studies have recorded, for example, the heart rate 93 

of California sea lions (Zalophus californianus) during foraging trips at sea (McDonald and Ponganis, 94 

2013), and the abdominal temperature plus heart rate of macaroni penguins at South Georgia over seasons 95 

(Green et al., 2005). As logger technology advances, an increasing number of interesting publications are 96 

becoming available in this field (Halsey et al., 2020; Okuyama et al., 2020; Wilson et al., 2020).   97 

 Finally, it is necessary for researchers to weigh up the benefits of telemetry studies against their 98 

potential effects on reproduction, foraging success, energetics and survival of the sampled individuals 99 

(McIntyre, 2014). For example, it is necessary to carefully investigate the best attachment location for the 100 

tag, i.e., evaluate whether the attachment causes additional energetic cost to the individual or reduces its 101 



 
 

124 
 

foraging skills. Additional energetic costs are important, especially in smaller species, where mass and 102 

size of the tag may limit its usage (Wilson and McMahon, 2006). Also, it is important to consider 103 

whether conspecifics might react to tag application, and if its deployment could make the individual more 104 

vulnerable to predation (Withey et al., 2001). All these factors need to be considered by researchers and 105 

ethic committees that oversee research applications, particularly for species of high conservation concern 106 

(Hawkins, 2004; McMahon et al., 2011; Puehringer-Sturmayr et al., 2020). 107 

Diving ecology of Southern Ocean marine predators 108 

 The diversity of diving behavior in seabirds and marine mammals has evolved under a 109 

combination of factors based on the need of animals to balance their energy budget (Kooyman, 1980). 110 

Marine predators differ in the degree of plasticity to which they are able to respond to environmental 111 

variability. In chapters 3 and 4, I explored the intrinsic and extrinsic determinants of dive ability to assess 112 

behavioral plasticity. 113 

Diving determinants 114 

 Metabolic physiology ultimately determines the dive capacity and foraging capabilities of an 115 

individual animal (Ponganis, 2015), in particular their available oxygen and energy stores, and the rate at 116 

which these are consumed in metabolic processes (Costa, 2004). Marine mammals and seabirds must 117 

trade their need to acquire resources with the need to breathe (Kooyman and Ponganis, 1998). 118 

Physiological and anatomical modifications of the blood, muscle and respiratory systems allow marine 119 

mammals and seabirds to increase oxygen storage, and also to reduce oxygen consumption rates while 120 

diving (e.g., the dive response). Since oxygen stores appear to scale isometrically with body mass, larger 121 

animals are generally able to dive deeper and for longer than animals of smaller size (Halsey at al., 122 

2006a). However, my analyses in chapters 3 and 4 demonstrated that the trade-off between absolute 123 

oxygen stores and relative metabolic rate is solved in different ways by different species according to 124 

their life-history. I found that the six species I studied are diving longer for a given depth than expected 125 

for average birds or mammals (Chapter 3), showing clearly that body mass is not the sole determinant of 126 

dive capacity, and that other traits, such as taxonomy, sex and age, also influence marine predators’ 127 

diving abilities.  128 

 In my work, I have only explored briefly the influence of taxonomy on dive capacity. Major 129 

differences in birds’ and mammals’ adaptations to dive are broadly discussed in the review by Kooyman 130 

and Ponganis (1998). Different lung structures and respiration processes allow birds to exchange O2 and 131 

CO2 quicker compared to mammals, but they consume it more quickly. Penguins carry their oxygen in 132 

three stores: the blood, lungs and muscle (Cassandra et al., 2014).  Marine mammals store most of their 133 

oxygen in muscle and blood having a larger blood volume then penguins, and use it slowly used due to 134 

physiological mechanisms like the “diving response”.  My data showed that Antarctic fur seals and king 135 
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penguins behave similarly in terms of dive patterns and performances although they belong to different 136 

taxa (Chapter 4). King penguins and Antarctic seals showed similar capacity to extend their hunting time 137 

in response to changes in prey distribution.   138 

 Another aspect that is only partially considered in my work of diving determinants is the sex of 139 

the animal. Female Antarctic fur seals change their foraging strategies during breeding by making short, 140 

localized foraging trips to provision their pups (Arthur et al., 2016). In contrast, during winter females 141 

disperse more widely, dive for longer and deeper possibly hunting fish and squid (Arthur et al., 2016). 142 

Similarly, once they left their partner incubating the egg, travelled to areas of predictable food resources 143 

to maximize their foraging success and to ensure fast re-building of body reserves (Wienecke and 144 

Robertson, 2006). My TDR data were collected during the breeding season, and it is not surprising that 145 

some animals were diving shallower and for shorter time compared to studies that collected dive data 146 

during a different time of year (e.g., Arthur et al. 2016; Takashi et al., 2018). Female bearded seals 147 

(Erignathus barbatus) are limited in their movements while nursing, but when pups reach two months of 148 

age, they can easily accompany their mothers having adjusted to longer and deeper dives (Gjertz et al., 149 

2000). Recent studies have shown the diving ability of marine mammals and seabirds is not innate, and 150 

new-born animals need to develop their dive capacity in terms of physiological adaptations (e.g., harbor 151 

porpoise; Elmegaard et al., 2016) and effectiveness of the movement (e.g., king penguin; Le Vaillant et 152 

al., 2013).  153 

 Finally, the environment appears to be one of the main influences in shaping diving predators’ 154 

ability in terms of the feeding niches these groups exploit, the bathymetry of their habitat and degree of 155 

dependence on specific prey (for more details see Chapter 2 –4). As an example, male and female 156 

elephant seals in my study showed very different hunting behaviors. The explanation for such behavior is 157 

found in their feeding ecology. Male elephant seals typically forage on benthic prey in relatively shallow 158 

shelf waters, while females feed predominantly on mesopelagic prey in the open ocean (Hindell et al., 159 

2016). Takahashi et al. (2003) confirmed that the depth of benthic dives is clearly determined by the 160 

bathymetry of the foraging area. At Signy Island, where chinstrap and Adélie penguins hunt the same 161 

prey, chinstraps perform shallower dives than Adélies while feeding inshore, while Adélies forage farther 162 

offshore (Takahashi et al., 2003).  163 

Behavioral plasticity 164 

Although the effects of some life-history traits are fixed, marine species also show flexible foraging 165 

behaviors that vary depending on environmental conditions (Waugh and Weimerskirch, 2003). 166 

Behavioral plasticity maximizes the energy gain of an individual, but it has also implications for the 167 

performance of a whole population (Croxall et al., 1999). How deep and how much time marine predators 168 

spend underwater is closely linked to the feeding strategies they adopt and their foraging preferences. 169 

Blue whales (Balaenoptera musculus) and the fin whales (B. physalus) perform dives short for their size 170 
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due to the high feeding cost of hunting euphausiids which disperse very quickly (Acevedo-Gutiérrez et 171 

al., 2002). Lunge-feeding behavior limits these whales to shallow dives and reduces their dive duration.   172 

 My study showed that penguins and seals appear to be able to vary their dive performance when 173 

foraging, but only few species are able to extend their hunting time during intense foraging dives (see 174 

Chapter 4 - Part 3). Four of the species were able to adjust their foraging behavior during short and long 175 

hunting dives, making relatively long dives when hunting most intensively. Only one species, the 176 

emperor penguin, was able to lengthen its dive duration during active deep foraging dives with long 177 

hunting time. The behavior of Adélie penguins did not significantly change during short or longer 178 

hunting time dives (Chapter 4). My results confirm what has been described in previous studies (e.g., 179 

Costa, 2004; Halsey et al., 2006a; Zimmer et al., 2008b) showing that diving behavior is a reflection of 180 

the strategies used by the predators to search and catch their prey (Boyd et al., 1994). Living in a dynamic 181 

marine environment, air-breathing predators should be adaptable to accommodate changes in prey 182 

distribution and abundance (Boyd, 1994). Generalist feeders like harbour seals change their foraging 183 

behavior according to the area and availability of clupeids and sandeels (Pierce et al., 1991), and gentoo 184 

penguins changed their diet and foraging habits (benthic to pelagic) in different years in response to 185 

changes in prey abundance (Miller et al., 2009). Even Adélie penguins, considered specialist feeders 186 

hunting predominantly on krill, switch their diet to fish and squid across years and seasons in response to 187 

climate change (Emslie et al., 1998). Species that are not capable of adjusting their behavior are more 188 

vulnerable to change due to their inability to acquire sufficient resources, and are likely to face declines 189 

in population numbers and breeding success. Oedekoven et al. (2001) demonstrated that different species 190 

of seabirds responded to changes in prey distribution in central California from 1985 to 1994: during that 191 

period, upwelling of cool, nutrient-rich water had declined and so did the numbers of shallow-diving 192 

shearwaters and auklets, while deep-diving murres did not. The number of sooty shearwaters (Puffinus 193 

griseus) decreased after 1988 as this species changed the migration route avoiding the California Current 194 

and moved through the central part of North Pacific Ocean in response to the prey availability; murres 195 

simply adjusted their foraging strategies switching their diet from rockfish and squid to anchovies 196 

inshore. Cassin’s auklet (Ptychoramphus aleuticus) that are strictly depend on zooplankton, were not able 197 

to change prey and this affected negatively their breeding success (Oedekoven et al., 2001). 198 

Future perspectives 199 

Using predators as marine system indicators 200 

 Earth’s climate is changing rapidly, and it has warmed at the rate of 1.5° C yr–1 201 

(Intergovernmental Panel on Climate Change (IPCC), 2019). The general warming of the Earth’s surface 202 

is manifesting in the marine environment as an increase in global sea surface temperature, height of the 203 

sea level and changes in ocean circulation and nutrients availability (IPCC, 2015). This has interfered 204 

with many ecological and physiological processes causing a distributional shift in nutrient availability, 205 
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prey and organizational assemblages, and consequently biological interactions of species. Melting of 206 

snow and ice have increased the global mean sea level by 1.7 mm yr–1 in the last century (1901–2010) 207 

(IPPC, 2007) causing habitat loss and gain and shifts in species distribution and abundance (Constable et 208 

al., 2014). Furthermore, marine communities face changes in ocean circulation patterns and increases in 209 

the magnitude and frequency of freshwater incursions, altering the nutrients profile of marine 210 

environments (Hays et al., 2016). Moreover, there is a widespread concern for the exploitation of the 211 

precious living resources of the Southern Ocean, which has led to an organized effort to manage and 212 

conserve this marine ecosystem (Constable, 2004).  213 

 One of the central problems in the management of the Southern Ocean ecosystem is the 214 

assessment of actual and potential impacts on the system by various threats (e.g., harvesting regime). 215 

Fluctuations in prey availability may be reflected in the responses of the primary and secondary predators 216 

of krill, and there is evidence that trends in bird and seal populations in the southern Indian Ocean are 217 

indicators of system shifts (Weimerskirch et al., 2003). Marine mammals and seabirds occupy the upper-218 

trophic level, and some demographic and behavioral variables integrate changes in the prey they rely 219 

upon (Moore, 2008). For these reasons, they are used as “sentinels” for the assessment of ecosystem 220 

changes, and long-term monitoring programs have been established in the Southern Ocean to quantify 221 

temporal and spatial variation that may reflect changes in the prey base (Reid and Croxall, 2001; Reid et 222 

al., 2005; Trathan et al., 2015). The Convention on the Conservation of Antarctic Marine Living 223 

Resources (CCAMLR) represents a significant milestone in monitoring marine predator species and fish 224 

stocks. Many species variables, such as growth, reproduction, and behavior, are flexible parameters that 225 

change in response to factors such as prey availability. For this reason, a number of species of seals and 226 

penguins have been designated as CCAMLR Ecosystem Monitoring Program (CEMP) species, and 227 

several locations have been selected as CEMP Network Sites for monitoring programs. Additionally, 228 

because penguins are meso-level predators and feed also on krill, the Scientific Committee on Antarctic 229 

Research (SCAR) has collected information on the status and population trends of Southern Ocean 230 

penguins since 1980. The Australian Antarctic Division has developed a long-term monitoring program 231 

on Adélie penguins at Béchervaise Island (67°35' S, 62°48' E), East Antarctica, to evaluate how changes 232 

in the Antarctic environment might affect these bio-indicators.  233 

Linking dive data with energetics 234 

 For many marine species, the relationships between demographic performance and environmental 235 

variability (e.g., ice extent) have not been established yet. However, as demonstrated by previous 236 

biotelemetry studies (Smith et al., 2003; Le Boeuf and Crocker, 2005), dive data have the potential to link 237 

at-sea behavior to demography and population level consequences, and provide insights on how dive 238 

behavior is linked to population growth and persistence (Lea and Dubroca, 2003; Lea et al., 2006). This 239 

gap can be filled linking dive data to energetics, which provides a method to quantitatively assess the 240 
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effort animals spend acquiring resources, as well as how they allocate those resources (Halsey, 2011). An 241 

“efficient” dive provides energy for maintenance functions, growth, reproduction and metabolic work.  242 

 One way to assess energy requirements in animals is to accurately measure total metabolic rate 243 

(Kooyman, 1985), but due to the environment in which they live, a limited amount of data has been 244 

collected on the metabolism of Southern Ocean marine predators. Nevertheless, since the primary 245 

energetic cost faced by diving animals is influenced by locomotor movements, data loggers offer a great 246 

tool to investigate animal dive cycle management and the energy expenditure during dives (Halsey et al., 247 

2006b). As presented in my work, simple dive variables have been used to estimate how much energy, 248 

has been used by different species when diving in term of oxygen consumption. Parameters like “post-249 

dive interval” can be used as a measure of dive cost, based on the fact that divers should maximize time 250 

spent underwater, and minimize their transit time and subsequent surface recovery time (Kramer, 1988). 251 

All my species showed an increase of post-dive surface intervals with longer dive durations (Chapter 4), 252 

but the interval variation was less consistent during intense foraging dives with long hunting times, 253 

potentially implying a higher energetic cost for this level of activity. Similarly, Acevedo-Gutiérrez et al. 254 

(2002) used TDR data to demonstrate how lunge-feeding in whales is highly costly by measuring the 255 

time needed by these animals to recover at the surface after a dive. Speed data have also been used as 256 

proxy for energy expended, since muscle motion involves oxygen consumption (Gleiss et al., 2011). 257 

Moreover, TDR data may provide measurements of animal energetics in the field over long periods, and 258 

even during particular time of the year such as the breeding season. 259 

 The calculation of energetic cost and its integration into different behavior categories like 260 

foraging, travelling, breeding is the basis to obtain time-activity budgets (Fort et al., 2011). Energetic 261 

activity budgets are critical for determining the overall ecology of marine predators, as well as 262 

quantifying the effects of environmental variation on their energy needs and prey requirements. Since 263 

energy budgets can be derived from time-activity information, my findings could easily be integrated into 264 

energetics studies offering a deeper understanding of how foraging behavior is linked with dive 265 

metabolism, as well as the constrains and determinants imposed by marine predators’ physiology, 266 

morphology and other life history traits. 267 

Integrate dive data into ecosystem modelling 268 

 The SO ecosystem is experiencing significant environmental changes (IPCC, 2019). Due to the 269 

size and complexity of this marine ecosystem, it is particularly difficult to forecast how climate change 270 

will affect marine life (Hoegh-Guldberg and Bruno, 2010). To produce such forecasts, ecology needs to 271 

become more predictive and needs to develop the capacity to understand how ecological systems will 272 

behave in the future (Marguire, 1975). To do so, we must better our understanding of what we can 273 

forecast and how individual behavior determines interactions within and between species (Dietze, 2017).  274 
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 SO marine predators may have an important indicator role because marine predators’ foraging 275 

areas are likely to shift and change in size, presenting both accessibility and availability issues (Lambert 276 

et al., 2014). Combining dive data with remotely sensed oceanographic data has allowed the investigation 277 

of the effects of environmental factors on animals (Bailleul et al., 2007; Heerah et al., 2013). For 278 

example, elephant seals change from transit to foraging mode when they move into new water masses 279 

(Bestley et al., 2015). Additionally, as shown by my work, dive data offer an integrated understanding of 280 

how diving animals use the water column and forage, but also how changes in dive behavior could be 281 

related to environmental variation (e.g., prey distribution and abundance). Previous studies evaluating the 282 

relationship between air-breathing vertebrate behavior and climate have demonstrated that marine species 283 

responded by exploring new foraging grounds and switching prey species (Boyd, 1994; Oedekoven et al., 284 

2001; Miller at al., 2009), changing their distribution (Guinet et al., 1996; Alonzo et al., 2003; Trivelpiece 285 

et al., 2011) and modifying the length and timing of migrations (Scheinin et al., 2011; Bailleul et al., 286 

2012; Ramp et al., 2015). 287 

  With regard to the factors limiting diving behavior for SO species, my work suggests that 288 

different species respond differently to changes in food resources, depending on their degree of plasticity. 289 

These differences in behavior may help to define which species are more ‘sensitive’ because of their 290 

limited capacity to adjust their behavior. This will identify which species are the best sentinels for certain 291 

locations or ecosystems (e.g., krill abundance; Reid et al., 2005) and which parameters should be 292 

measured in the monitored species to reflect the change. Furthermore, the integration of my results on 293 

diving behavior and energetic costs (derived indirectly from time-activity data) could be used to 294 

implement ecosystem energy flow models (Williams et al., 2000), and/or to correct and increase the 295 

accuracy of Regional Ocean Models (Malpress et al., 2017) that estimate how access to prey and foraging 296 

efficiencies may change into the future.  297 

 Finally, the ongoing development of telemetry instrumentation and statistical techniques to 298 

analyze the data will enable better assessments of the diving ecology of SO species. As multi-year and 299 

even multi-decadal time-series of observations build, it will be possible to move from individual-based 300 

results to broader-scale population dynamics, and to predict how Southern Ocean specialists respond to 301 

environmental variability. As ecosystem approaches to management are becoming increasingly 302 

important, we need a broader understanding of the links between species and the effect of environmental 303 

conditions on these interactions. 304 
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