
Heuristics in quantum error correction

Alex Rigby

Bachelor of Science and Engineering (Honours), University of Tasmania, 2016

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy (Electronic Engineering)

December 2020

Declaration of originality

This thesis contains no material which has been accepted for a degree or diploma by the Univer-
sity or any other institution, except by way of background information and duly acknowledged
in the thesis, and to the best of my knowledge and belief no material previously published or
written by another person except where due acknowledgement is made in the text of the thesis,
nor does the thesis contain any material that infringes copyright.

Authority of access

This thesis may be made available for loan and limited copying and communication in accordance
with the Copyright Act 1968.

Statement regarding published work contained in the thesis

The publishers of the papers comprising Chapters 2 to 4 hold the copyright for that content,
and access to the material should be sought from the respective journals. The remaining non
published content of the thesis may be made available for loan and limited copying and com-
munication in accordance with the Copyright Act 1968.

Signed:

Date:

i

18/12/2020

Statement of co-authorship

The following people and institutions contributed to the publication of work undertaken as part
of this thesis:

Alex Rigby, School of Engineering = Candidate
JC Olivier, University of Tasmania = Author 1
Peter Jarvis, University of Tasmania = Author 2

Author details and their roles:

Paper 1, Modified belief propagation decoders for quantum low-density parity-check
codes
Located in Chapter 2
Contributors: Candidate (85%), Author 1 (10%), and Author 2 (5%)
Candidate developed methods, gathered and interpreted data, and drafted the paper. Author
1 contributed to ideas, presentation and the development of methods. Author 2 contributed to
ideas and presentation.

Paper 2, Optimizing short stabilizer codes for asymmetric channels
Located in Chapter 3
Contributors: Candidate (90%), Author 1 (5%), and Author 2 (5%)
Candidate developed methods, gathered and interpreted data, and drafted the paper. Authors
1 and 2 contributed to ideas and presentation.

Paper 3, Heuristic construction of codeword stabilized codes
Located in Chapter 4
Contributors: Candidate (90%), Author 1 (5%), and Author 2 (5%)
Candidate developed methods, gathered and interpreted data, and drafted the paper. Authors
1 and 2 contributed to ideas and presentation.

We the undersigned agree with the above stated “proportion of work undertaken” for each of
the above published (or submitted) peer-reviewed manuscripts contributing to this thesis:

.
Signed: Signed: Signed:

JC Olivier Andrew Chan Alex Rigby
Supervisor Head of School Candidate
School of Engineering School of Engineering School of Engineering
University of Tasmania University of Tasmania University of Tasmania

Date: Date: 19th December 2020 Date:

ii

18/12/2020 18/12/2020

Acknowledgements

I would like to express my thanks to my primary supervisor JC Olivier for giving me the
opportunity to study a topic that I am passionate about and for steering me in the right direction
when required. I am also grateful to my secondary supervisor Peter Jarvis for being generous
with his time and ensuring that my writing was always clear and concise.

I would like to thank my family, particularly Mum and Grandma, for their support and motiva-
tion over the last few years. Lastly, a special mention goes to Cassandra for giving me something
to look forward to outside of work; it would have been a lonely time without you.

iii

Table of contents

1 Introduction 1

1.1 Motivation . 1

1.2 Closed systems . 2

1.2.1 States . 2

1.2.2 Evolution . 3

1.2.3 Observables and measurement . 4

1.2.4 Multipartite states . 4

1.3 Open systems . 6

1.3.1 Density operators . 6

1.3.2 Multipartite states . 7

1.3.3 Channels . 8

1.4 Quantum codes . 9

1.4.1 A three-qubit code . 9

1.4.2 The Shor code . 11

1.4.3 General codes . 12

1.5 Thesis outline . 13

iv

2 Modified belief propagation decoders for quantum low-density parity-check
codes 15

2.1 Introduction . 16

2.2 Background . 17

2.2.1 Classical codes . 17

2.2.2 Factor graphs and belief propagation . 19

2.2.3 Stabilizer codes . 22

2.2.4 Stabilizer code representations . 24

2.2.5 Belief propagation decoding for stabilizer codes 26

2.3 Modified decoders . 28

2.3.1 Existing decoders . 28

2.3.1.1 Random perturbation . 28

2.3.1.2 Enhanced feedback . 29

2.3.1.3 Supernodes . 30

2.3.2 New decoders . 30

2.3.2.1 Adjusted . 30

2.3.2.2 Augmented . 31

2.3.2.3 Combined . 32

2.4 Simulation results . 33

2.4.1 Bicycle . 33

2.4.1.1 Depolarizing channel . 33

2.4.1.2 XZ channel . 36

2.4.2 BIBD . 39

2.4.3 Quasicyclic . 41

2.4.4 Bicyclelike . 44

2.4.5 Non-CSS A . 48

v

2.4.6 Non-CSS B . 49

2.5 Conclusion . 54

2.A Appendix: Check node Fourier transform implementations 54

2.A.1 Classical decoding . 54

2.A.2 GF(4) stabilizer decoding . 55

3 Optimizing short stabilizer codes for asymmetric channels 56

3.1 Introduction . 57

3.2 Background . 58

3.2.1 Classical codes . 58

3.2.2 Cyclic codes . 60

3.2.3 Quantum channels . 62

3.2.4 Stabilizer codes . 64

3.3 Approximate FER calculation . 67

3.3.1 Limited error set . 68

3.3.2 Most likely error . 69

3.3.3 Most likely error only . 72

3.4 Code performance . 73

3.4.1 [[7, 1]] codes . 73

3.4.2 Other parameters . 75

3.4.3 Hill climbing . 77

3.4.4 Multiobjective hill climbing . 79

3.4.5 Weight-four codes . 80

3.4.6 CSS codes . 81

3.4.7 Linear codes . 83

3.5 Conclusion . 84

vi

4 Heuristic construction of codeword stabilized codes 95

4.1 Introduction . 96

4.2 Background . 97

4.2.1 Undirected graphs . 97

4.2.2 Genetic algorithms . 100

4.2.3 Classical codes . 102

4.2.4 Quantum codes . 103

4.2.5 CWS codes . 105

4.2.6 Code bounds . 107

4.3 Symmetric codes . 109

4.3.1 Distance-two codes . 110

4.3.2 Distance-three codes . 113

4.3.3 Distance-four codes . 115

4.3.4 Distance-five codes . 118

4.4 Asymmetric codes . 118

4.4.1 Single amplitude damping error . 121

4.4.2 Two amplitude damping errors . 122

4.5 Conclusion . 124

5 Conclusion 126

5.1 Summary . 126

5.2 Future research . 127

Bibliography 129

vii

List of figures

2.1 The factor graph of the [7, 4, 3] Hamming code corresponding to the parity-check
matrix given in Eq. (2.12). Error nodes are represented as circles and check nodes
as squares. 20

2.2 The effect of augmentation density and random perturbation strength on decoder
performance (frame error rate) for the [[400, 200]] bicycle code on the depolarizing
channel. Each decoder uses N = 10 maximum attempts. 34

2.3 FER performance of decoders with N = 100 attempts (where applicable) for the
[[400, 200]] bicycle code on the depolarizing channel. 35

2.4 Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[400, 200]] bicycle code on the depolarizing channel. 35

2.5 FER performance of decoders at p = 0.008 with a varying number of decoding
attempts for the [[400, 200]] bicycle code on the depolarizing channel. 36

2.6 The effect of augmentation density and random perturbation strength on decoder
performance for the [[400, 200]] bicycle code on the XZ channel. Each decoder
uses N = 10 maximum attempts. 37

2.7 FER performance of decoders with N = 100 attempts (where applicable) for the
[[400, 200]] bicycle code on the XZ channel. 38

2.8 Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[400, 200]] bicycle code on the XZ channel. 38

2.9 FER performance of decoders at p = 0.008 with a varying number of decoding
attempts for the [[400, 200]] bicycle code on the XZ channel. 39

2.10 The effect of augmentation density and random perturbation strength on decoder
performance for the [[610, 490]] BIBD code on the depolarizing channel. Each
decoder uses N = 10 maximum attempts. 40

2.11 FER performance of decoders with N = 100 attempts (where applicable) for the
[[610, 490]] BIBD code on the depolarizing channel. 41

viii

2.12 Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[610, 490]] BIBD code on the depolarizing channel. 42

2.13 FER performance of decoders at p = 0.001 with a varying number of decoding
attempts for the [[610, 490]] BIBD code on the depolarizing channel. 42

2.14 The effect of augmentation density and random perturbation strength on decoder
performance for the [[506, 240]] quasicyclic code on the depolarizing channel. Each
decoder uses N = 10 maximum attempts. 43

2.15 FER performance of decoders with N = 100 attempts (where applicable) for the
[[506, 240]] quasicyclic code on the depolarizing channel. 44

2.16 Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[506, 240]] quasicyclic code on the depolarizing channel. . . . 45

2.17 FER performance of decoders at p = 0.015 with a varying number of decoding
attempts for the [[506, 240]] quasicyclic code on the depolarizing channel. 45

2.18 The effect of augmentation density and random perturbation strength on decoder
performance for the [[400, 200]] bicyclelike code on the depolarizing channel. Each
decoder uses N = 10 maximum attempts. 46

2.19 FER performance of decoders with N = 100 attempts (where applicable) for the
[[400, 200]] bicyclelike code on the depolarizing channel. 47

2.20 Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[400, 200]] bicyclelike code on the depolarizing channel. 47

2.21 FER performance of decoders at p = 0.012 with a varying number of decoding
attempts for the [[400, 200]] bicyclelike code on the depolarizing channel. 48

2.22 The effect of augmentation density and random perturbation strength on decoder
performance for the [[400, 202]] non-CSS code A on the depolarizing channel.
Each decoder uses N = 10 maximum attempts. 49

2.23 FER performance of decoders with N = 100 attempts (where applicable) for the
[[400, 202]] non-CSS code A on the depolarizing channel. 50

2.24 Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[400, 202]] non-CSS code A on the depolarizing channel. . . . 50

2.25 FER performance of decoders at p = 0.012 with a varying number of decoding
attempts for the [[400, 202]] non-CSS code A on the depolarizing channel. 51

2.26 The effect of augmentation density and random perturbation strength on decoder
performance for the [[400, 201]] non-CSS code B on the depolarizing channel.
Each decoder uses N = 10 maximum attempts. 52

ix

2.27 FER performance of decoders with N = 100 attempts (where applicable) for the
[[400, 201]] non-CSS code B on the depolarizing channel. 52

2.28 Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[400, 201]] non-CSS code B on the depolarizing channel. . . . 53

2.29 FER performance of decoders at p = 0.012 with a varying number of decoding
attempts for the [[400, 201]] non-CSS code B on the depolarizing channel. 53

3.1 The fraction of 1 000 randomly generated [[7, 1]] codes that yield a relative error
δE ≤ 0.01 or relative error bound ∆E ≤ 0.01 for varying |E| and biased XZ

channel parameters. 70

3.2 The fraction of 1 000 randomly generated [[5 ≤ n ≤ 7, 1 ≤ k ≤ 3]] codes that
yield a relative error δE ≤ 0.01 or relative error bound ∆E ≤ 0.01 for a biased
XZ channel (p = 0.01 and η = 10) and varying |E|. 70

3.3 FMAP versus FMAP−SE for 1 000 random [[7, 1]] codes on biased XZ channels with
varying parameters. The dotted lines give FMAP = FMAP−SE. 71

3.4 FMAP versus FMAP−SEO for 1 000 random [[7, 1]] codes on biased XZ channels
with varying parameters. The dotted lines give FMAP = FMAP−SEO. 73

3.5 FER performance of the best cyclic and random [[7, 1]] codes on biasedXZ channels. 75

3.6 FER performance of the best cyclic and random [[7, 1]] codes on AD channels. . 75

3.7 The geometric mean of FERs for codes on biased XZ channels with p = 0.1, 0.01,
0.001, or 0.0001 and η = 1, 10, 100, or 1 000. 77

3.8 The geometric mean of FERs for codes on AD channels with p = 0.1, 0.01, 0.001,
or 0.0001 and η = 1, 10, 100, or 1 000. 78

3.9 The 95th percentile FE−SEO found by 1 000 hill-climbing instances based on var-
ious mutation methods for [[9, 1]] codes on a biased XZ channel (p = 0.01 and
η = 10). 79

3.10 The performance (geometric mean of FERs) of the best [[5 ≤ n ≤ 12, 1 ≤ k ≤ 3]]
codes found via hill climbing for biased XZ channels with with p = 0.1, 0.01,
0.001, or 0.0001 and η = 1, 10, 100, or 1 000. Also shown is the performance of
the best cyclic codes and dual-containing CSS codes. 81

3.11 The performance (geometric mean of FERs) of the best [[5 ≤ n ≤ 12, 1 ≤ k ≤ 3]]
codes found via hill climbing for AD channels with with p = 0.1, 0.01, 0.001, or
0.0001 and η = 1, 10, 100, or 1 000. Also shown is the performance of the best
cyclic codes and dual-containing CSS codes. 82

x

4.1 A drawing of a cycle graph where the circles correspond to nodes and the lines to
edges. 98

4.2 Code size distributions for non-LC-isomorphic, nonisomorphic, and distinct graphs
in the case of n = 6 and d = 2. 111

4.3 Code size distributions for non-LC-isomorphic, nonisomorphic, and distinct graphs
in the case of n = 7 and d = 2. 112

4.4 Non-LC-isomorphic graphs that yield ((9, 97 ≤ K ≤ 100, 2)) codes. 113

4.5 Non-LC-isomorphic graphs that yield ((11, 406 ≤ K ≤ 416, 2)) codes. 113

4.6 Code size versus clique graph order for codes with 4 ≤ n ≤ 11 and d = 2. 114

4.7 Code size versus clique graph order for codes with 8 ≤ n ≤ 11 and d = 3. 115

4.8 Clique graph order distribution over L12 for codes with with d = 3. 115

4.9 Clique graph order distribution over D13 for codes with with d = 4. 116

4.10 Spectral crossover example for n = 10 graphs. Each parent graph is split into two
fragments according to a spectral bisection. These fragments are then exchanged
and combined to form two child graphs. 117

4.11 Comparison of crossover methods for n = 13, d = 4 codes. The vertical axis
shows the fitness (the clique graph order |NE |) of the highest-fitness element of
the child population averaged over 100 genetic algorithm instances. 118

4.12 Non-LC-isomorphic graphs that yield ((13, 18, 4)) codes. 119

4.13 Non-LC-isomorphic graphs that yield ((13, 20, 4)) codes. 120

4.14 Distribution of clique graph order over G10 for the error sets E{1}, E{1}XZ , and E
{1}
Y Z . 122

4.15 Nonisomorphic graphs yielding ((11, 68)) codes detecting E{1}Y Z , ((11, 68)) codes
detecting E{1}XZ , and ((11, 80)) codes detecting E{1}XZ 123

4.16 Nonisomorphic graphs yielding ((11, 4)) codes detecting either E{2} or E{2}XZ 124

4.17 Graphs yielding ((12, 4)), ((13, 8)), or ((14, 16)) codes detecting one of E{2}, E{2}Y Z ,
or E{2}XZ . 125

xi

List of tables

1.1 Possible errors caused by the three-qubit bit-flip channel. Also given are their
associated probabilities and measurement outcomes forM1 = Z1Z2 andM2 = Z2Z3. 10

2.1 GF(4) addition. 26

2.2 GF(4) multiplication. 26

3.1 The number of inequivalent (distinct) [[n, k]] cyclic codes, single-generator cyclic
codes, cyclic codes with weight-four generators, cyclic CSS codes, dual-containing
CSS codes, and linear cyclic codes. 76

3.2 Generators and distances for the best-performing inequivalent cyclic codes on the
biased XZ and AD channels. Note that each stabilizer can be expressed using
a single generator; that is, each generator given corresponds to a different code.
The generators of codes performing well on both channel types are given in bold. 85

3.3 Generators and distances for the best codes found for the biased XZ channel
using hill climbing. 86

3.4 Generators and distances for the best codes found for the AD channel using hill
climbing. 87

3.5 Generators and distances for the best weight-four codes found for the biased XZ
channel using hill climbing. 88

3.6 Generators and distances for the best weight-four codes found for the AD channel
using hill climbing. 89

3.7 Generators and distances for the best-performing inequivalent cyclic codes with
weight-four generators on the biased XZ and AD channels. If a code requires two
generators, they are grouped in brackets; otherwise, a single generator is given as
in Table 3.2. The generators of codes performing well on both channel types are
given in bold, while the generators for codes previously appearing in Table 3.2
are marked with an asterisk. 90

xii

3.8 Generators and distances for the best CSSY codes found for the biased XZ chan-
nel using hill climbing. 91

3.9 Generators and distances for the best CSSY codes found for the AD channel using
hill climbing. 92

3.10 Generators and distances for the best linear codes found for the biasedXZ channel
using hill climbing. 93

3.11 Generators and distances for the best linear codes found for the AD channel using
hill climbing. 94

4.1 The number of distinct, nonisomorphic, and non-LC-isomorphic graphs with n ≤
12 nodes. 99

4.2 Bounds on the maximum k of an [[n, k, d]] stabilizer code for 1 ≤ n ≤ 15 and
2 ≤ d ≤ 5. 108

4.3 Bounds on the maximum size K of an ((n,K, d)) code for 1 ≤ n ≤ 15 and 2 ≤ d ≤ 5.109

4.4 The fraction of elements of Ln, Gn, and Dn that yield optimal K = 2n−2 codes
for even n ≤ 10 and d = 2. The values given for n = 8 and 10 are lower bounds. . 110

4.5 Number of elements NK of L11 that gave codes of given size K with d = 2. . . . 112

4.6 Size (K) of stabilizer codes presented in Ref. [15] and CWS codes presented in
Ref. [90] that detect E{1}. 120

4.7 Number of elements of Gn that yield optimal ((n,K)) CWS codes for the LC-
equivalent error sets E{1}, E{1}XZ , and E

{1}
Y Z . The values given for n = 9 are lower

bounds. 121

4.8 The number of genetic algorithm instances out of the 50 000 run that yielded an
((n,K)) code detecting the given error set. 124

xiii

Abstract

Noise is a major obstacle in the development of practical schemes for quantum computation
and communication. Similar to the case of classical communication, this noise can be protected
against by employing a code, which provides a means for encoding quantum states prior to
transmission and allows for errors to be inferred, and hopefully corrected, by a decoder at the
receiver. Unfortunately, designing good codes and decoders is typically a difficult problem. This
thesis focuses on developing low-complexity heuristic approaches to three such problems: the
design of modified belief propagation decoders for quantum low-density parity-check codes, the
design of stabilizer codes for asymmetric channels, and the design of codeword stabilized codes.

Quantum low-density parity-check codes are stabilizer codes with low-weight generators. Such
codes permit low-complexity decoding via the use of belief propagation, which is an iterative
message passing algorithm that takes place on a factor graph defined by the code. However,
the performance of such a decoder is limited both by code structure and the degenerate nature
of quantum errors. To overcome these limitations, at least in part, a number of modifications
to belief propagation are developed. Central among these is the augmented decoder, which in
the case of a decoding error, iteratively reattempts decoding using modified factor graph. This
heuristic modification simply involves the duplication of a randomly selected subset of the graph’s
check nodes, which are in one-to-one correspondence with the code’s stabilizer generators. Across
a range of codes, it is shown that the decoders developed perform as well as or better than other
modified decoders presented in literature.

For a number of channels of physical interest, phase-flip errors occur far more frequently than
bit-flip errors. When transmitting across these so-called asymmetric channels, the decoding
error rate can be minimized by tailoring the code used to the channel. However, assessing the
performance of codes on a given channel is made difficult by the #P-completeness of optimal
decoding. To address this complexity, it is shown that the decoding error rate can be accurately
approximated using only a small fraction of the possible errors caused by the channel. This
approximation is then used to identify a number of cyclic stabilizer codes that perform well
on two different asymmetric channels. To further build on this, a heuristic is demonstrated for
assessing code performance based on the decoding error rate of an associated classical code. The
complexity of calculating this classical error rate is relatively low, and it is shown that it can be
used as the basis for a hill-climbing search algorithm. Such searches have yielded a large number
of highly performant codes satisfying various structure constraints.

xiv

The family of codeword stabilized codes encompasses both the stabilizer codes as well as many
of the best known nonadditive codes. Constructing a standard form codeword stabilized code
is a matter of selecting a simple undirected graph and a binary classical code. This makes
designing optimal codes difficult as the number of possible graphs grows exponentially with
code length, and the clique search required to construct the classical code is NP-hard. To
address the exponential growth of the search space, a heuristic is developed for assessing graphs.
This heuristic is then employed by a genetic algorithm that also makes use of a novel crossover
operation based on spectral bisection, which is show to be superior to more standard crossover
operations. With a graph selected, it is demonstrated that the complexity of the clique search
required to construct the associated classical code can be mitigated through the use of a heuristic
clique finding algorithm. A number of best known codes are presented that have been found
using this approach.

xv

Chapter 1

Introduction

1.1 Motivation

In quantum computation and communication, the fundamental unit of information is the qubit.
At the physical level, a qubit is a two-level quantum system; simple examples include the spin
of an electron or the polarization of a photon. In a number of ways, the nature of a qubit
is quite different to that of a classical bit. For example, while the state of a classical bit is
either 0 or 1, a qubit can be in a superposition (linear combination) of its two basis states |0〉
and |1〉. Furthermore, while the state of a pair of bits is one of 00, 01, 10, or 11, a system of
two qubits can be in a superposition of the four basis states |00〉, |01〉, |10〉, and |11〉. More
generally, a system of n qubits can be in a superposition of 2n basis states, and acting on such
states lends an inherent parallelism to quantum computation. A number of quantum algorithms,
such as those proposed by Shor for prime factorization and computing discrete logarithms [1, 2],
exploit this parallelism to provide an exponential speedup compared to their classical analogs.
Other algorithms, such as Grover’s search algorithm [3], provide more modest, yet still useful,
polynomial speedups.

Another fundamental difference between bits and qubits is the ability for two (or more) qubits
to interact, potentially across a large physical distance, in such a way that it is not possible to
describe the state of either individually. This is a phenomenon called entanglement, and it can
be utilized in interesting and often surprising ways. One such example is superdense coding [4],
which makes use of a preshared pair of entangled qubits to transmit the state of two bits in that
of a single qubit. Conversely, quantum teleportation utilizes a preshared pair of entangled qubits
to convey the arbitrary state of a qubit by sending only two classical bits [5]. Unfortunately,
beyond interacting with each other, qubits tend to also interact with their environment, which
causes the combined qubit-environment system to become entangled. This serves to corrupt
the qubit’s state and can be viewed as the action of a noisy channel across which the qubit is
transmitted [6].

Being able to control the errors caused by noisy channels is key to achieving reliable quantum
communication and computation. In the classical case, this can be done by employing a code,

1

1.2. CLOSED SYSTEMS CHAPTER 1. INTRODUCTION

which is a set of codewords to which data can be mapped, or encoded, prior to transmission.
This adds redundancy that can be utilized to infer the transmitted codeword from the corrupted
signal that is received. A particularly basic example is the three-bit repetition code, which as
the name suggests, encodes 0 as 000 and 1 as 111. If any one of the three bits is flipped in
transmission, it can be corrected at the receiver through a simple majority vote; for example,
if the received signal is 010, which contains more zeros than ones, then it can be inferred that
the transmitted codeword was 000. In the quantum case, such an encoding cannot be realized
as it is physically impossible to duplicate arbitrary quantum states [7, 8, 9]. Instead, the state
of k qubits is encoded in the highly entangled state of n > k qubits, which serves to spread the
information, protecting it from errors on a small subset of qubits [10]. In essence, employing a
quantum code can be viewed as “fighting[ing] entanglement with entanglement” [11].

The focus of this thesis is on developing new methods for the design of quantum codes and their
associated decoders. To begin, Sec. 1.2 gives a brief review of the mathematical foundations of
quantum mechanics. This is built upon in Sec. 1.3 to give an introduction to noisy quantum
channels. Section 1.4 then shows, largely through example, how quantum codes can be used
to protect against such noise. For those interested, more exhaustive treatments of much of the
content of Secs. 1.2 to 1.4 can be found in a number of well-known texts [6, 12, 13]. With the
basics in hand, Sec. 1.5 outlines the structure of the remaining chapters.

1.2 Closed systems

1.2.1 States

A closed, or isolated, physical system is one that does not interact with its environment. Asso-
ciated with each such system is a complex Hilbert space H, and the system’s state is described
by a unit vector in H. These state vectors are typically written in Dirac notation as “kets”
|φ〉 ∈ H and are equivalent up to a global phase (that is, the vectors |φ〉 and eiθ|φ〉 correspond
to the same state). All systems considered in this thesis are finite dimensional, in which case H
is simply a complex inner product space.

In Dirac notation, the inner product (|φ〉, |ψ〉) of |φ〉, |ψ〉 ∈ H is typically written as 〈φ|ψ〉 ≡
〈φ|(|ψ〉), where 〈φ| is a linear functional called a “bra.” In adherence with standard physics
convention, inner products in this thesis are taken to be linear in the second argument rather
than the first. The inner product on H defines an outer product, which maps two states to
a linear operator on H. In particular, the outer product of |φ〉 and |ψ〉 is the unique linear
operator |φ〉〈ψ| satisfying (|φ〉〈ψ|)|ξ〉 = |φ〉〈ψ|ξ〉 = 〈ψ|ξ〉|φ〉 for all |ξ〉 ∈ H.

If H has dimension dim(H) = q, then an orthonormal basis is often written as B = {|0〉, . . . ,
|q − 1〉}. If |φ〉 ∈ H is expressed in this basis as |φ〉 =

∑q−1
i=0 αi|i〉, then the normalization

requirement 〈φ|φ〉 = 1 becomes 〈φ|φ〉 =
∑q−1
i=0 |αi|2 = 1. Furthermore, if |ψ〉 =

∑q−1
i=0 βi|i〉 ∈ H,

then 〈φ|ψ〉 =
∑q−1
i=0 α

∗
i βi, which can be identified as the standard inner product on Cq. Therefore,

2

1.2. CLOSED SYSTEMS CHAPTER 1. INTRODUCTION

if |φ〉 is represented as a column vector in the basis B as (α0, . . . , αq−1)T , then the bra 〈φ| is its
Hermitian conjugate; that is, 〈φ| = |φ〉† = (α∗0, . . . , α∗q−1).

Of particular interest in this thesis, and in quantum computation and communication more
generally, are qubits. As discussed in Sec. 1.1, a qubit is a two-level quantum system, meaning
that it is described by a two-dimensional Hilbert space H ∼= C2. It follows that a qubit’s state
can be written as

|φ〉 = α|0〉+ β|1〉, (1.1)

where |α|2 + |β|2 = 1. This linear combination, or superposition, is in stark contrast to a
classical bit, whose state is either 0 or 1. It can be convenient to use a basis other than {|0〉,
|1〉}, which is often called the computational basis, to express the state of a qubit; for example,
another commonly used orthonormal basis, called the Hadamard basis, consists of the states
|+〉 = (|0〉+ |1〉)/

√
2 and |−〉 = (|0〉 − |1〉)/

√
2.

1.2.2 Evolution

The time evolution of a closed quantum system is unitary. This means that if the state of a
system at time t1 is |φ〉 ∈ H, then its state at time t2 is |φ′〉 = U |φ〉, where U is a unitary
operator on H that depends only on t1 and t2. Such evolution is deterministic and preserves the
normalization of states since

〈φ′|φ′〉 = (U |φ〉)†U |φ〉 = (〈φ|U †)U |φ〉 = 〈φ|U †U |φ〉 = 〈φ|φ〉 = 1.

Furthermore, the guaranteed existence of the inverse U−1 = U †, which is itself unitary, means
that time evolution is also reversible.

In the computational basis, the Pauli matrices

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(1.2)

define an important set of unitary operators on qubits. Acting on the basis states, X|0〉 = |1〉,
X|1〉 = |0〉, Z|0〉 = |0〉, and Z|1〉 = −|1〉; it therefore follows that X can be viewed as a bit-
flip operator, Z as a phase-flip operator, and Y = iXZ as a combination of the two. In the
Hadamard basis, these interpretations are effectively reversed as X|+〉 = |+〉, X|−〉 = −|−〉,
Z|+〉 = |−〉, and Z|−〉 = |+〉. This role reversal can also be seen using the Hadamard gate

H = 1√
2

(
1 1
1 −1

)
, (1.3)

which is a unitary (and also Hermitian) operator mapping |0〉 ↔ |+〉 and |1〉 ↔ |−〉; the matrix
representations of the bit-flip and phase-flip operators in the in the Hadamard basis are therefore
H−1XH = HXH = Z and HZH = X, respectively.

3

1.2. CLOSED SYSTEMS CHAPTER 1. INTRODUCTION

1.2.3 Observables and measurement

An observable, which is a property of a system that can be measured, corresponds to Hermitian
(self-adjoint) operator A that acts on the system’s space H. As A is Hermitian, it has real
eigenvalues λ1, . . . , λr corresponding to the mutually orthogonal eigenspaces E1, . . . , Er, where
r ≤ dim(H). Furthermore, A can be written as A =

∑r
i=1 λiPi, where Pi is a projector onto Ei.

If the system is initially in the state |φ〉, then the outcome of measuring A will be the eigenvalue
λi with probability P (λi) = 〈φ|Pi|φ〉. Furthermore, given an outcome λi, the state of the system
after measurement will be

|φ′〉 = Pi|φ〉√
P (λi)

= Pi|φ〉√
〈φ|Pi|φ〉

. (1.4)

Unlike time evolution, this projection, or collapse, of states into an eigenspace of A is, in general,
both nondeterministic and irreversible.

Returning to qubits, the Pauli matrices define valid observables as they are Hermitian. Further-
more, they each have two one-dimensional eigenspaces with associated eigenvalues λ1 = +1 and
λ2 = −1. Taking Z as an example, suitable projectors onto these eigenspaces are P1 = |0〉〈0| and
P2 = |1〉〈1|, which gives Z = |0〉〈0| − |1〉〈1|. It follows that making a measurement of Z on the
state |φ〉 = α|0〉+ β|1〉 will yield either the outcome +1 and post-measurement state |φ′〉 = |0〉
with probability |α|2 or the outcome −1 and post-measurement state |1〉 with probability |β|2.

As the eigenspaces of A are mutually orthogonal, the projectors satisfy PiPj = δijPi, where δij
is the Kronecker delta. It follows that remeasuring A is guaranteed to yield the same outcome
λi as the initial measurement since

〈φ′|Pj |φ′〉 = 〈φ|PiPjPi|φ〉
〈φ|Pi|φ〉

= 〈φ|PiδijPi|φ〉
〈φ|Pi|φ〉

= 〈φ|Pi|φ〉
〈φ|Pi|φ〉

δij = δij . (1.5)

Suppose that after measuring A with outcome λi, a measurement of a different observable
B =

∑
j λ̃jP̃j is made. This can potentially project |φ′〉 outside of the eigenspace Ei, which

means that subsequent measurements of A may yield an outcome λj 6= λi. This will not be the
case if and only if A and B share a common eigenbasis, which is equivalent to requiring that
they commute. Such observables are called compatible, and if A and B are compatible, then the
order in which they are measured is unimportant: the probability of measuring A with outcome
λi and then B with outcome λ̃j is the same as the probability of measuring B with outcome
λ̃j and then A with outcome λi (the resulting states are also identical). Note that the Pauli
matrices are not compatible observables as they anticommute with one another.

1.2.4 Multipartite states

Suppose that two individual systems, while potentially interacting with each other, do not
interact with their greater environment. If these systems have associated spaces H1 and H2,
then the Hilbert space H for the combined system is given by their tensor product; that is,
H = H1 ⊗ H2. If the two systems are, in fact, not interacting and are in states |φ〉 ∈ H1

4

1.2. CLOSED SYSTEMS CHAPTER 1. INTRODUCTION

and |ψ〉 ∈ H2, respectively, then the combined system will be in a so-called product state
|φ〉1 ⊗ |ψ〉2 ∈ H. Note that the tensor product and subscripts are often implied if there is no
danger of ambiguity; that is, |φ〉1 ⊗ |ψ〉2 may be written as |φ〉1|ψ〉2, |φ〉 ⊗ |ψ〉, |φ〉|ψ〉, or even
|φψ〉. In general, the state of the combined system will be a superposition

∑
i αi|φiψi〉, where

|φi〉 ∈ H1 and |ψi〉 ∈ H2. If this superposition is not itself a product state, then the state of each
subsystem cannot be described individually, and the system is said to be entangled. A simple
example of an entangled state is the two-qubit Bell state

|Ψ+〉 = 1√
2

(|0〉1|0〉2 + |1〉1|1〉2) ≡ 1√
2

(|00〉+ |11〉). (1.6)

An inner product on H = H1 ⊗H2 is induced by those on H1 and H2. In particular,

(|φiψi〉, |φjψj〉) ≡ 〈φiψi|φjψj〉 = 〈φi|φj〉〈ψi|ψj〉, (1.7)

where |φi〉, |φj〉 ∈ H1 and |ψi〉, |ψj〉 ∈ H2. It therefore follows that if H1 and H2 have orthonor-
mal bases B1 = {|φ1〉, . . . , |φp〉} and B2 = {|ψ1〉, . . . , |ψq〉}, respectively, then B = {|φ1ψ1〉,
. . . , |φ1ψq〉, , |φpψ1〉, . . . , |φpψq〉} is an orthonormal basis for H, meaning that dim(H) =
dim(H1) dim(H2). Furthermore, the matrix (column vector) representation in the basis B of
some product state |φψ〉 ∈ H can be found by taking the Kronecker product of the representa-
tions of |φ〉 and |ψ〉 in B1 and B2, respectively. Note that the Kronecker product of two matrices
A = (aij) and B = (bij) is

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
am1B am2B · · · amnB

 . (1.8)

As was the case for the inner product, operators on H = H1 ⊗ H2 are defined in terms of
those on H1 and H2. In particular, if A and B are operators on H1 and H2, respectively, then
A1 ⊗B2 ≡ A⊗B is an operator on H satisfying

(A⊗B)(|φ〉 ⊗ |ψ〉) = (A|φ〉)⊗ (B|ψ〉) (1.9)

for all |φ〉 ∈ H1 and |ψ〉 ∈ H2. It follows directly from Eq. (1.9) that composition of operators
is component-wise [that is, (A⊗B)(C ⊗D) = (AC)⊗ (BD)] and that the Hermitian conjugate
distributes across the tensor product [that is, (A⊗B)† = A† ⊗B†]. As a result, if A and B are
Hermitian and/or unitary, then so is A ⊗ B. In the context of qubits, this means that tensor
products of Pauli and identity operators define both time evolution operators and observables.
These identity components and the tensor products themselves are often implied; for example,
A1 ⊗ I2 ≡ A ⊗ I may also be written as A1I2 or A1 if the meaning is clear. The number
of nonidentity components from which an operator is comprised is called its weight. Usefully,
with the basis selection outlined in the previous paragraph, the tensor product of operators also
corresponds to the Kronecker product.

In general, an operator on H can be a linear combination
∑
iA

(i) ⊗ B(i) of tensor products,
where A(i) and B(i) are operators on H1 and H2, respectively. An example of such an operator

5

1.3. OPEN SYSTEMS CHAPTER 1. INTRODUCTION

on two qubits is the controlled NOT (CNOT) gate

CNOT12 = |0〉1〈0|1 ⊗ I2 + |1〉1〈1|1 ⊗X2 ≡ |0〉1〈0|1 + |1〉1〈1|1X2, (1.10)

which maps |00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, and |11〉 → |10〉; that is, it applies a bit flip
to the second qubit if the first is in the state |1〉.

While the discussion here has been in the context of collections of two systems, it extends
inductively to any number of systems. For example, if there are three systems with spaces H1,
H2, and H3, then H = (H1⊗H2)⊗H3 = H1⊗ (H2⊗H3) = H1⊗H2⊗H3 is the Hilbert space of
the combined system, which has dimension dim(H1) dim(H2) dim(H3). Furthermore, operators
on H will be of the form

∑
iA

(i) ⊗ B(i) ⊗ C(i), where A(i), B(i), and C(i) are operators on H1,
H2, and H3, respectively. More generally, if there are n systems with spaces H1,H2, . . . ,Hn,
then H = H1⊗H2⊗ · · ·⊗Hn, dim(H) =

∏
i dim(Hi), and operators will be linear combinations

of n-fold tensor products. If the constituent systems are identical with H1 = H2 = · · · = Hn,
then this space can be expressed more compactly as H = H⊗n1 . Using this notation, the 2n-
dimensional space of a system of n qubits is H ∼= (C2)⊗n ∼= C2n .

1.3 Open systems

1.3.1 Density operators

As the name suggests, an open system is one that interacts with its environment. The behavior
of such systems can be considered using the density operator formalism, which is a framework
for describing statistical ensembles of states. Suppose that a closed system with space H is in
the state |φi〉 with probability pi; this ensemble of states gives the density operator

ρ =
∑
i

pi|φi〉〈φi|. (1.11)

It follows from this definition that ρ is a positive operator on H with trace one. If the system’s
state is known with certainty to be |φ〉 ∈ H, then the density operator is a so-called pure state
ρ = |φ〉〈φ| (note that state vectors themselves are often also referred to as pure states). If ρ
is not of this form, then it is called a mixed state; it describes a system about which there
is incomplete information. Given a density operator, a simple test for purity is to calculate
tr(ρ2), with a state being pure if and only if tr(ρ2) = 1. The density operator formalism
extends naturally to ensembles of mixed states; if a system is in state ρ(i) =

∑
j pij |φij〉〈φij |

with probability pi, then the density operator is

ρ =
∑
ij

pipij |φij〉〈φij | =
∑
i

pi
∑
j

pij |φij〉〈φij | =
∑
i

piρ
(i). (1.12)

The unitary evolution of a system in state ρ follows directly from the evolution of the constituent
pure states, with

ρ =
∑
i

pi|φi〉〈φi| →
∑
i

pi(U |φi〉)(U |φi〉)† =
∑
i

piU |φi〉〈φi|U † = UρU †. (1.13)

6

1.3. OPEN SYSTEMS CHAPTER 1. INTRODUCTION

A similar approach shows that measuring the observable A =
∑
i λiPi on a system in state ρ

will yield the outcome λi with probability

P (λi) = tr(Piρ), (1.14)

and the state of the system after measurement will be ρ′ = PiρPi/P (λi). While it is possible
for multiple ensembles to yield the same density operator, it follows from Eq. (1.14) depending
only on ρ that there is no measurement capable of distinguishing between them; they are, in
this sense, equivalent ensembles.

1.3.2 Multipartite states

If two noninteracting systems with spaces H1 and H2 are in the states ρ1 =
∑
i pi|φi〉〈φi| and

ρ2 =
∑
j qj |ψj〉〈ψj |, respectively, then it follows that the density operator for the combined

system is simply

ρ =
∑
ij

piqj(|φiψj〉)(|φiψj〉)† =
∑
ij

piqj |φi〉〈φi| ⊗ |ψj〉〈ψj | = ρ1 ⊗ ρ2. (1.15)

Again, this is referred to as a product state. If the state of the combined system can be written
as a convex combination ρ =

∑
i piρ

(i)
1 ⊗ ρ

(i)
2 of product states, then it is called separable.

Alternatively, if the system’s state cannot be represented in such a way, then it is entangled.

A useful tool in considering subsystems of larger systems is the reduced density operator, which
completely defines the statistics of local measurements made on the subsystem. If a system
with space H = H1 ⊗H2 is in state ρ, then the reduced density operator for the first system is
ρ1 = tr2(ρ), where tr2 is the partial trace operator over the second system; this is the unique
linear operator satisfying

tr2(|φi〉〈φj | ⊗ |ψi〉〈ψj |) = |φi〉〈φj |tr(|ψi〉〈ψj |) = |φi〉〈φj |〈ψj |ψi〉, (1.16)

where |φi〉, |φj〉 ∈ H1 and |ψi〉, |ψj〉 ∈ H2. If {|0〉, . . . , |q − 1〉} is a basis for H2, then a useful
way to express the partial trace is as

tr2(ρ) =
∑
i

(I ⊗ 〈i|)ρ(I ⊗ |i〉). (1.17)

If the combined system is in the separable state ρ =
∑
i piρ

(i)
1 ⊗ρ

(i)
2 , then ρ1 = tr2(ρ) =

∑
i piρ

(i)
1 .

Things are somewhat more interesting when the combined system is entangled. For example,
the reduced density operator for the first qubit in the Bell state of Eq. (1.6) is

ρ1 = tr2(|Ψ+〉〈Ψ+|)

= 1
2
∑
i

(I ⊗ 〈i|)(|00〉+ |11〉)(〈00|+ 〈11|)(I ⊗ |i〉)

= 1
2
∑
i

(|0〉〈i|0〉+ |1〉〈i|1〉)(〈0|〈0|i〉+ 〈1|〈1|i〉)

= 1
2(|0〉〈0|+ |1〉〈1|)

= 1
2I.

7

1.3. OPEN SYSTEMS CHAPTER 1. INTRODUCTION

As tr(ρ2
1) = 1/2 < 1, this means that while the combined two-qubit system is in a pure state,

the first qubit is in a mixed state (by symmetry, the second qubit is also in the same mixed
state). This reflects the fact that for an entangled system, the state of a subsystem cannot be
known exactly in isolation. This logic also runs in the other direction: any system in a mixed
state can be viewed as part of a larger system that is in a pure entangled state.

1.3.3 Channels

As noted in Sec. 1.1, noise in quantum systems results from becoming entangled with the
environment. Suppose that a system is initially in state ρ and not entangled with its environment,
which is in state ρenv. Without loss of generality, by considering a large enough environmental
system, ρenv can be taken to be a pure state ρenv = |e0〉〈e0|. If the combined system evolves
according to the unitary U , then its state becomes

ρ⊗ |e0〉〈e0| → U(ρ⊗ |e0〉〈e0|)U †. (1.18)

In general, this is an entangled state, and the reduced density operator for the system of interest
is

Φ(ρ) = trenv[U(ρ⊗ |e0〉〈e0|)U †] =
∑
k

(I ⊗ 〈ek|)U(ρ⊗ |e0〉〈e0|)U †(I ⊗ |ek〉), (1.19)

where the states |ek〉 form a basis for the environment. With a bit of manipulation, it can be
shown that ρ⊗ |e0〉〈e0| = (I ⊗ |e0〉)ρ(I ⊗ 〈e0|), which reduces Eq. (1.19) to

Φ(ρ) =
∑
k

AkρA
†
k, (1.20)

where the Ak = (I ⊗ 〈ek|)U(I ⊗ |e0〉) are operators on the system of interest. To preserve the
trace of ρ, these so-called Kraus operators must satisfy

∑
k A
†
kAk = I [14]. Unlike that of the

system-environment combination, the evolution described by (1.20) is generally nonunitary and
hence irreversible; the state of the system can be viewed as having been corrupted by noise.

A useful stochastic interpretation of Eq. (1.20) is of Φ as a noisy channel that maps its input ρ
to an output AkρA†k/tr(AkρA

†
k) with probability tr(AkρA†k) [6]. All channels considered in this

thesis act on qubits; furthermore, the majority of them are of the form

Φ(ρ) = pIρ+ pXXρX + pY Y ρY + pZZρZ. (1.21)

Due to the Kraus operators being √pσσ for σ ∈ {I,X, Y, Z}, these are called Pauli channels. It
follows from the cyclicity of the trace operator that

tr(√pσσρ
√
pσσ

†) = tr(pσσ†σρ) = tr(pσρ) = pσ. (1.22)

This means that irrespective of the input state, a Pauli channel can be viewed as applying the
error operator σ with probability pσ, which serves to map ρ→ σρσ† = σρσ. If consideration is
restricted to pure inputs ρ = |φ〉〈φ|, then this interpretation reduces to a mapping of |φ〉 → σ|φ〉
with probability pσ. A particularly simple Pauli channel is the bit-flip channel, which applies
either a bit-flip error with probability p or leaves the input unchanged with probability 1 − p

8

1.4. QUANTUM CODES CHAPTER 1. INTRODUCTION

(that is, pX = p, pY = pZ = 0, and pI = 1−p). Perhaps the most commonly considered channel,
Pauli or otherwise, is the depolarizing channel, which applies an X, Y , or Z error with equal
probability (that is, pX = pY = pZ = p/3 and pI = 1 − p). Also considered in this thesis are
non-Pauli channels related to the amplitude damping channel, which has the Kraus operators

A0 =
(

1 0
0
√

1− γ

)
, A1 =

(
0 √

γ

0 0

)
. (1.23)

1.4 Quantum codes

1.4.1 A three-qubit code

Suppose that the arbitrary state of a qubit is to be transmitted across a quantum bit-flip channel
with p < 1/2. As alluded to in Sec. 1.1, the errors caused by the channel cannot be protected
against by simply mimicking the approach of the classical three-bit repetition code. This is a
result of the no-cloning theorem, which asserts that there is no physically realizable operation
that duplicates an arbitrary quantum state [7, 8, 9]. This is straightforward to prove: Duplicating
an arbitrary state |ψ〉 ∈ H would require a unitary operator U that maps |ψξ〉 → |ψψ〉 for some
ancilla state |ξ〉 ∈ H. Supposing that such a unitary exists, it must be able to duplicate the
distinct nonorthogonal states |ψ1〉, |ψ2〉 ∈ H; that is, it must be the case that U |ψ1ξ〉 = |ψ1ψ1〉
and U |ψ2ξ〉 = |ψ2ψ2〉. However, this gives

|〈ψ1|ψ2〉| = |〈ψ1|ψ2〉〈ξ|ξ〉| = |〈ψ1ξ|ψ2ξ〉| = |〈ψ1ξ|U †U |ψ2ξ〉| = |〈ψ1ψ1|ψ2ψ2〉| = |〈ψ1|ψ2〉|2,
(1.24)

which is contradiction as 0 < |〈ψ1|ψ2〉| < 1.

While the no-cloning theorem prohibits encoding of the arbitrary qubit state |ψ〉 = α|0〉+β|1〉 ∈
C2 as |ψψψ〉 ∈ (C2)⊗3, it is possible to prepare the state |ψ00〉 ∈ (C2)⊗3 and map it to

|φ〉 = CNOT12CNOT13|ψ00〉 = α|000〉+ β|111〉 = α|0L〉+ β|1L〉. (1.25)

As in the classical case, this encoded state is called a codeword. The set of all codewords forms a
subspace Q ⊂ (C2)⊗3, called a code, with the basis {|0L〉 = |000〉, |1L〉 = |111〉}; Q can therefore
be viewed as encoding the state of a single “logical” qubit in that of three “physical” qubits.
Codewords are transmitted across a combination of three independent bit-flip channels, one for
each physical qubit. This combined channel serves to map |φ〉 → E|φ〉, where the error E is
a three-fold tensor product of identity and/or bit-flip operators. Furthermore, the probability
of E occurring is simply the product of the component probabilities; for example, the error
E = X ⊗ I ⊗ I ≡ X1 occurs with probability pXp2

I = p(1 − p)2. The eight possible errors and
their associated probabilities can be found in Table 1.1.

As for encoding, care needs to be taken in designing a scheme for decoding, which is the process
of inferring the error E caused by the channel. For the classical three-bit repetition code, the
location of a bit-flip error can be determined indirectly by inferring the transmitted codeword
and comparing it to the channel output. For example, as was detailed in Sec. 1.1, if the

9

1.4. QUANTUM CODES CHAPTER 1. INTRODUCTION

Table 1.1: Possible errors caused by the three-qubit bit-flip channel. Also given are their asso-
ciated probabilities and measurement outcomes for M1 = Z1Z2 and M2 = Z2Z3.

E P (E) M1 outcome M2 outcome
I (1− p)3 +1 +1
X1 p(1− p)2 −1 +1
X2 p(1− p)2 −1 −1
X3 p(1− p)2 +1 −1
X1X2 p2(1− p) +1 −1
X1X3 p2(1− p) −1 −1
X2X3 p2(1− p) −1 +1
X1X2X3 p3 +1 +1

channel output is 010, then it follows that the transmitted codeword was 000, meaning that
there was an error on the second bit. Such an approach is unsuitable in the quantum case
as performing a measurement of the channel output E|φ〉 that yields information about the
transmitted codeword |φ〉 will, in general, irreversibly alter it. Measurements must therefore be
made that reveal something about E but not about |φ〉. This can be achieved by selecting a
set of compatible Pauli observables {M1, . . . ,Mm} for which the codewords are +1 eigenstates.
Making a measurement of Mi on the channel output E|φ〉 will then reveal only whether Mi

and E commute or anticommute: If they commute, then MiE|φ〉 = EMi|φ〉 = E|φ〉, meaning
the outcome will be +1. Otherwise, if they anticommute, then MiE|φ〉 = −EMi|φ〉 = −E|φ〉,
meaning the outcome will be −1.

In this instance, M1 = Z1Z2 and M2 = Z2Z3 are appropriate observables as they commute
with each other and M1|φ〉 = M2|φ〉 = |φ〉 for all |φ〉 ∈ Q. The outcomes of measuring these
observables for the eight possible errors are given in Table 1.1 (note thatMi and E will commute
if their nonidentity components differ in an even number of positions and will anticommute
otherwise). It can be seen that there are two errors that cause each pair of measurement
outcomes; for example, the errors X1 and X2X3 both result in outcomes of −1 and +1 for the
measurements of M1 and M2, respectively. However, it is reasonable to infer that the highest-
probability error Ê associated with a given pair of outcomes has occurred. For p < 1/2, this
means that Ê will be one of I, X1, X2, or X3.

With the most likely error inferred, correction can be attempted by applying Ê to the channel
output to give ÊE|φ〉. As all Pauli matrices square to the identity (they are Hermitian and
unitary), this will return the codeword |φ〉 if Ê = E; however, if Ê 6= E, then ÊE|φ〉 6= |φ〉 in
general, in which case a decoding error is said to have occurred. As this procedure will correct
any error on one or fewer qubits, the probability of an error occurring that cannot be corrected,
called the decoding error rate, is 1−(1−p)3−3p(1−p)2 = 3p2−2p3. For p < 1/2, 3p2−2p3 < p,
which means that employing this code allows the qubit’s state to be transmitted more reliably
than if it were sent unencoded.

The procedure described here can, in fact, correct more than just the single-qubit bit-flip errors
X1, X2, and X3. For example, suppose the error E = α0I + α1X1 + α2X2 + α3X3 occurs,
where

∑
i |αi|2 = 1. Depending on the outcomes, measuring M1 and M2 will project E|φ〉

10

1.4. QUANTUM CODES CHAPTER 1. INTRODUCTION

into one of the four intersections of an eigenspace of M1 with another of M2. As I|φ〉, X1|φ〉,
X2|φ〉, and X3|φ〉 each belong to different intersections (see Table 1.1), this effectively discretizes
E, mapping E|φ〉 → E′|φ〉, where E′ = I with probability |α0|2 or Xi with probability |αi|2.
Furthermore, the value of E′ can be inferred based on the measurement outcomes in exactly the
same way as previously outlined. In general, the discretization, or digitization, of errors afforded
by measurement means that any superposition of correctable errors is itself a correctable error.
Conversely, it means that a continuum of errors can be protected against by designing a scheme
that corrects a basis for such errors.

1.4.2 The Shor code

By using the fact that Z errors act as a bit flip in the Hadamard basis, the three-qubit code of
Sec. 1.4.1 can be modified to instead protect against phase-flip errors. In particular, altering
the encoding of Eq. (1.25) to

|φ〉 = H1H2H3CNOT12CNOT13|ψ00〉 = α|+ ++〉+ β| − −−〉 = α|0L〉+ β|1L〉, (1.26)

and selecting the observables M1 = X1X2 and M2 = X2X3 allows any single-qubit phase-flip
error to be corrected.

The Shor code [10] encodes the state |ψ〉 of one qubit in that of nine by combining the three-
qubit bit-flip and phase-flip codes. First, |ψ〉 is encoded using the phase-flip code according to
Eq. (1.26). Each of the three physical qubits are then further encoded using the bit-flip code
according to Eq. (1.25). The combination of these two encodings maps |ψ〉 = α|0〉 + β|1〉 →
α|0L〉+ β|1L〉, where the basis codewords are

|0L〉 = 1
2
√

2
(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉), (1.27)

|1L〉 = 1
2
√

2
(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉). (1.28)

As for the three-qubit bit-flip code, measuring M1 = Z1Z2 and M2 = Z2Z3 will allow a bit
flip in the first block of three qubits to be located. Similarly, if a bit flip occurs in the second
block, then measuring M3 = Z4Z5 and M4 = Z5Z6 will locate it, and if it occurs in the third
block, then measuring M5 = Z7Z8 and M6 = Z8Z9 will locate it. Again, with a bit flip located,
it can be corrected by applying another bit flip to the appropriate qubit. Correcting phase
flips is somewhat more interesting as the Shor code exhibits degeneracy. This is a property of
quantum codes whereby distinct correctable errors have the same effect on the code space. In
this instance, it can be seen that any two phase-flip errors on qubits within the same three-qubit
block will act identically on the code. For example, the errors Z1, Z2, and Z3 all map the basis
codewords to

Z1|0L〉 = Z2|0L〉 = Z3|0L〉 = 1
2
√

2
(|000〉 − |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉), (1.29)

Z1|1L〉 = Z2|0L〉 = Z3|1L〉 = 1
2
√

2
(|000〉+ |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉). (1.30)

11

1.4. QUANTUM CODES CHAPTER 1. INTRODUCTION

As a result of this degeneracy, it is sufficient to infer only which block a phase-flip error has
occurred in, which can be achieved by making the measurements M7 = X1X2X3X4X5X6 and
M8 = X4X5X6X7X8X9. Once the appropriate block has been located, applying a phase flip to
any of the qubits in it will correct the error.

As the observables selected are compatible, and both M7 and M8 commute with any Xi, the
process of correcting a bit-flip error has no effect on the correction of a phase-flip error. This is
the case even if a bit flip and phase flip occur on the same qubit, meaning that Shor code also
allows for any single-qubit Y ∝ XZ error to be corrected. As the Pauli matrices along with the
identity form a basis for the complex vector space of 2×2 matrices, it therefore follows from the
discussion of Sec. 1.4.1 that the Shor code can, in fact, correct any arbitrary error on a single
qubit. Beyond this, it can also detect any error on two or fewer qubits, which means that any
such error will either act trivially on the code or yield at least one measurement outcome of −1.
However, there are three-qubit errors, such as X1X2X3, that have a nontrivial effect on the code
but commute with every observable and hence cannot be detected. As a result of this, the Shor
code is said to have distance d = 3.

1.4.3 General codes

The codes presented in Secs. 1.4.1 and 1.4.2 are examples of stabilizer codes [15]. The stabilizer
itself is the Abelian group generated by the observables, which must be n-fold tensor products
of Pauli and identity operators. The code, which is said to be of length n, is simply the space of
n-qubit states that are +1 eigenstates of every element of the stabilizer. As the codes presented
each had m = n − 1 stabilizer generators, they encoded the space of a single qubit; more
generally, a code whose stabilizer has m generators will encode the space of k = n−m qubits.
As was discussed for the Shor code in Sec. 1.4.2, a code is said to have distance d if it can detect
any error on d − 1 or fewer qubits but not some error on d qubits. A length-n stabilizer code
that encodes the state of k qubits and has distance d is called an [[n, k]] or [[n, k, d]] code; for
example, the Shor code is a [[9, 1, 3]] code.

Stabilizer codes can be designed with a number of different objectives in mind. At its simplest, at
least conceptually, the aim when designing an [[n, k]] code for a given channel is to minimize the
decoding error rate. However, such an approach is limited by the #P-completeness of optimal
stabilizer code decoding [16], which makes determining a code’s error rate computationally
impractical for even moderate code lengths. For the depolarizing channel, this complexity can
be avoided in part by instead designing for large distance, which serves as something of a proxy
for the decoding error rate. Alternatively, rather than fixing the number of encoded qubits k, it
is also possible to construct codes of fixed length n and distance d with the aim of maximizing
k. More generally, this distance criterion can be extended to requiring that a set E of errors is
detected.

The majority of known code families fall within the stabilizer framework that has been the focus
of this section. However, it is possible for codes outside of this framework, called nonadditive

12

1.5. THESIS OUTLINE CHAPTER 1. INTRODUCTION

codes, to encode a larger subspace while still having the same distance or detecting the same set
of errors [17, 18, 19, 20, 21, 22]. Unlike stabilizer codes, this subspace is not necessarily that of
k qubits; that is, the dimension K of a nonadditive code need not be a power of two. This leads
to a slight difference in the notation used to describe them: a potentially nonadditive code of
length n, dimension K, and distance d is called an ((n,K)) or ((n,K, d)) code.

1.5 Thesis outline

The body of this thesis is comprised of three papers on the design of quantum codes and their
decoders. These papers are largely self-contained, providing reviews of relevant theory and
literature, which does come at the cost of some amount of unavoidable repetition; however,
efforts have been made to keep this to a minimum. There are a number of common themes
that run through the papers. Chief among them, as suggested by the title of the thesis, is the
heuristic nature of the methods employed. These heuristic methods (or simply heuristics) are
approaches that can quickly yield good, if not optimal, solutions to hard problems.

Quantum low-density parity-check (QLDPC) codes are stabilizer codes that have low-weight gen-
erators [23]. Similar to classical low-density parity-check (LDPC) codes, decoding for QLDPC
codes can be performed using belief propagation, which is a heuristic message passing algorithm
that takes place on a bipartite graph, called a factor graph, defined by the code’s generators.
Unfortunately, the commuting nature of these generators results in unavoidable cycles of length
four in the factor graph, which are detrimental to the performance (decoding error rate) of belief
propagation [24]. This performance is further degraded by the degenerate nature of quantum
errors, which is not accounted for in the component-wise inference of a belief propagation de-
coder [25]. Chapter 2, which has been published as Ref. [26], develops heuristic modifications
to belief propagation that overcome these obstacles to allow for improved QLDPC decoding
performance.

By ensuring large distance, the vast majority of stabilizer codes have been designed implicitly for
good performance on the depolarizing channel, for which X, Y , and Z errors occur with equal
probability. However, for a number of quantum channels of interest in the context of quantum
computation and communication, phase-flip errors occur far more frequently than bit-flip errors
[27, 28]. Such channels are called asymmetric, and when communicating across them, the
decoding error rate can be minimized by using a code tailored to the channel [29, 30]. However,
distance is a less useful metric in this instance, and directly evaluating a code’s performance
is limited by the previously mentioned #P-completeness of optimal stabilizer code decoding.
Chapter 3, which has been published as Ref. [31], addresses this complexity by developing
heuristic methods of constructing of highly performant codes for asymmetric channels.

As noted in Sec. 1.4.3, nonadditive codes can potentially encode a higher dimensional subspace
than an optimal (maximum k) stabilizer code detecting the same error set. A particularly
promising class of codes are the codeword stabilized (CWS) codes, which encompasses both the

13

1.5. THESIS OUTLINE CHAPTER 1. INTRODUCTION

stabilizer codes as well as many of the best known nonadditive codes [32, 33]. A standard form
((n,K)) CWS code detecting an error set E is defined by an n-node simple undirected graph
G and a classical code of size K that must detect an error set induced from E by G. This
leads to two main obstacles in the construction of optimal CWS codes. The first of these is
the exponential increase with n in the number of inequivalent graphs from which a code can be
constructed [34, 35, 36]. The second is the NP-hardness of the clique search required to find a
maximum-size classical code detecting the error set induced by a given graph [37]. Chapter 4,
which has been published as Ref. [38], develops new heuristic methods for constructing CWS
codes that address these two issues.

Chapter 5 concludes the thesis, providing a summary of the main results and detailing future
research directions.

14

Chapter 2

Modified belief propagation decoders
for quantum low-density
parity-check codes1

Abstract

Quantum low-density parity-check codes can be decoded using a syndrome-based GF(4) belief
propagation decoder (where GF denotes Galois field). However, the performance of this decoder
is limited both by unavoidable 4-cycles in the code’s factor graph and the degenerate nature
of quantum errors. For the subclass of CSS codes, the number of 4-cycles can be reduced by
breaking an error into an X and Z component and decoding each with an individual GF(2)-
based decoder. However, this comes at the expense of ignoring potential correlations between
these two error components. We present a number of modified belief propagation decoders that
address these issues. We propose a GF(2)-based decoder for CSS codes that reintroduces error
correlations by reattempting decoding with adjusted error probabilities. We also propose the use
of an augmented decoder, which has previously been suggested for classical binary low-density
parity-check codes. This decoder iteratively reattempts decoding on factor graphs that have
a subset of their check nodes duplicated. The augmented decoder can be based on a GF(4)
decoder for any code, a GF(2) decoder for CSS code, or even a supernode decoder for a dual-
containing CSS code. For CSS codes, we further propose a GF(2)-based decoder that combines
the augmented decoder with error probability adjustment. We demonstrate the performance of
these new decoders on a range of different codes, showing that they perform favorably compared
to other decoders presented in literature.

1This chapter has been published as Ref. [26]: A. Rigby, J. C. Olivier, and P. D. Jarvis, “Modified belief
propagation decoders for quantum low-density parity-check codes,” Physical Review A, vol. 100, no. 1, p. 012330,
Jul. 2019, doi.org/10.1103/PhysRevA.100.012330. Only minor typographical and formatting changes have been
made.

15

2.1. INTRODUCTION CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

2.1 Introduction

In the classical setting, low-density parity-check (LDPC) codes are effective at protecting infor-
mation against noise. LDPC codes are particularly useful as their sparse structure permits the
use of an iterative belief propagation decoder that is of relatively low complexity [39, 40]. Belief
propagation is a message passing algorithm that takes place on a code’s factor graph. This is
a bipartite graph defined by a parity-check matrix for the code, with each row corresponding
to a check node and each column to an error node. Quantum LDPC (QLDPC) codes, which
are stabilizer codes with sparse generators, can be used to protect against the effects of a noisy
quantum channel. The generators of an n-qubit stabilizer code can be represented as elements of
GF(4)n [41, 15]. This representation can be used to define a GF(4) parity-check matrix, which
allows for slightly altered GF(4) belief propagation decoding of QLDPC codes [42]. The require-
ment that all stabilizer generators must commute results in unavoidable 4-cycles in the factor
graph associated with the GF(4) parity-check matrix [25], which can be detrimental to decoding
performance [24]. Belief propagation performance is also limited by the fact that it attempts to
converge to the single most likely error (in a symbol-wise fashion), rather than accounting for
the degenerate nature of quantum errors [25]. For the subclass of Calderbank-Shor-Steane (CSS)
codes, the number of 4-cycles can be reduced by instead representing generators as elements of
GF(2)2n [43, 15]. This allows an error to be broken into an X and Z component, which can
then be decoded individually using two GF(2) belief propagation decoders [23]. However, for
many channels, including the depolarizing channel, this has the effect of ignoring correlations
between the two components [42].

Modified belief propagation decoders have been proposed that aim to improve QLDPC decoding
performance. Several decoders are presented in Ref. [25] that aim to alleviate so-called sym-
metric degeneracy errors, which occur as a result of symbol-wise decoding in the face of error
degeneracy. The best performing of these is the random perturbation decoder, which attempts to
break decoding symmetries by iteratively reattempting decoding with randomly modified chan-
nel error probabilities. The enhanced feedback (EFB) decoder of Ref. [44] behaves similarly in
that it also iteratively reattempts decoding with modified error probabilities. However, unlike
the random perturbation decoder, this modification is informed by the decoder’s output. The
supernode decoder of Ref. [42] is a modification to the standard GF(4) decoder for the subclass
of dual-containing CSS codes. For this decoder, pairs of check nodes in the factor graph are
combined to form supernodes. This both reduces decoding complexity and lowers the number
of 4-cycles in the factor graph, which can lead to improved decoding performance.

The augmented decoder that we investigate has been previously proposed for classical binary
LDPC codes in Ref. [45]. Like the random perturbation and EFB decoders, it also iteratively
reattempts decoding. Each of these attempts employs a version of the standard factor graph with
a randomly selected subset of check nodes duplicated. In the classical case, this simple approach
gives performance that compares favorably with other, typically more complicated, decoders
presented in literature. In this paper, we show that augmented decoders can be applied to
QLDPC codes, whether the underlying decoder is GF(2), GF(4), or supernode based. For CSS

16

2.2. BACKGROUND CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

codes, we propose the GF(2)-based adjusted decoder, which attempts to reintroduce correlations
between the X and Z components of an error that are lost when using a standard GF(2)
decoder. If one of the two constituent GF(2) decoders fails, then the adjusted decoder reattempts
decoding of this component using error probabilities that are modified according to the output
of the other constituent decoder (this is a slight generalization of the decoder presented in Ref.
[46]). We also present a GF(2)-based decoder for CSS codes that combines the augmented and
adjusted decoders. We simulate the performance of our decoders on six different codes: two
dual-containing CSS codes, two nondual-containing CSS codes, and two non-CSS codes. We
show that for dual-containing CSS codes, our augmented GF(4), augmented supernode, and
combined decoders all outperform random perturbation and EFB decoders. For the four other
codes, we demonstrate that augmented GF(4) and supernode decoders perform similarly to to
the random perturbation and EFB decoders.

The paper is organized as follows. Section 2.2 gives an overview of belief propagation decoding for
classical LDPC codes and extends this to the quantum case. Section 2.3 details the operation
of existing modified decoders (random perturbation, EFB, and supernode) and describes the
adjusted, augmented, and combined decoders that we propose. Section 2.4 presents simulation
results for our decoders on six different codes, comparing them to existing decoders. The paper
is concluded in Sec. 2.5.

2.2 Background

2.2.1 Classical codes

A classical channel is a map Φ : Ax → Ay, where Ax is the set of possible inputs and Ay is the
set of possible outputs. We are concerned with channels where the input and output sets are
finite fields with q elements; that is, Ax = Ay = GF(q). In this case, the action of the channel
can be expressed as

Φ(x) = x+ e = y, (2.1)

where x ∈ GF(q) is the channel input, y ∈ GF(q) is the channel output, and e ∈ GF(q) is an
error (or noise) symbol that occurs with probability P (e). A channel Φ is called symmetric if
P (0) = 1 − p and P (ei) = p/(q − 1) for ei 6= 0. A code C ⊆ GF(q)n can be used to protect
against the noise introduced by the channel. Elements x ∈ C, called codewords, are transmitted
as n sequential uses of Φ or, equivalently, as a single use of the combined channel Φn, which is
comprised of n copies of Φ. The action of Φn on some input x ∈ C is

Φn(x) = x + e = y, (2.2)

where y ∈ GF(q)n is the channel output and e ∈ GF(q)n is an error “vector.” Assuming the
error components are independent, the probability of an error e = (e1, . . . , en) occurring is

P (e) =
n∏
i=1

P (ei), (2.3)

17

2.2. BACKGROUND CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

where P (ei) is the probability of the error symbol ei occurring on Φ. The weight of a codeword
x ∈ C or an error e ∈ GF(q)n is the number of nonzero components it contains. It follows from
Eq. (2.3) that if Φ is symmetric, then the probability of e ∈ GF(q)n occurring depends only on
its weight. The distance between two codewords xi,xj ∈ C, denoted ∆(xi,xj), is the number
of components in which they differ. The distance of C is

d = min
xi,xj∈C

∆(xi,xj). (2.4)

Equivalently, the distance of C is equal to the weight of the lowest-weight error that maps one
codeword to another.

If a code C ⊆ GF(q)n forms an (additive) group, then it is called additive; if it forms a vector
space, then it is called linear (note that there is no distinction between additive and linear codes
in the binary case). Suppose a linear code C has a basis B = {b1, . . . , bk}. This defines a
generator matrix

GT =
(

b1 · · · bk
)
, (2.5)

where the basis elements are considered as column vectors. A generator matrix can be defined
in the same way for an additive code; however, in this case, B is a generating set. For a linear
code, the generator matrix defines a bijective encoding operation that maps some d ∈ GF(q)k

to a codeword x = GTd ∈ C (d is also considered as a column vector). A linear code can also
be defined as the kernel of a GF(q) parity-check matrix H; that is,

C = {x ∈ GF(q)n : Hx = 0}. (2.6)

Note that for a given code, neither the generator or parity-check matrix is unique. If H has m
rows, then dim(C) = k ≥ n−m, with equality when H is full rank. If C is linear with dimension
k and distance d, then it is called an [n, k]q or [n, k, d]q code (the q is typically omitted for binary
codes, where q = 2). For a linear code, this distance is equal to weight of the minimum-weight
nonzero codeword (as the errors that map one codeword to another are the nontrivial e ∈ C).
The rate of a code is given by R = k/n.

The dual code of some code C ⊆ GF(q)n with respect to the inner product 〈·, ·〉 : GF(q)n ×
GF(q)n → GF(q) is

C⊥ = {c ∈ GF(q)n : 〈c,x〉 = 0 ∀ x ∈ C}. (2.7)

C⊥ is the annihilator of C and is therefore a linear code. If C⊥ ⊆ C, then C is called dual
containing; if C ⊆ C⊥, then C is called self-orthogonal; and if C⊥ = C, then C is called self-dual.
Unless otherwise specified, the dual code is with respect to the Euclidean inner product

〈c,x〉 = c · x =
n∑
i=1

cixi. (2.8)

In this case, if C is linear with generator matrix G, then a necessary and sufficient condition for
c ∈ C⊥ is Gc = 0; that is, a generator matrix for C is a parity-check matrix for C⊥. Conversely,
if H is a parity-check matrix for C, then it is a generator matrix for C⊥.

The aim of a decoder is to determine the channel’s input given its output. For a linear code C,

18

2.2. BACKGROUND CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

this decoder can make use of the error syndrome. If C has an m× n parity-check matrix H and
the channel output is y, then the syndrome is

z = Hy = H(x + e) = He ∈ GF(q)m. (2.9)

An optimal decoder returns the most probable error given the syndrome measurement

ê = argmax
e∈GF(q)n

P (e|z) = argmax
e∈GF(q)n

P (e)δ(He = z), (2.10)

where δ(He = z) = 1 if He = z and 0 otherwise. The channel input can then be estimated as
x̂ = y− ê. If ê = e (and hence x̂ = x), then decoding is successful; otherwise, a decoding error
has occurred. Unfortunately, even in the simple case of a binary code operating on the binary
symmetric channel (a symmetric channel with q = 2), this decoding problem can be shown to
be NP-complete [47].

It follows from Eq. (2.9) that the syndrome resulting from some error e ∈ GF(q)n depends only
on which coset of GF(q)n/C it belongs to. If ê is the most probable error in the coset e + C,
then the probability of a decoding failure given the syndrome z = He is

P (e 6= ê|z) = P (e + C)− P (ê)
P (e + C) , (2.11)

where P (e +C) is the probability of any error in e +C occurring. Therefore, the probability of a
decoding error is high if the error probability distribution over e + C is not sharply peaked [that
is, if P (ê) is small]. If the channel is symmetric, then this corresponds to e+C containing errors
with similar weight to ê, which will be the case if C contains low-weight codewords. It therefore
follows that the distance of C gives some indication of the fraction of transmissions that will not
be decoded correctly, which is called call the frame error rate (FER).

2.2.2 Factor graphs and belief propagation

The factor graph of a linear code is a bipartite graph G = (V,C,E). The error nodes V = {v1,

. . . , vn} correspond to the n error components, and the check nodes C = {c1, . . . , cm} correspond
to the m constraints imposed by the rows of a parity-check matrix H. An edge {ci, vj} ∈ E

connects check node ci to error node vj if Hij 6= 0. For example, the [7, 4, 3] Hamming code of
Ref. [48] can be defined by the parity-check matrix

H =


1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 , (2.12)

which gives the factor graph shown in Fig. 2.1. In general, a given code does not have a unique
factor graph as the parity-check matrix from which it is defined is not unique. Furthermore,
except in the case of a binary code, the mapping from a parity-check matrix to its corresponding
factor graph is not one-to-one as an edge only indicates that Hij 6= 0; it does not give the value
of Hij (although this information can be included by decorating the edges). A walk is a sequence
whose elements alternate between connected nodes and the edges that connect them. The length

19

2.2. BACKGROUND CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

Figure 2.1: The factor graph of the [7, 4, 3] Hamming code corresponding to the parity-check
matrix given in Eq. (2.12). Error nodes are represented as circles and check nodes as squares.

of a walk is the number of edges it contains. A path is a walk containing no repeated nodes or
edges, with the exception that the first and last node can be the same, in which case the path is
called a cycle. The bipartite nature of a code’s factor graph ensures that the size of all cycles is
even and greater than or equal to four. As an example, the walk c1, {c1, v5}, v5, {c3, v5}, c3, {c3,

v7}, v7, {c1, v7}, c1 in the graph of Fig. 2.1 is a 4-cycle (that is, a cycle of length four). Typically
a code’s factor graph will not be cycle-free (that is, it will not be a tree) as if a code has such a
representation, then its distance is bounded by [49]

d ≤
⌊

n

k + 1

⌋
+
⌊
n+ 1
k + 1

⌋
. (2.13)

For R ≥ 1/2, this reduces to d ≤ 2, and for R > 1/2, it reduces to d . 2b1/Rc.

The factor graph representation of a linear code serves as the foundation for a belief propagation
decoder. Instead of determining the most likely error as given in Eq. (2.10), a belief propagation
decoder approximates it in a symbol-wise fashion. This gives an estimate ê = (ê1, . . . , ên), where

êj = argmax
ej∈GF(q)

P (ej |z). (2.14)

An expression for P (ej |z) can be obtained by marginalizing P (e|z). Assuming that the error
components are independent,

P (e|z) ∝
n∏
l=1

P (el)δ(He = z) =
n∏
l=1

P (el)
m∏
i=1

δ

 n∑
j=1

Hijej = zi

 . (2.15)

Fixing ej = a and summing over all other components gives

P (ej = a|z) ∝
∑

e:ej=a

n∏
l=1

P (el)
m∏
i=1

δ

 n∑
j=1

Hijej = zi

 . (2.16)

Belief propagation efficiently approximates these marginals by passing messages on the code’s
factor graph. For a code over GF(q), these messages will be vectors of length q. Initially, a
message is sent from every error node vj to the check nodes in the neighborhood N (vj) = {ci ∈
C : {ci, vj} ∈ E}. In particular, the message sent to check node ci ∈ N (vj) is µj→i, where the
element corresponding to a ∈ GF(q) is

µaj→i = P (ej = a). (2.17)

Note that this message simply gives the channel error probabilities. Every check node ci then

20

2.2. BACKGROUND CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

sends a message back to the error nodes in the neighborhoodM(ci) = {vj ∈ V : {ci, vj} ∈ E}.
In particular, the message sent to error node vj ∈M(ci) is λi→j , with

λai→j = K
∑

e:ej=a
δ

 ∑
j′∈M(i)

Hij′ej′ = zi

 ∏
j′∈M(i)\j

µ
ej′
j′→i, (2.18)

where, through slight abuse of notation, M(i) = {j ∈ {1, . . . , n} : vj ∈ M(ci)} and K is a
normalization factor chosen such that

∑
a λ

a
i→j = 1. An estimate of the marginal probability

P (ej |z) can then be made, with

P̂ (ej = a|z) = KP (ej = a)
∏

i∈N (j)
λai→j , (2.19)

where N (j) = {i ∈ {1, . . . ,m} : ci ∈ N (vj)} and K is a normalization factor. From this, ê

can be estimated in a symbol-wise fashion as in Eq. (2.14). If ẑ = Hê = z, then decoding is
complete; otherwise, another message is sent from each error node to its connected check nodes.
The elements of this message are

µaj→i = KP (ej = a)
∏

i′∈N (j)\i
λai′→j , (2.20)

where K is again a normalization factor. There is then another round of check to error node
messages as in Eq. (2.18), followed by an approximation of marginals as in Eq. (2.19). This
process of sending error to check messages followed by check to error messages and a computation
of marginals proceeds iteratively until either ẑ = z or a maximum number of iterations Imax is
reached. The most computationally complex component of belief propagation is the check to
error node message calculation of Eq. (2.18). However, it can be performed efficiently using a
Fourier transform as outlined in Appendix 2.A.1.

There are two types of decoding error exhibited by a belief propagation decoder. The first type
is the detected error, where decoding ends with ẑ 6= z (and hence ê 6= e). Such errors do not
occur when using an optimal decoder and, as such, are fundamentally a failing of the belief
propagation decoder itself. The second type of error is the undetected error, where decoding
ends with ẑ = z but ê 6= e. These are the same type of error exhibited by the optimal decoder
and, as such, can be attributed to a failing of the code. It therefore follows that for a symmetric
channel, using a code with a lower distance will tend to result in a higher rate of undetected
errors.

Belief propagation decoding is an approximation on two levels. Firstly, it assumes that the
most likely error is equal to the symbol-wise most likely error. Secondly, the estimate of the
symbol-wise most likely error is based on the approximate marginal probabilities P̂ (ej |z) that are
only exact when the code’s factor graph is a tree [50], which as previously outlined, is unlikely.
However, good decoding performance can still be achieved when the factor graph is sparsely
connected [50]. Linear codes with such a representation are called low-density parity-check
(LDPC) codes (most codes do not have such a representation [51, 50]). Decoding performance
is further improved when the factor graph contains few short cycles [24].

21

2.2. BACKGROUND CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

2.2.3 Stabilizer codes

The action of a quantum channel Φ on a quantum state described by the density operator ρ is

Φ(ρ) =
∑
k

AkρA
†
k, (2.21)

where the Ak, called Kraus operators, satisfy
∑
k A
†
kAk = I (the identity operator) [14]. In

this paper, we are interested in qubit systems; that is, systems where states |φ〉 belong to a
two-dimensional Hilbert space H ∼= C2. Furthermore, we are concerned with Pauli channels.
These are channels of the form

Φ(ρ) = pIρ+ pXXρX + pY Y ρY + pZZρZ, (2.22)

where in the computational {|0〉, |1〉} basis,

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2.23)

The action of this channel can be interpreted as mapping a pure state |φ〉 to E|φ〉, where the error
E is I with probability pI , X with probability pX , Y with probability pY , or Z with probability
pZ [6]. X can be viewed as a bit flip operator as X|0〉 = |1〉 and X|1〉 = |0〉. Z can be viewed as
a phase flip as Z|0〉 = |0〉 and Z|1〉 = −|1〉. Y = iXZ can be viewed as a combined bit and phase
flip. Of particular interest is the depolarizing channel, where pI = 1−p and pX = pY = pZ = p/3.
We are also interested in the XZ channel, for which the X and Z components of an error
E ∝ XuZv, where u, v ∈ GF(2), occur independently with equal probability q. It follows from
the independence of the error components that pX = pZ = q(1− q) and pY = q2. These values
can be expressed in terms of the total error probability p = pX + pY + pZ as q = 1 −

√
1− p,

pX = pZ =
√

1− p(1−
√

1− p), and pY = (1−
√

1− p)2.

The Pauli matrices are Hermitian, unitary, and anticommute with each other. Furthermore,
they form a group called the Pauli group

P1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}=〈X,Y, Z〉. (2.24)

The n-qubit Pauli group Pn is defined as all n-fold tensor product combinations of elements
of P1. For example, P8 contains the element I ⊗ I ⊗ X ⊗ I ⊗ Y ⊗ Z ⊗ I ⊗ I, which is often
written more compactly as IIXIY ZII or X3Y5Z6. The weight of some g ∈ Pn is the number of
elements in the tensor product that are not equal to the identity up to phase. The commutation
relations of the Pauli matrices mean that elements of Pn must either commute or anticommute,
with two elements anticommuting if their nonidentity components differ in an odd number of
places.

Similar to the classical case, the noise introduced by a quantum channel can be protected against
by employing a code. A quantum (qubit) code is a subspaceQ ⊆ (C2)⊗n. Codewords |φ〉 ∈ Q are
transmitted across the combined n-qubit channel Φ⊗n. If Φ is a Pauli channel, then Φ⊗n maps
codewords |φ〉 to E|φ〉, where E ∈ Pn. Assuming the channel acts on each qubit independently,

22

2.2. BACKGROUND CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

the probability of an error E occurring (up to phase) is

P (E) =
n∏
i=1

P (Ei), (2.25)

where P (Ei) is the probability of the error Ei occurring (up to phase) on the single-qubit channel
Φ. Note that errors are considered up to phase as the resulting state is equivalent up to such
a phase factor. A convenient way of handling this is to group errors in Pn up to phase, with
Ẽ = {E,−E, iE,−iE} ∈ Pn/{±I,±iI} = P̃n.

Stabilizer codes are defined by an abelian subgroup S < Pn, called the stabilizer, that does not
contain −I [15]. The code Q is the space of states that are fixed by every element si ∈ S; that
is,

Q = {|φ〉 ∈ (C2)⊗n : si|φ〉 = |φ〉 ∀ si ∈ S}. (2.26)

The requirement that −I /∈ S both means that no s ∈ S can have a phase factor of ±i, and that
if s ∈ S, then −s /∈ S. If S is generated by M = {M1, . . . ,Mm} ⊂ Pn, then it is sufficient (and
obviously necessary) for Q to be stabilized by every Mi. Assuming that the set of generators is
minimal, it can be shown that dim(Q) = 2n−m = 2k [6]; that is, Q encodes the state of a k-qubit
system. If the generators of S are sparse, then Q is called a quantum LDPC (QLDPC) code.

Suppose an error E occurs, mapping some codeword |φ〉 ∈ Q to E|φ〉. A projective measurement
of a generator Mi will give the result +1 if [E,Mi] = EMi −MiE = 0 or −1 if {E,Mi} =
EMi +MiE = 0. These measurement values define the syndrome z ∈ GF(2)m, with

zi =

0 if [E,Mi] = 0,

1 if {E,Mi} = 0.
(2.27)

There are three classes of error that can occur (note that the following paragraph will give
greater context to this classification of errors). The first class are those errors Ẽ = {E,−E, iE,
−iE} ∈ S̃, where S̃ is the group

S̃ = {s̃ = {s,−s, is,−is} : s ∈ S}. (2.28)

Such errors have no effect on the code and result in the trivial syndrome z = 0 (as the stabilizer
is abelian). The second class of errors are those Ẽ ∈ C̃(S)\S̃, where C(S) is the centralizer of
S in Pn and C̃(S) ⊆ P̃n is defined in the same way as S̃ in Eq. (2.28). In this case, C(S) is
actually equal to the normalizer N(S) [15]. These are errors that commute with every stabilizer
and therefore also yield z = 0; however, the effect of such errors on the code is nontrivial.
The final class of errors are those Ẽ ∈ P̃n\Ñ(S), which yield nontrivial syndromes z 6= 0 and
also act nontrivially on the code. In general, the syndrome resulting from some error Ẽ ∈ P̃n
depends only on which coset of P̃n/Ñ(S) it belongs to, while its effect on the code depends
only on which coset of P̃n/S̃ it belongs to [note that S̃ C Ñ(S) C P̃n as P̃n is abelian]. This
phenomena of distinct errors having an identical effect on a code is called degeneracy and has
no classical analog. In the classical case, the distance d of a linear code is equal to the weight of
the lowest-weight error yielding a trivial syndrome while having a nontrivial effect on the code.
This extends to the quantum case, with the distance d of a stabilizer code being the weight of

23

2.2. BACKGROUND CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

the lowest-weight element in Ñ(S)\S̃ [15]. An n-qubit code of dimension 2k with distance d is
called an [[n, k]] or [[n, k, d]] code (the double brackets differentiate it from a classical code).

From a decoding point of view, the syndrome measurement determines which coset of P̃n/Ñ(S)
an error Ẽ belongs to. If this coset has the representative g̃ ∈ P̃n, then an ideal decoder
determines the coset Â in (g̃Ñ(S))/S̃ that Ẽ is most likely to belong to. Importantly, Â does
not necessarily contain the individually most likely error in g̃Ñ(S). If Â has the representative
˜̂
E = {Ê,−Ê, iÊ,−iÊ}, then the decoder attempts to correct the channel error by applying Ê
to the channel output. If Ẽ ∈ Â, then ˜̂

EẼ ∈ S̃, and as such, this process corrects the error;
otherwise, if Ẽ /∈ Â, then a decoding error has occurred. Similar to the classical case, the
probability of a decoding failure given some syndrome measurement z is

P (Ẽ /∈ Â|z) = P (g̃Ñ(S))− P (Â)

P (g̃Ñ(S))
, (2.29)

where P (g̃Ñ(S)) and P (Â) are the probabilities of an error being in g̃Ñ(S) or Â, respectively.
From this, it follows that the probability of a decoding error is high if the probability distribution
over (g̃Ñ(S))/S̃ is not sharply peaked, which will occur if Ñ(S)\S̃ contains high-probability er-
rors. For the depolarizing channel, this corresponds to Ñ(S)\S̃ containing low-weight elements,
meaning that the distance d gives some indication of decoder performance.

2.2.4 Stabilizer code representations

It is possible to represent elements of P̃1 as elements of GF(2)2 according to the isomorphism
[43, 15]

I ↔ (0, 0), X ↔ (1, 0), Y ↔ (1, 1), Z ↔ (0, 1). (2.30)

This can be extended to elements of P̃n according to

Xu1Zv1 ⊗ · · · ⊗XunZvn ↔ (u1, . . . , un|v1, . . . , vn). (2.31)

This can be written more compactly as XuZv ↔ (u|v) ∈ GF(2)2n, where u = (u1, . . . , un),
v = (v1, . . . , vn) ∈ GF(2)n. The product of elements in P̃n corresponds to addition in GF(2)2n.
Representatives of elements in P̃n commute if the symplectic inner product of the binary rep-
resentations is zero; otherwise, they anticommute. Note that the symplectic inner product of
a = (u|v) ∈ GF(2)2n and b = (u′|v′) ∈ GF(2)2n is

a ◦ b = u · v′ + u′ · v =
n∑
i=1

(uiv′i + u′ivi). (2.32)

Considering a and b as row vectors, this simplifies to a ◦ b = aPbT , where P is the 2n × 2n
matrix

P =
(

0 I

I 0

)
. (2.33)

The binary representations of the m generators of some stabilizer S define the rows of an m×2n

24

2.2. BACKGROUND CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

binary matrix H. This matrix has the form

H = (HX |HZ), (2.34)

where HX and HZ are each m × n matrices. Note that while H only defines a stabilizer up
to phase S̃, the codes defined by different stabilizers corresponding to S̃ will all have the same
error correction properties. Considering H as the parity-check matrix of a classical binary code
C, the stabilizer elements correspond to elements of the dual code C⊥. The requirement that all
stabilizer generators commute becomes

HXH
T
Z +HZH

T
X = 0. (2.35)

Any classical linear code with a parity-check matrix H that satisfies this constraint can be
used to define a stabilizer code. Furthermore, if H is sparse, then this stabilizer code is a
QLDPC code. Errors can also be considered within the binary framework. Suppose that some
error E ∝ XeXZeZ occurs. This error has the binary representation e = (eTX |eTZ)T , and the
corresponding syndrome is simply z = HPe (where eX , eZ , and e are column vectors for
consistency with the classical case).

A subclass of stabilizer codes are the Calderbank-Shor-Steane (CSS) codes [52, 53], which have
a binary representation of the form

H =
(
H̃X 0
0 H̃Z

)
. (2.36)

The commutation condition of Eq. (2.35) becomes H̃ZH̃
T
X = 0 (or equivalently H̃XH̃

T
Z = 0).

Considering H̃X and H̃Z as parity-check matrices for classical codes CX and CZ , respectively,
this commutation condition requires that C⊥X ⊆ CZ (or equivalently C⊥Z ⊆ CX). If H̃Z = H̃X ,
then CZ = CX , which gives C⊥X ⊆ CX . Such codes are called dual-containing CSS codes.

Elements of P̃1 can also be represented as elements of GF(4) = {0, 1, ω, ω2 = ω̄} according to
the isomorphism [41, 15]

I ↔ 0, X ↔ 1, Y ↔ ω̄, Z ↔ ω. (2.37)

Elements of P̃n then map to elements of GF(4)n, with the product of elements in P̃n correspond-
ing to addition in GF(4)n [GF(4) addition and multiplication are defined in Tables 2.1 and 2.2,
respectively]. Representatives of elements in P̃n commute if the trace inner product of the cor-
responding elements of GF(4)n is zero. Note that the trace inner product of a, b ∈ GF(4)n

is

a ∗ b = tr(a · b̄) = tr
(

n∑
i=1

aib̄i

)
, (2.38)

where 0̄ = 0, 1̄ = 1, ω̄ = ω2, and ω̄2 = ω; and tr(x) = x + x̄ [that is, tr(0) = tr(1) = 0 and
tr(ω) = tr(ω̄) = 1].

The GF(4)n representations of the m generators of some stabilizer S define an m × n GF(4)
matrix H in much the same way as the binary case. A stabilizer with the GF(2) representation

25

2.2. BACKGROUND CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

Table 2.1: GF(4) addition.
+ 0 1 ω ω̄

0 0 1 ω ω̄
1 1 0 ω̄ ω
ω ω ω̄ 0 1
ω̄ ω̄ ω 1 0

Table 2.2: GF(4) multiplication.
× 0 1 ω ω̄

0 0 0 0 0
1 0 1 ω ω̄
ω 0 ω ω̄ 1
ω̄ 0 ω̄ 1 ω

of Eq. (2.34) has the GF(4) representation

H = HX + ωHZ . (2.39)

For a CSS code, this becomes

H =
(

H̃X

ωH̃Z

)
, (2.40)

with H̃X and H̃Z as defined in Eq. (2.36). The stabilizer corresponds to the additive group
generated by the rows of H. This group can be considered as an additive classical code C over
GF(4). The rows of H must be orthogonal with respect to the trace inner product. Therefore,
if C⊥ is the dual code of C with respect to the trace inner product, then C ⊆ C⊥. Any such
self-orthogonal additive GF(4) code can be used to define a stabilizer code. Errors can also be
considered in the GF(4) framework. An error E with GF(4) representation e (again, taken to
be a column vector) will yield a syndrome z = tr(Hē). Note that while H is a generator matrix
for C, we essentially consider it as a parity-check matrix because of the role it plays in syndrome
calculation and hence in belief propagation decoding.

2.2.5 Belief propagation decoding for stabilizer codes

Belief propagation decoding can be applied to stabilizer codes using the GF(2) and GF(4)
representations of the previous section. Such a belief propagation decoder aims to estimate the
symbol-wise most likely error (up to phase) Ê = Ê1 ⊗ · · · ⊗ Ên, where

Êj = argmax
Ej

P (Ej |z). (2.41)

A GF(4)-based belief propagation decoder can be used for any QLDPC code. This decoder
attempts to make a symbol-wise estimate ê ∈ GF(4)n that maps to Ê according to the isomor-
phism outlined in Sec. 2.2.4. The GF(4) decoder behaves very similarly to the belief propagation
decoder presented for classical linear codes in Sec. 2.2.2. The only change is to account for the
difference in syndrome calculation. In particular, the check to error node message is modified to

λai→j =K
∑

e:ej=a
δ

tr

 ∑
j′∈M(i)

Hij′ ēj′

 = zi

 ∏
j′∈M(i)\j

µ
ej′
j′→i. (2.42)

26

2.2. BACKGROUND CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

This calculation can also be performed efficiently using a Fourier transform as outlined in Ap-
pendix 2.A.2. The channel error probabilities used in error to check node messages [Eqs. (2.17)
and (2.20)] and in marginal calculation [Eq. (2.19)] are P (ej = 0) = 1 − p, P (ej = 1) = pX ,
P (ej = ω̄) = pY , and P (ej = ω) = pZ .

For the subclass of CSS codes, it is also possible to use two separate GF(2)-based belief propa-
gation decoders. For some error E ∝ XeXZeZ , the corresponding binary error is e = (eTX |eTZ)T ,
which yields the syndrome

z = HPe =
(
H̃XeZ

H̃ZeX

)
=
(

zZ

zX

)
. (2.43)

Using zZ and H̃X , an estimate êZ of eZ can be made using a classical binary belief propagation
decoder. The same can be done with zX and H̃Z to make an estimate êX of eX . The jth
component of eX , denoted e

(j)
X , is equal to one if Ej ∝ X or Ej ∝ Y . Therefore, P (e(j)

X =
1) = pX + pY and similarly P (e(j)

Z = 1) = pY + pZ . These values are used as the channel error
probabilities for the two decoders, which amounts to considering the quantum channel as two
binary symmetric channels. Note that for depolarizing channel, P (e(j)

X = 1) = P (e(j)
Z = 1) =

2p/3, while for the XZ channel, P (e(j)
X = 1) = P (e(j)

Z = 1) = 1−
√

1− p.

As in the classical case, belief propagation decoding can result in both detected and undetected
errors. If ẑ 6= z, where ẑ is the syndrome associated with the error estimate Ê, then a detected
error has occurred. Again, these detected errors are a failing of the decoder. If ẑ = z but
˜̂
EẼ /∈ S̃, then an undetected error has occurred, which is fundamentally a failing of the code
itself. It therefore follows that for the depolarizing channel, using a code with a lower distance
will tend to result in a higher rate of undetected errors.

Using belief propagation in the quantum case is an even greater approximation than in the
classical case. As outlined in Sec. 2.2.3, an optimal decoder for a stabilizer code will determine
the most likely coset of errors rather than the single most likely error. By definition, QLDPC
codes have many low-weight stabilizers, which means there will be a large number of elements
of the most likely coset with similar weight and hence similar probability. This spreading of
probability increases the chance that the single most likely error will not belong to the most
likely coset of errors. Approximating the ideal decoder with one that determines the single
most likely error will therefore lead to an increased error rate. Belief propagation goes one step
further away from the optimal decoder by estimating the single most likely error in a symbol-
wise fashion, which can lead to so-called symmetric degeneracy errors. Such errors are well
explained by the example of Ref. [25], which is as follows. Consider a two-qubit stabilizer
code with generators M1 = XX and M2 = ZZ, and assume that the error E = IX occurs,
leading to a syndrome z = (0, 1)T . The coset of errors that give this syndrome is {XI, IX,
Y Z,ZY } (grouping errors up to phase). As a result, the error probabilities on both qubits are
P (Ei = I|z) = P (Ei = X|z) = KpIpX and P (Ei = Y |z) = P (Ei = Z|z) = KpY pZ , where
K = 1/(2pIpX + 2pY pZ). This symmetry of error probabilities results in the decoder estimating
the same error on each qubit. This is not a symmetry exhibited by any of the errors that yield
z, and as such, even an ideal symbol-wise decoder will yield a detected error.

27

2.3. MODIFIED DECODERS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

The requirement that all stabilizer generators must commute also degrades belief propagation
performance as it results in 4-cycles. Consider some qubit j; there must be (at least) two
stabilizer generators, say Mi and Mi′ , that act nontrivially on j with different Pauli matrices. If
this is not the case, then there will be a weight-one element of Ñ(S)\S̃, meaning that the code
will have distance d = 1 (making it of little to no interest). AsMi andMi′ contain different Pauli
matrices in position j, they must also contain different Pauli matrices at some other position
j′ to ensure that they commute with each other. This results in a 4-cycle in the GF(4) factor
graph as check nodes ci and ci′ both connect to error nodes vj and vj′ . In the case of a CSS
code, any 4-cycles resulting from an overlap between one row from H̃X and one row from H̃Z

can be removed by decoding with a pair of GF(2) decoders rather than a GF(4) decoder. If it is
a dual-containing CSS code, then there must still be 4-cycles in the GF(2) factor graph as the
rows of H̃ = H̃X = H̃Z must overlap in an even number of positions to ensure that H̃H̃T = 0. If
the code is not dual containing, then it is possible for H̃X and H̃Z to have corresponding GF(2)
factor graphs with no 4-cycles.

The reduction in 4-cycles, along with the reduced inherent complexity, makes GF(2) decoding
attractive for CSS codes. However, treating a Pauli channel as a pair of binary symmetric
channels ignores potential correlations between the X and Z components of an error E ∝
XeXZeZ . These correlations are described by the conditional probabilities

P (e(j)
Z = 1|e(j)

X = 1) = pY
pX + pY

, (2.44)

P (e(j)
Z = 1|e(j)

X = 0) = pZ
1− (pX + pY) , (2.45)

P (e(j)
X = 1|e(j)

Z = 1) = pY
pY + pZ

, (2.46)

P (e(j)
X = 1|e(j)

Z = 0) = pX
1− (pY + pZ) . (2.47)

The X and Z components are uncorrelated if they occur independently, which requires P (e(j)
Z =

1|e(j)
X) = P (e(j)

Z = 1) = pY +pZ and P (e(j)
X = 1|e(j)

Z) = P (e(j)
X = 1) = pX +pY . This is equivalent

to the requirement that pY = (pX + pY)(pY + pZ), which is satisfied by the XZ channel but not
by the depolarizing channel.

2.3 Modified decoders

2.3.1 Existing decoders

2.3.1.1 Random perturbation

A number of modified decoders have been presented in Ref. [25] to address symmetric degeneracy
errors. The best performing of these is the random perturbation decoder, which attempts to
break decoding symmetries by randomizing the channel error probabilities. Initially, decoding is
attempted using a standard GF(4) decoder. If this results in ẑ = z, then decoding is complete.

28

2.3. MODIFIED DECODERS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

Otherwise, if ẑ 6= z, then decoding is iteratively reattempted with modified error probabilities
until either decoding is successful or a maximum number of attempts N is reached. In each
decoding attempt, a frustrated check is selected. This is a check node ci such that ẑi 6= zi. The
channel probabilities of all qubits j ∈ M(i) involved in this check are then perturbed (up to
normalization) as follows:

P (Ej = I)→ P (Ej = I), (2.48)

P (Ej = X)→ (1 + δX)P (Ej = X), (2.49)

P (Ej = Y)→ (1 + δY)P (Ej = Y), (2.50)

P (Ej = Z)→ (1 + δZ)P (Ej = Z). (2.51)

Here, δX , δY , and δZ are realizations of a random variable that is uniformly distributed over [0,
δ], where δ is called the perturbation strength. The increasing of nonidentity error probabilities
is motivated by the empirical observation that the decoder is naturally too biased towards the
trivial error [25].

2.3.1.2 Enhanced feedback

The enhanced feedback (EFB) decoder of Ref. [44], which is specifically tailored for the depo-
larizing channel, behaves somewhat similarly to the random perturbation decoder in that it also
iteratively reattempts decoding with modified channel probabilities. Again, decoding is first
attempted using a standard GF(4) decoder. If this results in ẑ = z, then decoding is complete.
If instead ẑ 6= z, then a frustrated check ci is selected along with an involved qubit j ∈ M(i).
If zi = 1 but ẑi = 0, then the estimated error Ê commutes with the stabilizer generator Mi

while the error E anticommutes with Mi. To address this, the channel probabilities for Ej are
adjusted such that an anticommuting error is more likely than the commuting trivial error that
the decoder is naturally too biased towards. This adjustment is

P (Ej = σ)→


p
2 if σ = I, orM (j)

i ,

1−p
2 otherwise,

(2.52)

where M (j)
i is the jth component of the generator Mi. Conversely, if zi = 0 but ẑi = 1, then the

adjustment is

P (Ej = σ)→


1−p

2 if σ = I, orM (j)
i ,

p
2 otherwise.

(2.53)

Decoding is then reattempted with these adjusted probabilities. If this fails, then a different
qubit j ∈ M(i) is selected and the process is repeated. If all qubits involved in check ci have
been exhausted and decoding is still unsuccessful, then a different check is selected and the
process continues. Again, decoding is halted if a maximum number of attempts N is reached.

29

2.3. MODIFIED DECODERS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

2.3.1.3 Supernodes

The supernode decoder of Ref. [42] is a modification of the GF(4) decoder for dual-containing
CSS codes. Decoding is performed on the factor graph corresponding to H̃ = H̃X = H̃Z with
checks ci and ci+m/2 grouped to form a single supernode. The check node calculation is modified
to

λai→j =K
∑

e:ej=a
δ

tr

 ∑
j′∈M(i)

ēj′

 = z
(i)
Z

 δ
tr

 ∑
j′∈M(i)

ωēj′

 = z
(i)
X

 ∏
j′∈M(i)\j

µ
ej′
j′→i. (2.54)

Here, zZ contains the first m/2 values of z and zX contains the last m/2 values; z(i)
Z and z(i)

X are
the ith values of zZ and zX , respectively. Defining z̃i = ωz

(i)
Z +z

(i)
X ∈ GF(4), the two constraints

of Eq. (2.54) can be combined to give

λai→j = K
∑

e:ej=a
δ

 ∑
j′∈M(i)

ej′ = z̃i

 ∏
j′∈M(i)\j

µ
ej′
j′→i. (2.55)

Note that this is of the same form as the classical check to error message given in Eq. (2.18),
and it can therefore be computed using the same Fourier transform approach. The effect of
combining nodes into supernodes is twofold. Firstly, it reduces decoding complexity by halving
the number of check node calculations. Secondly, it can improve decoder performance as it
reduces the number of 4-cycles present in the factor graph. Note that random perturbation and
EFB can also be implemented using an underlying supernode decoder rather than a standard
GF(4) decoder.

2.3.2 New decoders

2.3.2.1 Adjusted

The first decoder we propose is the adjusted decoder for CSS codes. This is a GF(2)-based de-
coder that aims to reintroduce the correlations between X and Z errors that are lost when using
a standard GF(2) decoder. Initially, decoding is attempted using a standard GF(2) decoder. If
this is successful, then decoding is complete. If both HZ êX = ẑX 6= zX and HX êZ = ẑZ 6= zZ ,
then the adjusted decoder also halts. However, if one of ẑX = zX or ẑZ = zZ , then we reattempt
decoding for the incorrect component using channel probabilities that are adjusted according to
Eqs. (2.44) to (2.47). In particular, if ẑX = zX but ẑZ 6= zZ , then the adjustment is

P (e(j)
Z = 1)→


pY

pX+pY
if ê(j)

X = 1,
pZ

1−(pX+pY) if ê(j)
X = 0.

(2.56)

Alternatively, if ẑZ = zZ but ẑX 6= zX , then the adjustment is

P (e(j)
X = 1)→


pY

pY +pZ
if ê(j)

Z = 1,
pX

1−(pY +pZ) if ê(j)
Z = 0.

(2.57)

30

2.3. MODIFIED DECODERS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

We note that the adjusted decoder presented here is similar to the decoder presented for the
depolarizing channel in Ref. [46]. The decoder of Ref. [46] first attempts decoding of the X
component using standard channel probabilities. If this is successful, then decoding is attempted
for the Z components using the modified probabilities of Eq. (2.56).

2.3.2.2 Augmented

The second decoder we propose is the augmented decoder, which was first presented in Ref. [45]
for classical binary codes. An augmented decoder for QLDPC codes can be based on a GF(4)
decoder for any code, a GF(2) decoder for a CSS code, or a supernode decoder for a dual-
containing CSS code. The simplest of these cases is when the underlying decoder is a GF(4)
decoder. In this case, decoding is initially attempted using a standard GF(4) decoder with a
standard GF(4) parity-check matrix H. If this is unsuccessful, then decoding is reattempted
using a randomly generated augmented parity-check matrix

HA =
(

H

Hδ

)
. (2.58)

Hδ is comprised of a subset of rows selected at random from H. The fraction of rows selected is
dictated by the augmentation density δ. The syndrome used for decoding is

zA =
(

z

zδ

)
, (2.59)

where z is the measured syndrome and zδ contains the syndrome values corresponding to the
rows selected to formHδ. Decoding is iteratively reattempted using different augmented matrices
until either decoding is successful or a maximum number of attempts N is reached. Note that
duplicating rows results in a duplication of the corresponding check nodes in the factor graph.

The behavior of a supernode-based augmented decoder is very similar. In this case, the aug-
mented parity-check matrices are of the form

HA =
(

H̃

H̃δ

)
, (2.60)

where H̃δ consists of the rows selected from H̃ = H̃X = H̃Z . The augmented syndrome is

zA =


zZ

zZδ

zX

zXδ

 , (2.61)

where the values of zZδ and zXδ are taken from zZ and zX , respectively, according to the rows
selected for repetition.

In the GF(2) case, two augmented decoders are used, one for the X component and one for the

31

2.3. MODIFIED DECODERS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

Z component. The augmented parity-check matrices used by the X decoder are of the form

HA =
(

H̃Z

H̃Zδ

)
, (2.62)

and the augmented syndrome is

zA =
(

zX

zXδ

)
. (2.63)

The syndrome and augmented parity-check matrices used by the Z decoder are of the same
form.

In all three cases [GF(2), GF(4), and supernode], decoding with an augmented parity-check
matrix HA is equivalent to running a slightly altered belief propagation algorithm using the
standard parity-check matrix H. We define the function r such that

r(i) =

1 if ci duplicated inHA,

0 otherwise.
(2.64)

Decoding with HA is then equivalent to decoding using H with the marginal probability ap-
proximation of Eq. (2.19) changed to

P̂ (ej = a|z) = KP (ej = a)
∏

i∈N (j)
(λai→j)1+r(i), (2.65)

and the error to check message of Eq. (2.20) changed to

µaj→i = KP (ej = a)(λai→j)r(i)
∏

i′∈N (j)\i
(λai′→j)1+r(i′). (2.66)

As a result of this equivalence, we can consider one iteration of an augmented decoder to be of
the same complexity as one iteration of the underlying decoder. This formulation also gives some
insight into the effect of decoding with an augmented parity-check matrix. It can be seen that
duplicating a check has the effect of increasing its influence in estimating the error. Furthermore,
the message µj→i is now no longer independent of the message λi→j if ci is duplicated. This
amplification and feedback will alter the convergence of the marginal probability estimates.
This altered convergence can help the decoder to give a different (and hopefully correct) error
estimate.

2.3.2.3 Combined

The third decoder we propose combines the augmented GF(2) and adjusted decoders for CSS
codes. Initially, standard GF(2) decoding is attempted. If this is successful, then decoding is
complete. If both ẑX 6= zX and ẑZ 6= zZ , then we reattempt decoding for the X component
using augmented parity-check matrices up to N times. If this is unsuccessful, then we repeat this
procedure for the Z component. If we still have ẑX 6= zX and ẑZ 6= zZ , then decoding halts.
However, if one of ẑX = zX or ẑZ = zZ (either from the initial decoding or after attempting
decoding with augmented parity-check matrices if required), then we reattempt decoding for

32

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

the unsatisfied component with adjusted channel error probabilities as outlined in Sec. 2.3.2.1.
If this is unsuccessful, then decoding for this component will be reattempted with augmented
parity-check matrices up to N times using the same adjusted probabilities.

2.4 Simulation results

2.4.1 Bicycle

The first code we have considered is a [[400, 200]] bicycle code of Ref. [23]. Bicycle codes are
dual-containing CSS codes that are constructed by first generating an n/2×n/2 binary circulant
matrix A with row weight w/2. A is used to define the n/2 × n matrix H0 = [A AT] from
which (n−m)/2 rows are removed to give H̃ (following the heuristic that column weight should
be kept as uniform as possible). Taking H̃X = H̃Z = H̃ defines the GF(2) and GF(4) parity-
check matrices according to Eqs. (2.36) and (2.39), respectively. The associated stabilizer code
will have k ≥ n−m, with equality when the parity-check matrix is full rank (this is the case for
our code). Removing rows from H0 corresponds to removing stabilizer generators of weight w.
Unless a removed row belongs to the span of the remaining rows, which is unlikely, the removed
generator will be in Ñ(S)\S̃. A bicycle code’s distance is therefore upper bounded by w (we
have chosen w = 20 for our code).

2.4.1.1 Depolarizing channel

We first consider the depolarizing channel. Both the augmented and random perturbation
decoders have a tunable parameter δ, which controls the augmentation density and perturbation
strength, respectively. As shown for classical codes in Ref. [45], this δ value can have a significant
impact on the performance of an augmented decoder. We observe the same behavior for both
augmented and random perturbation decoders in the quantum case as shown in Fig. 2.2. Here,
decoders with N = 10 maximum decoding attempts and varying δ have been tested at four
different depolarizing probabilities (we use a maximum of Imax = 100 iterations per attempt for
every decoder in this paper). The vertical axis gives normalized FER (frame error rate), which
is the modified decoder’s FER divided by the underlying (standard) decoder’s FER. Note that
each data point in this figure, as well as all other figures presented in this paper, corresponds
to at least 100 decoding errors. Based on these results, we have selected values of δ = 0.1 for
the augmented GF(2) decoder, δ = 0.15 for the augmented GF(4) and supernode decoders,
δ = 100 for the random perturbation GF(4) decoder, and δ = 200 for the random perturbation
supernode decoder. Note that the δ value we use for the combined decoder is always the same
as the value used for the augmented GF(2) decoder.

We have tested all of the decoders outlined in Sec. 2.3 on this code. The random perturbation,
EFB, augmented, and combined decoders all use N = 100 attempts. The FER performance of
these decoders is shown in Fig. 2.3, and the average number of iterations required by each of

33

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.4

0.6
0.8

p=0.020

GF(2) Aug.

GF(4) Pert.

GF(4) Aug.

Super. Pert.

Super. Aug.

0.2

0.4

0.6
0.8

p=0.016

10
-1

p=0.012

10
-2

10
-1

10
0

10
1

10
2

10
-1

p=0.008

N
o
rm

a
liz

e
d
 F

E
R

Figure 2.2: The effect of augmentation density and random perturbation strength on decoder
performance (frame error rate) for the [[400, 200]] bicycle code on the depolarizing channel. Each
decoder uses N = 10 maximum attempts.

them is shown in Fig. 2.4. It can be seen that the standard supernode decoder outperforms the
standard GF(4) decoder, which in turn, outperforms the standard GF(2) decoder. Furthermore,
the supernode decoder requires fewer iterations on average than the standard GF(4) or GF(2)
decoders [the number of iterations used by a GF(2)-based decoder is taken to be the number used
by one of the two constituent decoders]. However, note that comparing the number of iterations
used by these different decoders, or indeed modified decoders based on different underlying
decoders, is not particularly meaningful as their iterations are of differing complexity. The
adjusted decoder can be seen to give a FER similar to the standard supernode decoder at the cost
of a negligible increase in required iterations compared to the standard GF(2) decoder. This FER
performance suggests that the adjusted decoder is successful in reintroducing the correlation
between the X and Z error components. The random perturbation and EFB decoders based on
either GF(4) or supernode decoders have similar FER performance and require a near-identical
number of iterations on average. The augmented GF(4) and supernode decoders outperform
both the random perturbation and EFB decoders while requiring a lower number of iterations
on average. The augmented GF(2) decoder does give a reasonable FER reduction compared
to the standard GF(2) decoder, but it is outperformed by all modified GF(4) and supernode
decoders. However, the combined decoder gives a FER lower than the random perturbation and
EFB decoders. Furthermore, it also requires fewer iterations on average than the augmented
GF(2) decoder. All of the decoding errors we have observed for this code are detected errors;
that is, they are due to a failing of the decoder rather than the code’s distance.

Figure 2.5 shows the effect of the maximum number of decoding attempts on the performance of

34

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.008 0.012 0.016 0.02

p

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

F
E

R

GF(2)

GF(2) Adj.

GF(2) Aug.

GF(2) Comb.

GF(4)

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Super.

Super. Pert.

Super. EFB

Super. Aug.

Figure 2.3: FER performance of decoders with N = 100 attempts (where applicable) for the
[[400, 200]] bicycle code on the depolarizing channel.

0.008 0.012 0.016 0.02

p

10
0

10
1

10
2

A
v
e

ra
g

e
 i
te

ra
ti
o

n
s

GF(2)

GF(2) Adj.

GF(2) Aug.

GF(2) Comb.

GF(4)

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Super.

Super. Pert.

Super. EFB

Super. Aug.

Figure 2.4: Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[400, 200]] bicycle code on the depolarizing channel.

35

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

10
0

10
1

10
2

Attempts

10
-7

10
-6

10
-5

10
-4

10
-3

F
E

R

GF(2) Aug.

GF(2) Comb.

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Super. Pert.

Super. EFB

Super. Aug.

Figure 2.5: FER performance of decoders at p = 0.008 with a varying number of decoding
attempts for the [[400, 200]] bicycle code on the depolarizing channel.

the augmented, combined, random perturbation, and EFB decoders at a depolarizing probability
of p = 0.008. For all decoders, the FER reduction with an increasing maximum number of
attempts is approximately linear on a log-log plot. This suggests that we could continue to
reduce the FER by increasing the maximum number of attempts beyond N = 100. It can be
seen that the augmented and combined decoders only require approximately N = 25 maximum
attempts to match the performance of random perturbation and EFB decoders with N = 100.

2.4.1.2 XZ channel

To isolate the effect of augmentation in the GF(2) case, we have repeated the analysis of the
previous section for the XZ channel. As previously noted, the X and Z error components occur
independently for this channel; therefore, there are no correlations to be ignored when using a
GF(2)-based decoder. As a result, the adjusted and combined decoders will give no performance
increase over the standard GF(2) and augmented GF(2) decoders, respectively. While we have
still employed the random perturbation decoder for comparison on this channel, we have not
used the EFB decoder as it is specifically tailored to the depolarizing channel.

Again, we first tune the augmentation density and random perturbation strength using decoders
with N = 10 as shown in Fig. 2.6. It can be seen that the optimal value of δ is essentially
independent of the underlying decoder. As such, we have selected a value of δ = 0.15 for all
augmented decoders and δ = 100 for both of the random perturbation decoders. Note that these
are the same values we have used for the GF(4)-based decoders in the depolarizing case.

36

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.4

0.6

0.8

p=0.020

GF(2) Aug.

GF(4) Pert.

GF(4) Aug.

Super. Pert.

Super. Aug.

0.2

0.4

0.6

p=0.016

0.2

0.3

0.4

p=0.012

10
-2

10
-1

10
0

10
1

10
2

0.2

0.4

p=0.008

N
o

rm
a

liz
e

d
 F

E
R

Figure 2.6: The effect of augmentation density and random perturbation strength on decoder
performance for the [[400, 200]] bicycle code on the XZ channel. Each decoder uses N = 10
maximum attempts.

The FER performance and average required iterations for decoders with N = 100 maximum
attempts are shown in Figs. 2.7 and 2.8, respectively. It can be seen that the standard GF(2),
GF(4), and supernode decoders all exhibit near-identical performance on the XZ channel. That
the GF(2) and supernode decoders yield the same FER is unsurprising and is consistent with
the similar performance of the adjusted and supernode decoders on the depolarizing channel.
The performance of the GF(4) decoder suggests that the 4-cycles involving one row from H̃X

and one row from H̃Z have no effect on decoding performance when the error components are
independent. The performance of the augmented and random perturbation decoders is also
largely independent of the underlying decoder. Furthermore, the relative performance of the
decoders is very similar to that observed for the GF(4)-based decoders in the depolarizing case,
with the augmented decoders outperforming the random perturbation decoders.

The effect of the maximum number of decoding attempts on decoder performance is shown for
p = 0.008 in Fig. 2.9. Unsurprisingly, the performance of the augmented and random per-
turbation decoders remains largely independent of the underlying decoder over the range of N
values tested. Furthermore, the relative performance is very similar to that exhibited by the
GF(4)-based decoders in the depolarizing case, with the augmented decoders only requiring ap-
proximately N = 25 maximum attempts to match the performance of the random perturbation
decoders with N = 100.

We have tested the performance of decoders on the XZ channel for all four CSS codes considered
in this paper. However, we omit the results for the other three codes as they all follow the same

37

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.008 0.01 0.012 0.014 0.016 0.018 0.02

p

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

F
E

R

GF(2)

GF(2) Aug.

GF(4)

GF(4) Pert.

GF(4) Aug.

Super.

Super. Pert.

Super. Aug.

Figure 2.7: FER performance of decoders with N = 100 attempts (where applicable) for the
[[400, 200]] bicycle code on the XZ channel.

0.008 0.01 0.012 0.014 0.016 0.018 0.02

p

10
0

10
1

10
2

A
v
e

ra
g

e
 i
te

ra
ti
o

n
s

GF(2)

GF(2) Aug.

GF(4)

GF(4) Pert.

GF(4) Aug.

Super.

Super. Pert.

Super. Aug.

Figure 2.8: Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[400, 200]] bicycle code on the XZ channel.

38

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

10
0

10
1

10
2

Attempts

10
-6

10
-5

10
-4

F
E

R

GF(2) Aug.

GF(4) Pert.

GF(4) Aug.

Super. Pert.

Super. Aug.

Figure 2.9: FER performance of decoders at p = 0.008 with a varying number of decoding
attempts for the [[400, 200]] bicycle code on the XZ channel.

trend outlined here. That is, the performance of decoders is essentially independent of the
underlying decoder, and the relative performance of the augmented and random perturbation
decoders is very similar to that exhibited by the GF(4)-based decoders in the depolarizing case.

2.4.2 BIBD

The second code we have considered is a [[610, 490]] balanced incomplete block design (BIBD)
code from Ref. [54]. Like the bicycle code, this is also a dual-containing CSS code. A BIBD
(X,B), where X = {x1, . . . , xv} and B = {B1, . . . , Bb}, is a collection of b subsets (blocks) of
size k that are drawn from a set X containing v elements. Each pair of elements occurs in λ of
the blocks, and every element occurs in r blocks. The v× b GF(2) incidence matrix A of (X,B)
has elements

Aij =

1 xi ∈ Bj ,

0 xi /∈ Bj .
(2.67)

If λ is even, then A will satisfy AAT = 0 as any two rows will overlap an even number of times.
As such, taking H̃ = H̃X = H̃Z = A defines a dual-containing CSS code. The BIBD that we
have selected follows the construction of Ref. [55]. If 6t + 1 is a prime or prime power and
α is a primitive element of GF(6t + 1), then a BIBD (GF(6t + 1),B) can be constructed with
v = 6t+ 1, b = t(6t+ 1), r = 4t, k = 4, and λ = 2. To do this, t base blocks B̃i are constructed
for 0 ≤ i ≤ t− 1 with

B̃i = {0, αi, α2t+i, α4t+i}. (2.68)

39

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.5

1

p=0.004

GF(2) Aug.

GF(4) Pert.

GF(4) Aug.

Super. Pert.

Super. Aug.

0.5

1

p=0.003

10
0

p=0.002

10
-1

10
0

10
1

10
2

10
3

10
-1

p=0.001

N
o

rm
a

liz
e

d
 F

E
R

Figure 2.10: The effect of augmentation density and random perturbation strength on decoder
performance for the [[610, 490]] BIBD code on the depolarizing channel. Each decoder uses
N = 10 maximum attempts.

6t+1 blocks of the form B̃i+β = {β, αi+β, α2t+i+β, α4t+i+β}, where β ∈ GF(6t+1), can then
be constructed from each base block. This gives a total of t(6t+ 1) blocks and a corresponding
incidence matrix of the form

H̃ = A =
(
A1 A2 · · · At

)
. (2.69)

Here, each Ai is a (6t+ 1)× (6t+ 1) circulant matrix of weight k = 4. We have selected t = 10
and α = 2 for our code.

The results presented for this code and all codes that follow are on the depolarizing channel.
The effect of augmentation density and random perturbation strength for decoders with N = 10
on this code is shown in Fig. 2.10. Based on these results, we have selected values of δ = 0.3
for all augmented decoders, δ = 200 for the random perturbation GF(4) decoder, and δ = 400
for the random perturbation supernode decoder.

The FER performance and average required iterations for decoders with N = 100 maximum
attempts are shown in Figs. 2.11 and 2.12, respectively. The results here are quite similar
to those for the bicycle code. Again, the adjusted decoder gives performance similar to that
of the supernode decoder. Furthermore, the random perturbation and EFB decoders perform
similarly to one another. The augmented GF(2) decoder is outperformed by all modified GF(4)
and supernode decoders. The combined, augmented GF(4), and augmented supernode decoders
again outperform the random perturbation and EFB decoders. Overall, there is less spread in
the performance of the decoders on this BIBD code. This can be attributed to the fact that a

40

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.001 0.002 0.003 0.004

p

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

F
E

R

GF(2)

GF(2) Adj.

GF(2) Aug.

GF(2) Comb.

GF(4)

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Super.

Super. Pert.

Super. EFB

Super. Aug.

Figure 2.11: FER performance of decoders with N = 100 attempts (where applicable) for the
[[610, 490]] BIBD code on the depolarizing channel.

large fraction of decoding errors are undetected. For example, approximately 65% of the errors
exhibited by the augmented supernode decoder at p = 0.001 are undetected. This abundance
of undetected errors suggests that decoding is being limited by the code’s distance d ≤ 5 [this
value is based on the lowest-weight element of Ñ(S)\S̃ that we have observed].

The effect of these undetected errors can also be seen in Fig. 2.13. For the bicycle code, the
reduction in FER with increasing maximum number of iterations was approximately linear on
a log-log plot. However, the reduction in FER for the BIBD code can be seen to taper off; that
is, increasing the maximum number of attempts has diminishing returns. Partially as a result of
this, we only require approximately N = 10 maximum attempts for our augmented supernode
decoder to match the performance of the random perturbation and EFB decoders with N = 100.

2.4.3 Quasicyclic

The third code we have considered is a [[506, 240]] quasicyclic code from Ref. [56]. Unlike the
first two codes, this is a nondual-containing CSS code. The parity-check submatrices H̃X and
H̃Z can be defined in terms of base matrices HX and HZ , respectively, whose elements belong
to the set {0, 1, . . . , P − 1}. H̃X (H̃Z) is then constructed by replacing each element of HX
(HZ) with a P × P identity matrix shifted circularly to the right by an amount given by the
replaced element. The base matrix construction of Ref. [56] gives a parity-check matrix that
satisfies H̃ZH̃

T
X = 0; it also ensures that the factor graphs associated with H̃X and H̃Z are free

of 4-cycles. These base matrices are constructed from a so-called “perfume” (perfect fulfillment).
Let ZP be the set of integers {0, 1, . . . , P − 1} with addition, subtraction, and multiplication

41

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.001 0.002 0.003 0.004

p

10
0

10
1

10
2

A
v
e

ra
g

e
 i
te

ra
ti
o

n
s

GF(2)

GF(2) Adj.

GF(2) Aug.

GF(2) Comb.

GF(4)

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Super.

Super. Pert.

Super. EFB

Super. Aug.

Figure 2.12: Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[610, 490]] BIBD code on the depolarizing channel.

10
0

10
1

10
2

Attempts

10
-5

10
-4

10
-3

F
E

R

GF(2) Aug.

GF(2) Comb.

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Super. Pert.

Super. EFB

Super. Aug.

Figure 2.13: FER performance of decoders at p = 0.001 with a varying number of decoding
attempts for the [[610, 490]] BIBD code on the depolarizing channel.

42

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.5

1

p=0.024

GF(2) Aug. GF(4) Pert. GF(4) Aug.

0.4

0.6

0.8

p=0.021

0.4

0.6

0.8

p=0.018

10
-2

10
-1

10
0

10
1

10
2

0.4

0.6

0.8

p=0.015

N
o

rm
a

liz
e

d
 F

E
R

Figure 2.14: The effect of augmentation density and random perturbation strength on decoder
performance for the [[506, 240]] quasicyclic code on the depolarizing channel. Each decoder uses
N = 10 maximum attempts.

modulo P . Z∗P is then the abelian multiplicative group Z∗P = {z ∈ ZP : gcd(z, P) = 1}. For
positive integers P and σ, σ is a fulfillment of P if σ is coprime to P and 1 − σi is coprime to
P for 1 ≤ i < ord(σ). Here, ord(σ) is the order of σ in Z∗P . A triple of positive integers (P, σ, τ)
is a perfume if σ is a fulfillment of P , τ is coprime to P , and τ /∈ {σ, σ2, . . . , σord(σ)}. Letting
L = 2ord(σ), we define

cjl =

σ
−j+l if 0 ≤ l < L

2 ,

τσ−j+l if L2 ≤ l ≤ L,
(2.70)

dkl =

−τσ
k−l if 0 ≤ l < L

2 ,

−σk−l if L2 ≤ l ≤ L.
(2.71)

Indexing from zero, these are the elements of the J × L and K × L base matrices HX and HZ ,
respectively, where 1 ≤ J,K ≤ L/2. To construct our code, we have used the perfume (23, 8, 20)
(this gives L = 22) and have chosen J = K = 6.

The effect of augmentation density and random perturbation strength for decoders with N = 10
on this code is shown in Fig. 2.14. Note that for this code, we can only use GF(2)- and GF(4)-
based decoders as it is not dual containing. Based on these results, we have selected values of
δ = 0.07 for the augmented GF(2) decoder, δ = 0.05 for the augmented GF(4) decoder, and
δ = 50 for the random perturbation GF(4) decoder.

The FER performance and average required iterations for decoders with N = 100 maximum

43

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.015 0.018 0.021 0.024

p

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

GF(2)

GF(2) Adj.

GF(2) Aug.

GF(2) Comb.

GF(4)

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Figure 2.15: FER performance of decoders with N = 100 attempts (where applicable) for the
[[506, 240]] quasicyclic code on the depolarizing channel.

attempts are shown in Figs. 2.15 and 2.16, respectively. On the previous two codes, the aug-
mented GF(2) decoder gave a similar or lower FER than the adjusted decoder. This is not the
case here, with the adjusted decoder giving a significantly lower FER. This suggests that the
augmented decoder has some effect in alleviating the effect of 4-cycles in the code’s factor graph
[none of which are present when using a GF(2) decoder for this code]. The random perturbation,
EFB, and augmented GF(4) decoders all perform similarly on this code. The combined decoder
performs worse than the modified GF(4) decoders.

Like the bicycle code, all decoding errors observed for this code were detected errors. This is
reflected in Fig. 2.17, which shows an approximately linear reduction in FER with an increasing
number of maximum attempts on a log-log plot for all decoders considered.

2.4.4 Bicyclelike

The fourth code we have considered is a [[400, 200]] nondual-containing CSS code based on the
bicyclelike construction of Ref. [57]. The codes of Ref. [57] are constructed using a BIBD in a
similar way to the code of Sec. 2.4.2. H̃X is constructed by taking the first a (where a is even)
submatrices of the BIBD’s adjacency matrix as given in Eq. (2.69); that is,

H̃X =
(
A1 A2 · · · Aa

)
. (2.72)

H̃Z is then a cyclically shifted version of H̃X , with

H̃Z =
(
Aa

2 +1 Aa
2 +2 · · · Aa A1 A2 · · · Aa

2

)
. (2.73)

44

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.015 0.018 0.021 0.024

p

10
0

10
1

10
2

10
3

A
v
e

ra
g

e
 i
te

ra
ti
o

n
s

GF(2)

GF(2) Adj.

GF(2) Aug.

GF(2) Comb.

GF(4)

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Figure 2.16: Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[506, 240]] quasicyclic code on the depolarizing channel.

10
0

10
1

10
2

Attempts

10
-5

10
-4

10
-3

10
-2

F
E

R

GF(2) Aug.

GF(2) Comb.

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Figure 2.17: FER performance of decoders at p = 0.015 with a varying number of decoding
attempts for the [[506, 240]] quasicyclic code on the depolarizing channel.

45

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.5

1

p=0.021

GF(2) Aug. GF(4) Pert. GF(4) Aug.

0.5

1

p=0.018

0.2

0.4

0.6
0.8

p=0.015

10
-2

10
-1

10
0

10
1

10
2

10
3

0.2

0.4

0.6

p=0.012

N
o

rm
a

liz
e

d
 F

E
R

Figure 2.18: The effect of augmentation density and random perturbation strength on decoder
performance for the [[400, 200]] bicyclelike code on the depolarizing channel. Each decoder uses
N = 10 maximum attempts.

The use of a BIBD with λ = 1 ensures that H̃X and H̃Z are both free of 4-cycles. However,
we have observed that codes constructed in this way have low distances and are therefore not
appropriate for comparing decoders. We have found that this distance can be increased by gen-
eralizing the construction to allow the circulant matrices A1, . . . , Aa to be randomly generated.
Note that this comes at the expense of introducing 4-cycles. For our code, we have constructed
H̃X from four 100 × 100 circulant matrices of weight five. Each of H̃X and H̃Z yield factor
graphs with 1 700 4-cycles, compared to the 2 737 4-cycles of the bicycle code considered in Sec.
2.4.1.

The effect of augmentation density and random perturbation strength for decoders with N = 10
on this code is shown in Fig. 2.18. Based on these results, we have selected values of δ = 0.1
for the augmented GF(2) decoder, δ = 0.15 for the augmented GF(4) decoder, and δ = 100 for
the random perturbation GF(4) decoder.

The FER performance and average required iterations for decoders with N = 100 maximum
attempts are shown in Figs. 2.19 and 2.20, respectively. Again, the adjusted decoder outperforms
the augmented GF(2) decoder; however, the gap in their performance is smaller than for the
quasicyclic code of Sec. 2.4.3. The EFB and augmented GF(4) decoders perform similarly on
this code, both outperforming the random perturbation decoder. The combined decoder is again
outperformed by all modified GF(4) decoders, although the performance gap is smaller than in
the quasicyclic case.

While our modified construction gives a higher distance than the codes presented in Ref. [57],

46

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.012 0.015 0.018 0.021

p

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

F
E

R

GF(2)

GF(2) Adj.

GF(2) Aug.

GF(2) Comb.

GF(4)

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Figure 2.19: FER performance of decoders with N = 100 attempts (where applicable) for the
[[400, 200]] bicyclelike code on the depolarizing channel.

0.012 0.015 0.018 0.021

p

10
0

10
1

10
2

A
v
e

ra
g

e
 i
te

ra
ti
o

n
s

GF(2)

GF(2) Adj.

GF(2) Aug.

GF(2) Comb.

GF(4)

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Figure 2.20: Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[400, 200]] bicyclelike code on the depolarizing channel.

47

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

10
0

10
1

10
2

Attempts

10
-5

10
-4

10
-3

10
-2

F
E

R

GF(2) Aug.

GF(2) Comb.

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Figure 2.21: FER performance of decoders at p = 0.012 with a varying number of decoding
attempts for the [[400, 200]] bicyclelike code on the depolarizing channel.

we still observed a moderate number of undetected errors, which can be attributed to the codes
moderatly low distance of d ≤ 10. For example, at p = 0.015, approximately 15% of errors are
undetected for both the EFB and augmented GF(4) decoders. However, this is not significant
enough fraction of errors to prevent the FER reducing near linearly on a log-log plot with an
increasing maximum number of attempts as shown in Fig. 2.21.

2.4.5 Non-CSS A

The fifth code we have considered is a [[400, 202]] non-CSS code based on construction three of
Ref. [58]. The GF(2) and GF(4) parity-check matrices for this code are defined by the matrices
HX and HZ as outlined in Eqs. (2.34) and (2.39). For this code, these matrices are of the form

HX =
(
A

(1)
X A

(2)
X · · · A

(a)
X

)
, (2.74)

HZ =
(
A

(1)
Z A

(2)
Z · · · A

(a)
Z

)
. (2.75)

The submatrices A(i)
X and A(i)

Z are given by

A
(i)
X =

 B
(i)
X B

(i)T
X P Ti

PiB
(i)T
X PiB

(i)
X P Ti

 , (2.76)

A
(i)
Z =

 B
(i)
Z B

(i)T
Z P Ti

PiB
(i)T
Z PiB

(i)
Z P Ti

 . (2.77)

48

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.5

1

p=0.021

GF(4) Pert. GF(4) Aug.

0.4

0.6

0.8

p=0.018

0.2

0.4

0.6
0.8

p=0.015

10
-2

10
-1

10
0

10
1

10
2

10
-1 p=0.012

N
o

rm
a

liz
e

d
 F

E
R

Figure 2.22: The effect of augmentation density and random perturbation strength on decoder
performance for the [[400, 202]] non-CSS code A on the depolarizing channel. Each decoder uses
N = 10 maximum attempts.

Here, B(i)
X and B(i)

Z are square matrices of the same size that are either both symmetric or both
circulant; Pi is a square matrix satisfying P Ti = P−1

i . For our code, we have taken a = 2, each
B

(i)
X and B(i)

Z to be a 100× 100 circulant matrix of weight three, and each Pi to be a 100× 100
permutation matrix.

The effect of augmentation density and random perturbation strength for decoders with N = 10
on this code is shown in Fig. 2.22. Note that for non-CSS codes, we can only use GF(4)-based
decoders. Based on these results, we have chosen δ = 0.1 for the augmented decoder and δ = 25
for the random perturbation decoder.

The FER performance and average required iterations for decoders with N = 100 maximum
attempts are shown in Figs. 2.23 and 2.24, respectively. It can be seen that the random
perturbation, EFB, and augmented decoders all perform similarly on this code.

The majority of decoding errors are detected errors for this code, which also has distance d ≤ 10.
At p = 0.012, only 1-2% of errors are undetected for the random perturbation, EFB, and
augmented decoders. This is again reflected in the near-linear reduction in FER with increasing
maximum number of attempts on the log-log plot given in Fig. 2.25.

2.4.6 Non-CSS B

The final code we have considered is a [[400, 201]] non-CSS code based on construction four of
Ref. [58]. This construction is quite similar to that of the last section, with HX and HZ defined

49

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.012 0.015 0.018 0.021

p

10
-6

10
-5

10
-4

10
-3

10
-2

F
E

R

GF(4)

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Figure 2.23: FER performance of decoders with N = 100 attempts (where applicable) for the
[[400, 202]] non-CSS code A on the depolarizing channel.

0.012 0.015 0.018 0.021

p

10
1

A
v
e

ra
g

e
 i
te

ra
ti
o

n
s

GF(4)

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Figure 2.24: Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[400, 202]] non-CSS code A on the depolarizing channel.

50

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

10
0

10
1

10
2

Attempts

10
-5

10
-4

F
E

R

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Figure 2.25: FER performance of decoders at p = 0.012 with a varying number of decoding
attempts for the [[400, 202]] non-CSS code A on the depolarizing channel.

as in Eqs. (2.74) and (2.75), respectively. However, the submatrices A(i)
X and A(i)

Z are now given
by

A
(i)
X =

(
B

(i)
X B

(i)T
X P Ti

)
, (2.78)

A
(i)
Z =

(
B

(i)
Z B

(i)T
Z P Ti

)
. (2.79)

Here, B(i)
X and B(i)

Z are either both symmetric, both circulant, or B(i)
X B

(i)T
Z + B

(i)T
X B

(i)
Z is sym-

metric; Pi is a permutation matrix. For our code, we have taken a = 1, B(1)
X and B

(1)
Z to be

200× 200 circulant matrices of weight six and P1 to be a 200× 200 permutation matrix.

The effect of augmentation density and random perturbation strength for decoders with N = 10
on this code is shown in Fig. 2.26. Based on these results, we have chosen δ = 0.05 for the
augmented decoder and δ = 25 for the random perturbation decoder.

The FER performance and average required iterations for decoders with N = 100 maximum
attempts are shown in Figs. 2.27 and 2.28, respectively. The results are consistent with those of
Sec. 2.4.5, with the random perturbation, EFB, and augmented decoders all performing fairly
similarly on this code.

A moderate number of undetected errors were observed for this code, which also has distance
d ≤ 10. For example, at p = 0.012, approximately 10-15% of errors are undetected for each
decoder. It can also be seen that the reduction in FER with an increasing number of maximum
attempts, while still near linear on the log-log plot of Fig. 2.29, tapers of slightly more than was
observed for the code of the previous section.

51

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.4

0.6

0.8

1

p=0.021

GF(4) Pert. GF(4) Aug.

0.4

0.6

0.8
1

p=0.018

0.2

0.4

0.6

0.8
1

p=0.015

10
-2

10
-1

10
0

10
1

10
2

0.2

0.4

0.6
0.8

p=0.012

N
o

rm
a

liz
e

d
 F

E
R

Figure 2.26: The effect of augmentation density and random perturbation strength on decoder
performance for the [[400, 201]] non-CSS code B on the depolarizing channel. Each decoder uses
N = 10 maximum attempts.

0.012 0.015 0.018 0.021

p

10
-6

10
-5

10
-4

10
-3

10
-2

F
E

R

GF(4)

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Figure 2.27: FER performance of decoders with N = 100 attempts (where applicable) for the
[[400, 201]] non-CSS code B on the depolarizing channel.

52

2.4. SIMULATION RESULTS CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

0.012 0.015 0.018 0.021

p

10
0

10
1

A
v
e

ra
g

e
 i
te

ra
ti
o

n
s

GF(4)

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Figure 2.28: Average number of iterations required by decoders with N = 100 attempts (where
applicable) for the [[400, 201]] non-CSS code B on the depolarizing channel.

10
0

10
1

10
2

Attempts

10
-5

10
-4

F
E

R

GF(4) Pert.

GF(4) EFB

GF(4) Aug.

Figure 2.29: FER performance of decoders at p = 0.012 with a varying number of decoding
attempts for the [[400, 201]] non-CSS code B on the depolarizing channel.

53

2.5. CONCLUSION CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

2.5 Conclusion

We have presented modified belief propagation decoders for QLDPC codes that, depending on
the code, either outperform or perform similarly to other decoders presented in literature. We
have proposed the GF(2)-based adjusted decoder, which uses modified error probabilities to
reintroduce correlations between the X and Z components of an error that are lost when using
a standard GF(2) decoder. Furthermore, we have demonstrated that the augmented decoder,
which has previously been proposed for classical binary LDPC codes, can be applied in the
quantum case, and that it can be based on an underlying GF(2), GF(4), or supernode decoder.
We have also proposed a combination of the augmented GF(2) and adjusted decoders. For the
bicycle- and BIBD-based dual-containing CSS codes tested, the augmented GF(4), augmented
supernode, and combined decoders were shown to outperform random perturbation and EFB
decoders. For the two nondual-containing CSS codes and the two non-CSS codes considered,
augmented GF(4) and supernode decoders were shown to perform similarly to random pertur-
bation and EFB decoders.

2.A Appendix: Check node Fourier transform implementations

2.A.1 Classical decoding

The check constraint of Eq. (2.18) can be written as∑
j′∈M(i)\j

Hij′ej′ =
∑

j′∈M(i)\j
ẽj′ = zi −Hija, (2.80)

where ẽj′ = Hij′ej′ . ẽj′ can be used to define

λ̃ai→j =
∑

e:
∑

j′′ ẽj′′=a

∏
j′

µ
ej′′
j′→i =

∑
e:
∑

j′′ ẽj′′=a

∏
j′

µ̃
ẽj′
j′→i, (2.81)

where µ̃ẽj′
j′→i = µ

H−1
ij′ ẽj′

j′→i (this corresponds to a permutation of elements) and j′, j′′ ∈ M(i)\j.
Equation (2.81) is a convolution (see Refs. [59, 51] for details) and, as such, can be efficiently
computed using a Fourier transform F as

λ̃i→j = KF−1

∏
j′

F{µ̃j′→i}

 , (2.82)

where F−1 is the inverse Fourier transform and the product is element-wise (K is a normalization
factor). A Hadamard transform can be used in the binary case; if µ̃j′→i = (µ̃0

j′→i, µ̃
1
j′→i) is

considered as a column vector, then

F{µ̃j′→i} = Fµ̃j′→i, (2.83)

where

F ∝
(

1 1
1 −1

)
. (2.84)

54

2.A. APPENDIX CHAPTER 2. MODIFIED BELIEF PROPAGATION. . .

The inverse transform is also achieved through multiplication by F (up to some unimportant
scaling factor). λi→j is a permuted version of λ̃i→j , with

λai→j = λ̃
zi−Hija
i→j . (2.85)

2.A.2 GF(4) stabilizer decoding

The check constraint of Eq. (2.42) can be written as

tr

Hij ā+
∑

j′∈M(i)\j
Hij′ ēj′

 = tr

Hij ā+
∑

j′∈M(i)\j
ẽj′

 = zi, (2.86)

where ẽj′ = Hij′ ēj′ . λ̃ai→j is defined in the same was as Eq. (2.81), with µ̃ẽj′
j′→i = µ

(H−1
ij′ ẽj′)−1

j′→i =

µ
Hij′ ẽ

−1
j′

j′→i . Again, λ̃i→j can be calculated using the Hadamard transform, with

F ∝
(

1 1
1 −1

)⊗2

=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . (2.87)

λ̃ai→j corresponds to
∑
j′ ẽj′ = a and, as such, can be used to determine λai→j , which corresponds

to ej = a. If zi = 0, then Hij ā+
∑
j′ ẽj′ = 0 or 1; conversely, if zi = 1, then Hij ā+

∑
j′ ẽj′ = ω

or ω̄. Therefore, for zi = 0, the elements of λi→j are

λai→j = 1
2
[
λ̃
−Hij ā
i→j + λ̃

1−Hij ā
i→j

]
, (2.88)

and for zi = 1,

λai→j = 1
2
[
λ̃
ω−Hij ā
i→j + λ̃

ω̄−Hij ā
i→j

]
. (2.89)

These can be combined to give

λai→j = 1
2
[
λ̃
ωzi−Hij ā
i→j + λ̃

ωzi+1−Hij ā
i→j

]
. (2.90)

55

Chapter 3

Optimizing short stabilizer codes for
asymmetric channels1

Abstract

For a number of quantum channels of interest, phase-flip errors occur far more frequently than
bit-flip errors. When transmitting across these asymmetric channels, the decoding error rate can
be reduced by tailoring the code used to the channel. However, analyzing the performance of
stabilizer codes on these channels is made difficult by the #P-completeness of optimal decoding.
To address this, at least for short codes, we demonstrate that the decoding error rate can be
approximated by considering only a fraction of the possible errors caused by the channel. Using
this approximate error rate calculation, we extend a recent result to show that there are a number
of [[5 ≤ n ≤ 12, 1 ≤ k ≤ 3]] cyclic stabilizer codes that perform well on two different asymmetric
channels. We also demonstrate that an indication of a stabilizer code’s error rate is given by
considering the error rate of a classical binary code related to the stabilizer. This classical error
rate is far less complex to calculate, and we use it as the basis for a hill-climbing algorithm,
which we show to be effective at optimizing codes for asymmetric channels. Furthermore, we
demonstrate that simple modifications can be made to our hill-climbing algorithm to search for
codes with desired structure requirements.

1This chapter has been published as Ref. [38]: A. Rigby, J. C. Olivier, and P. D. Jarvis, “Optimizing
short stabilizer codes for asymmetric channels,” Physical Review A, vol. 101, no. 3, p. 032326, Mar. 2020,
doi.org/10.1103/PhysRevA.101.032326. Only minor typographical and formatting changes have been made.

56

3.1. INTRODUCTION CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

3.1 Introduction

Quantum codes can be employed to protect quantum information against the effects of a noisy
channel. Of particular note are the stabilizer codes, which are defined by a stabilizer S that is
an Abelian subgroup of the n-qubit Pauli group Pn [15]. An [[n, k]] stabilizer code encodes the
state of a k-qubit system in that of an n-qubit system; that is, it is a subspace Q ⊆ (C2)⊗n of
dimension 2k. For a Pauli channel, an error E acting on the code is also an element of Pn, with
the component acting on any given qubit being I with probability pI , X with probability pX ,
Y with probability pY , or Z with probability pZ . Most stabilizer codes are implicitly designed
for good decoding performance (that is, a low decoding error rate) on the depolarizing channel,
where pX = pY = pZ . This is achieved by ensuring that the code has large distance d, which
is the weight of the lowest-weight error that yields a trivial syndrome while having a nontrivial
effect on the code. However, for a number of channels of physical interest, Z errors occur far
more frequently than X errors [27, 28]. For these channels, better decoding performance can be
achieved by using codes that are tailored to the channel [29, 30].

In this paper, our focus is on the construction of stabilizer codes for two different asymmetric
channels. The first of these is the biased XZ channel, for which the X and Z components of
an error occur independently at different rates. The second is a Pauli approximation of the
combined amplitude damping (AD) and dephasing channel. Both of these channels have two
degrees of freedom, which means that the values of pX , pY , and pZ can be defined via the total
error probability p = pX + pY + pZ and bias η = pZ/pX [29, 60]. A well-studied approach
to constructing codes for asymmetric channels is to restrict consideration to Calderbank-Shor-
Steane (CSS) codes [52, 53], which can be designed to have separate X and Z distances dX
and dZ (typically dZ > dX) [60, 61, 62, 63, 64, 65]. We wish to take a more direct approach
to the problem by actually determining the decoding error rates (frame/block/word error rate
in particular) of the codes we construct (this also allows us to meaningfully consider non-CSS
codes). However, to do this, we have to overcome the #P-completeness of stabilizer decoding
[16], which stems from the equivalence of errors up to an element of the stabilizer. To achieve
this, at least for short codes (that is, codes with small n), we first demonstrate that the error
rate of an optimal decoder can be approximated by considering only a small subset E of the 4n

possible Pauli errors. We derive a bound on the relative error in this approximation, and we
demonstrate that the independence of error components can be exploited to construct E without
having to enumerate all possible errors. We also show that the performance of a classical [2n,
n+k] binary linear code associated with the stabilizer [43, 15] gives an indication of the stabilizer
code’s performance (note that whenever we mention a code’s performance or error rate, we are
referring to that of the associated decoder). It is several orders of magnitude faster to calculate
this classical error rate, and we show that it can itself be approximated using a limited error set.

We have a particular focus on cyclic codes, which are stabilizer codes based on classical self-
orthogonal additive cyclic GF(4) codes [41, 66, 67] [where GF(q) is the q-element finite field].
This is motivated by the recent result of Ref. [29], where it was shown that a [[7, 1]] cyclic
code performs near optimally compared to 10 000 randomly constructed codes on the biased

57

3.2. BACKGROUND CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

XZ channel for a range of error probabilities and biases. We extend this result by enumerating
the [[5 ≤ n ≤ 12, 1 ≤ k ≤ 3]] cyclic codes and making use of our approximate error rate
calculation. In particular, we demonstrate that there are a number of cyclic codes that perform
well compared to the best of 10 000 randomly constructed codes for both the biased XZ and
AD channels across a range of p and η values. In some cases, such as [[n ≥ 9, 1]] codes for
the biased XZ channel, the best cyclic codes significantly outperform the best of the random
codes constructed. To improve on the poor performance of the random search, we demonstrate
the effectiveness of a simple hill-climbing algorithm that attempts to optimize the performance
of the classical binary code associated with a stabilizer. We also show that by modifying the
mutation operation employed by this hill-climbing algorithm, we can effectively search for codes
with desired structure. In particular, we show that we can search for codes with weight-four
generators, CSS codes, and linear codes.

The paper is organized as follows. Section 3.2 gives an overview of classical codes, asymmetric
quantum channels, and stabilizer codes. In Sec. 3.3, we detail our methods for calculating
approximate error rates. In Sec. 3.4, we demonstrate the performance of cyclic codes, outline
our hill-climbing search algorithm, and show its effectiveness. The paper is concluded in Sec.
3.5.

3.2 Background

3.2.1 Classical codes

A classical channel Φ maps a set of inputs Ax to a set of outputs Ay. We are interested in the
case where Ax = Ay = GF(q), for which the action of the channel is given by

Φ(x) = x+ e = y, (3.1)

where x ∈ GF(q) is the channel input, y ∈ GF(q) is the channel output, and e ∈ GF(q) is an
error (or noise) symbol that occurs with probability P (e). Φ is called symmetric if P (0) = 1− p
and P (ei) = p/(q− 1) for ei 6= 0. The noise introduced by the channel can be protected against
using a code C ⊆ GF(q)n, whose elements are called codewords. The effect of the combined
channel Φn, which is composed of n copies of Φ, on some codeword x ∈ C is

Φn(x) = x + e = y, (3.2)

where y ∈ GF(q)n is the channel output and e ∈ GF(q)n is an error “vector.” Assuming that
error components occur independently, the probability of e = (e1, . . . , en) occurring is

P (e) =
n∏
i=1

P (ei), (3.3)

where P (ei) is the probability of the error symbol ei occurring on Φ. It follows that for a
symmetric channel, the probability of an error e occurring depends only on its weight w(e),
which is the number of nonzero components from which it is composed. The distance d of a

58

3.2. BACKGROUND CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

code is the weight of the lowest-weight error mapping one codeword to another. The (minimum)
weight w(C) of a code C is simply the weight of the lowest-weight codeword it contains.

A code is called additive if it forms a group (under addition) and linear if it forms a vector
space. Such codes can be described by a generator matrix

GT =
(

b1 · · · bk
)
, (3.4)

where B = {b1, . . . , bk} is either a generating set or basis, respectively (note that we consider
codewords as column vectors). A linear code can also be defined as the kernel of a GF(q)
parity-check matrix H; that is,

C = {x ∈ GF(q)n : Hx = 0}. (3.5)

If H has m rows, then dim(C) = k ≥ n−m, with equality when H is full rank. For a linear code,
the errors mapping one codeword to another are themselves codewords; therefore, it follows that
the distance of a linear code C is simply d = w(C). A linear code of length n with dimension k
and distance d is called an [n, k]q or [n, k, d]q code (the q is typically omitted for binary codes,
where q = 2). More generally, a length-n code of size |C| = K and distance d is called an (n,K)q
or (n,K, d)q code.

The dual code of some C ⊆ GF(q)n with respect to the inner product 〈·, ·〉 : GF(q)n×GF(q)n →
GF(q) is

C⊥ = {c ∈ GF(q)n : 〈c,x〉 = 0 ∀ x ∈ C}. (3.6)

C⊥ is the annihilator of C and is therefore a linear code. If C⊥ ⊆ C, then C is called dual
containing; if C ⊆ C⊥, then C is called self-orthogonal; and if C⊥ = C, then C is called self-dual.
Note that if C is dual containing, then C⊥ is self-orthogonal and vice versa. Unless otherwise
specified, the dual code is with respect to the Euclidean inner product

〈c,x〉 = c · x =
n∑
i=1

cixi. (3.7)

In this case, if C is linear with generator matrix G, then a necessary and sufficient condition for
c ∈ C⊥ is Gc = 0; that is, a generator matrix for C is a parity-check matrix for C⊥. Conversely,
if H is a parity-check matrix for C, then it is a generator matrix for C⊥.

A decoder uses the output of a channel to infer its input. For a linear code, this inference can
be aided by the syndrome

z = Hy = H(x + e) = He. (3.8)

As channel outputs that differ only by a codeword yield the same syndrome, the qn−k possible
syndromes can be associated with the cosets of GF(q)n/C. Given some syndrome measurement
z, an optimal maximum a posteriori (MAP) decoder will then return the most probable error

êz = argmax
e∈GF(q)n

P (e|z) (3.9)

in the corresponding coset. The channel input can then be inferred as x̂ = y − êz. If ê = êz

(and hence x̂ = x), then decoding is successful; otherwise, a decoding error has occurred. The

59

3.2. BACKGROUND CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

probability of such a decoding error, called the frame error rate (FER), is simply

F = 1−
∑

z∈GF(q)n−k

P (êz). (3.10)

Unfortunately, even in the simple case of a binary code operating on the binary symmetric
channel (a symmetric channel with q = 2), this decoding problem can be shown to be NP-
complete [47]. This complicates the design of highly performant codes (that is, codes yielding
a low FER). In practice, when designing codes for symmetric channels, the simpler goal of
achieving a large distance is typically settled for. This is motivated by the fact that for low-
distance codes, there are many errors in each coset êz + C with weight, and hence probability,
similar to êz, which leads to a high FER according to Eq. (3.10) (see Sec. 2.2.1 for a more
detailed discussion).

Two codes C and C′ are called permutation equivalent if they are the same up to a relabeling of
coordinates. Permutation-equivalent codes share a large number of properties including length,
size, and distance; furthermore, they yield the same FER for channels where the error com-
ponents are independently and identically distributed. While there are more general notions
of code equivalence, whenever we say that two codes are equivalent, we mean that they are
permutation equivalent in this paper. Furthermore, if some family (set) of codes {C1, . . . , CN}
can be split into M equivalence classes (according to permutation equivalence), then we simply
say that M of the codes are inequivalent.

3.2.2 Cyclic codes

Cyclic codes are those for which a cyclic shift of any codeword is also a codeword; that is, for a
cyclic code C, if (c0, c1, . . . , cn−1) ∈ C, then it is also the case that (cn−1, c0, . . . , cn−2) ∈ C (note
that to be consistent with standard convention, we index the codewords of cyclic codes from
zero in this section). If C is linear, then it has a convenient description through the mapping

c = (c0, c1, . . . , cn−1)↔ c0 + c1x+ · · ·+ cn−1x
n−1 = c(x) (3.11)

of codewords to polynomials in GF(q)[x]. Cyclic shifts of codewords correspond to a multipli-
cation by x taken modulo xn − 1; that is, (cn−1, c0, . . . , cn−2) ↔ xc(x) (modxn − 1). As C is
linear, r(x)c(x) (modxn−1) is a codeword for any r(x) ∈ GF(q)[x], from which it follows that C
corresponds to an ideal IC ∈ GF(q)[x]/(xn − 1). Any such ideal is principal and is generated by
a unique monic polynomial of minimal degree g(x) ∈ IC that is a factor of xn − 1 [68]; through
slight abuse of notation, we write C = 〈g(x)〉. C has dimension k = n − deg(g) and has a
generator matrix

G =


g0 · · · gn−k 0

.
0 g0 · · · gn−k

 . (3.12)

60

3.2. BACKGROUND CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

Furthermore, a parity-check matrix

H =


hk · · · h0 0

.
0 hk · · · h0

 (3.13)

is given in terms of the check polynomial h(x) = (xn − 1)/g(x). It follows that the dual code
C⊥ is also cyclic and is generated by xkh(x−1).

In the quantum setting, we are particularly interested in codes over GF(4) = {0, 1, ω, ω2 = ω̄}
that are self-orthogonal with respect to the trace inner product (this will be explained further
in Sec. 3.2.4). Note that the trace inner product of a, b ∈ GF(4)n is

a ∗ b = tr(a · b̄) = tr
(

n∑
i=1

aib̄i

)
, (3.14)

where 0̄ = 0, 1̄ = 1, ω̄ = ω2, and ω̄2 = ω; and tr(x) = x + x̄ [that is, tr(0) = tr(1) = 0 and
tr(ω) = tr(ω̄) = 1]. A linear cyclic GF(4) code C = 〈g(x)〉 is self-orthogonal if and only if
g(x)g†(x) ≡ 0 (modxn − 1) [41], where

g†(x) = ḡ0 +
n−1∑
j=1

ḡn−jx
j . (3.15)

More generally, an (n, 2k)4 additive cyclic code C has two generators [41, 66, 67]. Following the
formulation of Ref. [41], C = 〈ωp(x) + q(x), r(x)〉, where p(x), q(x), r(x) ∈ GF(2)[x]; p(x) and
r(x) are factors of xn−1; and r(x) is also a factor of q(x)(xn−1)/p(x). In general, the choice of
generators is not unique; however, any other representation will be of the form C = 〈ωp(x)+q′(x),
r(x)〉, where q′(x) ≡ q(x) [mod r(x)]. The size of C is given by k = 2n − deg(p) − deg(r),
with a generator matrix consisting of n − deg(p) cyclic shifts of the codeword corresponding
to ωp(x) + q(x) and n − deg(r) cyclic shifts of the codeword corresponding to r(x). C is self-
orthogonal (with respect to the trace inner product) if and only if

p(x)r(xn−1) ≡ p(xn−1)r(x) ≡ 0 (modxn − 1), (3.16)

p(x)q(xn−1)r(x) ≡ p(xn−1)q(x) (modxn − 1). (3.17)

It is possible to enumerate all the self-orthogonal (n, 2k)4 additive cyclic codes through a slight
modification of the method presented in Ref. [69]: r(x) ranges over all factors of xn−1; for each
r(x), p(x) ranges over the factors of xn − 1 of degree 2n − k − deg(r) that satisfy Eq. (3.16);
and for each pair of r(x) and p(x), q(x) ranges over the polynomials with deg(q) ≤ deg(r) that
satisfy both Eq. (3.17) and q(x)(xn − 1) ≡ 0 [mod p(x)r(x)].

While every additive cyclic code has a “canonical” representation involving two generators, many
of them can be described using only one [66, 67] (that is, they have a generating set composed
of cyclic shifts of a single codeword). This is guaranteed to be the case if r(x) = xn − 1 or if
p(x) = xn − 1 and q(x) is a multiple of r(x). However, these are not necessary conditions for a
single-generator representation to exist. For example, there is a (5, 25)4 code with p(x) = 1 + x,

61

3.2. BACKGROUND CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

q(x) = x3, and r(x) = 1 + x+ x2 + x3, which gives a canonical generator matrix

G =



ω ω 0 1 0
0 ω ω 0 1
1 0 ω ω 0
0 1 0 ω ω

1 1 1 1 1


; (3.18)

however, it is also has the generator matrix

G′ =



ω ω 0 1 0
0 ω ω 0 1
1 0 ω ω 0
0 1 0 ω ω

ω 0 1 0 ω


. (3.19)

We can express this code compactly as C = 〈ωω010, 11111〉cyc ≡ 〈ωω010〉cyc.

3.2.3 Quantum channels

The action of a quantum channel Φ on a quantum state described by the density operator ρ is

Φ(ρ) =
∑
k

AkρA
†
k, (3.20)

where the Ak, called Kraus operators, satisfy
∑
k A
†
kAk = I (the identity operator) [14]. We are

interested in qubit systems, for which states belong to a two-dimensional Hilbert space H ∼= C2.
Furthermore, we are concerned with Pauli channels, which are of the form

Φ(ρ) = pIρ+ pXXρX + pY Y ρY + pZZρZ, (3.21)

where pI + pX + pY + pZ = 1, and in the computational {|0〉, |1〉} basis,

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (3.22)

The action of this channel can be interpreted as mapping a pure state |φ〉 to E|φ〉, where the
error E is I with probability pI , X with probability pX , Y with probability pY , or Z with
probability pZ [6]. X can be viewed as a bit-flip operator as X|0〉 = |1〉 and X|1〉 = |0〉. Z can
be viewed as a phase flip as Z|0〉 = |0〉 and Z|1〉 = −|1〉. Y = iXZ can be viewed as a combined
bit and phase flip.

The quantum equivalent of the symmetric channel is the depolarizing channel, for which pI =
1− p and pX = pY = pZ = p/3. For a number of systems of physical interest, phase-flip errors
occur far more frequently than bit-flip errors [27, 28]. We focus on two such asymmetric channels
in this paper. The first is the biased XZ channel, for which the X and Z components of an error
E ∝ XuZv, where u, v ∈ GF(2), occur independently with probabilities qX and qZ , respectively.
It follows from the independence of the error components that pX = qX(1−qZ), pZ = qZ(1−qX),
and pY = qXqZ . A typical way to specify an asymmetric channel with two degrees of freedom

62

3.2. BACKGROUND CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

is through the total error probability p = pX + pY + pZ and bias η = pZ/pX . Note that while
this definition of bias is consistent with Refs. [29, 60], some authors give alternate definitions;
for example, bias is defined as pZ/(pX + pY) in Ref. [30] and (pY + pZ)/(pX + pY) in Ref. [70].
Ultimately, the exact nature of the channel parametrization will have no real impact on our
results, which has lead us to select the simplest definition of bias. Explicitly, qX and qZ can be
determined from p and η using

qZ = 1 + η + pη − p−
√

(1 + η + pη − p)2 − 4pη2

2η , (3.23)

qX = qZ
η − ηqZ + qZ

. (3.24)

The second channel of interest is the combined amplitude damping (AD) and dephasing channel,
which is described by the non-Pauli Kraus operators

A0 =
(

1 0
0
√

1− λ− γ

)
, (3.25)

A1 =
(

0 √
γ

0 0

)
, (3.26)

A2 =
(

0 0
0
√
λ

)
. (3.27)

A Pauli approximation of this channel can be obtained through a process called Pauli twirling
[71, 72, 73]. In particular, the approximate channel is [60]

ΦT (ρ) = 1
4

∑
σ∈{I,X,Y,Z}

σ†Φ(σρσ†)σ (3.28)

= 2− γ + 2
√

1− λ− γ
4 ρ+ γ

4XρX + γ

4Y ρY + 2− γ − 2
√

1− λ− γ
4 ZρZ. (3.29)

Again, this channel has two degrees of freedom (λ and γ) and can therefore be described in
terms of the total error probability p and bias η = pZ/pX ; explicitly,

γ = 4p
η + 2 , (3.30)

λ = 1− γ −
(

1− γ

2 −
2pη
η + 2

)2
. (3.31)

Note that in the case of η = 1, ΦT reduces to the depolarizing channel. For the sake of brevity,
we will simply refer to ΦT as the AD channel.

The Pauli matrices are Hermitian, unitary, and anticommute with each other. Furthermore,
they form a group

P1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}=〈X,Y, Z〉 (3.32)

called the Pauli group. The n-qubit Pauli group Pn is composed of all n-fold tensor product
combinations of elements of P1. Note that when writing elements of Pn, the tensor products are
often implied; for example, we may write I⊗I⊗X⊗I⊗Y ⊗Z⊗I⊗I ∈ P8 as IIXIY ZII. The
weight w(g) of some g ∈ Pn is the number of nonidentity components from which it is composed.
It follows from the commutation relations of the Pauli matrices that any two elements of Pn

63

3.2. BACKGROUND CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

commute if their nonidentity components differ in an even number of places; otherwise, they
anticommute.

As in the classical case, the noise introduced by a quantum channel can be protected against
using a code. In the qubit case, a code is a subspace Q ⊆ (C2)⊗n whose elements are again
called codewords. These codewords are transmitted across the combined n-qubit channel Φ⊗n,
which in the Pauli case, maps a codeword |φ〉 to E|φ〉, where E ∈ Pn. Similar to the classical
case of Eq. (3.3), if the error components are independent, then the probability of an error
E = E1 ⊗ · · · ⊗ En occurring (up to phase) is

P (E) =
n∏
i=1

P (Ei), (3.33)

where P (Ei) is the probability of the error Ei occurring (up to phase) on the single-qubit channel
Φ. The equivalence of errors up to phase can be addressed more explicitly by instead considering
Ẽ = {E,−E, iE,−iE} ∈ Pn/{±I,±iI} = P̃n.

3.2.4 Stabilizer codes

Stabilizer codes are defined by an Abelian subgroup S < Pn, called the stabilizer, that does not
contain −I [15]. The code Q is the space of states that are fixed by every element si ∈ S; that
is,

Q = {|φ〉 ∈ (C2)⊗n : si|φ〉 = |φ〉 ∀ si ∈ S}. (3.34)

The requirement that −I /∈ S means both that no s ∈ S can have a phase factor of ±i, and
also that if s ∈ S, then −s /∈ S. If S is generated by M = {M1, . . . ,Mm} ⊂ Pn, then it is
sufficient (and obviously necessary) for Q to be stabilized by every Mi. Assuming that the set
of generators is minimal, which will be the case for all codes considered in this paper, it can be
shown that dim(Q) = 2k, where k = n−m [6]; that is, Q encodes the state of a k-qubit system.

Suppose an error E occurs, mapping some codeword |φ〉 ∈ Q to E|φ〉. A projective measurement
of a generator Mi will give the result +1 if [E,Mi] = EMi −MiE = 0 or −1 if {E,Mi} =
EMi +MiE = 0. These measurement values define the syndrome z ∈ GF(2)n−k, with

zi =

0 if [E,Mi] = 0,

1 if {E,Mi} = 0.
(3.35)

Defining S̃ = {s̃ = {s,−s, is,−is} : s ∈ S}, the syndrome resulting from Ẽ ∈ P̃n depends
only on which coset of P̃n/Ñ(S) it belongs to, where N(S) is the normalizer of S in Pn and
Ñ(S) ⊆ P̃n is defined in the same way as S̃ was. Note that as S̃ C Ñ(S), the 2n−k cosets of
P̃n/Ñ(S) are each the union of 22k cosets of P̃n/S̃. In the classical case, the distance d of a
linear code is equal to the weight of the lowest-weight error yielding a trivial syndrome while
having a nontrivial effect on the code. This extends to the quantum case, with the distance d
of a stabilizer code being the weight of the lowest-weight element in Ñ(S)\S̃ [15]. An n-qubit

64

3.2. BACKGROUND CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

code of dimension 2k and distance d is called an [[n, k]] or [[n, k, d]] code (the double brackets
differentiate it from a classical code).

Given the equivalence of errors up to an element of the stabilizer, a MAP decoder will determine
the most likely coset

Âz = argmax
A∈P̃n/S̃

P (A|z) (3.36)

that is consistent with the syndrome measurement. If Âz has the representative ˜̂
E = {Ê,−Ê,

iÊ,−iÊ}, then the decoder attempts correction by applying Ê to the channel output. If Ẽ ∈ Âz,
and hence ˜̂

EẼ ∈ S̃, then decoding is successful; otherwise, a decoding error has occurred. It
therefore follows that the FER is

FMAP = 1−
∑

z∈GF(2)n−k

P (Âz). (3.37)

Unfortunately, this decoding problem has been shown to be #P-complete [16]. Furthermore,
the simpler decoding problem of determining the single most likely error

˜̂
Ez = argmax

Ẽ∈P̃n

P (Ẽ|z) (3.38)

corresponding to the observed syndrome is essentially the same as the classical decoding problem
outlined in Sec. 3.2.1 and hence is also NP-complete [74, 75, 76]. The FER for this decoder is

FMAP−SE = 1−
∑

z∈GF(2)n−k

P (˜̂
EzS̃), (3.39)

where “SE” stands for “single error.”

Two stabilizers (or the codes they define) are permutation equivalent if they are equal up to a
relabeling of qubits. As in the classical case, if two stabilizer codes are permutation equivalent,
then they are both [[n, k, d]] codes; furthermore, they will yield the same FERs (both FMAP

and FMAP−SE) when the error components are independently and identically distributed, which
is the case for the channels that we consider. Again, while there are more general notions of
quantum code equivalence, we are always referring to permutation equivalence in this paper.

The links between stabilizer codes and classical codes can be made more concrete by representing
the elements of P̃n as elements of GF(2)2n [43, 15]. This is achieved via the isomorphism

Xu1Zv1 ⊗ · · · ⊗XunZvn = XuZv ↔ (u|v), (3.40)

with the product of elements in P̃n corresponding to addition in GF(2)2n. Furthermore, rep-
resentatives of elements in P̃n commute if the symplectic inner product of the binary repre-
sentations is zero, where the symplectic inner product of a = (u|v), b = (u′|v′) ∈ GF(2)2n is
a ◦ b = u · v′ + u′ · v. Utilizing this isomorphism, the generators of some stabilizer S can be
used to define the rows of an m× 2n binary matrix

H = (HX |HZ), (3.41)

where HX and HZ are each m × n matrices. Under this mapping, the requirement that all

65

3.2. BACKGROUND CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

stabilizer generators commute becomes

HXH
T
Z +HZH

T
X = 0. (3.42)

Conversely, a [2n, n + k] linear binary code C with a parity-check matrix H satisfying this
constraint can be used to define a stabilizer S. Technically, this only specifies S̃; however, as
previously outlined, it is S̃ that dictates the effect of an error on a stabilizer code, which means
that the 2n−k stabilizers corresponding to S̃ will all have the same error correction properties
(the codes corresponding to each such stabilizer actually form a partition of (C2)⊗n [77, 78]).
Without loss of generality, we can therefore map S̃ to a particular stabilizer S by arbitrarily
selecting a phase factor of +1 for all the generators.

A subclass of stabilizer codes are the Calderbank-Shor-Steane (CSS) codes [52, 53], which have
a binary representation of the form

H =
(
H̃X 0
0 H̃Z

)
. (3.43)

For such codes, the commutation condition of Eq. (3.42) becomes H̃ZH̃
T
X = 0, which is satisfied

when C⊥X ⊆ CZ , where CX and CZ are classical codes defined by the parity-check matrices H̃X

and H̃Z , respectively. If CX = CZ , then this reduces to C⊥X ⊆ CX , in which case, the CSS code
is called dual containing (DC).

As previously mentioned, the decoding problem of Eq. (3.38) is essentially the same as the
classical decoding problem. This link can be made more explicit by expressing errors within the
binary framework using the mapping E ∝ XeXZeZ ↔ e = (eTX |eTZ)T (where eX , eZ , and e are
column vectors for consistency with the classical case). If the generators of a stabilizer define
the parity-check matrix H for the binary code C, then the syndrome corresponding to E can be
found by taking the symplectic inner product of e with each row of H, which can be written
compactly as

z = H

(
eZ

eX

)
= HPe, (3.44)

where

P =
(

0 I

I 0

)
. (3.45)

With this slight modification to classical syndrome calculation, determining ˜̂
Ez in Eq. (3.38)

corresponds precisely to determining êz in Eq. (3.9). Note that some authors avoid this differ-
ence in syndrome calculation by using the mapping E ∝ XeXZeZ ↔ e = (eTZ |eTX)T [23], which
gives z = He as in the classical case of Eq. (3.8). For a CSS code, the syndrome associated
with an error E ∝ XeXZeZ is

z =
(
H̃XeZ

H̃ZeX

)
=
(

zZ

zX

)
. (3.46)

This allows the X and Z components of the error to be treated separately. In particular, eZ

can be inferred from H̃XeZ = zZ , while eX can be inferred from H̃ZeX = zX . However, this

66

3.3. APPROXIMATE FER. . . CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

approach is only guaranteed to determine the single most likely error if the X and Z components
of E occur independently, which is the case for the biasedXZ channel but not for the AD channel
among others (see Sec. 2.2.5 for a more detailed discussion).

Elements of P̃n can also be represented as elements of GF(4)n according to the isomorphism
[41, 15]

XuZv ↔ u + ωv, (3.47)

with the product of elements in P̃n corresponding to addition in GF(4)n. Representatives of
elements in P̃n commute if the trace inner product [see Eq. (3.14)] of the corresponding elements
of GF(4)n is zero. Utilizing this isomorphism, any (n, 2n−k)4 additive GF(4) code C that is self-
orthogonal with respect to the trace inner product can be used to define an [[n, k]] stabilizer code
(it is for this reason that stabilizer codes are sometimes called additive codes). Furthermore,
the generators of the stabilizer S can be associated with the rows of a generator matrix G for
C. We can describe a stabilizer code based on properties of C; for example, if C is linear and/or
cyclic, then we will also call S (and the code Q it defines) linear and/or cyclic.

Similar to the classical case, when designing a stabilizer code for the depolarizing channel, the
complexity of determining its FER can be avoided by instead using code distance as something
of a proxy. However, for asymmetric channels, distance becomes a less accurate metric as the
probability of an error occurring no longer depends only on its weight. One approach in this
case is to design codes with different X and Z distances, which are called [[n, k, dX/dZ]] codes.
For these so-called asymmetric codes, dX and dZ are the maximal values for which there is no
Ẽ ∈ Ñ(S)\S̃ where E ∝ XeXZeZ and both w(eX) < dX and w(eZ) < dZ . Such codes are
typically constructed within the CSS framework, where dX = w(CZ\C⊥X) and dX = w(CX\C⊥Z)
[79]. Outside of the CSS framework, where the X and Z components of an error cannot be
considered separately, the distances dX and dZ are somewhat less meaningful and potentially
not even unique. For example, the (7, 26)4 additive cyclic code 〈ω10ω100〉cyc maps to the [[7,
1, 3]] cyclic stabilizer code with S = 〈XZIZXII〉cyc, which can be considered as a [[7, 1, 7/1]],
[[7, 1, 1/7]], or [[7, 1, 2/3]] code. Some examples of asymmetric codes (for qubits) can be found
in Refs. [60, 61, 62, 63, 64, 65].

3.3 Approximate FER calculation

In this paper, we wish to construct stabilizer codes that perform well on asymmetric channels.
In particular, we wish to gauge their performance directly; that is, we wish to accurately de-
termine the FER exhibited by a MAP decoder as given in Eq. (3.37). As previously noted,
determining this error rate is an #P-complete problem. In this section, we therefore investigate
lower complexity methods of approximating FMAP and derive bounds on the relative error of
these approximations.

67

3.3. APPROXIMATE FER. . . CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

3.3.1 Limited error set

In most cases, many of the errors in P̃n occur with very low probability. It seems reasonable to
assume that ignoring these low-probability errors will have little effect on the FER calculation of
Eq. (3.37). In particular, suppose we only consider a subset of errors E ⊂ P̃n. We can calculate
an approximate FER using E by first partitioning it by syndrome into the sets B1, . . . , Br, where
r ≤ 2n−k. Each of these Bi is then further partitioned by equivalence up to an element of S̃ to
give the sets Ai1, . . . , Ais, where s ≤ 22k. The approximate FER is then

FE = 1−
r∑
i=1

max
j
P (Aij) = 1−

r∑
i=1

P (Âi), (3.48)

where

Âi = argmax
Aij∈Bi

P (Aij). (3.49)

Note that if we wish to explicitly associate a stabilizer S with FE , then we write FSE . In the
best case, E will contain every Âz in its entirety, which gives

∑
z P (Âz) =

∑r
i=1 P (Âi) and

hence FE = FMAP. In the worst case,
∑r
i=1 P (Âi) =

∑
z P (Âz) − [1 − P (E)], which gives

FE = FMAP + [1− P (E)]. In general,

0 ≤ FE − FMAP ≤ 1− P (E), (3.50)

which leads to

δE = FE − FMAP
FMAP

≤ 1− P (E)
FMAP

≤ 1− P (E)
FE − [1− P (E)] (3.51)

= ∆E . (3.52)

This bound ∆E on the relative error δE in the approximate FER calculation is of practical use
as it does not require any knowledge of FMAP.

There are two desirable attributes of the set E ⊂ P̃n used to calculate FE . The first of these,
which follows from Eq. (3.51), is for 1− P (E) to be less than some predetermined value as this
affects the accuracy of FE . The second is for |E| to be small as this reduces the complexity of
calculating FE . It is possible to construct such a set without enumerating P̃n in its entirety by
exploiting the independence of error components, which means that the probability of an error
occurring depends only on the number of I, X, Y , and Z components it contains. Explicitly,
the probability of some error Ẽ ∈ P̃n occurring is

P (Ẽ) =
∏

σ∈{I,X,Y,Z}
pn(σ)
σ , (3.53)

where n(σ) is the number of tensor components of E that are equal to σ up to phase. Further-

68

3.3. APPROXIMATE FER. . . CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

more, the number of errors in P̃n with a given distribution of components is [80]

N = n!
n(I)!n(X)!n(Y)!n(Z)! . (3.54)

Therefore, to construct E , we first enumerate all of the possible combinations of n(I), n(X),
n(Y), and n(Z) such that n(I)+n(X)+n(Y)+n(Z) = n, which is a straightforward variation of
the integer partition problem [81]. These combinations are sorted in descending order according
to their associated probability as given in Eq. (3.53). In an iterative process, we then work
through this list of combinations, adding the N distinct errors associated with each one to E
until we reach the desired value of 1−P (E). This construction has the added benefit of ensuring
that E is permutation invariant, which guarantees that FE will be the same for equivalent codes.

For the approximate error rate calculation presented in this section to be of any real use, it
must be accurate even when E is relatively small. To demonstrate that this is in fact the
case, we have first constructed 1 000 random [[7, 1]] codes. To produce a random stabilizer
S = 〈M1, . . . ,Mn−k〉, we iteratively select M̃i = {Mi,−Mi, iMi,−iMi} at random from N(〈M̃1,

. . . , M̃i−1〉)\〈M̃1, . . . , M̃i−1〉 (note that we arbitrarily use a phase factor +1 for each Mi as
outlined in Sec. 3.2.4). Our only structure constraint on S is that it must involve every qubit;
that is, for all 1 ≤ j ≤ n, there must be some M (j)

i 6∝ I, where M (j)
i is the jth tensor component

of Mi (if a stabilizer does not satisfy this constraint, we simply discard it and construct a new
one). For biased XZ channels with p = 0.1, 0.01, or 0.001 and η = 1, 10, or 100, we have then
determined the fraction of the 1 000 codes that yield a relative error δE ≤ 0.01 or relative error
bound ∆E ≤ 0.01 for varying |E|. The results of this are shown in Fig. 3.1, where it can be
seen that depending on the channel parameters, only 1-5% of P̃n needs to be considered to yield
δE ≤ 0.01 for every code. As is to be expected, a slightly larger fraction of P̃n is required to
ensure a relative error bound of ∆E ≤ 0.01; however, in every case, this can still be achieved
by only considering between 1-10% of P̃n. Interestingly, for higher p, increasing η reduces the
number of errors that need to be considered, while for lower p, this trend is reversed. Figure
3.2 shows the results of a similar analysis for codes with 5 ≤ n ≤ 7 and 1 ≤ k ≤ 3 on a biased
XZ channel with p = 0.01 and η = 10. It can be seen that increasing k for fixed n reduces
the fraction of errors that must be considered, which makes sense given that encoding a larger
number of qubits will lead to a higher FER. Furthermore, increasing n for fixed k reduces the
fraction of errors that need to be considered, which bodes well for the analysis of longer codes.
We note that changing p and/or η has little effect on these observations.

3.3.2 Most likely error

We now consider the decoder of Eq. (3.38) that determines the single most likely error given
a syndrome measurement, which has an error rate as given in Eq. (3.39). Note that FMAP−SE

is simpler to calculate than FMAP as it does not require a complete partitioning of P̃n to form
P̃n/S̃. When using FMAP−SE as an approximation of FMAP, the best-case scenario is that the
most likely coset Âz will contain ˜̂

Ez for every z, which gives FMAP−SE = FMAP. In the worst-
case scenario, two things will occur. Firstly, the probability distributions over every Âz will be

69

3.3. APPROXIMATE FER. . . CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

0

0.2

0.4

0.6

0.8

1

10
-4

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1F
ra

c
ti
o

n

Figure 3.1: The fraction of 1 000 randomly generated [[7, 1]] codes that yield a relative error
δE ≤ 0.01 or relative error bound ∆E ≤ 0.01 for varying |E| and biased XZ channel parameters.

0

0.2

0.4

0.6

0.8

1

10
-4

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1F
ra

c
ti
o

n

Figure 3.2: The fraction of 1 000 randomly generated [[5 ≤ n ≤ 7, 1 ≤ k ≤ 3]] codes that yield
a relative error δE ≤ 0.01 or relative error bound ∆E ≤ 0.01 for a biased XZ channel (p = 0.01
and η = 10) and varying |E|.

70

3.3. APPROXIMATE FER. . . CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

0.1 0.15 0.2

0.1

0.15

0.2

0.1 0.2 0.3

0.05

0.1

0.15

0.2

0.25

0.3

10
-2

10
-2

10
-1

10
-2

10
-3

10
-2

10
-2

10
-3

10
-2

10
-2

10
-3

10
-2

10
-4

10
-4

10
-4

10
-4

10
-5

10
-6

10
-4

Figure 3.3: FMAP versus FMAP−SE for 1 000 random [[7, 1]] codes on biased XZ channels with
varying parameters. The dotted lines give FMAP = FMAP−SE.

uniform; that is, P (Âz)/|S̃| = P (Âz)/2n−k for all z. Secondly, the distributions over every ˜̂
EzS̃

will be sharply peaked without P (˜̂
EzS̃) being large; that is, for every z, P (˜̂

Ez) = P (Âz)/2n−k+ε
and P (˜̂

EzS̃\ ˜̂
Ez) = ε′ for some small ε, ε′ ≥ 0. In general, it is therefore the case that

FMAP ≤ FMAP−SE < 1− 1− FMAP
2n−k . (3.55)

This upper bound on FMAP−SE is very loose, and in practice, FMAP−SE tends to be quite close
to FMAP. To demonstrate this, we have again constructed 1 000 random [[7, 1]] codes. For each
code, we have then determined both FMAP and FMAP−SE for the same nine biased XZ channel
parameter combinations considered in Sec. 3.3.1 (p = 0.1, 0.01, or 0.001 and η = 1, 10, or 100).
The results of this are shown in Fig. 3.3. Especially for the codes yielding a low FMAP, which
are the codes of greatest interest, it can be seen that the difference between FMAP−SE and FMAP

is often negligible.

FMAP−SE can itself be approximated using a limited error set E . We call this approximation

71

3.3. APPROXIMATE FER. . . CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

FE−SE, and it can be calculated in much the same manner as FE . Again, E is first partitioned
by syndrome to give B1, . . . , Br. For each 1 ≤ i ≤ r, we then determine the most likely error
˜̂
Ei ∈ Bi, which we use to define Âi = {Ẽ ∈ Bi : ˜̂

EiẼ ∈ S̃}. With this altered definition of Âi,
FE−SE is given by the right-hand side of Eq. (3.48). Furthermore, the relative error bound of
Eq. (3.51) also holds for FE−SE with respect to FMAP−SE. We emphasize that FE−SE can be
calculated faster than FE as there is no need to fully partition each Bi.

3.3.3 Most likely error only

As outlined in Sec. 3.2.4, the single most likely error decoder for an [[n, k]] stabilizer code can
be viewed as a decoder for an associated [2n, n + k] classical code C. However, the calculation
of FMAP−SE as in Eq. (3.39) is more complicated than determining the FER of a classical MAP
decoder as the cosets ˜̂

EzS̃ still need to be enumerated. If we ignore the coset nature of the error
correction, then we get

FMAP−SEO = 1−
∑

z∈GF(2)n−k

P (˜̂
Ez), (3.56)

where “SEO” stands for “single error only.” Note that this is exactly the FER of the classical
decoder for C as in Eq. (3.10). Given the nature of the assumptions leading to Eq. (3.55), it
also holds for FMAP−SEO. Again, it is a very loose upper bound, and as can be seen in Fig. 3.4,
FMAP−SEO does tend to be somewhat close to FMAP. In particular, it can be seen that the codes
yielding a minimal value of FMAP−SEO also often yield a near-minimal value of FMAP.

FMAP−SEO can also be approximated using a limited error set to yield FE−SEO. This involves
first partitioning E to form B1, . . . , Br and then determining the most likely error ˜̂

Ei in Bi. By
defining Âi = ˜̂

Ei, FE−SEO is also given by the right-hand side of Eq. (3.48). Note that as no
partitioning of each Bi is required, calculating FE−SEO is less complex than calculating FE−SE

(or, indeed, FE). The upper bound on relative error given in Eq. (3.51) again holds for FE−SEO

with respect to FMAP−SEO. Assuming that E contains the most likely errors in P̃n, which is the
case for the construction given in Sec. 3.3.1, we can derive another simple bound. In particular,
if E contains errors corresponding to r different syndromes, then an error Ẽ′ /∈ E yielding one of
the other 2n−k−r possible syndromes must have probability P (Ẽ′) ≤ minẼ∈E P (Ẽ) (as otherwise
it would be an element of E). This gives

FE−SEO − FMAP−SEO ≤ (2n−k − r) min
Ẽ∈E

P (Ẽ) = α, (3.57)

which leads to a combined bound on the relative error of

δE−SEO = FE−SEO − FMAP−SEO
FMAP−SEO

≤ min[1− P (E), α]
FE−SEO −min[1− P (E), α] (3.58)

= ∆E−SEO. (3.59)

72

3.4. CODE PERFORMANCE CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

0.1 0.2 0.3

0.1

0.15

0.2

0.25

0.3

0.35

10
-1

10
-1

10
-2

10
-2

10
-1

10
-2

10
-3

10
-2

10
-2

10
-3

10
-2

10
-4

10
-3

10
-2

10
-4

10
-3

10
-2

10
-4

10
-4

10
-4

10
-4

10
-5

10
-6

10
-4

Figure 3.4: FMAP versus FMAP−SEO for 1 000 random [[7, 1]] codes on biased XZ channels with
varying parameters. The dotted lines give FMAP = FMAP−SEO.

3.4 Code performance

In this section, we employ the approximate FER calculation methods outlined in Sec. 3.3 to
investigate the performance of various families of codes on biased XZ and AD channels. There
is a particular focus on the performance of cyclic codes as it has previously been shown that
a [[7, 1, 3]] cyclic code with S = 〈XZIZXII〉cyc performs near optimally on the biased XZ

channel for a range of error probabilities and biases [29].

3.4.1 [[7, 1]] codes

To demonstrate our approach, we first consider the case of [[7, 1]] codes. We have constructed
all of the [[7, 1]] cyclic codes by enumerating the self-orthogonal additive cyclic (7, 26)4 codes as
outlined in Sec. 3.2.2. There are 11 such codes, six of which are inequivalent. Following the lead

73

3.4. CODE PERFORMANCE CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

of Ref. [29], we have also constructed 10 000 random codes to serve as a point of comparison.
Our random construction, as detailed in Sec. 3.3.1, differs to that of Ref. [29] in that we do not
require our codes to have weight-four generators or distance d ≥ 3. For both biased XZ and AD
channels with p = 0.1, 0.01, 0.001, or 0.0001 and η = 1, 10, 100, or 1 000, we have determined
FE for each code, ensuring that in every case, E is large enough to give ∆E ≤ 0.01. This can be
achieved without having to construct a new E for every FER calculation. For some channel type
(biased XZ or AD), channel parameter combination (p and η pair), and code family (random
or cyclic), we first construct E , as outlined in Sec. 3.3.1, such that 1 − P (E) ≤ 0.1 and then
calculate FE for every code in the family. If ∆E > 0.01 for any of these codes, we then add
errors to E until 1− P (E) ≤ 0.01 and recalculate FE for these codes. This proceeds iteratively,
reducing 1− P (E) by a factor of 10 each time, until ∆E ≤ 0.01 for every code.

For each channel type, channel parameter combination, and code family, we report two values.
The first of these is simply the lowest FER of any code in the family, which can be viewed
as a performance measure of the family as a whole. The second is the FER of the code that
performs the best on average across all channel parameter combinations. We quantify this
average performance by taking the geometric mean of a code’s FERs across the associated
channels. That is, we take the best code to be the one with stabilizer

Sbest = argmin
S∈F

(
N∏
i=1

FSEi

)1/N

, (3.60)

where F is the family of stabilizers and Ei is the error set associated with one of the N = 16
channels. Figure 3.5 shows these values for the biased XZ channel. It can be seen that for every
parameter combination, there is a cyclic code that performs nearly as well as the best random
code. Furthermore, there is a single cyclic code that performs optimally (among the cyclic
codes) on all channels. In fact, there are three such codes; however, they are all equivalent to
the code with stabilizer S = 〈XZIZXII〉cyc. The values for the AD channel are shown in Fig.
3.6, where the code with stabilizer 〈XZIZXII〉cyc again performs optimally among the cyclic
codes; however, in some cases, it is outperformed by the best random code by quite a margin,
particularly at lower error probabilities (note that for consistency, we have used the same random
codes for both channel types). At these low error probabilities, it can also be seen that unlike
the biased XZ channel, increasing the bias does little to decrease the error rate. Interestingly,
the code with stabilizer 〈Y ZIZY II〉cyc, which is not equivalent to 〈XZIZXII〉cyc, yields the
same performance. This is a result of the fact that pX = pY for the AD channel, which means
that applying the permutation X ↔ Y to a code’s stabilizer on any subset of qubits has no
effect on its performance.

Note that the relative error of a geometric mean of FERs, such as the one in Eq. (3.60), is
bounded by the relative error of the least accurate individual FER. This follows from(

N∏
i=1

FEi

)1/N

≤
[
N∏
i=1

(1 + ∆Ei)FMAPi

]1/N

≤ max
i

(1 + ∆Ei)
(
N∏
i=1

FMAPi

)1/N

, (3.61)

74

3.4. CODE PERFORMANCE CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

10
0

10
1

10
2

10
3

10
-10

10
-5

10
0

F
E

R

Rand. single

Rand. family

Cyc. single

Cyc. family

Figure 3.5: FER performance of the best cyclic and random [[7, 1]] codes on biased XZ channels.

10
0

10
1

10
2

10
3

10
-10

10
-5

10
0

F
E

R

Rand. single

Rand. family

Cyc. single

Cyc. family

Figure 3.6: FER performance of the best cyclic and random [[7, 1]] codes on AD channels.

which gives (∏N
i=1 FEi

)1/N
−
(∏N

i=1 FMAPi

)1/N

(∏N
i=1 FMAPi

)1/N ≤ max
i

∆Ei . (3.62)

3.4.2 Other parameters

We have repeated the analysis of Sec. 3.4.1 for codes with 5 ≤ n ≤ 12 and 1 ≤ k ≤ 3. For
each combination of n and k, this has again begun by constructing 10 000 random codes and
enumerating the cyclic stabilizer codes. The number of these cyclic codes is given in the first
column of Table 3.1. The first value in each row gives the number of inequivalent codes, while
the value in brackets gives the total number of distinct codes. Note that for odd n, the number
of distinct codes we report is consistent with Ref. [66]. To the best of our knowledge, neither
the number of distinct codes with even n or the number of inequivalent codes with any n has
previously been published (Ref. [67] does give total number of distinct [[n, k ≤ n]] cyclic codes,

75

3.4. CODE PERFORMANCE CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

Table 3.1: The number of inequivalent (distinct) [[n, k]] cyclic codes, single-generator cyclic
codes, cyclic codes with weight-four generators, cyclic CSS codes, dual-containing CSS codes,
and linear cyclic codes.

[[n, k]] Cyc. One gen. w = 4 CSS DC CSS Lin.
[[5, 1]] 4 (5) 4 (5) 4 (5) 2 (2) 0 1 (2)
[[5, 2]] 0 (0) 0 (0) 0 (0) 0 (0) 0 0 (0)
[[5, 3]] 0 (0) 0 (0) 0 (0) 0 (0) 0 0 (0)
[[6, 1]] 21 (21) 18 (18) 15 (15) 6 (6) 0 0 (0)
[[6, 2]] 35 (42) 30 (36) 17 (21) 9 (9) 2 2 (3)
[[6, 3]] 12 (15) 12 (15) 3 (6) 4 (4) 0 0 (0)
[[7, 1]] 6 (11) 5 (9) 6 (11) 3 (4) 1 1 (2)
[[7, 2]] 0 (0) 0 (0) 0 (0) 0 (0) 0 0 (0)
[[7, 3]] 15 (54) 15 (54) 0 (0) 4 (8) 0 0 (0)
[[8, 1]] 57 (87) 30 (48) 24 (33) 8 (8) 0 0 (0)
[[8, 2]] 46 (79) 27 (48) 19 (25) 7 (7) 3 1 (1)
[[8, 3]] 33 (63) 21 (48) 12 (15) 6 (6) 0 0 (0)
[[9, 1]] 15 (27) 15 (27) 9 (21) 4 (4) 1 0 (0)
[[9, 2]] 15 (27) 15 (27) 0 (0) 4 (4) 0 0 (0)
[[9, 3]] 5 (9) 5 (9) 3 (3) 2 (2) 1 0 (0)
[[10, 1]] 42 (63) 39 (60) 21 (33) 6 (6) 0 0 (0)
[[10, 2]] 14 (21) 13 (20) 11 (15) 3 (3) 6 2 (3)
[[10, 3]] 0 (0) 0 (0) 0 (0) 0 (0) 0 0 (0)
[[11, 1]] 9 (33) 9 (33) 9 (33) 2 (2) 2 0 (0)
[[11, 2]] 0 (0) 0 (0) 0 (0) 0 (0) 0 0 (0)
[[11, 3]] 0 (0) 0 (0) 0 (0) 0 (0) 3 0 (0)
[[12, 1]] 300 (465) 162 (288) 51 (75) 20 (20) 0 0 (0)
[[12, 2]] 536 (768) 288 (432) 65 (81) 35 (35) 11 2 (3)
[[12, 3]] 312 (528) 198 (360) 27 (30) 26 (26) 0 0 (0)

but it does not include the number for each specific k). Note that in some cases, there are no
cyclic codes.

For each channel type, code family, and pair of n and k, we report two values. The first of these
is the geometric mean of the FERs for the single best code as defined in Eq. (3.60); that is,

λ = min
S∈F

(
N∏
i=1

FSEi

)1/N

. (3.63)

The second value is the geometric mean of the minimum FERs of all codes in a family for each
channel; that is,

µ =
(
N∏
i=1

min
S∈F

FSEi

)1/N

, (3.64)

which can again be viewed as a performance measure of the family as a whole. Figure 3.7 shows
these values for the biased XZ channel. It can be seen that for both the random and cyclic
codes, there is typically a single code that performs nearly as well as the family as a whole
across the 16 different channels considered. Furthermore, when [[n, k]] cyclic codes exist, there
is often one that performs as well as or better than the best random code we have created. In
fact, for n ≥ 9 and k = 1, the best cyclic codes significantly outperform the best random codes.

76

3.4. CODE PERFORMANCE CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

10
-7

10
-6

10
-5

10
-4

Rand. single

Rand. family

Cyc. single

Cyc. family

10
-7

10
-6

10
-5

10
-4

10
-3

G
e

o
m

e
tr

ic
 m

e
a

n
 o

f
F

E
R

s

5 6 7 8 9 10 11 12
10

-5

10
-4

10
-3

10
-2

Figure 3.7: The geometric mean of FERs for codes on biased XZ channels with p = 0.1, 0.01,
0.001, or 0.0001 and η = 1, 10, 100, or 1 000.

The results for the AD channel are given in Fig. 3.8. Again, where [[n, k]] cyclic codes exist,
they typically perform favorably compared to the random codes. However, any performance
advantages over the random codes are less pronounced than in the biased XZ case.

Generators for the best cyclic codes on both the biased XZ and AD channels can be found in
Table 3.2 (for reference, we also give their distances). In particular, we list generators for all
codes that yield a geometric mean of FERs within 1% of the minimum value we have observed
(these are all codes that could conceivably be optimal within our margin of error). There are a
few notable properties of these codes. The first of these is that they can all be expressed using
a single generator. While, as shown in the second column of Table 3.1, a large number of codes
have such a representation, this is still a somewhat surprising result. It can also be seen that in
nearly every case, there are codes that perform well for both the biased XZ and AD channels
(the only exceptions to this are the [[6, 1]], [[6, 2]], and [[10, 2]] cases). A third property of note
is that the codes for the AD channel typically come in pairs, one being an X ↔ Y permuted
version of the other. This is to be expected given the partial channel symmetry outlined in Sec.
3.4.1. The only two exceptions to this are the [[5, 1]] and [[10, 2]] cases, where the single code
given is invariant under an X ↔ Y permutation (up to a permutation of qubit labels).

3.4.3 Hill climbing

The results of Sec. 3.4.2, particularly those for [[n ≥ 9, 1]] codes on the biased XZ channel, show
that constructing 10 000 random codes is not a reliable way of finding a good code for larger n.

77

3.4. CODE PERFORMANCE CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

10
-6

10
-5

10
-4

10
-3

Rand. single

Rand. family

Cyc. single

Cyc. family

10
-6

10
-5

10
-4

10
-3

10
-2

G
e

o
m

e
tr

ic
 m

e
a

n
 o

f
F

E
R

s

5 6 7 8 9 10 11 12
10

-5

10
-4

10
-3

10
-2

Figure 3.8: The geometric mean of FERs for codes on AD channels with p = 0.1, 0.01, 0.001,
or 0.0001 and η = 1, 10, 100, or 1 000.

One approach to find better codes would be to simply increase the size of the random search.
However, even with the reduction in error set size afforded by the approach of Sec. 3.3.1, this
quickly becomes computationally impractical. As such, we need a more efficient search strategy.
To achieve this, we use the observation of Sec. 3.3.3 that codes yielding a low FE−SEO tend to
also yield a low FE (recall that FE ≤ FE−SEO). We can therefore reduce the search to finding
codes that yield a low FE−SEO, which is beneficial as it is typically several orders of magnitude
faster to calculate FE−SEO than it is to calculate FE to the same accuracy.

We start by considering the problem of finding codes that perform well for a single channel
parameter combination. That is, we want to find a stabilizer S that yields a low FSE−SEO.
We have found a simple hill-climbing search strategy to be effective at this. This involves
first constructing S at random. S is then mutated (modified) somehow to produce S ′, and
if FS′E−SEO ≤ FSE−SEO, then S is replaced with S ′. This process repeats for a predetermined
number of iterations, after which we calculate FSE to quantify the actual performance of the
code. Similar to the random search outlined in Sec. 3.4.1, we ensure that the relative error of
all approximate FER calculations is less than 1%. To achieve this, we again initially construct
E such that 1 − P (E) ≤ 0.1, and if ∆E−SEO > 0.01 (∆E > 0.01) for any calculation of FE−SEO

(FE), then we add errors to E to reduce 1 − P (E) by a factor of 10 and recalculate the error
rate. To better explore the space of possible stabilizers, we run a number of these hill-climbing
instances in parallel (this is often called hill climbing with random restarts [82]).

The choice of a mutation operator that maps S to S ′ is limited by the requirement that S ′ must
be a stabilizer. We consider two types of mutation that satisfy this constraint. The first of these

78

3.4. CODE PERFORMANCE CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

10
0

10
1

10
2

10
3

Iteration

1

2

3
9

5
th

 p
e

rc
e

n
ti
le

 F
E

R

10
-4

Permutation

Generator

Combined

Random

Figure 3.9: The 95th percentile FE−SEO found by 1 000 hill-climbing instances based on various
mutation methods for [[9, 1]] codes on a biased XZ channel (p = 0.01 and η = 10).

involves permuting the nonidentity Pauli matrices of all stabilizer elements at any given index
1 ≤ i ≤ n with probability 1/n. Note that these permutations correspond to a multiplication of
coordinates of the associated classical GF(4) code by a nonzero scalar α ∈ GF(4) followed by a
possible conjugation. The second mutation method involves first removing any given generator
Mi of S = 〈M1, . . . ,Mn−k〉 with probability 1/(n − k) and then adding generators as outlined
in Sec. 3.3.1 to form S ′. When performing this generator mutation, we still require that all
qubits are involved in the stabilizer; if this is not achieved after adding the new generators, we
remove them and try again. To compare these two mutation operators, we consider [[9, 1]] codes
on the biased XZ channel with p = 0.01 and η = 10. We have run 1 000 hill-climbing instances,
each for a maximum of 1 000 iterations. Across all of these instances, Fig. 3.9 shows the 95th
percentile FE−SEO at each iteration; that is, it shows the 50th lowest FE−SEO (we have chosen
to show this value as it reflects the performance of the best codes while having less potential
variance than showing the FER of the single best code). As a control, we have also tested random
mutation, which involves simply creating S ′ at random (this reduces hill climbing to a random
search). It can be seen that both the permutation and generator mutation outperform this
random mutation, with the permutation mutation performing best initially but then tapering
off somewhat. Finally, we have tested a combination of the two mutation methods (a generator
mutation followed by a permutation mutation), which can be seen to perform better than either
of the methods individually.

3.4.4 Multiobjective hill climbing

The results of Sec. 3.4.2 suggest that there are typically codes that perform well across a range of
channel parameter combinations. We can search for such codes by building on the hill-climbing
algorithm outlined in Sec. 3.4.3. In particular, instead of comparing FS′E−SEO to FSE−SEO, we
compute and compare the geometric means (

∏N
i=1 F

S′
Ei−SEO)1/N and (

∏N
i=1 F

S
Ei−SEO)1/N of the

FERs for N channel parameter combinations. Following Eq. (3.62), we ensure that these

79

3.4. CODE PERFORMANCE CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

geometric means are accurate to within 1% by keeping each of the individual ∆Ei−SEO ≤ 0.01 as
outlined in Sec. 3.4.3. Again, we run a number of these hill-climbing instances in parallel, and
at the end of each one, we calculate (

∏N
i=1 F

S
Ei

)1/N . Note that for N = 1, this search reduces to
that of Sec. 3.4.3.

We have performed such searches for the same cases considered in Sec. 3.4.2 (that is, codes
with 5 ≤ n ≤ 12 and 1 ≤ k ≤ 3 for biased XZ and AD channels with p = 0.1, 0.01, 0.001, or
0.0001 and η = 1, 10, 100, or 1 000). For each combination of n, k, and channel type, we have
run 1 000 hill-climbing instances based on the combined generator and permutation mutation,
each for 1 000 iterations. Figure 3.10 compares the performance (that is, the geometric mean
of FERs) of the best codes found in this way to that of the best cyclic codes (the other values
shown will be detailed in Secs. 3.4.5 to 3.4.7). It can be seen that in all but the [[10, 1]] case, the
best code found via hill climbing is either as good as or better than the best cyclic code. Very
similar results can be seen in Fig. 3.11 for the AD channel, where the best code found via hill
climbing performs as well as or better than the best cyclic code in every instance. Generators
for the best codes we have found for the biased XZ and AD channels can be found in Tables
3.3 and 3.4, respectively.

3.4.5 Weight-four codes

Through slight modification of the hill-climbing algorithm, we can search for good codes that
satisfy structure constraints. The first constraint we consider is the requirement that the sta-
bilizer has a representation involving only weight-four generators; such codes are of practical
interest as their syndrome measurements involve fewer qubits, and are hence less complex, than
those for codes with high-weight generators. The first modification required to search for these
codes, which is somewhat obvious, is to ensure the initial random stabilizer has weight-four
generators. This also extends to the generator permutation; that is, any generator added to
replace a removed one must also have weight four. No change to the permutation mutation is
required as it preserves the weight of stabilizer elements. We compare the codes found via this
constrained hill-climbing search to the cyclic codes with a weight-four generator representation.
The number of such cyclic codes is given in the third column of Table 3.1, where it can be seen
that they are reasonably plentiful.

The performance of the weight-four codes found via hill climbing for the biased XZ channel is
shown in Fig. 3.10. It can be seen that in a lot of cases, these codes perform nearly as well
as those found using unconstrained hill climbing in Sec. 3.4.4. The performance of the weight-
four cyclic codes is more varied. In some cases, they are optimal (among the cyclic codes),
while in others, they perform relatively poorly. Figure 3.11 shows that the performance of the
weight-four codes found via hill climbing for the AD channel is somewhat mixed, ranging from
outperforming the unconstrained [[9, 1]] codes to performing very poorly for k = 3 and n ≥ 8.
The performance of the weight-four cyclic codes relative to the best unconstrained cyclic codes
is much the same as for the biased XZ channel. Generators for the best weight-four codes found

80

3.4. CODE PERFORMANCE CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

10
-6

10
-4

HC

HC w=4

HC CSS

HC CSSY

HC lin.

Cyc.

Cyc. w=4

Cyc. CSS

Cyc. CSSY

Cyc. lin.

DC CSS

10
-6

10
-4

10
-2

G
e
o
m

e
tr

ic
 m

e
a
n
 o

f
F

E
R

s

5 6 7 8 9 10 11 12

10
-4

10
-2

Figure 3.10: The performance (geometric mean of FERs) of the best [[5 ≤ n ≤ 12, 1 ≤ k ≤ 3]]
codes found via hill climbing for biased XZ channels with with p = 0.1, 0.01, 0.001, or 0.0001
and η = 1, 10, 100, or 1 000. Also shown is the performance of the best cyclic codes and
dual-containing CSS codes.

via hill climbing can be found in Tables 3.5 and 3.6, and generators for the best cyclic codes are
given in Table 3.7.

3.4.6 CSS codes

We next consider CSS codes, which as outlined in Sec. 3.2.4, are codes that can be represented
using generators that contain either only X or only Z matrices as their nonidentity elements.
Similar to the search for weight-four codes, we must modify both the initial stabilizer construc-
tion and the generator permutation. In particular, when adding a new generator, we will select
a suitable X-only element half the time and a Z-only element the other half. Another required
modification is the removal of the permutation mutation as, in general, it does not map CSS

81

3.4. CODE PERFORMANCE CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

10
-6

10
-4

HC

HC w=4

HC CSS

HC CSSY

HC lin.

Cyc.

Cyc. w=4

Cyc. CSS

Cyc. CSSY

Cyc. lin.

DC CSS

10
-4

10
-2

G
e
o
m

e
tr

ic
 m

e
a
n
 o

f
F

E
R

s

5 6 7 8 9 10 11 12
10

-5

Figure 3.11: The performance (geometric mean of FERs) of the best [[5 ≤ n ≤ 12, 1 ≤ k ≤ 3]]
codes found via hill climbing for AD channels with with p = 0.1, 0.01, 0.001, or 0.0001 and η = 1,
10, 100, or 1 000. Also shown is the performance of the best cyclic codes and dual-containing
CSS codes.

codes to CSS codes. We also consider cyclic CSS codes, which can be thought of in two equiv-
alent ways. They can be viewed as codes with a binary representation where H̃X and H̃Z each
correspond to a binary cyclic code. Alternatively, they can be considered in the GF(4) frame-
work as additive cyclic codes that can be represented by a 1-only cyclic generator and/or an
ω-only cyclic generator. The number of these cyclic CSS codes is given in the fourth column of
Table 3.1. We also consider the family of dual-containing CSS codes to generalize the result of
Ref. [29], where it was shown that the [[7, 1, 3]] Steane code [83], which has

H̃X = H̃Z =


1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 , (3.65)

82

3.4. CODE PERFORMANCE CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

performs poorly on the biased XZ channel. We have constructed these codes by enumerating
all of the inequivalent binary self-orthogonal codes using sagemath [84] (recall that a generator
matrix for a binary-self orthogonal code is the parity-check matrix for a dual-containing code).
The number of such codes is given in the fifth column of Table 3.1. Note that there can only be
an [[n, k]] dual-containing CSS code if n− k is even; furthermore, even when n− k is even, not
many of them exist for the parameters considered.

As can be seen for the biased XZ channel in Fig. 3.10, both the CSS codes found via hill
climbing and the cyclic CSS codes perform poorly compared to their non-CSS counterparts.
This performance can be improved by following the modification outlined in Ref. [30], which
involves applying the permutation Z ↔ Y to the code’s generators (this is motivated by the
fact that Z-only generators commute with any Z-only error, meaning that they often provide
no information about an error when η is large). Given the nature of this modification, we call
such codes CSSY codes. We have performed a hill-climbing search for CSSY codes, and it can
be seen that they perform significantly better than the standard CSS codes; however, they are
still outperformed by non-CSS codes in most instances. Similarly, while the cyclic CSSY codes
perform better than the cyclic CSS codes, there is often a significant performance gap to the
non-CSS cyclic codes. The dual-containing CSS codes perform poorly across the board, which
can at least partially be attributed to the fact that they must have dX = dZ . Furthermore, their
performance cannot be improved as they are invariant under a Z ↔ Y permutation. As shown
in Fig. 3.11, the results on the AD channel are similar to those for the biased XZ channel.
Both the CSS codes found via hill climbing and the cyclic CSS codes perform poorly compared
to the non-CSS codes. In this case, the performance gain of the CSSY codes over the CSS codes
is less pronounced. A notable exception to this is the [[9, 1]] case, where the best CSSY code
found via hill climbing outperforms the best unrestricted code found. Somewhat surprisingly,
after applying an X ↔ Y permutation to the second, fourth, fifth, sixth, and ninth qubits, this
code is equivalent to the best code with weight-four generators found in Sec. 3.4.5. Again, the
performance of the dual-containing CSS codes is very poor compared to nearly all other codes
considered. Generators for the best CSSY codes found via hill climbing can be found in Tables
3.8 and 3.9. We omit the standard CSS codes found via hill climbing and the cyclic CSS(Y)
codes due to their poor performance.

3.4.7 Linear codes

The dual-containing CSS codes considered in the previous section are examples of linear stabilizer
codes. An additive (n, 2n−k)4 code C is linear if and only if it has a generating set of the form
B = {b1, . . . , b(n−k)/2, ωb1, . . . , ωb(n−k)/2}. This corresponds to the stabilizer having generators
of the form S = 〈M1, . . . ,M(n−k)/2, M̄1, . . . , M̄(n−k)/2〉, where M̄i is a version of Mi that has
been subjected to the permutation (X,Y, Z) → (Z,X, Y). To search for such codes, we must
first modify the initial construction and generator mutations. In particular, we add or remove
the generators Mi and M̄i in pairs. To preserve linearity, the permutation mutation has to be
restricted to permutations corresponding to a multiplication of a coordinate of C by ω or ω̄.

83

3.5. CONCLUSION CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

That is, the permutation must either be (X,Y, Z) → (Z,X, Y) or (X,Y, Z) → (Y,Z,X). We
also consider linear cyclic codes, the structure of which is outlined in Sec. 3.2.2. The number of
such codes is given in the sixth column of Table 3.1. Like the dual-containing CSS codes, [[n, k]]
linear codes can only exist for even n−k; furthermore, while n−k is even for [[5, 3]] codes, there
are no linear codes with these parameters that involve every qubit.

As shown in Fig. 3.10, the linear codes found via hill climbing perform reasonably well on the
biased XZ channel. The performance of the linear cyclic codes is somewhat less impressive, with
there being a significant gap in performance to the more general additive cyclic codes. This can
potentially be attributed to the fact that at least for the code parameters considered, there are
very few linear codes. As can be seen in Fig. 3.11, the linear codes found via hill climbing for
the AD channel perform better than those on the biased XZ channel, particularly in the k = 3
case. However, the linear cyclic codes still perform poorly. The best linear codes found via hill
climbing are given in Tables 3.10 and 3.11. We omit the linear cyclic codes due to their poor
performance.

3.5 Conclusion

We have shown that the error rate of an optimal stabilizer code decoder can be effectively
approximated by considering only a limited subset E of the 4n possible Pauli errors, and we
have outlined how to construct E without having to enumerate all of these errors. Utilizing
this approximate calculation, we have demonstrated that there are a number of [[5 ≤ n ≤ 12,
1 ≤ k ≤ 3]] cyclic stabilizer codes that perform very well on both the biased XZ and AD
channels across a range of error probabilities and biases. We have also shown that an indication
of the performance of a stabilizer code can be obtained by considering the error rate of an
associated [2n, n+k] classical code. We have used this as the basis for a hill-climbing algorithm,
which we have shown to be effective at optimizing codes for both of the asymmetric channels
considered. Furthermore, we have demonstrated that by modifying the mutation operation of
this hill-climbing algorithm, it is possible to search for highly performant codes that satisfy
structure constraints. In particular, we have successfully performed searches for codes with
weight-four generators, CSS(Y) codes, and linear codes.

84

3.5. CONCLUSION CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

Table 3.2: Generators and distances for the best-performing inequivalent cyclic codes on the
biased XZ and AD channels. Note that each stabilizer can be expressed using a single generator;
that is, each generator given corresponds to a different code. The generators of codes performing
well on both channel types are given in bold.

Biased XZ AD
[[n, k]] Generators d Generators d

[[5, 1]] YZIZY 3 YZIZY 3

[[6, 1]] YIZZIY 2 XZZZZX
YZZZZY

2
2

[[6, 2]] YZIZYI 2

XIZIXY
YIZIYX
XZIZXY
YZIZYX

2
2
2
2

[[6, 3]]

XZXXZX
XZZXZZ
XIYXIY
YZIYZI

2
2
2
2

XZXXZX
XZZXZZ
YZYYZY
YZZYZZ

2
2
2
2

[[7, 1]] XZIZXII 3 XZIZXII
YZIZYII

3
3

[[7, 3]]
XZZZXZX
XZIIYZY
YIIZYZX

2
2
2

XZZZXZX
YZZZYZY

2
2

[[8, 1]] YIIZIZZX
ZZYIIIIY

3
3

YIIZIZZX
XIIZIZZY

3
3

[[8, 2]]

YIIXIIYX
YIZZIIXZ
XIIYZIYY
YIIZIIYZ
YZIZIZYZ
XZZZZZXZ

2
2
2
2
2
2

YIIXIIYX
YIZZIIXZ
XIIYZIYY
XIIYIIXY
YIIXZIXX
XIZZIIYZ

2
2
2
2
2
2

[[8, 3]]
YIXIIYZY
XZIIZXYY
YZIZIXYX

2
2
2

YIXIIYZY
XZIIZXYY
XIYIIXZX
YZIIZYXX

2
2
2
2

[[9, 1]] ZIZYIIIIY 3 ZIZYIIIIY
ZIZXIIIIX

3
3

[[9, 2]] IZIXIZIYY 3 IZIXIZIYY
IZIYIZIXX

3
3

[[9, 3]] YZZIZZYII 3 YZZIZZYII
XZZIZZXII

3
3

[[10, 1]] YZIZIIZIZY 4 YZIZIIZIZY
XZIZIIZIZX

4
4

[[10, 2]] YZZIIIZZYI 2 IYXIIIIIXY 3

[[11, 1]] IYIIZIIZIIY 3 IYIIZIIZIIY
IXIIZIIZIIX

3
3

[[12, 1]] YIXIXIIIIIZX 4 YIXIXIIIIIZX
XIYIYIIIIIZY

4
4

[[12, 2]] IIZZIIXZZIXY
YXZIXIIIIIYX

4
4

IIZZIIXZZIXY
IIZZIIYZZIYX

4
4

[[12, 3]] ZZXIYIIIIYIX
IZZIXIZZIYXY

3
3

ZZXIYIIIIYIX
ZZYIXIIIIXIY

3
3

85

3.5. CONCLUSION CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

Table 3.3: Generators and distances for the best codes found for the biased XZ channel using
hill climbing.

k = 1 k = 2 k = 3
n Generators d Generators d Generators d

5

IXXZZ
YZYIZ
IZZYY
XZIZX

3
XXYZI
XXZXZ
XIIZY

1 XYZYZ
IIIXX 1

6

IXXXYZ
YIYIZZ
IYYIII

XZXIYX
ZZXYIZ

3

ZIZYXY
XXZXYX
IYYZYZ
XZIZYX

2
IIYYZY
XXZYZZ
XIIIYX

1

7

XZZXYYI
XYYXZXY
XIXZZZZ
YZIZXXY
ZYIXYIY
YIYZYZY

3

IIZYXZY
ZIXYIXY
XIZZYXZ
XYIXYIY
ZXZXYII

2

YZZYIXX
ZYXZIZY
XYIXXIY
ZZXXZXZ

2

8

ZIIYXIYX
ZYYIYYXX
IZYIYXXI
XYXZXZII
YIYYZIZY
ZXXXYIII

YXXZYYZX

3

YYIIIXYI
ZIXYZZIY

ZYXZYXXX
IZXYIZYI
YZZZIZIX
IXXIZIXI

2

XZZZYYIY
YZIYXIXX
XZXXYYYI
IYZYIYZI

YYZZZXIY

2

9

YXYXIIIII
YZIYIZIZI
XYIIYIIIX
IXIXIZZZZ

XYXYIXZXI
XIXXXYYYY
XXYYYYXXZ
YZXXZYZIZ

3

XIZZZZXYX
IIZIYYIIX

IXYYZZYYZ
IIZXXXXZI
ZZXIXXIXY
YXXZIZIYI
ZYYYIXZXI

2

ZIZZXXYIZ
ZIIYXIIYY
IYZXXXIIX
ZXZYYZZZI
YZYYIYYXI
YYZIZZXII

2

10

XYYXYIXYXX
XYYYIZXZYY
ZIXZXYIZYI
YXYYXXIIIX
IZZZIIZYYZ

XXZXYZYXYZ
XXIZXIXXIX
ZXXIYYIXIX

XZXZYYXXXI

3

ZXZIXZIIIY
YIIXYZIZII
XIYIIIZXZY
ZIXIYYIIYX

XZZYIXIYXX
YYIXYXYXII
ZZYZZXXZXI
ZXZYXZYYZI

3

ZZXXIIXZZY
IYZYZZYIZY
YZIYXZZZIX
ZXYZIIYXXY
ZYXIXZIYZY

XZYXYYIYXY
YYYYIZXIII

2

11

IZXZXZXXIZX
ZXIZXYIIIYY
ZXYIIXYYYXI
YIYZXXZIYXX
IYZYXXIYZYX
IYXXYXIYXZZ
ZIXZYIZXZIX

YYXZXYXYZXX
ZIYZXYXZIYI
YYZIXZZIZIZ

3

YZXIXIZYXZX
ZXIIYIXYZXI

YYXZXYIIXXX
ZXIIZXZYYZX
IXZYIIXYIIZ

ZXIZIXYXIXY
IZIXZZZYXXX

ZYXIZYXXXXX
XZIZIIIXYIY

3

YZXZXXZXXYY
YZIYXIIYIXX

YYIZYXYZXXX
ZYIZIIYYZYX
YYZIIYXIZXY
YXZXYXZZYII
YIIIIZYZIYX

IZXXYXZIYIX

2

12

YYIIXIYYIXZZ
YXIYZIXZIZIY
XXXXIZXIZXXZ
ZXZYIIIIZYXI

ZYYYZIZIYIZX
IZYYXXXYIYIY
ZYYYYIYYXIYX
ZYIZYXIXIYXY
IZIXIXYXXYYZ
IXXZZYIIXXXY
ZZIZYXIZXYZX

4

ZXZXZYXXZZYI
ZIZYZIXIXZIY

IYYYXZXXZYYY
IXIIIYYZIZYZ
IIYIIXYYZIIZ
IIIXYYIZXYIX
ZIXYIIZXIZZY

YIYZZXYZIXXX
YYXXYXXZYYYI
YZYXZZYYYYII

3

IIYYYIZXIXII
IZXZZXXIIXZZ
ZZZYZXYIZZII
YZIXIZXIIIXX

XYZZZIXZYYYI
XIYZYXIXXYIY
YIZZYXXYZIII
ZYXZXIIZIIZI

ZXZZYYXZXIYY

3

86

3.5. CONCLUSION CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

Table 3.4: Generators and distances for the best codes found for the AD channel using hill
climbing.

k = 1 k = 2 k = 3
n Generators d Generators d Generators d

5

YYXIX
IXYYX
IZXXZ
XZIZX

3
YXZZX
IIYYX
IYIYX

1 XZZYX
IXIXI 1

6

XZZZIY
IZYXYY
YIZXZI
YYXIXZ
IZZYXZ

3

XYIYZY
XYYIXZ
IIXXZZ
XZYZZI

1
YIXIYZ
IYXYYI
IZXYZY

1

7

XZZIYIX
XIYZYXZ
IYYXXXZ
ZIXXIYI
XZZZIZI
XIXYZIX

3

ZYYXYXX
XYZZIZI
XZIZZYZ
YZZXIXY
XYIYXXZ

2

IZXIZYX
YZYXIIZ
XYIIZIZ

IYYXXIY

1

8

ZXXIYIYX
YXXZXIIX
YIYZIIXZ
IXXXXYIZ
ZYXZIZZX
YIZXYZZY
IYXZYZZI

3

YIYYYXIZ
YYXXZYXZ
ZYXIXYIZ
ZZZXXIIZ
YZIIXXXY
IXIIXIZY

3

XZXIZYZI
ZXXYXXZY
YZZIXXIZ
XIXXXZIX
IZXYIZYZ

3

9

ZIXYXIYYI
ZYYZXXYIX

IYIXIYIZI
YYZZIXIZI

IXYYYXYYY
IIIZIXZIY

ZXZYIYYZX
ZZXZZXIYY

3

IIYYXYIYI
XZYXXZXII
IXIZXXYIZ
YZXXIYZYI

YXZYXYZXY
YZYYZIYZX
YYYIYZYIX

3

IXIYZYZZI
YZIIYZZXZ
ZYIZIYIIX
YZXXIXYII
YXIIIIXYX
YZZIXYIZX

3

10

YIIZYYXYYY
XYZXIZZXYZ
IXYXZYYYYX
XYIIZZXXXZ
XYIYIYXXIX
XZZYZYYIXX
ZIXIYZYZII
IIXXXIZIXI

XXYYXXXXZI

3

YZXYZYYIYY
YYXZIIXZXI
XIIYIIXXYI
IYZZIIXXXX
YXZIIXZIYY
XXYYZIZZYI
YYZYZZYIYZ
YXYXXIZYYX

3

ZZZZYZZXZX
XXZXZZXXYX
XXYZXZXZXY
YIZYIXZXYX
ZXYYZXIYYY
XIXYXZIZYX
IIIZYXIYXZ

3

11

ZXYZXYIZZXX
XZXZYIXXYZY
YZXZIZYXXYY
YYYIXZIIYZY
ZZZZXZIXZYZ
IZZXIIIXZXI

ZZIXYZXZYXY
IZZIYXIZXXY
XYZZXZZXZIZ
YIYYIIYIZXI

3

XIYZIZIIXZZ
YZZYXIYXYYY

IYIIZIYZYZY
ZZIYZZYZIIZ

IZYYZXXYYZX
YYZZIYYXZYX
ZZZZYZYXYIX
ZXYIXXZYXYY
IIZXIYYYYYY

3

ZIYIZXXXIZZ
XZIYXZIIXZX
IYZZIXIYXYX
ZYIYIYZZXXI
YXXZYIIXZYI

YYZYYZXYYZX
IYYXXXIZIXX
YXXXYXIXIZY

3

12

IXIIZZIZIXYI
XXIZXXIIIXII

ZXXYIZYXIZYY
ZYYYYIXZYXIX
YZYYXYXZZXZI

IZIZZYIXIZIZ
ZZIXYYIZYYYZ
YYIXZXZYIIZZ
ZZXXXXZZXYYY
ZZIIXXZIZIXI

XYXZIYZXIXZZ

3

IIYXXIXZYIYI
ZIXXZIZYIIIX
YZZZZIYYIIZI
IZXIYYZZXYII
ZZYYIYZXYZXZ
IYXIXYYYIYXX
XYXYZXYIXYZZ
XIXIYIZZZZYY
XXYXXXXYXIIX
YXZYXIIIZIXI

3

XYZYZIZIIXXX
XXYIYIIZIIXZ
YZZZYYYXIZII
ZIIIXYXYXIYI
XIZZZYYIXIZY
IXXIIZXYXYXI
ZZXIIYZZYIZI
ZYZZIZXIIZZZ

ZZXIYYZXIYXZ

3

87

3.5. CONCLUSION CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

Table 3.5: Generators and distances for the best weight-four codes found for the biased XZ
channel using hill climbing.

k = 1 k = 2 k = 3
n Generators d Generators d Generators d

5

ZIXZX
IZXXZ
ZYYIZ
XZZIX

3
XYYIX
ZXIXX
ZYYIZ

1 XIYZZ
IXYZZ 1

6

IIXZZX
YIIYXX
ZZIIXY
IXZIXX
YIZIZY

2

XIZXYI
IYYXXI
IZIZXX
IZYIZY

1
IXYYIX
IIXZYX
XXYIXI

1

7

IZXIIZY
ZZIXXII
YIXZIZI
IXIZXIZ
IZZIIXY
ZYYIZII

3

IIYIYZX
IZIXIYY
ZYIIYIX
XIIYXXI
YIZXIIY

2

YIZIIYY
XIXYIIY
IZYIXIZ
IYIZIZX

1

8

IZZIYIYI
IIIYYIYY
XXYIIIIY
YIIXIXIX
IIYZZYII
YYIXXIII
IIIIXZZY

3

XIIZXIIX
YIIYIXXI
IIYXZYII
XIIIZIYY
IYXIIZYI
ZXIIIYIZ

2

IYIYIYYI
IIIYXIYY
XIIIYXXI
YYXIIIYI
IXYXIIIZ

2

9

IXYYIXIII
ZIIYZIIIY
IIIIYIZYZ
ZIYIIIYZI
IIZYIZIYI
IZIIIYIZY
YIYIIIIXX
IYIXYXIII

3

YIXIIIXIX
YYIIZXIII
XIIIXIYYI
IIXXIIXXI
XIZIIYIYI
IIYIZIIZY
IXIYXIIYI

2

XXXIXIIII
YYIIIZIXI
ZIYIIYXII
YIIYZIYII
IIYZYIIIY
IIIYIYIYZ

2

10

XIIXYIIXII
IIYYZIXIII
IIIXIIYIZY
IIZIZIYYII
ZIIIIXIYIY
IZYIIZIXII
IYIXIXYIII
IZIIYIZIYI
YZIYIIIIIZ

3

IIIIZYIXIY
XIIIIIYIXY
IIIYZIZIYI
IYXIIIXIZI
XIYXIIYIII
YIXIIXIIIX
IXIIYXYIII
YIIIXIXYII

2

XIIIIYIYIX
IXYXIIYIII
XYXIYIIIII
XYIYIIIIYI
IIIYIXZIIY
IIYIXYYIII
ZIYIIIIXXI

2

11

IIIIYZIZYII
IZYYYIIIIII
YIIIYIIXXII
IIIYIIZIIZY
IIYIIIZIIYZ
XIIIIIYIYXI
YYIZIIIIIYI
ZIIYIYIIZII
IIXIXIIYIIY
IYXIIIXIIYI

3

IIIIIYZYIZI
IZIYIIIYIIX
IIIIYXIIZYI
YXIIIIXXIII
XIXIIIYIIYI
XYIIIIIIZIY
YXYXIIIIIII
IXIXXIIIYII
IIIIIIXIYXX

2

IIYYIYIIZII
YIIIXIYIIXI
IYXZIIIIIIY
XIIZYIIIYII
YZIYIIIYIII
XIIIIIIXIYY
IIXIYXXIIII
YIYIXIIIIIX

2

12

IZIIIIYZYIII
IIIIZYYIIZII
IYXIIIIIZIIY
XIIIIYIIYIIX
IYIZXIZIIIII
YXIXIIIIXIII
IXZIIIXIIYII
IIZIIIIYXIIY
XIIYZIIIIIXI
YIIIIZIIIYZI
ZIIIIIIIYIYZ

3

IIYXIIIYIIIZ
IIXIZYIIIIIY
ZIIYIIIIIYIY
IIIIIIYIYYZI
YIIZIIIZYIII
IIIIYZXIIIYI
YIIIIYZIIXII
IIIIIIIXXIYY
IYIIXXIIIYII
IXYIXYIIIIII

2

IZZIIIYIIIIY
XIIXIZYIIIII
YIIYYIIYIIII
IIIYIYIIYIZI
IYIIIIIYYIIX
IIYIIXXIIIYI
IIIIXIIXZIYI
YIZIIYIIIYII
IXYIIIIIIZIY

2

88

3.5. CONCLUSION CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

Table 3.6: Generators and distances for the best weight-four codes found for the AD channel
using hill climbing.

k = 1 k = 2 k = 3
n Generators d Generators d Generators d

5

IXZXZ
YZIYZ
IZYZY
ZXIZX

3
ZXYIY
ZXYYI
XIYXX

1 XYIXZ
XYYIZ 1

6

YIXXYI
YXIIYZ
ZIXIXZ
IXIYZY
XIZZXI

1

YIYXXI
IZYIXY
YIZIYY
ZXIYIZ

2
IYYXYI
XXYZII
ZYIIYX

1

7

ZYIIXXI
ZIIYIXZ
XIIXYIZ
YZYZIII
IYXZIIY
IIZXYYI

3

ZYIIXIX
IXYIYYI
ZIXZXII
YXIYIYI
IIIXZXY

2

XYYIXII
XIIXXXI
ZIXYIIY
ZZIIXYI

1

8

ZIYIIYXI
IZXYIZII
YIIIZIZX
IIIZIXYY
YYIIIYZI
IIXIXIZZ
IIYYZYII

3

XIYIIYYI
IYIIIZXX
IIXIXXIY
IYYXYIII
XXIZIIIY
YIIYXIXI

3

IXYXIIIZ
YIIXYYII
IIIZIXYX
IYIIZZIY
IZIIYIZY

1

9

IIYIIXYYI
IIIXXXIIX
IYXYIYIII
XYXIIIIXI
IIXYIIXIY
YIYIIXIIX
IXYIXIYII
XIIIYYXII

3

XIXIIXIYI
IIIYIZXXI
IIYIXIIXY
YIIXYIIZI
YYIIIYYII
IXIXIIZIY
IXXIIIXIX

2

YIYIIIYIZ
XXIIIXIIX
IXXIZIXII
XIZIXIIXI
YIIXIYIZI
IYIIXIXIY

1

10

YIIYYIIIIY
IIIXIXIXIX
IYYIIIIYIY
XXXIXIIIII
IYIIYIYIZI
IIIXXXIIXI
ZIYIXIXIII
IIIIIZXIYY
XIXXIIIXII

3

IIYXIYYIII
IIIIYXZYII
IXZIXIXIII
IYYIIIIIXY
YZIIYIIIIX
IIIYIXIIZX
IIIZIIXXXI
XIIIXYIIXI

3

IIIIZXXIXI
YYXIIIIIXI
XIYZIIIIIX
YIIXIXIYII
IIIIYYIXIX
IIZIXIIIYY
IIIYIZYIIY

1

11

YIYIIYIIIIY
IIXIYZIYIII
IXIYIIZYIII
IXYIXIIIIXI
IIZIIXIIYYI
IIIXIYIXIXI
XIIXIIXIIIX
ZXIIIIIIYIZ
YIIIIIZIXXI
IYZIIIIXIIX

3

IIIIIIXIYXY
IIIZIIYXIIX
IYIYIXIZIII
IYZIIIIIXYI
YIXIYIIIYII
IXIIYIIXYII
ZIYIIXIIIXI
IIIIXXYIXII
YIIXIZXIIII

3

YIIIIIXIXIY
XIIIIYIXZII
IIXYXIIIIIY
IYIIXIIXIZI
IIXIIZIYIXI
IXIXZIXIIII
IIZXIXIIXII
XZIIIIYIIXI

1

12

IXIIYIIXXIII
IIXIIIIXIYIX
IIIIXIIIYXIY
IIIIXYIYIIIY
IIIYYXIIIYII
ZXIIIIZIIIXI
IZIIIIYIZYII
IIYXIYIIIIIY
YIIXIYIIIIYI
YIIIIIXIXYII
XIXYIIYIIIII

3

IIYZZIIIIIYI
IYIIIZIIIYYI
IIXIYIIYIIIX
IIIIXYIIIIZY
YIIIIXIIIXIX
YIYIIIYXIIII
IXIYIIIIXIZI
ZXIIIYXIIIII
IYIIIIZYZIII
IIIIIIIXXYIY

3

IIIYXZIIXIII
XIIYIIIIIIXX
IIYZIXIIIIIY
IIIIZIIIYYXI
ZIIIIIYXIIIY
YIIIIIIYIZYI
IYIIIIIXXXII
IXYIIIZYIIII
IZZIIYIIYIII

3

89

3.5. CONCLUSION CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

Table 3.7: Generators and distances for the best-performing inequivalent cyclic codes with
weight-four generators on the biased XZ and AD channels. If a code requires two generators,
they are grouped in brackets; otherwise, a single generator is given as in Table 3.2. The gener-
ators of codes performing well on both channel types are given in bold, while the generators for
codes previously appearing in Table 3.2 are marked with an asterisk.

Biased XZ AD
[[n, k]] Generators d Generators d

[[5, 1]] YZIZY* 3 YZIZY* 3

[[6, 1]] YIZZIY* 2 YZIIZY
XZIIZX

2
2

[[6, 2]] YZIZYI* 2 XIZIXY*
YIZIYX*

2
2

[[6, 3]] XIYXIY*
YZIYZI*

2
2

XIYXIY
YZIYZI
XZIXZI

2
2
2

[[7, 1]] XZIZXII* 3 XZIZXII*
YZIZYII*

3
3

[[8, 1]] ZZYIIIIY* 3 ZZYIIIIY
ZZXIIIIX

3
3

[[8, 2]] YIIXIIYX*
YIIZIIYZ*

2
2

YIIXIIYX*
XIIYIIXY*

2
2

[[8, 3]] YIIIIYYY
XIIIIXXX

1
1

YIIIIYYY
XIIIIXXX

1
1

[[9, 1]] ZIZYIIIIY* 3 ZIZYIIIIY*
ZIZXIIIIX*

3
3

[[9, 3]] IIIYYIYYI
IIIXXIXXI

1
1

IIIYYIYYI
IIIXXIXXI

1
1

[[10, 1]] IIYZIIIIZY 2 XIIZIIZIIX
YIIZIIZIIY

3
3

[[10, 2]] IYXIIIIIXY
IZYIIIIIYZ

3
3 IYXIIIIIXY* 3

[[11, 1]] IYIIZIIZIIY* 3 IYIIZIIZIIY*
IXIIZIIZIIX*

3
3

[[12, 1]] IIIIYIIZZIIY 3 IIIIYIIZZIIY
IIIIXIIZZIIX

3
3

[[12, 2]] YIIIIZIIIIYZ 2 XZIIIIIIIZXI
YZIIIIIIIZYI

3
3

[[12, 3]] (XIIXIIXIIXII ,
IYIIIIYIIYYI) 2

(XIIXIIXIIXII ,
IYIIIIYIIYYI)
(YIIYIIYIIYII,
IXIIIIXIIXXI)

2

2

90

3.5. CONCLUSION CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

Table 3.8: Generators and distances for the best CSSY codes found for the biased XZ channel
using hill climbing.

k = 1 k = 2 k = 3
n Generators d Generators d Generators d

5

XXXXX
IIIYY
IYIYI
IIYIY

1
XXXIX
YYIYI
YIYYI

1 XXXXI
XXIXX 1

6

XXXXXX
IIYYYY
IYYIYY
YIYYIY
IYYYYI

2

IXXXXX
YIYYII
YIYIYI
YYIYII

1
IXIXXX
YYIIYI
YIYIYY

1

7

IIIXIXX
XXXXXIX
YYIYYYI
YIIYYIY
IYIIYII

YYYIIYY

2

XXXXXXX
YYIIYYI
YYIYIYI

IYYYYYY
YYIYIIY

2

XXXXXXX
YIIYYYI
YYIIYIY
YYYYIII

2

8

XIXXIIXX
IXIXXXXI
IYYIIYIY
IYYIIIYI

YIYIYIYY
IYYYIYYY
YYYYIIIY

2

XXXXIIXX
XIXXXXXI
IIIIIYYY

IYYYIYYI
YYIIIYII

IYYIYYYY

2

XXIXXXXX
XXXXIXXX
YIIIIYYY
YYIYIIYI
IIYYYIYY

2

9

IIXXIIIXX
XXIXXIIXX
IXXXXIXXI
IIIXXXIIX

IIYYYYIYY
IYYIIYIIY

IYIYYYYIY
YIIIYYYII

3

IXXXXIXIX
XXIIXXXXI
XIXIXXXII
YIIYYIIII

YYIIIYIYY
IIYYIYIYI

YIIYYYYIY

2

XXIIXXXIX
IIXXXXIXX
YYIYYIYII
IYYYIYYIY
IIIYYIIYY
IIIYIYYII

2

10

IXXIXXXIXI
IIXXIIXIXX
IXIXIIXXXI
XIIIXIIXXI
YYIIIIIIYY
YIYYIIIIYY
IYYIIIYYYY
YIYIIYYIYY

IIIYYIIIYI

3

IXIXIIXXXX
IXXXXXXIIX
XIIXXIXXII
YIIYIYYYIY
YIYYIYIIIY
IIYIYIYIIY
YYYIYIIIIY
IYIIIYIIYI

2

XIIXXXIXIX
IIXIXXXIXI
XXIIXIIXXI
YYYIYIIYIY
YIIIIIYIYY

YIYYYYYIII
IIIIYYIYIY

2

11

XIXXIIXIXIX
IXIIXIXXIXX
IIIXXXXIXXI
XXIIXIIXXIX
IIIIIIYYYII

YYIIYIYYYYY
IYYIIIIIIIY

IYYYYIYYIYY
YYYIYIYIYYI
IIYIYYIIIIY

3

IIXXIXXIXXX
XIIXIIXXXII
IIXIXIXIXXI
IXXXIIXXIIX
YIYYIIIYYIY
YYYIIYYIIIY
YYIYYIIIIYI
YIYIIIYIIII

IYYIYIYIYIY

3

IXIIXXXIIIX
XIIXXIXXIXX
XIIIIXXXXIX
XXXIIXXIXXI
YIYYIYYYIII
IIYYIYIYYYY
YYYIYIIYIYI
YIIIYYIYYYI

3

12

XXXIIXIIXXXX
IXIXXXXXIXXI
IIXXIIXXXXII
XXIXXXXIIIII

XIIXIXXXXXXI
IIXXIIIIIXIX

IIYIYIYYYIYY
YYIIYIYIYIYI
YIIIYYYYIIII
IIYYIIYYIIYI
IIYIYYIYYYII

3

XXIXIIXIXXIX
XIXIIIXXXIXI

XXXIIXIXXIXX
IIIXXXIXXIIX
IIYIIIYYIIYY

IYYIYIYIYYYI
IYYYIYIYYYYI

IYIIIIIYIIYY
IIYIIYIIIYYY

YYYYYIIYIIYY

2

XIIXIXXIXXII
IIXXXIXXXIIX
XXXIIIIXXIII

XXXIXIXIIXXI
IYYYYYYYYIII
YIYIIIYYYYII
YIIYIYYYIIIY
YIYYYIIIIIYY
YIYIIIYIIIYI

3

91

3.5. CONCLUSION CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

Table 3.9: Generators and distances for the best CSSY codes found for the AD channel using
hill climbing.

k = 1 k = 2 k = 3
n Generators d Generators d Generators d

5

IIXIX
IIIXX

IYYYY
YIYYY

1
XIXXI
XXXII
IYYYY

1 IIYYI
YYYIY 1

6

XXXXXI
XXXXIX
YIIYII
IYIYII

YIYYYY

2

XXXXXX
IXIXXI
IYYYIY
YIIYYY

2
IXXIXI
YIYYYI
YYIIYY

1

7

XXXXIII
XXIIXXI
XIXIIXX
IYIYIYY
YYIIYYI
IIYYYYI

3

IXIIIIX
XXXIXXI
XXXXIIX
IYYYYYY
YYYIYIY

2

XXXXXXX
IIYYYIY
YYIIYIY
IYYIIYY

2

8

IXIXXIII
XXXXXXXI

IXIXIXII
XXIIXXXX
YYIIYYII

YYYIYYYY
IYIYIIIY

2

IXXIIIIX
XXXIXIIX
XXIXIXXX
YYIIYYIY
YYIYYIIY
IIYYIYYY

2

XIXIXXII
IXXIIXXX
XIIXIXXX

YYYYYYIY
IIIIIIYY

2

9

IIXXXIXXX
XXXIIIXII

XIXIXXXIX
IXIXIIXIX
YIIIIYYIY
IYYYIYIII
YIYIYYIII

YIIYYYYYI

3

IXXXXXIIX
XXIXIIIXI
IIXXIIXXX
XIXXIXXXI
YYYIYIIIY
YYIYYYIYI
IYIYIIYII

2

IXXXIXIXX
IIIXXIXXX
XIXIXXIXI
YYYIIYYYI
YYIYIIYYY

IIIYYYIII

2

10

XIIXIXIXXX
IXXXXIIIIX

XIXXXIXIXX
IXXIIIXXXX
YYYIIYIIII

IYIYYYYYIY
IIYIIIYIYY
IIYIYIYYYI
YIYIYYYIII

3

XXXIXXIIXI
XIXXIIXXXI
IXXIIXIXXX
IXXXIIIXII

YYIIYYIYIY
YYYIIIYIYY
YYIYYIYIYI
IYIYYYIIYY

3

XXIXIXXIIX
XXXIXXIIXI
IIIIIXIXXX
XIIXXXIIII

IYIIYYYYYY
YIIYYYYIYI
IIYYIYYIIY

2

11

XIXIIXIXIII
XIIXIXIIIXI
IXXXIIIIXIX

XXXIXXXXIIX
IXIIXXIIXXI
IYIIYIYIIIY
IIIYYIIIIYY
IIYYYYYIIII

YYIYIYIIYYY
YYIIIIIYIYY

3

XIXXXIIXXXI
XXXIIXXIXIX
IIXIIXIXXXX
XIXXIIXXIIX
YIIIIYYIYII
IIYIYYIYIYI

IYIYIIYYYYY
IIIYYYYYYIY
YIYYYYIYYII

3

XXXIIXXXIXI
IXXXXIXXIII
IXIIXXIXXXX
IXXIIXIIIIX
YIYYIYIIIYI
YIYYIIYYIIY

YYYIYYIYIYY
YIIYYIYYYYI

3

12

XIIXIIXXXIII
XXIXIIIIXIIX

XXIIXXXXIXIX
IIXIXIXXXIXX
IIXIXIIIIXIX

IIIXXIXIXXXX
YYYIIIYIIYII

IYIYYYYYYIYY
YYYYIIIYYYYI
YIYYIYYIYIIY
IYYYYYYIIIYI

3

XXXXIIIIIIXI
XXXIXIIIIXIX
XIIXXXXIIXII

XXIXXXIIXXXX
XXXXXIIXXIIX
IIYIYIIYIYYY
YYIIIIIYIYIY

IIIYYYIYYYYI
IYIYYIYYYYIY
YYYYIIYIIYII

3

XXIIIIIXXXXI
XIXIXXIIXIXI

XXIIXXXXXIIX
XXIXIXXIIIXI
YYIYIIIYIIYY
IYIYYIIYYYII
IIYYIIIIIYYI
IYIIYYIIIYIY

YYYIYIYIIYYI

3

92

3.5. CONCLUSION CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

Table 3.10: Generators and distances for the best linear codes found for the biased XZ channel
using hill climbing.

k = 1 k = 2 k = 3
n Generators d Generators d Generators d

5

XXYIY
ZZXIX
XYIYX
ZXIXZ

3 - - - -

6 - -

YIXIYX
XIZIXZ

XYZZZY
ZXYYYX

2 - -

7

ZIZXZZY
YIYZYYX
IYYYZII
IXXXYII
ZYYIIXI
YXXIIZI

3 - -

IXZYXXZ
IZYXZZY
YYXZXIY
XXZYZIX

2

8 - -

IYXZYYXI
IXZYXXZI
XIYXYYIY
ZIXZXXIX
IXYYYXIY
IZXXXZIX

3 - -

9

ZZIIIXIIY
YYIIIZIIX

IXZZZXZZX
IZYYYZYYZ
IYIZZIZXX
IXIYYIYZZ
IIYYIIXXI
IIXXIIZZI

3 - -

ZXXXYXXIZ
YZZZXZZIY
ZZZXIYXZY
YYYZIXZYX
ZYZIIZZXI
YXYIIYYZI

3

10 - -

XZYXXXYZZX
ZYXZZZXYYZ
ZYXYXZZXXX
YXZXZYYZZZ
YXIZYYXIYZ
XZIYXXZIXY
ZIYYYXYZYI
YIXXXZXYXI

3 - -

11

YZXIIYYZIZX
XYZIIXXYIYZ

YYXZYXIZYYY
XXZYXZIYXXX
YIXYYXZXZZY
XIZXXZYZYYX
IZZYXIYIYXX
IYYXZIXIXZZ
ZXZXIZIIZXZ
YZYZIYIIYZY

3 - -

XIZZZIYYIXY
ZIYYYIXXIZX
XYXIYIYXYIZ
ZXZIXIXZXIY
XXZXXIIZYYI
ZZYZZIIYXXI
ZIYIYYYYIYY
YIXIXXXXIXX

3

12 - -

IIIIYYIIIIZZ
IIIIXXIIIIYY

YYZYZYIIYIIY
XXYXYXIIXIIX
IZZZZZZIXXYY
IYYYYYYIZZXX
ZXYIYYXYIZII
YZXIXXZXIYII
ZYYXZZIIZXZZ
YXXZYYIIYZYY

4 - -

93

3.5. CONCLUSION CHAPTER 3. OPTIMIZING SHORT STABILIZER. . .

Table 3.11: Generators and distances for the best linear codes found for the AD channel using
hill climbing.

k = 1 k = 2 k = 3
n Generators d Generators d Generators d

5

XIXZZ
ZIZYY
IXZXZ
IZYZY

3 - - - -

6 - -

IXIXYY
IZIZXX
YXXIIY
XZZIIX

2 - -

7

IXYYXYZ
IZXXZXY
XXIYYYY
ZZIXXXX
XZXYIZY
ZYZXIYX

3 - -

XZZZIXY
ZYYYIZX
IXYZYXY
IZXYXZX

2

8 - -

IYIYZYXX
IXIXYXZZ
ZIIXYXYX
YIIZXZXZ
ZZZXXIIZ
YYYZZIIY

3 - -

9

YXXIXZXZY
XZZIZYZYX
ZXYYXYIZZ
YZXXZXIYY
IZYYIYXIX
IYXXIXZIZ
IIIIYIZYZ
IIIIXIYXY

3 - -

ZZIXIZIXY
YYIZIYIZX

YZIXXXXYX
XYIZZZZXZ
IXYXYXXZZ
IZXZXZZYY

3

10 - -

XYYIIYZZYX
ZXXIIXYYXZ
ZXYIYIXXZZ
YZXIXIZZYY
XXIIYZZXYY
ZZIIXYYZXX
YXXYYXXIIZ
XZZXXZZIIY

3 - -

11

YIYZYZZYXXY
XIXYXYYXZZX

YXIIIYZZIXI
XZIIIXYYIZI

XYXZIZYIXIZ
ZXZYIYXIZIY
XIZXIXXXZIX
ZIYZIZZZYIZ

YXXZXYYIXYX
XZZYZXXIZXZ

3 - -

XZXYYIIXIZZ
ZYZXXIIZIYY
YIIXIZYXXII
XIIZIYXZZII
ZIIIXZZYZZY
YIIIZYYXYYX
IYXZZZIZXIZ
IXZYYYIYZIY

3

12 - -

IIIIYXYYXZXX
IIIIXZXXZYZZ
IIZIXZZZIZZY

IIYIZYYYIYYX
IZIZIXYIXZII
IYIYIZXIZYII
ZIYXIXXIIIYI
YIXZIZZIIIXI

XIYIYIXXIYZX
ZIXIXIZZIXYZ

4 - -

94

Chapter 4

Heuristic construction of codeword
stabilized codes1

Abstract

The family of codeword stabilized codes encompasses the stabilizer codes as well as many of
the best known nonadditive codes. However, constructing optimal n-qubit codeword stabilized
codes is made difficult by two main factors. The first of these is the exponential growth with
n of the number of graphs on which a code can be based. The second is the NP-hardness of
the maximum clique search required to construct a code from a given graph. We address the
second of these issues through the use of a heuristic clique finding algorithm. This approach has
allowed us to find ((9, 97 ≤ K ≤ 100, 2)) and ((11, 387 ≤ K ≤ 416, 2)) codes, which are larger
than any previously known codes. To address the exponential growth of the search space, we
demonstrate that graphs that give large codes typically yield clique graphs with a large number
of nodes. The number of such nodes can be determined relatively efficiently, and we demonstrate
that n-node graphs yielding large clique graphs can be found using a genetic algorithm. This
algorithm uses a crossover operation based on spectral bisection that we demonstrate to be
superior to more standard crossover operations. Using this genetic algorithm approach, we
have found ((13, 18, 4)) and ((13, 20, 4)) codes that are larger than any previously known code.
We also consider codes for the amplitude damping channel. We demonstrate that for n ≤ 9,
optimal codeword stabilized codes correcting a single amplitude damping error can be found
by considering standard form codes that detect one of only three of the 3n possible equivalent
error sets. By combining this error set selection with the genetic algorithm approach, we have
found ((11, 68)) and ((11, 80)) codes capable of correcting a single amplitude damping error and
((11, 4)), ((12, 4)), ((13, 8)), and ((14, 16)) codes capable of correcting two amplitude damping
errors.

1This chapter has been published as Ref. [31]: A. Rigby, J. C. Olivier, and P. D. Jarvis, “Heuris-
tic construction of codeword stabilized codes,” Physical Review A, vol. 100, no. 6, p. 062303, Dec. 2019,
doi.org/10.1103/PhysRevA.100.062303. Only minor typographical and formatting changes have been made.

95

4.1. INTRODUCTION CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

4.1 Introduction

Quantum codes can be used to protect quantum information against the effects of a noisy
channel. An n-qubit code is a subspace Q ⊆ (C2)⊗n of dimension K. If Q can detect any
arbitrary error on fewer than d qubits but not some error on d qubits, then Q is said to have
distance d and is called an ((n,K)) or ((n,K, d)) code. Equivalently, a code has distance d if
it can detect the set E of all Pauli errors of weight less than d but cannot detect some weight-d
Pauli error [85]. A well-understood family of codes is the stabilizer (additive) codes, which are
codes defined using an abelian subgroup of the n-qubit Pauli group [15]. However, codes outside
of the stabilizer framework, called nonadditive codes, can potentially encode a larger subspace
while still detecting the same error set [17, 18, 19, 20, 21, 22]. Codeword stabilized (CWS) codes
encompass both the stabilizer codes and many of the best known nonadditive codes [32, 33]. In
general, an ((n,K)) CWS code is defined using an n-qubit stabilizer state, which is a stabilizer
code of dimension one, and a set of K n-qubit Pauli operators called word operators [32]. A
standard form CWS code Q is one where the stabilizer state is defined by a simple undirected
n-node graph G (that is, it is a graph state) and the word operators are defined by a binary
classical code C ⊆ GF(2)n with |C| = K [32]. For Q to detect an error set E , C must detect
the classical error set ClG(E) ⊆ GF(2)n induced by the graph. An appropriate classical code of
maximum size can be found by constructing a clique graph and performing a maximum clique
search [33].

The error set that must be detected by an ((n,K, d)) code Q is invariant under any permutation
of the Pauli matrices X, Y , and Z on any subset of qubits. As a result of this symmetry, we call
((n,K, d)) codes symmetric codes. This symmetry also means that if Q′ is local Clifford (LC)
equivalent to Q (that is, if Q′ = UQ for some LC operator U), then Q′ is also an ((n,K, d))
code. It follows from the LC equivalence of every stabilizer state to a graph state [86, 87, 88]
that every CWS code is LC equivalent to one in standard form [32]. It is therefore sufficient to
consider only standard form codes when attempting to construct an optimal ((n,K, d)) CWS
code. In fact, it is sufficient to consider only codes based on graph states that are not LC
equivalent up to a permutation of qubit labels [33]. This corresponds to considering only graphs
that are not isomorphic up to a series of local complementations [86]. For n ≤ 12, this set
of inequivalent graphs, denoted Ln, has been enumerated [34, 35, 36] and, in theory, can be
exhaustively searched to construct an optimal code. Such a search of L10 has previously yielded
the well-known ((10, 24, 3)) code [19]. For distance-two codes, searching Ln quickly becomes
prohibitive with increasing n due to the rapidly growing clique graphs and the NP-hardness of
finding a maximum clique [37]. To address this, we employ the heuristic Phased Local Search
(PLS) clique finding algorithm [89]. Using this approach, we have found ((9, 97 ≤ K ≤ 100, 2))
and ((11, 387 ≤ K ≤ 416, 2)) codes that are larger than the best known nonadditive codes
presented in Refs. [20] and [21], respectively.

The apparent exponential growth of |Ln| with increasing n means that even if Ln were enumer-
ated for n ≥ 13, an exhaustive search would be prohibitive. As such, other search strategies
are required for constructing codes. To aid this search, we demonstrate a relationship between

96

4.2. BACKGROUND CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

the code size and the order (number of nodes) of the clique graph yielded by a given graph. In
particular, we show that the clique graph orders exhibit clustering and that the graphs yielding
the best codes tend to belong to the highest clique graph order cluster. This reduces the search
to finding graphs that yield large clique graphs, and we show that such graphs can be generated
by using a genetic algorithm to search the set of all distinct n-node graphs. This genetic algo-
rithm uses a crossover operation based on spectral bisection, which we show to be significantly
more effective than standard single-point, two-point, and uniform crossover operations. Using
this genetic algorithm approach, we have found ((13, 18, 4)) and ((13, 20, 4)) codes. These codes
are larger than an optimal ((13, 16, 4)) stabilizer code, and to the best of our knowledge, they
are the first d ≥ 4 codes to achieve this (we note that there is a family of d = 8 nonadditive
codes that are larger than the best known, but not necessarily optimal, stabilizer codes [22]).

For asymmetric codes, the error set E that they detect is no longer invariant under Pauli matrix
permutation. This means that if Q detects E , then there is no guarantee that an LC-equivalent
code Q′ = UQ also detects E . However, if Q detects the LC-equivalent error set U †EU , then Q′

will detect E . As a result, when attempting to construct an optimal ((n,K)) code CWS code
detecting E , it is sufficient to consider standard form codes based on elements of Ln that detect
one of the up to 6n possible LC-equivalent error sets [90] (the 6n value stems from there being
six possible permutations of the Pauli matrices on each of the n qubits). Such an asymmetric
error set arises when constructing codes that correct amplitude damping errors. In this case,
a partial symmetry reduces the number of LC-equivalent error sets to 3n; however, this is still
large enough to make an exhaustive search prohibitive for n ≥ 10. Again, we therefore require
different search strategies for constructing codes. We demonstrate that for n ≤ 9, optimal CWS
codes correcting a single amplitude damping error can be found by considering only codes based
on nonisomorphic graphs that detect one of three LC-equivalent error sets. By combining this
error set selection with the genetic algorithm approach, we have found ((11, 68)) and ((11, 80))
codes capable of correcting a single amplitude damping error. These are larger than the best
known stabilizer codes detecting the same error set [15]. We have also found ((11, 4)), ((12, 4)),
((13, 8)), and ((14, 16)) stabilizer codes capable of correcting two amplitude damping errors.

The paper is organized as follows. Section 4.2 gives an introduction to undirected graphs,
genetic algorithms, classical codes, and quantum codes. Section 4.3 details our search strategies
for symmetric codes and presents the best codes we have found. This is then extended to
asymmetric codes for the amplitude damping channel in Sec. 4.4. The paper is concluded in
Sec. 4.5.

4.2 Background

4.2.1 Undirected graphs

A simple undirected graph G = (N,E) of order n consists of a set of nodes N = {v1, v2, . . . , vn}
and a set of edges E ⊆ {{vi, vj} : vi, vj ∈ N, vi 6= vj}. An edge e = {vi, vj} ∈ E is an unordered

97

4.2. BACKGROUND CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

3

21

6

5 4

Figure 4.1: A drawing of a cycle graph where the circles correspond to nodes and the lines to
edges.

pair that connects the nodes vi, vj ∈ N , which are called the endpoints of e. A graph is typically
drawn with the nodes depicted as circles that are joined by lines representing the edges. An
example of such a drawing is given in Fig. 4.1. G can be represented by the symmetric n × n
adjacency matrix Γ, where

Γij =

1 if {vi, vj} ∈ E,

0 otherwise.
(4.1)

The neighborhood N (vi) = {vj : {vi, vj} ∈ E} of some node vi ∈ N is the set of nodes to
which it is connected. The degree deg(vi) = |N (vi)| of vi is the number of nodes to which it is
connected. The n× n degree matrix D has elements

Dij =

deg(vi) if i = j,

0 otherwise.
(4.2)

A subgraph GS(NS , ES) of G = (N,E) is a graph with nodes NS ⊆ N and edges ES ⊆ E.
The subgraph induced by a subset of nodes NI ⊆ N is the graph GI = G[NI] = (NI , EI),
where EI = {{vi, vj} ∈ E : vi, vj ∈ NI} contains all the edges in E that have both endpoints
in NI . A walk is a sequence whose elements alternate between connected nodes and the edges
that connect them. For example, 1, {1, 2}, 2, {2, 3}, 3, {3, 4}, 4, {3, 4}, 3 is a walk in the graph
shown in Fig. 4.1. The length of a walk is the number of edges it contains. A path is a walk
containing no repeated nodes or edges, with the exception that the first and last node can be
the same, in which case the path is called a cycle. A graph, such as the one shown in Fig. 4.1,
where all nodes belong to a single cycle is called a cycle graph. A graph is connected if there
is a path between any two of its nodes. A connected component of G is a maximal connected
subgraph GS(NS , ES) [maximal in that there is no other connected subgraph GT (NT , ET) where
NS ⊂ NT].

Two graphs G1 = (N1, E1) and G2 = (N2, E2) are isomorphic if they differ only up to a relabeling
of nodes. Formally, they are isomorphic if there exists an isomorphism from G1 to G2, which
is a bijection f : N1 → N2 such that {vi, vj} ∈ E1 if and only if {f(vi), f(vj)} ∈ E2. An
isomorphism f : N → N from a graph G = (N,E) to itself is called an automorphism. The set
of all all automorphisms of G forms a group Aut(G) under composition. There are a number of
packages, such as nauty [91, 92], available for determining the automorphism group of a given
graph. We denote the set of all distinct n-node graphs with nodes N = {1, 2, . . . , n} as Dn, the

98

4.2. BACKGROUND CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

Table 4.1: The number of distinct, nonisomorphic, and non-LC-isomorphic graphs with n ≤ 12
nodes.

n |Dn| |Gn| |Ln|
1 20 1 1
2 21 2 2
3 23 4 3
4 26 11 6
5 210 34 11
6 215 156 26
7 221 1 044 59
8 228 12 346 182
9 236 274 668 675
10 245 12 005 168 3 990
11 255 1 018 997 864 45 144
12 266 165 091 172 592 1 323 363

size of which grows exponentially with |Dn| = 2(n
2). Dn can be partitioned up to isomorphism

to give the set Gn; |Gn| also grows exponentially with n [93] as shown in Table 4.1 for n ≤ 12.
The size of some g ∈ Gn with representative G ∈ Dn is n!/|Aut(G)| [93].

The complement Ḡ = (N, Ē) of a graph G = (N,E) has an edge {vi, vj} ∈ Ē if and only if
{vi, vj} /∈ E. A local complementation (LC) at node vi replaces the induced subgraph G[N (vi)]
with its complement (while we use LC for both local Clifford and local complementation, its
meaning should be clear from the context in which it is used). If two graphs G1, G2 ∈ Dn differ
by a series of local complementations, then we say they are LC equivalent. If a series of local
complementations applied to G1 yields a graph G′2 that is isomorphic to G2, then we say that G1

and G2 are LC isomorphic. Partitioning Dn up to LC isomorphism gives the set Ln, which has
been enumerated for n ≤ 12 [34, 35, 36] and also seems to grow exponentially with n as shown
in Table 4.1. Any two graphs that are isomorphic are necessarily LC isomorphic, and therefore,
any element l ∈ Ln is the union l = ∪igi of elements gi ∈ Gn. These gi can be determined from
any representative of l using Algorithm 5.1 of Ref. [34]. If a subset A ⊆ Dn contains graphs
that are representatives of m different elements of Gn (Ln), then we say m of the graphs in A
are nonisomorphic (non-LC isomorphic).

A graph G = (N,E) is complete if every node is connected to every other node; that is, if
E = {{vi, vj} : vi, vj ∈ N, vi 6= vj}. If an induced subgraph G[Ñ] for some Ñ ⊆ N is complete,
then Ñ is called a clique. A clique of maximum size in G is called a maximum clique. Finding a
maximum clique in a graph is is NP-hard [37]; however, there are a number of heuristic algorithms
that can find large, if not maximum, cliques. One such algorithm is the Phased Local Search
(PLS) [89], which performs well compared to other heuristic algorithms in terms of both speed
and clique finding ability [94]. The PLS algorithm constructs a clique by initially selecting a node
at random. It then iteratively selects nodes to add to the current clique (potentially replacing
an existing node in the clique) until a maximum number of selections is reached. To ensure good
performance on graphs with varying structures, PLS cycles through multiple different selection
methods. The search is repeated for a prescribed number of attempts, after which the largest
clique found is returned.

99

4.2. BACKGROUND CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

A bipartition of G = (N,E) divides the nodes into two disjoint subsets N1 and N2. A bipartition
is called a bisection if |N1| = |N2| for even |N | or if ||N1| − |N2|| = 1 for odd |N |. An optimal
bisection is one that minimizes the number of edges connecting nodes in N1 to those in N2.
Finding such an optimal bisection is NP-hard [95]; however, approximate heuristic approaches
are available. One such approach is spectral bisection [96, 97, 98, 99], which is based on the
graph’s Laplacian matrix L = D − Γ. L is positive semidefinite and, as such, has real, non-
negative eigenvalues. The eigenvector u = (u1, . . . , un) corresponding to the second smallest
eigenvalue is called the Fiedler vector [100]. The Fiedler vector can be used to bisect N , with
the indices of the bn/2c smallest components of u dictating the nodes in N1 and N2 simply
being N2 = N\N1.

4.2.2 Genetic algorithms

Suppose we wish to determine which element in a set A is optimal in some sense. This can be
expressed as finding the a ∈ A that maximizes a fitness function f : A → R. The brute-force
approach to this problem is to determine the fitness of every element a ∈ A. This is called
an exhaustive search and quickly becomes impractical if the search space A is large and/or
evaluating the fitness of elements is computationally intensive. In such cases, heuristic search
algorithms can be used to find good, but potentially not optimal, elements of A. The simplest
such approach is a random search, where fitness is calculated only for the elements in a randomly
selected subset B ⊂ A. Another heuristic search strategy is the genetic algorithm, which is
inspired by natural evolution [101, 82]. There are many genetic algorithm variants; a simple
implementation is as follows. Initially, the child population, which is an N -element subset of A,
is randomly generated. This is followed by a calculation of each child’s fitness (a child being an
element of the child population). The genetic algorithm then iterates for some predetermined
number of maximum generations. In each generation, the previous generation’s child population
becomes the current generation’s parent population (whose elements are called parents). A new
child population is then formed by selecting two parents at a time and producing two children
from them. The parents are selected according to their fitness, with high fitness parents having a
higher chance of selection. With probability pc, the two children will be produced via crossover,
which combines attributes of the two parents; otherwise, they will simply be duplicates of their
parents. Each child is then subjected to mutation (random alteration) with probability pm before
being added to the child population. Once the child population again contains N children, their
fitnesses are calculated and a new generation begins.

Tournament selection is a simple and commonly used method of selecting parents based on their
fitness. First, a subset of the parent population is chosen at random, and then the fittest parent
within this subset is selected. The size of the subset chosen is called the tournament size; it
controls the selection pressure of the genetic algorithm, which is a measure of how dependent
selection is on having high fitness. If the tournament size is large, then there is high selection
pressure, meaning that the highest-fitness parents tend to be selected. This exploitative approach
gives faster convergence; however, the search is more likely to become stuck at a suboptimal

100

4.2. BACKGROUND CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

local maximum [102]. Conversely, a small tournament size will lead to greater exploration of the
search space at the cost of potentially slow convergence. A common modification to the genetic
algorithm is the inclusion of elitist selection, which involves adding some number of the fittest
parents to the child population at the start of each generation. This preserves the best elements;
however, the increased selection pressure can again increase the probability of convergence to a
suboptimal local maximum.

The crossover and mutation operations used depend on how elements of A are represented. A
standard representation involves encoding elements as bit strings of fixed length b. A common
and simple mutation operation in this case involves flipping any given bit in a child bit string with
some probability (this probability is often taken to be 1/b [82]). Standard crossover methods
include single-point, two-point, and uniform crossover. In single-point crossover, an index 1 ≤
i ≤ b is chosen, and the values beyond this point are exchanged between the two parent bit
strings to form two child bit strings. In two-point crossover, two such indices are selected and
all values between them are exchanged. In uniform crossover, each individual bit is exchanged
between the two parents with some probability pe.

In some cases, representations other than bit strings are more natural. For example, it may
be possible to represent elements as graphs. Crossover becomes more complicated with such a
representation. A potential method is presented in Ref. [103] and is as follows. First, the parent
graphs P1 and P2 are each split into two subgraphs, called fragments, to produce disconnected
parents P1D and P2D. To split a parent graph, first an edge {vi, vj} is chosen at random. In an
iterative process, the shortest path between vi and vj is determined, and a randomly selected
edge in this path is removed (in the first iteration, this will simply be the edge {vi, vj}). This
continues until no path exists between vi and vj . The connected component containing vi is the
fragment F1, and the subgraph induced by the remaining nodes is the fragment F2. In the next
step, disconnected children C1D and C2D are formed by exchanging a fragment, say F1, between
each of the parent graphs. The two fragments in each disconnected child are then combined
to produce children C1 and C2. This combination process involves iteratively selecting a node
from each fragment and joining them with an edge. The probability of a node being selected
is proportional to the difference in its current degree to its degree in its initial parent graph.
This process of adding edges is repeated until all of the nodes in one of the fragments, say F1,
have the same degree as they did in their initial parent graph. If a node vl in F2 has degree
lower than its initial degree by some amount δl, then in a process repeated δl times, it will be
connected to a randomly selected node in F1 with 50% probability. As outlined in Ref. [104], the
splitting process presented here has some undesirable attributes. Firstly, it tends to produce two
fragments with a vastly different number of nodes. Secondly, it often removes a large number of
edges from within the larger fragment; these are edges that did not have to be removed to split
the parent graph.

101

4.2. BACKGROUND CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

4.2.3 Classical codes

A classical channel is a map Φ : Ax → Ay, where Ax is the set of possible inputs and Ay is the
set of possible outputs. We are concerned with channels where the input and outputs are binary
[that is, channels for which Ax = Ay = GF(2)]. In this case, the action of the channel can be
expressed as

Φ(x) = x+ e = y, (4.3)

where x ∈ GF(2) is the channel input, y ∈ GF(2) is the channel output, and e ∈ GF(2) is an
error (or noise) symbol. A code can be used to protect against the noise introduced by the
channel. A length-n binary code is a subset C ⊆ GF(2)n whose elements are called codewords.
Codewords are transmitted as n sequential uses of Φ or, equivalently, as a single use of the
combined channel Φn, which is comprised of n copies of Φ. The action of Φn on some input
x ∈ C is

Φn(x) = x + e = y, (4.4)

where y ∈ GF(2)n is the channel output and e ∈ GF(2)n is an error “vector.” The weight of an
error is the number of nonzero components from which it comprised.

We say that a code C can detect a set of errors E ⊆ GF(2)n if

xi + e 6= xj (4.5)

for all e ∈ E and xi,xj ∈ C, where xi 6= xj . That is, the errors in E can be detected if they do
not map one codeword to another. Furthermore, we say that C can correct E if

xi + ek 6= xj + el (4.6)

for all ek, el ∈ E and xi,xj ∈ C, where xi 6= xj . This condition simply ensures that two
codewords cannot be mapped to the same y ∈ GF(2)n, in which case the transmitted codeword
cannot be inferred with certainty. C is said to have distance d if it can detect any error of weight
less than d but is unable to detect some weight-d error. Note that C can correct E if and only
if it can detect E + E = {ek + el : ek, el ∈ E}, meaning that a distance-d code can correct any
error of weight t = b(d−1)/2c or less. A length-n code C of size |C| = K and distance d is called
an (n,K) or (n,K, d) code. If C forms a vector space, then it is called linear and has K = 2k.
A linear code encodes the state of k bits and is called an [n, k] or [n, k, d] code.

Finding a code C of maximum size that detects an error set E can be expressed as a clique
finding problem. This is achieved by constructing a graph GE = (NE , EE) whose nodes are
potential codewords; that is, NE = GF(2)n. Two nodes xi,xj ∈ NE are connected by an edge
{xi,xj} ∈ EE if xi + xj /∈ E (that is, if there is not an error mapping one to the other). Any
clique C in GE is a code detecting E , and a code of maximum possible size is a maximum clique
in GE . Note that if a code C detects E , then so does C′ = x + C for any x ∈ C. As 0 ∈ C′ and
|C| = |C′|, this means there is always an optimal code (that is, a maximum-size code detecting
E) that contains the all-zero codeword. The clique search can be restricted to such codes by
taking NE = 0 ∪ [GF(2)n\E].

102

4.2. BACKGROUND CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

4.2.4 Quantum codes

The action of a quantum channel Φ on a quantum state described by the density operator ρ is

Φ(ρ) =
∑
k

AkρA
†
k, (4.7)

where the Ak, called Kraus operators, satisfy
∑
k A
†
kAk = I (the identity operator) [14]. The

channel can be interpreted as mapping ρ 7→ AkρA
†
k (up to normalization) with probability

tr(AkρA†k) [6]. If ρ = |φ〉〈φ| (that is, if the input state is pure), then this becomes the mapping
|φ〉 7→ Ak|φ〉 (up to normalization) with corresponding probability 〈φ|A†kAk|φ〉. In this paper,
we are interested in qubit systems; that is, systems where states |φ〉 belong to a two-dimensional
Hilbert space H ∼= C2. Similar to the classical case, the noise introduced by a quantum channel
can be protected against by employing a code. A quantum (qubit) code of length n is a subspace
Q ⊆ (C2)⊗n. Codewords |φ〉 ∈ Q are transmitted across the combined n-qubit channel Φ⊗n.

Suppose a code Q has an orthonormal basis B = {|φ1〉, . . . , |φK〉}, and take E = {E1, . . . , Er} to
be the basis for some complex vector space of linear n-qubit operators (called error operators).
We say that Q can detect any error in the span of E if

〈φi|E|φj〉 = CEδij (4.8)

for all E ∈ E and |φi〉, |φj〉 ∈ B, where CE is a scalar that depends only on E [15]. Furthermore,
we say that Q can correct any error in the span of E if

〈φi|E†kEl|φj〉 = Cklδij (4.9)

for all Ek, El ∈ E and |φi〉, |φj〉 ∈ B, where C is an r×r Hermitian matrix [85]. The weight of an
error E is the number of qubits on which it acts. Q has distance d if it can detect any error of
weight less than d but not some weight-d error. Similar to the classical case, a code can correct
E if and only if it can detect E†E = {E†kEl : Ek, El ∈ E}, meaning that a distance-d quantum
code can also correct any error of weight t = b(d− 1)/2c or less. A length-n code of dimension
K and distance d is called an ((n,K)) or ((n,K, d)) code (the double brackets differentiate from
the classical case). A code Q correcting E is called nondegenerate if the spaces EkQ and ElQ
are linearly independent (that is, their intersection is trivial) for any Ek, El ∈ E , where Ek 6= El.
If all such spaces are orthogonal, then Q is called pure.

The Pauli matrices in the computational {|0〉, |1〉} basis are

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (4.10)

X can be viewed as a bit-flip operator as X|0〉 = |1〉 and X|1〉 = |0〉. Z can be viewed as a phase
flip as Z|0〉 = |0〉 and Z|1〉 = −|1〉 . Y = iXZ can be viewed as a combined bit and phase flip.
The Pauli matrices are Hermitian, unitary, and anticommute with each other. Furthermore,
they form the group

P1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}=〈X,Y, Z〉. (4.11)

103

4.2. BACKGROUND CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

called the Pauli group. The n-qubit Pauli group Pn consists of all n-fold tensor product combi-
nations of elements of P1. For example, P8 contains the element I ⊗ I ⊗X ⊗ I ⊗ Y ⊗Z ⊗ I ⊗ I,
which we can write more compactly asX3Y5Z6. The weight w(g) of some g ∈ Pn is the number of
elements in the tensor product that are not equal to the identity up to phase. The commutation
relations of the Pauli matrices mean that elements of Pn must either commute or anticommute,
with two elements anticommuting if their nonidentity components differ in an odd number of
places. The Pauli matrices along with the identity form a basis for the complex vector space of
all 2× 2 matrices. It therefore follows that

Er = {E = σ1 ⊗ · · · ⊗ σn : σi ∈ {I,X, Y, Z} andw(E) ≤ r}, (4.12)

is a basis for all n-qubit errors of weight less than or equal to r. An equivalent definition is
Er = {E1 . . . Er : Ei ∈ E1}; that is, Er is the set of all r-fold products of elements of E1, which
can be written as E1 = {I,Xi, Yi, Zi}, where 1 ≤ i ≤ n. It is sometimes convenient to express
some E ∈ Pn up to phase as E ∝ Xu1Zv1 ⊗ · · · ⊗ XunZvn = XuZv, where u = (u1, . . . , un),
v = (v1, . . . , vn) ∈ GF(2)n.

Two n-qubit codes Q and Q′ are local unitary (LU) equivalent if Q′ = UQ for some U ∈ U(2)⊗n.
These codes will have the same dimension as if B = {|φ1〉, . . . , |φK〉} is an orthonormal basis for
Q, then B′ = UB = {U |φ1〉, . . . , U |φK〉} is an orthonormal basis for Q′. It follows from Eq. (4.8)
that Q′ detects the error set E if and only if Q detects the LU-equivalent error set E ′ = U †EU .
Furthermore, E is a basis for all errors of weight less than d if and only if E ′ is also such a basis.
Therefore, Q and Q′ have the same distance; that is, they are both ((n,K, d)) codes. If two
codes differ by a LU operator and/or permutation of qubit labels, which also has no effect on
the size or distance of the code, then they are called equivalent codes. The normalizer of P1

in U(2) is the single-qubit Clifford group C1 = {U ∈ U(2) : U †P1U = P1}. The n-qubit local
Clifford group Cn1 is comprised of all possible n-fold tensor products of elements from C1. Two
codes are local Clifford (LC) equivalent if they are LU equivalent for some U ∈ Cn1 ⊂ U(2)⊗n.

Stabilizer codes (also called additive codes) are defined by an abelian subgroup S < Pn, called
the stabilizer, that does not contain −I [15]. The code Q is the space of states that are fixed
by every element si ∈ S; that is,

Q = {|φ〉 ∈ (C2)⊗n : si|φ〉 = |φ〉 ∀ si ∈ S}. (4.13)

The requirement that −I /∈ S both means that no s ∈ S can have a phase factor of ±i, and that
if s ∈ S, then −s /∈ S. If S is generated by M = {M1, . . . ,Mm} ⊂ Pn, then it is sufficient (and
obviously necessary) for Q to be stabilized by every Mi. Assuming that the set of generators
is minimal, it can be shown that dim(Q) = 2n−m = 2k [6]; that is, Q encodes the state of a
k-qubit system. An n-qubit stabilizer code with dimension K = 2k and distance d is called an
[[n, k]] or [[n, k, d]] code.

An n-qubit stabilizer state |S〉 is an [[n, 0, d]] code defined by a stabilizer S with n generators.
The distance of a stabilizer state is defined to be equal to the weight of the lowest nonzero weight
element in S. A graph state |G〉 is a stabilizer state defined by a graph G ∈ Dn. Each node i

104

4.2. BACKGROUND CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

corresponds to a qubit and is also associated with a stabilizer generator

Mi = XiZN (i) = Xi

∏
j∈N (i)

Zj . (4.14)

Each graph state |G〉 defines a basis B = {Zw|G〉 : w ∈ GF(2)n} for (C2)⊗n [105]. An error
E = Xi maps the graph state |G〉 to

Xi|G〉 = Xi(XiZN (i))|G〉 = ZN (i)|G〉 = Zri |G〉, (4.15)

where ri is the ith row of the adjacency matrix for G. That is, an X error applied at node i is
equivalent to Z errors being applied at its neighbors; this is called the X − Z rule [106]. It can
be shown that every stabilizer state is LC equivalent to a graph state [86, 87, 88]. Two graph
states |G1〉 and |G2〉 are the same up to a relabeling of qubits if and only if their corresponding
graphs G1 and G2 are isomorphic. Furthermore, |G1〉 and |G2〉 are LC equivalent if and only if
G1 and G2 are LC equivalent [86]. Therefore, |G1〉 and |G2〉 are equivalent (as quantum codes)
if G1 and G2 are LC isomorphic (the converse does not necessarily hold as two states can be LU
equivalent without being LC equivalent [107]).

4.2.5 CWS codes

The family of codeword stabilized (CWS) codes contains all stabilizer codes as well as many of
the best known nonadditive codes [32, 33]. An ((n,K)) CWS code Q is defined using an n-qubit
stabilizer state |S〉 and a set of K word operators W = {W1, . . . ,WK} ⊂ Pn. In particular, Q is
the span of the basis codewords |Wi〉 = Wi|S〉. Note that for the |Wi〉 to actually form a basis,
no two word operators can differ only by a stabilizer element; that is, it cannot be the case that
WiWj ∈ S̄ = ∪α∈{±1,±i}αS for any Wi 6= Wj . For a CWS code, the criterion for detecting an
error set E becomes

〈Wi|E|Wj〉 = 〈S|W †i EWj |S〉 = CEδij (4.16)

for all E ∈ E and Wi,Wj ∈ W. If E contains only Pauli errors E ∈ Pn, then

〈S|W †i EWj |S〉 =

0 if W †i EWj /∈ S̄,

α if W †i EWj ∈ αS,
(4.17)

where α ∈ {±1,±i}. Therefore, the i 6= j case of Eq. (4.16) holds for some E ∈ E if and only if

W †i EWj /∈ S̄ (4.18)

for all Wi,Wj ∈ W, where Wi 6= Wj . Furthermore, the i = j case holds for some E ∈ E if and
only if either

W †i EWi /∈ S̄ (4.19)

or

W †i EWi ∈ αS (4.20)

for all Wi ∈ W and some particular α ∈ {±1,±i}.

105

4.2. BACKGROUND CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

It follows from the LC equivalence of every stabilizer state to a graph state that every CWS code
is LC equivalent to one based on a graph state |G〉 with word operators of the form Wi = Zxi

[32]. Such a code is called a standard form CWS code, and its basis codewords are simply
elements of the graph basis defined by G. The set {x1, . . . ,xK} ⊆ GF(2)n forms a classical
binary code C, and without loss of generality, we can take x1 = 0 [32]. It can be shown that if
C is linear, then the CWS code is additive [32], whereas if C is not linear, then the code may
be additive or nonadditive [33] (although if K 6= 2k, then the CWS code must obviously be
nonadditive). The effect of an error E ∝ XuZv on one of the basis codewords |Wi〉 = Zxi |G〉
follows from the X − Z rule, with

E|Wi〉 ∝ XuZvZxi |G〉

∝ ZvZxiXu|G〉

= ZvZxiZuΓ|G〉

= ZvZuΓZxi |G〉

= ZClG(E)|Wi〉, (4.21)

where Γ is the adjacency matrix for G and

ClG(E ∝ XuZv) = v + uΓ. (4.22)

Therefore, the effect of E ∝ XuZv is equivalent to that of E′ = ZClG(E), where ClG(E) ∈ GF(2)n

is a classical error induced by the graph. It follows from this equivalence that 〈Wi|E|Wj〉 ∝
〈Wi|ZClG(E)|Wj〉, which means that Eq. (4.18) is satisfied when

ZxiZClG(E)Zxj /∈ S̄. (4.23)

For a graph state, the only stabilizer element with no X component is the identity I = Z0.
Equation (4.23) therefore reduces to xi + ClG(E) 6= xj , which is simply the classical error
detection criterion of Eq. (4.5). This means that an error E can be detected only if C detects
the classical error ClG(E). Following the same reasoning, Eq. (4.19) becomes xi+ClG(E) 6= xi,
which reduces to ClG(E) 6= 0. Equation (4.20) becomes

ZxiEZxi ∈ αS, (4.24)

which reduces to E ∈ αS for x1 = 0. If there is some Wi = Zxi that anticommutes with E,
then Eq. (4.24) becomes E ∈ −αS. This would mean that both α−1E ∈ S and −α−1E ∈ S,
from which it follows that −I ∈ S. This cannot be the case as S is a stabilizer. Therefore, to
satisfy Eq. (4.20), it must be the case that [Zxi , E] = 0 for all xi ∈ C. For E ∝ XuZv, this
condition is equivalent to requiring xi ·u = 0 for all xi ∈ C, were a · b =

∑
i aibi is the standard

Euclidean inner product. In summary, a standard form code detects E ∝ XuZv ∈ E if

xi + ClG(E) 6= xj (4.25)

for all xi,xj ∈ C, where xi 6= xj , and either

ClG(E) 6= 0 (4.26)

106

4.2. BACKGROUND CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

or

xi · u = 0 (4.27)

for all xi ∈ C.

Designing a CWS code Q for a given graph G and error set E consists of finding a classical code
C that satisfies Eqs. (4.25)-(4.27) for every E ∈ E . It is convenient to express this as a clique
finding problem as outlined in Ref. [33]. First, the set of classical errors

ClG(E) = {ClG(E) : E ∈ E} (4.28)

induced by the graph is determined. Also required is the set

DG(E) = {x ∈ GF(2)n : ClG(E) = 0 and

x · u 6= 0 for someE ∝ XuZv ∈ E}. (4.29)

These are elements of GF(2)n that cannot be included in the code as they violate Eqs. (4.26)
and (4.27). An algorithm for efficiently determining ClG(E) and DG(E) is given in Ref. [33]. A
classical code C satisfying Eqs. (4.25)-(4.27) is a clique in the graph GE = (NE , EE) with

NE = 0 ∪ {GF(2)n\[ClG(E) ∪DG(E)]} (4.30)

and EE defined by the classical error set ClG(E) as outlined in Sec. 4.2.3. That is, two nodes
xi,xj ∈ NE are connected by an edge {xi,xj} ∈ EE if xi + xj /∈ ClG(E). If DG(E) = ∅, then for
all E 6∝ I ∈ E , it must be the case that ClG(E) 6= 0, and hence CE = 0 in Eq. (4.16). Therefore,
for E = E†kEl ∈ E where EkEl ∈ Pn and Ek 6∝ El, it follows that 〈Wi|E†kEl|Wj〉 = 0. That is, Q
is pure if DG(E) = ∅ [33, 108].

4.2.6 Code bounds

A simple, but relatively loose, upper bound on the dimension K of an n-qubit code of distance
d is given by the quantum singleton bound [85]

K ≤ 2n−2(d−1). (4.31)

A tighter limit on code size is given by the linear programming bound [41]. An ((n,K, d)) code
can exist only if there are homogeneous polynomials A(x, y), B(x, y), and S(x, y) of degree n
such that

A(1, 0) = 1, (4.32)

B(x, y) = KA

(
x+ 3y

2 ,
x− y

2

)
, (4.33)

S(x, y) = KA

(
x+ 3y

2 ,
y − x

2

)
, (4.34)

B(1, y)−A(1, y) = O(yd), (4.35)

A(x, y) ≥ 0, (4.36)

B(x, y)−A(x, y) ≥ 0, (4.37)

107

4.2. BACKGROUND CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

Table 4.2: Bounds on the maximum k of an [[n, k, d]] stabilizer code for 1 ≤ n ≤ 15 and
2 ≤ d ≤ 5.

n\d 2 3 4 5
1 − − − −
2 0 − − −
3 0 − − −
4 2 − − −
5 2 1 − −
6 4 1C 0 −
7 4 1 −A −
8 6 3 0 −
9 6 3 0 −
10 8 4 2 −
11 8 5 2 1
12 10 6 4 1C

13 10 7 4B 1
14 12 8 6 2− 3
15 12 9 6A 3A

S(x, y) ≥ 0. (4.38)

Here, C(x, y) ≥ 0 means that the coefficients of the polynomial C are non-negative, and O(yd)
is a polynomial in y with no terms of degree less than d. A pure ((n,K, d)) code can exist only
if Eqs. (4.32)-(4.38) can be satisfied along with

A(1, y) = 1 +O(yd). (4.39)

The linear programming bound is monotonic [109], meaning that if the constraints can be satis-
fied for some K, then they can be satisfied for all lower code dimensions too. This monotonicity
holds even if K is allowed to be a real number (rather than just an integer). Following Ref.
[110], we define the real number K(n, d) as the largest K > 1 for which Eqs. (4.32)-(4.38) can
be satisfied. The purity conjecture of Ref. [41] states that if the linear programming constraints
hold for K = K(n, d), then A(1, y) = 1 + O(yd). The content of this conjecture is simply that
the linear programming bound for pure codes is the same as for potentially impure codes. This
conjecture has been verified to hold for n ≤ 100 [110].

For stabilizer codes, bounds on maximum k are given in Table 4.2 for 1 ≤ n ≤ 15 and 2 ≤ d ≤ 5.
All lower bounds are given by the best known stabilizer codes (these codes can be found at Ref.
[111]). The unmarked upper bounds are given by the linear programming bound for K = 2k

(determined using yalmip [112]). If the lower and upper bounds coincide, then a single value
is given; otherwise, they are separated by a dash. In the cases marked “A,” the [[7, 0, 4]], [[15,
7, 4]], and [[15, 4, 5]] codes that do not violate the linear programming bound are excluded by
arguments given in Sec. 7 of Ref. [41]. In the case marked “B,” the [[13, 5, 4]] code that does not
violate the linear programming bound is excluded by the argument of Ref. [113]. The entries
marked “C” indicate cases where a code meeting the bound must be impure (also outlined in
Sec. 7 of Ref. [41]). An extended version of Table 4.2 for n ≤ 256 is available at Ref. [111].

Table 4.3 gives the bounds on maximum K for a potentially nonadditive ((n,K, d)) code where

108

4.3. SYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

Table 4.3: Bounds on the maximum size K of an ((n,K, d)) code for 1 ≤ n ≤ 15 and 2 ≤ d ≤ 5.
n\d 2 3 4 5

1 − − − −
2 1 − − −
3 1 − − −
4 4 − − −
5 A6 2 − −
6 16 2 1 −
7 A24− 26 2− 3 0− 1 −
8 64 8− 9 1 −
9 A96− 112 C12− 13 1 −
10 256 D24 4− 5 −
11 B386− 460 32− 53 4− 7 2
12 1 024 64− 89 16− 20 2
13 B1 586− 1 877 128− 204 16− 40 2− 3
14 4 096 256− 324 64− 102 4− 10
15 B6 476− 7 606 512− 580 64− 150 8− 18

1 ≤ n ≤ 15 and 2 ≤ d ≤ 5. All upper bounds are from the linear programming bound. The
lower bounds marked “A” are from the family of nonadditive ((2α + 1, 3 × 22α−3, 2)) codes of
Ref. [20]. Those marked “B” are from the family of ((4α + 2β + 3,Mαβ, 2)) codes of Ref. [21],
where β ∈ {0, 1} and

Mαβ =
α∑
i=0

(
4α+ 2β + 3

2i+ β

)
. (4.40)

The lower bounds marked “C” and “D” correspond to the ((9, 12, 3)) and ((10, 24, 3)) codes of
Refs. [18] and [19], respectively. All other lower bounds are given by the best known stabilizer
codes.

4.3 Symmetric codes

An ((n,K, d)) code must detect the set Ed−1 as defined in Eq. (4.12). Note that E1, and hence
Ed−1 more generally, is invariant under any permutation of the Pauli matrices X, Y , and Z

on any subset of qubits. As a result of this symmetry, we call ((n,K, d)) codes symmetric
codes. Furthermore, as outlined in Sec. 4.2.4, this symmetry means that if some code Q detects
Ed−1, then so does any equivalent code Q′. It is therefore sufficient to consider only standard
form codes when attempting to construct an optimal symmetric CWS code. Furthermore, we
need only consider standard form codes based on representatives from different elements of Ln.
However, as outlined in Sec. 4.2.1, the size of Ln appears to grow exponentially, and it has only
been enumerated for n ≤ 12. Furthermore, constructing an optimal classical code for a given
graph by finding a maximum clique is NP-hard as mentioned in Sec. 4.2.1. In this section, we
explore methods of code construction that address these two obstacles.

109

4.3. SYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

Table 4.4: The fraction of elements of Ln, Gn, and Dn that yield optimal K = 2n−2 codes for
even n ≤ 10 and d = 2. The values given for n = 8 and 10 are lower bounds.

n Ln Gn Dn
2 0.500 0.500 0.500
4 0.500 0.636 0.641
6 0.539 0.763 0.833
8 0.643 0.909 0.938
10 0.815 0.977 0.981

4.3.1 Distance-two codes

First we consider distance-two codes of even length. As outlined in Tables 4.2 and 4.3, there
are even-length stabilizer codes with k = n− 2 that saturate the singleton bound for n ≤ 14. In
fact, there are stabilizer codes that saturate the bound for all even n [20]. Despite this, there is
still some insight to be gained from constructing CWS codes with these parameters. For n ≤ 10,
it is feasible to exhaustively search Ln (that is, to construct a code based on a representative
of each element of Ln). Using the code size distribution over Ln, it is possible to determine
the distributions over Gn and Dn by counting the number of nonisomorphic and distinct graphs,
respectively, in each element of Ln (see Sec. 4.2.1). As an example, the code size distributions
for n = 6 are shown in Fig. 4.2. It can be seen that over 50%, 75%, and 80% of elements of L6,
G6, and D6, respectively, yield optimal K = 16 codes. The fraction of elements of Ln, Gn, and
Dn that yield optimal codes for even 2 ≤ n ≤ 10 is shown in Table 4.4. For 2 ≤ n ≤ 6, the clique
graphs generated are small enough for maximum cliques to be found using the exact algorithm
of Ref. [114]. For n ≥ 8, we have resorted to using the approximate PLS algorithm due to the
larger clique graphs. We have allowed the PLS algorithm 100 attempts, each of which used a
maximum of 1 000 selections (these are the default PLS parameters that we have employed). As
a result of having used an approximate clique finding algorithm, the values given in the n = 8
and 10 rows of Table 4.4 are a lower bounds. It can be seen that in each case, the fraction of
elements in Dn yielding an optimal code is greater than that of Gn, which in turn, is greater
than that of Ln. Furthermore, increasing n increases the fraction of optimal codes in all cases.
In particular, by n = 10, over 98% of distinct graphs yield a code with an optimal K = 256.
This trend suggests that for larger n, we are highly likely to find an optimal code even if we use
a randomly selected graph. This goes some way to explaining the results of Ref. [115], where
cycle graphs were shown to give optimal codes for even n ≤ 12.

The case of odd n is somewhat more interesting. Here, as shown in Ref. [20], the linear
programming bound reduces to

K ≤ 2n−2
(

1− 1
n− 1

)
. (4.41)

Stabilizer codes cannot saturate this bound and are restricted to k ≤ n − 3. Again, we can
construct codes based on an exhaustive search of Ln for n ≤ 11. For n = 3, a single element of
L3 yields an optimal K = 1 code. Similarly, a single element of L5 yields a code with K = 6,
which matches the size of the optimal code given in Refs. [17, 20]. For n = 7, there is more of
a spread in the code sizes as shown in Fig. 4.3. It can be seen that a large number of graphs

110

4.3. SYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0 2 4 6 8 10 12 14 16
0

0.25

0.5

0.75

1

F
ra

c
ti
o

n

Figure 4.2: Code size distributions for non-LC-isomorphic, nonisomorphic, and distinct graphs
in the case of n = 6 and d = 2.

yield codes with K = 16 or 22, which match the size of an optimal stabilizer code and the code
of Ref. [21], respectively. Furthermore, there are seven elements of L7 that yield codes with
K = 24, which match the size of the code of Ref. [20]. No graphs yield codes with K = 25 or
26 despite such codes not being excluded by the linear programming bound.

For n = 9, an exhaustive search of L9 is still feasible; however, we have done so using the
PLS clique finder, and as such, there may exist larger CWS codes than the ones reported here.
Similar to the n = 7 case, the majority of graphs gave codes with K = 64, 93, or 96, which
match the size of an optimal stabilizer code, the code of Ref. [21], and the code of Ref. [20],
respectively. However, we have also found seven elements of L9 that yield codes with K ≥ 97.
To increase the likelihood that we have found maximum-size codes for these seven graphs, we
have repeated the clique search for each of them using 10 000 attempts. This has resulted in
one K = 97 code, two K = 98 codes, and four K = 100 codes. Representatives of the elements
of Ln that yielded these codes are shown in Fig. 4.4. Note that we do not label the nodes
as isomorphic graphs yield equivalent codes. Given below each of the drawings is the graph in
graph6 format (see Ref. [92] for details). A classical code for each of these graphs is given in
the Supplemental Material [116] (this is the case for all codes presented in this paper). While
these K ≥ 97 codes are larger than any previously known codes, they do not saturate the linear
programming bound of K = 112.

For n = 11, we have performed an exhaustive search of L11 with an increased 10 000 PLS
selections to account for the larger cliques. Here, we have mostly obtained codes with K = 256,
384, or 386, which match the size of an optimal stabilizer code, the code of Ref. [20], and the
code of Ref. [21], respectively. We have also found 413 elements of L11 that yield codes with

111

4.3. SYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0 5 10 15 20 25
0

0.25

0.5

0.75

1

F
ra

c
ti
o

n

Figure 4.3: Code size distributions for non-LC-isomorphic, nonisomorphic, and distinct graphs
in the case of n = 7 and d = 2.

Table 4.5: Number of elements NK of L11 that gave codes of given size K with d = 2.
K 387 388 389 390 391 392 398 400 402 404 406 408 416
NK 51 11 1 1 2 54 2 207 1 74 1 6 2

K ≥ 387. As for the n = 9 case, we have repeated the clique search for these graphs using 10 000
attempts. The resulting code size distribution is given in Table 4.5. Representatives of elements
of L11 that yield codes with K ≥ 406 are shown in Fig. 4.5 (the remaining graphs are included
in the Supplemental Material [116]). Again, while these are the largest codes known, they do not
saturate the linear programming bound of K = 460. As Ln has not been enumerated for n ≥ 13,
we cannot continue this exhaustive search procedure for higher n. Any (nonexhaustive) search
of Gn or Dn is also impractical for n ≥ 13 due to the large clique graphs produced, which both
makes the clique search slow and reduces the likelihood that the clique found is of maximum
size.

Figure 4.6 shows the relationship between code size and clique graph order |NE | for 4 ≤ n ≤ 11.
It can be seen that the data are clustered by clique graph order; furthermore, in each case, the
graphs yielding the largest codes belong to the highest-|NE | cluster. This clustering behavior
can be explained by considering Eq. (4.30), which gives

|NE | = 2n + 1− |ClG(E)| − |DG(E)|+ |ClG(E) ∩DG(E)|. (4.42)

It follows from Eq. (4.29) that GF(2)n\DG(E) is the annihilator of E ′ = {E ∈ E : ClG(E) = 0}
and is therefore a subspace of GF(2)n. If dim[GF(2)n\DG(E)] = r ≤ n, then |DG(E)| = 2n− 2r,
which gives |NE | = 2r + 1− |ClG(E)|+ |ClG(E) ∩DG(E)|. The clusters therefore correspond to
different values of r. The codes in the highest-|NE | cluster are pure as they have DG(E) = ∅.
That this cluster contains codes of maximum size is not entirely surprising in light of the purity

112

4.3. SYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

H??OZAX

H???ON{ H‘GSYW~

H@O__^M HGCOSLf H@?@W~K H@GUC\N

Figure 4.4: Non-LC-isomorphic graphs that yield ((9, 97 ≤ K ≤ 100, 2)) codes.

JKO__[MczZ?

J??a?ucUcx? J?C__OBPNE? J??GOGB[Le? J?D?_ObhEE? JC‘@?STTPT_ J_C?pKg‘IH_

J???_OCG~w? J??G???qxn?

Figure 4.5: Non-LC-isomorphic graphs that yield ((11, 406 ≤ K ≤ 416, 2)) codes.

conjecture outlined in Sec. 4.2.6.

4.3.2 Distance-three codes

Distance-three codes are of practical interest as they allow for the correction of an arbitrary
single-qubit error. For n ≤ 11, we can exhaustively search Ln in the same way as we have for
the distance-two codes of the previous section. There are one and two elements of L5 and L6,
respectively, that give optimal K = 2 codes (note that all K = 2 CWS codes are additive [33]).
Similarly, there are 18 elements of L7 that yield K = 2 codes. As has been previously shown in
Ref. [33], although the linear programming bound does not exclude them, there are no ((7, 3, 3))
CWS codes. There are six elements of L8 that give K = 8 codes. No elements yield a K = 9
code despite such a code not being excluded by the linear programming bound. There are eight

113

4.3. SYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

10
0

10
1

1

2

3

4

10
0

10
1

2

4

6

10
0

10
1

10
0

10
1

10
0

10
1

10
2

10
0

10
1

10
0

10
1

10
2

10
0

10
1

10
0

10
1

10
2

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
0

10
2

10
0

10
1

10
2

10
3

10
0

10
2

Figure 4.6: Code size versus clique graph order for codes with 4 ≤ n ≤ 11 and d = 2.

elements of L9 that yield K = 12 codes, which match the size of the code presented in Ref. [18].
Again, no elements yield a K = 13 code despite such a code not being excluded by the linear
programming bound. An exhaustive search of L10 has previously been performed in Ref. [19],
where it was shown that a single element yields an optimal K = 24 code. We have exhaustively
searched L11 using the PLS clique finder. This has yielded 13 709 K = 32 codes, which match
the size of an optimal stabilizer code. No larger codes were found, which is somewhat surprising
given that the linear programming bound is K = 53.

Figure 4.7 shows the relationship between code size and clique graph order for distance-three
codes with 8 ≤ n ≤ 11. It can be seen that there is greater spread within the clusters compared
to the distance-two case of Fig. 4.6. According to Eq. (4.42), this can be attributed to an
increased variance in the size of ClG(E). Despite this increased variation, the graphs yielding
the best codes still belong to the highest-|NE | cluster in all four cases. Importantly, the best
codes are not necessarily given by the graphs with the highest clique graph order within this
cluster. For example, in the n = 10 case, the highest clique graph order cluster contains graphs
with 613 ≤ |NE | ≤ 739, while the graph yielding the K = 24 code only has |NE | = 679.

For n = 12, the size of L12 makes an exhaustive search somewhat prohibitive. We can reduce
the search space somewhat by considering the distribution of clique graph orders as shown in
Fig. 4.8. Note that by using Eq. (4.42), |NE | can be computed without actually constructing
the clique graph. Our previous observations regarding the relationship between code size and

114

4.3. SYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

10
0

10
1

2

4

6

8

10
0

10
1

10
2

10
0

10
1

10
0

10
1

10
2

10
0

10
1

10
0

10
1

10
2

10
3

10
0

10
1

Figure 4.7: Code size versus clique graph order for codes with 8 ≤ n ≤ 11 and d = 3.

0 500 1000 1500 2000 2500 3000 3500
0

0.01

0.02

F
ra

c
ti
o

n

Figure 4.8: Clique graph order distribution over L12 for codes with with d = 3.

clique graph order suggest that graphs yielding the best codes are highly likely to be found in
the |NE | > 3 000 cluster. We have randomly selected 50 000 of the 663 039 elements of L12 in
this cluster and constructed a code for each using the PLS clique finder. This has yielded 6 325
codes with K = 64, which match the size of an optimal stabilizer code. No larger codes were
found despite the linear programming bound not excluding codes with up to K = 89. We have
not pursued searches for n ≥ 13 codes as while the clique graphs produced are smaller than in
the d = 2 case, they are still large enough for maximum clique searches to be unreliable.

4.3.3 Distance-four codes

For d = 4, we are able to perform exhaustive searches of Ln for n ≤ 12. There are one, five, and
eight elements of L6, L8, and L9, respectively, that yield optimal K = 1 codes. As expected,
no elements of L7 give a nontrivial code (note that a K = 1 CWS code is a stabilizer state
and hence pure; such [[n, 0, d]] codes have previously been classified in [35]). There are 10 and
3 060 elements of L10 and L11, respectively, that give K = 4 codes, which match the size of an
optimal stabilizer code. No elements yield larger codes despite the linear programming bound
not excluding codes with up to K = 5 and 7, respectively. Unlike the d = 3 case, an exhaustive
search of L12 is feasible for d = 4 due to the smaller clique graphs. However, the clique graphs
are still large enough that we have resorted to using the PLS clique finding algorithm. This
search has yielded 1 482 codes with K = 16, which match the size of an optimal stabilizer code.
No larger codes were found despite the linear programming bound not excluding codes with up
to K = 20. The smaller clique graph sizes in the d = 4 case also make searching for codes with

115

4.3. SYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

F
ra

c
ti
o

n

10
-3

Figure 4.9: Clique graph order distribution over D13 for codes with with d = 4.

n = 13 and 14 feasible. For n = 13, we have randomly selected 100 000 graphs from D13 to
estimate the clique graph size distribution as shown in Fig. 4.9. 41 458 of these graphs belong to
the |NE | > 2 000 cluster. Of these, one yielded a K = 18 code, which is larger than an optimal
K = 16 stabilizer code.

To find more n = 13 codes with K > 16, we want a more reliable way of generating graphs
that yield a large clique graph. That is, we wish to search Dn for graphs yielding a large clique
graph in a way that is more efficient than a random search. We have found a genetic algorithm
to be effective in this respect. There are a number of ways we could implement mutation
and crossover in this algorithm. For mutation, we first select two nodes in the child graph at
random. If these two nodes are not connected by an edge, then one is added; otherwise, if
they are connected by an edge, then it is removed. If we represent the parent graphs as bit
strings, then we can use standard single-point, two-point, or uniform crossover. One way to
achieve this is to convert the upper triangular component of a parent adjacency matrix to a bit
string row by row. Alternatively, we can use a graph-based approach. However, the method of
Ref. [103] outlined in Sec. 4.2.2 is not appropriate for searching Dn as it is not guaranteed to
produce child graphs with n nodes. Furthermore, as previously mentioned, it tends to remove
an unnecessarily large number of edges when splitting the parent graphs into two fragments.
To address these issues, we propose splitting the parent graphs using a spectral bisection. In
particular, the nodes of a parent graph P are bisected into the sets N1 and N2, which define the
fragments F1 = P [N1] and F2 = P [N2]. A fragment is then exchanged between each parent to
form two disconnected children that are then connected following the method of Ref. [103]. An
example of this procedure on two n = 10 graphs is shown in Fig. 4.10.

We have run 100 genetic algorithm instances using each of the potential crossover methods to
compare their performance. In each instance, we have used a population size of N = 20, 100
generations, a crossover probability of pc = 0.9, a mutation probability of pm = 0.1, and a
tournament size of 10. We have also incorporated elitist selection, with the fittest two parent
graphs (that is, the two that yield the largest clique graphs) being added to the child population
at the start of each generation. The average order of the highest-order clique graph yielded in
each generation is shown in Fig. 4.11. It can be seen that single-point, two-point, and uniform
crossover (with pe = 0.5) all exhibit similar performance. However, their performance is also
matched by random crossover, where the two children are simply selected at random from Dn
with no input from the parents. As such, the increase in fitness with successive generations when
using these crossover methods is simply due to the selection pressure of the genetic algorithm.

116

4.3. SYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

Partition

Split

Exchange

Combine

Figure 4.10: Spectral crossover example for n = 10 graphs. Each parent graph is split into two
fragments according to a spectral bisection. These fragments are then exchanged and combined
to form two child graphs.

It can also be seen that spectral crossover gives significantly better performance than all other
methods. We have also tested the effect of population size when using spectral crossover. In
particular, we have tested population sizes of N = 10 and 40 in addition to the previously
considered N = 20 case. We have used a tournament size of half the population size in each
case and left all other parameters unchanged. It can be seen in Fig. 4.11 that, as expected,
increasing the population size increases the average maximum fitness. With clique graph order
only serving as an indicator of code size, it is not essential for the genetic algorithm to find
graphs that yield the absolute largest clique graphs. In fact, as was seen in the n = 10, d = 3
case, focusing solely on such graphs may mean that we miss the best code(s). With this in mind,
we have found using 50 generations and a population size of N = 10 to be a good compromise.
Using a modest population size and number of generations is also favorable from a run time
perspective as determining |NE | becomes more computationally expensive with increasing code
length and/or distance (both of which serve to increase the size of the error set).

The genetic algorithm we have outlined is quite exploitative. To make our search more explo-
rative, we run a large number of genetic algorithm instances, with a code being constructed
from the fittest graph found by each instance. For n = 13, we have run 50 000 such instances,
of which 352 yielded a K = 18 code and a further 175 gave a K = 20 code. The graphs that
yielded codes with K = 18 and 20 belong to 35 and 25 different elements of L13, respectively.
A representative from each of these elements is shown in Figs. 4.12 and 4.13. Note that the
graphs shown are not necessarily the exact ones found using the genetic algorithm; they are
LC-equivalent graphs that can be drawn clearly using the force-directed layout method of Ref.

117

4.4. ASYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

0 10 20 30 40 50 60 70 80 90 100

Generation

2800

2900

3000

3100

3200

3300

3400
M

a
x
im

u
m

 f
it
n

e
s
s

Single-point, N=20

Two-point, N=20

Uniform, N=20

Random, N=20

Spectral, N=10

Spectral, N=20

Spectral, N=40

Figure 4.11: Comparison of crossover methods for n = 13, d = 4 codes. The vertical axis shows
the fitness (the clique graph order |NE |) of the highest-fitness element of the child population
averaged over 100 genetic algorithm instances.

[117]. While these K = 18 and 20 codes are larger than any previously known codes, they do
not saturate the linear programming bound of K = 40. We have also run 50 000 instances of
the genetic algorithm for n = 14. 65 of these instances have yielded K = 64 codes, which match
the size of an optimal stabilizer code. We have not found any codes with K > 64 despite the
linear programming bound not excluding codes with up to K = 102.

4.3.4 Distance-five codes

For d = 5, one and five elements of L11 and L12, respectively, yield optimal K = 2 codes. For
13 ≤ n ≤ 15 we have run 50 000 genetic algorithm instances. 46 978 instances yielded a K = 2
code for n = 13, 452 instances yielded a K = 4 code for n = 14, and 14 instances yielded a
K = 8 code for n = 15. No larger codes were found despite the linear programming bound being
K = 3, 10, and 18, respectively. Note that the existence of a ((13, 3, 5)) CWS code has already
been excluded in Ref. [33] by the same argument that excluded the ((7, 3, 3)) code.

4.4 Asymmetric codes

A channel of physical interest is the amplitude damping channel

ρ→ A0ρA
†
0 +A1ρA

†
1, (4.43)

where

A0 =
(

1 0
0
√

1− γ

)
, A1 =

(
0 √

γ

0 0

)
. (4.44)

118

4.4. ASYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

Lc\HOCBDOjsF@| LGAH?GYeYe[HFx L?o?‘IHD‘gk\pn L_OGh?HC|JYqHy L??WxDHct@lHtG LOO?Y?td?qsQOr

L?Oo[‘PaZCdpkZ LP@KO‘?BWFELra LK_aGOBCGg‘JwX L_OgHbGCpcONBm LSO@?_LQ_Lgjkp L@C?\@@RKDEhon

LKK??KA__JHe{M L?@Kc?hERGa]wJ L?CGv@_?Yiovhk LO?GbAP@aO_v}B LAcs?C‘GE?HR@^ L_CG@?q_qwCxo|

L?OW@CA_hByc}B L?CcACw@OWwP{D LCGZC@@E_NkM‘^ LA?GONOI‘bsepp L_CAGOo‘]IETIr L?a__LJCvGLFDv

L@OMG?‘@SOaL{D LG_Oa?‘Xcs@k‘z L?_@CLEMEDIfMV LB?GOGk?sEyBw{ L?Sg?EO?{DmgwV L??_?b_Baq{[fc

L?C_?^OWCBYRJe L@EI?F??xWANwF L?KuACAD[XWMIZ L?c?ICb@F?ba{D L?E‘‘KIEI@wHo^

Figure 4.12: Non-LC-isomorphic graphs that yield ((13, 18, 4)) codes.

It can be shown [118, 15, 119] that a sufficient condition for correcting a single amplitude
damping error is the ability to detect

E{1} = {I,Xi, Yi, Zi, XiXj , XiYj , YiYj}, (4.45)

where 1 ≤ i, j ≤ n. This is not a necessary condition for correcting an amplitude damping
error. In fact, a code detecting E{1} can also correct a single A†1 error [90]. A code can correct
t amplitude damping errors if it can detect E{t}, which is comprised of all t-fold combinations
of elements from E{1}. E{t} is a subset of E2t, which is the set of errors that must be detected
to guarantee the ability to correct an arbitrary weight-t error. As a result, there is potential for
constructing codes correcting t amplitude damping errors that are larger than those correcting
t arbitrary errors. For example, the stabilizer codes presented in Ref. [15] detect E{1} and have
the parameters given in Table 4.6 (these values are taken from Ref. [120]). In all but the n = 8
case, these codes are larger than the size of an optimal d = 3 stabilizer code as given in Table
4.2. An exhaustive search for CWS codes detecting E{1} has been performed in Ref. [90] for

119

4.4. ASYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

L?g?J?[S_eskpe L??SN?[HqRBVyN L@BPOSZ_QGkBeF LGCWOGBKSF[Eom LB?G?T@@kpsuwv L?O@?wo‘_Dw‘}J

L@?HHZ?CK‘hyqe L?D?Wwqo@@sBor L@IA?YoC_IhRo^ LGaA‘?[@wedhqN LGE@_GIDSZxM[w L?ScCCFSCqcuW\

LCGGODO@^KMM‘| L?CKA?BG[LMA~R L@?GS‘BL?\{Ipj L@EBCHBBbBBa_^ L??SIR‘Hg{bZyX L?OcGGP?}K~@M\

L??a_\OJFPPNdl LOIGHcOSI@‘\on LC?@ASeF?XYBwU LO?YQ?p@u@fJna L?CQGEHwHIbxyY L?@HOHHKKaqZwy

L?CD_XC@XBxB{g

Figure 4.13: Non-LC-isomorphic graphs that yield ((13, 20, 4)) codes.

Table 4.6: Size (K) of stabilizer codes presented in Ref. [15] and CWS codes presented in Ref.
[90] that detect E{1}.

n 4 5 6 7 8 9 10 11 12 13 14 15
Stabilizer 1 2 4 8 8 16 32 64 128 256 512 1 024
CWS − 2 4 8 10 20 − − − − − −

5 ≤ n ≤ 9. The size of these codes is also given in Table 4.6, where they can be seen to be larger
than the stabilizer codes for n = 8 and 9. Other nonadditive codes have also been constructed
that can correct a single amplitude damping error [121, 120]; however, they are not directly
comparable as they do so in a way that does not guarantee the detection of E{1} (that is, they
cannot correct an A†1 error).

E{t} is not invariant under all possible Pauli matrix permutations. As such, two LC-equivalent
CWS codes need not correct the same number of amplitude damping errors. This means that
considering standard form codes based on different elements of Ln no longer constitutes an
exhaustive search of all CWS codes. However, as suggested in Ref. [90], a search of Ln can be
made exhaustive by performing it for every LC-equivalent error set of the form U †E{t}U . These
sets are versions of E{t} with X, Y , and Z errors permuted on some subset of qubits. If E{t}

exhibited no symmetries under such permutations, then there would be 6n such sets. However,
as E{t} is invariant under the permutation X ↔ Y on any subset of qubits, this number is

120

4.4. ASYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

Table 4.7: Number of elements of Gn that yield optimal ((n,K)) CWS codes for the LC-
equivalent error sets E{1}, E{1}XZ , and E

{1}
Y Z . The values given for n = 9 are lower bounds.

((n,K)) E{1} E{1}XZ E{1}Y Z

((5, 2)) 5 9 3
((6, 4)) 11 16 0
((7, 8)) 114 157 181
((8, 10)) 0 4 36
((9, 20)) 0 6 44

reduced to 3n. Unfortunately, an exhaustive search is not practical for codes with n ≥ 10 as
even for n = 10, there are 310|L10| = 235 605 510 cases to test. In this section, we build on our
code construction methods to address this increase in the size of the search space.

4.4.1 Single amplitude damping error

To construct new codes for the amplitude damping channel with n ≥ 10, we first consider n ≤ 9
to determine what types of codes match the bounds provided in Ref. [90]. Initially, we restrict
consideration to standard form codes that detect E{1}. As E{1} (and E{t} more generally) is
invariant under a permutation of qubit labels, it is sufficient to consider one representative from
each element of Gn. The first column of Table 4.7 shows the number of elements of Gn for
5 ≤ n ≤ 9 that yield optimal standard form CWS codes. Note that the value given for n = 9 is
a lower bound as we have used the PLS clique finder in this case. It can be seen that while we
are able to construct optimal codes for 5 ≤ n ≤ 7, we are unable to do so for n = 8 and 9. To
remedy this, we consider the LC-equivalent error sets

E{1}XZ = {I,Xi, Yi, Zi, ZiZj , ZiYj , YiYj}, (4.46)

E{1}Y Z = {I,Xi, Yi, Zi, XiXj , XiZj , ZiZj}. (4.47)

These are versions of E{1} with the permutations X ↔ Z and Y ↔ Z, respectively, on every
qubit. More generally, we define E{t}XZ and E{t}Y Z to be versions of E{t} with the permutations
X ↔ Z and Y ↔ Z, respectively, on every qubit. Columns two and three of Table 4.7 show
that exhaustive searches of Gn using the error sets E{1}XZ and E{1}Y Z yield optimal codes for n = 8
and 9.

For n = 10, the size of G10 combined with the sizes of the clique graphs generated makes an
exhaustive search impractical. However, we can still determine the distribution of clique graph
sizes over Gn for the three error sets E{1}, E{1}XZ , and E

{1}
Y Z as shown in Fig. 4.14. For each of the

three error sets, 50 000 graphs in the |NE | > 600 cluster have been selected. In each case, all
50 000 graphs yielded K = 32 codes, which match the size of the stabilizer code presented in
Ref. [15].

For n = 11, an exhaustive search of G11 is impractical, even to simply determine clique graph
sizes. We have therefore run 50 000 instances of our genetic algorithm for each of the three error

121

4.4. ASYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

0

0.05

0.1

0

0.05

0.1

0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

F
ra

c
ti
o

n

Figure 4.14: Distribution of clique graph order over G10 for the error sets E{1}, E{1}XZ , and E
{1}
Y Z .

sets E{1}, E{1}XZ , and E
{1}
Y Z . For E{1}, this has yielded a K = 64 code in every case. These codes

match the size of the stabilizer code presented in Ref. [15]. For E{1}Y Z , 1 818 instances yielded
codes with K = 68, which are larger than the best known stabilizer codes. 28 of these graphs
are nonisomorphic and are shown in Fig. 4.15 (a simple circular node layout is used here as we
do not have the freedom of picking an LC-isomorphic graph that can be drawn clearly using
the force-directed layout method). For E{1}XZ , only nine instances yielded codes with K = 68;
however, there were also 71 instances that yielded codes with K = 80. Of these, two of the
K = 68 graphs are nonisomorphic and two of the K = 80 graphs are nonisomorphic; these
graphs are also shown in Fig. 4.15. For n = 12, applying the same genetic algorithm approach
has yielded codes with K = 128, which match the size of the stabilizer code presented in Ref.
[15]. In particular, of the 50 000 instances run for each error set, 21 535 gave a K = 128 code
for E{1}, 34 906 gave a K = 128 code for E{1}XZ , and 41 002 gave a K = 128 code for E{1}Y Z .

4.4.2 Two amplitude damping errors

As determined by exhaustive search in Ref. [90], there are no nontrivial CWS codes capable of
detecting the error set E{2} with n ≤ 8. For n = 9, the largest CWS code that can detect E{2}

has K = 2. Interestingly, an exhaustive search of G9 fails to yield any K = 2 codes detecting
E{2}. However, there are seven elements of G9 that yield K = 2 codes detecting E{2}XZ and 12
elements that yield K = 2 codes detecting E{2}Y Z . For n = 10, there are 32 elements of G10 that
yield a K = 2 code detecting E{2}, 309 that yield a K = 2 code detecting E{2}XZ , and 1 327 that
yield a K = 2 code detecting E{2}Y Z . There are no larger standard form n = 10 codes detecting
E{2}, E{2}XZ , or E

{2}
Y Z .

122

4.4. ASYMMETRIC CODES CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

J??H‘eKRE_? J??OQKeeFo? J??arATbRp_ J??y?cIw^r? J?@@CoM[C{? J?@@CoUBf@_

J?@@CoUYK{_ J?A?aKeeBO? J?C?IKeeFo? J?C?IKewCo? J?CarAD‘Zp_ J?DAL?w@to_

J?DPTB?BGe_ J?GQXcrr]Z_ J?P@gQ‘cPw? J?Ss[YL[zf_ J@?GYQo@v__ J@KsA?J@u@_

J@P@gQ@_Xw? JA?hcOo@}P_ JK?HOgoPkR_ JSP@?SECXw? JTP?OGB?xw? JW?KA?[Co}?

JW?OOKFeYr? JWCWoGA_YB? Jg?w?CRAto? Jo?OOpFHrp_

J‘??C\NJ_{_ J‘?CY[kFG^_

J????[M{^b? J~{CIKfDw^_

Figure 4.15: Nonisomorphic graphs yielding ((11, 68)) codes detecting E{1}Y Z , ((11, 68)) codes
detecting E{1}XZ , and ((11, 80)) codes detecting E{1}XZ .

123

4.5. CONCLUSION CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

Table 4.8: The number of genetic algorithm instances out of the 50 000 run that yielded an
((n,K)) code detecting the given error set.

((n,K)) E{2} E{2}XZ E{2}Y Z

((11, 4)) 2 14 0
((12, 4)) 45 912 36 275 43 225
((13, 8)) 38 475 33 163 44 151
((14, 16)) 3 467 5 840 13 148

J??HGpbcuX_ J?LPCREoxm_

J?GYdEiT]]? J?G\Qmy\UX_ J?HN‘hXeTH_ J?PTTgxVl\?

JGo_O}ULeF_ JK?{ATPIkL_ JQ?yCSXWkL_ JcG[?~aXjq_

Figure 4.16: Nonisomorphic graphs yielding ((11, 4)) codes detecting either E{2} or E{2}XZ .

As in the single-error-correcting case, any exhaustive search of Gn for n ≥ 11 is impractical. For
11 ≤ n ≤ 14, we have run 50 000 instances of the genetic algorithm outlined in Sec. 4.3.3 for
each of the three error sets E{2}, E{2}XZ , and E

{2}
Y Z . The best codes found have K = 4 for n = 11

and 12, K = 8 for n = 13, and K = 16 for n = 14. The number of genetic algorithm instances
yielding codes with these parameters is shown in Table 4.8. Note that nearly all of these codes
are stabilizer codes. For n ≤ 13, we have used an exact clique finder, whereas for n = 14, we
have used PLS. The n = 11 codes are interesting due to how difficult they are to find. The two
graphs found for E{2} are nonisomorphic, and eight of those found for E{2}XZ are nonisomorphic.
These graphs are shown in Fig. 4.16. It is easy to find graphs giving codes with K = 4 codes
for n = 12, K = 8 for n = 13, and K = 16 for n = 14 (they can be found quickly even with a
simple random search). However, to the best of our knowledge, no stabilizer codes with these
parameters have been previously published. Furthermore, they are all larger than an optimal
d = 5 stabilizer code that can correct two arbitrary errors. As such, we include graphs yielding
codes of these sizes for E{2}, E{2}XZ , and E

{2}
Y Z in Fig. 4.17.

4.5 Conclusion

We have demonstrated the effectiveness of a number of heuristic approaches to the construction
of CWS codes. We have shown that using an approximate maximum clique finding algorithm

124

4.5. CONCLUSION CHAPTER 4. HEURISTIC CONSTRUCTION OF. . .

KCOw?C‘GcAWA LpS_W_J?_A_C?B Mmln?CO@GO_M?Z?U_

KrDGpAA@OB?R LsOXJ?G@GCAL?U Mp]R?GG?_A_F?K?P_

KQlw?CbCuDWI L{KYGoEGm??L?V MQMiwA@?XAaKoEqD?

Figure 4.17: Graphs yielding ((12, 4)), ((13, 8)), or ((14, 16)) codes detecting one of E{2}, E{2}Y Z ,
or E{2}XZ .

makes finding larger codes practical. In particular, this has allowed us to find ((9, 97 ≤ K ≤ 100,
2)) and ((11, 387 ≤ K ≤ 416, 2)) codes that are larger than the best known nonadditive codes.
We have demonstrated a clustering of clique graph orders and shown a relationship between
clique graph order and code size. Furthermore, we have shown that graphs yielding large clique
graphs can be found using a genetic algorithm with a crossover operation based on spectral
bisection. This search strategy has yielded ((13, 18, 4)) and ((13, 20, 4)) codes, which are larger
than any previously known code. Finally, we have shown that good codes correcting amplitude
damping errors can be found by considering standard form codes that detect one of only three
of the 3n possible LC-equivalent error sets. Coupling this with the genetic algorithm approach,
we have found ((11, 68)) and ((11, 80)) codes capable of correcting a single amplitude damping
error. We have also found ((11, 4)), ((12, 4)), ((13, 8)), and ((14, 16)) stabilizer codes capable of
correcting two amplitude damping errors.

125

Chapter 5

Conclusion

This thesis has investigated new heuristic methods for the design of quantum codes and their
decoders. As previously noted, this investigation has been comprised of three main components,
corresponding the the papers located in Chapters 2 to 4. Here, a high-level review of the main
results is provided that aims to complement the more technical conclusions located in each
chapter. Future research directions are then detailed that build on these results.

5.1 Summary

One of the reasons that quantum low-density parity-check (QLDPC) codes are attractive is that
they allow the use of low-complexity belief propagation decoders [23]. However, the performance
of these decoders is typically somewhat less impressive than their classical counterparts. This
can be attributed, at least in part, to the large number of unavoidable short cycles in a QLDPC
code’s factor graph as well as the failure of belief propagation to address the degenerate nature
of quantum errors [25]. In Chapter 2, modified belief propagation decoders were developed with
the aim of mitigating these issues and hence providing improved decoding performance. While
several decoders were presented, central among them is the augmented decoder, a conceptually
simple decoder that has previously been proposed in the context of classical low-density parity-
check (LDPC) codes [45]. If decoding fails (in a detectable way), then the augmented decoder
iteratively reattempts decoding using a modified version of the code’s factor graph. This heuristic
modification involves simply duplicating a randomly selected subset of the graph’s check nodes.
Across a range of different QLDPC codes, it was demonstrated that the augmented decoder
exhibits a significantly reduced error rate at the cost of a typically negligible complexity increase;
furthermore, in each instance, the augmented decoder either outperformed or performed similarly
to other modified decoders proposed in literature [25, 44, 42].

For a number of quantum channels of physical interest, phase-flip errors occur far more frequently
than bit-flip errors [27, 28]. Analyzing the performance of stabilizer codes on these asymmetric
channels is complicated by the #P-completeness of decoding [16], and unlike codes for the

126

5.2. FUTURE RESEARCH CHAPTER 5. CONCLUSION

depolarizing channel, distance is not a useful proxy for decoding error rate. In Chapter 3,
new methods were developed for constructing good codes for asymmetric channels that address
these issues. It was first shown that the error rate of an optimal stabilizer decoder can be
approximated by considering only a small fraction the possible errors caused by the channel.
This approximation was then used to identify a number of cyclic stabilizer codes that perform
well on two different asymmetric channels, generalizing the result of Ref. [29]. Also demonstrated
was a heuristic for assessing the performance of a stabilizer code based on the error rate of an
associated binary classical code, which is several orders of magnitude faster to calculate and can
itself be approximated using a limited error set. Furthermore, it was shown that this heuristic
can be used as the basis for a hill-climbing search [a classic (meta)heuristic algorithm] that aims
to optimize the performance of this classical code. Such searches yielded a number of highly
performant stabilizer codes satisfying various structure constraints.

The family of codeword stabilized (CWS) codes [32, 33], which generalize the stabilizer codes,
provide perhaps the most promising framework for the design of nonadditive codes. However,
there are two major obstacles in constructing optimal CWS codes. The first of these is the NP-
hardness of the required clique search [37], and the second is the exponential growth with code
length in the number of inequivalent graphs on which a code can be based [34, 35, 36]. In Chapter
4, new methods for constructing CWS codes were developed that address these two obstacles.
In particular, it was shown that the complexity of the clique search can be mitigated, at least in
part, through the use of a heuristic clique finding algorithm. Using this approach, a number of
distance-two codes were found that are larger than any previously known codes. To deal with
the exponential growth of the search space, a similar approach was taken to that of Chapter
3 by first demonstrating a heuristic that can be used to assess graphs. In particular, it was
shown that those graphs yielding large codes typically yield clique graphs with a large number
of nodes. Motivated by this, a genetic algorithm [another classic (meta)heuristic algorithm] was
developed that searched for graphs yielding large clique graphs. This genetic algorithm also
built on the theme of heuristic graph modification introduced in Chapter 2 by making use of a
crossover algorithm based on spectral bisection, which was shown to outperform more standard
crossover operations. Using this search in tandem with the heuristic clique search, a number of
distance-four codes were found that are larger than any previously known codes. Also continued
was Chapter 3’s theme of asymmetric code construction by showing that the search strategy
used could be extended to codes correcting amplitude damping errors. This yielded a number
of best known codes correcting either one or two amplitude damping errors.

In conclusion, this thesis has made a number of contributions in the field of quantum code and
decoder design, and at a higher level, the nature of the methods used has demonstrated the
effectiveness of heuristic approaches to complex problems in quantum error correction.

5.2 Future research

The augmented decoders used in Chapter 2 modified the factor graph by selecting check nodes
for duplication at random. While the simplicity of this approach is attractive, it may be the

127

5.2. FUTURE RESEARCH CHAPTER 5. CONCLUSION

case that decoding performance can be improved by altering the selection method. For example,
it may be possible to use data from previous failed decoding attempts to inform the selection
of repeated check nodes for the next attempt. Alternatively, it may be more fruitful to perform
offline optimization of the set of modified factor graphs using a training set of errors, which
would involve a heuristic search similar to those employed in Chapters 3 and 4.

Also in Chapter 2, it was explained that decoding with a modified factor graph is equivalent
to employing a modified belief propagation algorithm on the standard factor graph. In particu-
lar, the marginal probability estimation and error to check message calculations were modified
according to Eqs. 2.65 and 2.66, respectively. There are a number of ways in which these mod-
ifications could be generalized; for example, allowing r(i) to take on values other than zero or
one would give control over the amount of feedback and/or message amplification. It would be
interesting to investigate whether such alterations yield improved decoding performance.

While effective, the hill-climbing search used in Chapter 3 is quite simple. There is potential for
more complex search algorithms to be able to find good codes faster, or to perhaps even find
better codes. For example, it may be beneficial to use a population based search that is more
similar to the genetic algorithm employed in Chapter 4. However, such a search would likely
still rely solely on mutation as it is difficult to envisage a meaningful crossover operation that
preserves the Abelian nature of the parent stabilizers.

The methods developed in Chapter 3 could be altered to permit searches for QLDPC codes.
This would involve replacing the decoding error rate calculation with a Monte Carlo–based
estimation of a belief propagation decoder’s error rate. In the case of classical LDPC codes, a
similar approach based on a genetic algorithm has recently yielded promising results [122].

The standard form CWS codes considered in Chapter 4 are the “graph codes” of Ref. [106],
which generalize naturally from two-dimensional qubits to d-dimensional qudits. These qudit
graph codes are based on multigraphs where any two nodes can be connected by up to d − 1
edges. By modifying the proposed genetic algorithm to search the space of such multigraphs,
which would involve a generalization of the spectral crossover operation, it may be possible to
find best known nonadditive codes on qudits.

128

Bibliography

[1] P. W. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and Factoring,”
in Proceedings 35th Annual Symposium on Foundations of Computer Science, Nov. 1994,
pp. 124–134, doi.org/10.1109/SFCS.1994.365700.

[2] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer,” SIAM Journal on Computing, vol. 26, no. 5, pp.
1484–1509, Oct. 1997, doi.org/10.1137/S0097539795293172.

[3] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings
of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Jul. 1996, pp.
212–219, doi.org/10.1145/237814.237866.

[4] C. H. Bennett and S. J. Wiesner, “Communication via One- and Two-Particle Operators
on Einstein-Podolsky-Rosen States,” Physical Review Letters, vol. 69, no. 20, pp. 2881–
2884, Nov. 1992, doi.org/10.1103/PhysRevLett.69.2881.

[5] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,
“Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-
Rosen Channels,” Physical Review Letters, vol. 70, no. 13, pp. 1895–1899, Mar. 1993,
doi.org/10.1103/PhysRevLett.70.1895.

[6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Informa-
tion: 10th Anniversary Edition. Cambridge, UK: Cambridge University Press, 2011,
doi.org/10.1017/CBO9780511976667.

[7] J. L. Park, “The Concept of Transition in Quantum Mechanics,” Foundations of Physics,
vol. 1, no. 1, pp. 23–33, Mar. 1970, doi.org/10.1007/BF00708652.

[8] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299,
no. 5886, pp. 802–803, Oct. 1982, doi.org/10.1038/299802a0.

[9] D. Dieks, “Communication by EPR devices,” Physics Letters A, vol. 92, no. 6, pp. 271–272,
Nov. 1982, doi.org/10.1016/0375-9601(82)90084-6.

[10] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Physical
Review A, vol. 52, no. 4, p. R2493, Oct. 1995, doi.org/10.1103/PhysRevA.52.R2493.

129

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/BF00708652
https://doi.org/10.1038/299802a0
https://doi.org/10.1016/0375-9601(82)90084-6
https://doi.org/10.1103/PhysRevA.52.R2493

BIBLIOGRAPHY BIBLIOGRAPHY

[11] J. Preskill, “Reliable quantum computers,” Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, vol. 454, no. 1969, pp. 385–410, Jan.
1998, doi.org/10.1098/rspa.1998.0167.

[12] J. Preskill, “Lecture notes for Physics 219: Quantum Computation,” the-
ory.caltech.edu/people/preskill/ph229.

[13] D. A. Lidar and T. A. Brun, Quantum Error Correction. Cambridge, UK: Cambridge
University Press, 2013, doi.org/10.1017/CBO9781139034807.

[14] K. Kraus, States, Effects and Operations: Fundamental Notions of Quantum Theory.
Berlin, Germany: Springer-Verlag, 1983, doi.org/10.1007/3-540-12732-1.

[15] D. E. Gottesman, “Stabilizer Codes and Quantum Error Correction,” Ph.D. disserta-
tion, California Institute of Technology, Pasadena, CA, USA, 1997, arxiv.org/abs/quant-
ph/9705052.

[16] P. Iyer and D. Poulin, “Hardness of Decoding Quantum Stabilizer Codes,” IEEE
Transactions on Information Theory, vol. 61, no. 9, pp. 5209–5223, Sep. 2015,
doi.org/10.1109/TIT.2015.2422294.

[17] E. M. Rains, R. H. Hardin, P. W. Shor, and N. J. A. Sloane, “A Nonadditive
Quantum Code,” Physical Review Letters, vol. 79, no. 5, pp. 953–954, Mar. 1997,
doi.org/10.1103/PhysRevLett.79.953.

[18] S. Yu, Q. Chen, C. H. Lai, and C. H. Oh, “Nonadditive Quantum Error-
Correcting Code,” Physical Review Letters, vol. 101, no. 9, p. 090501, Aug. 2008,
doi.org/10.1103/PhysRevLett.101.090501.

[19] S. Yu, Q. Chen, and C. H. Oh, “Graphical Quantum Error-Correcting Codes,” Sep. 2007,
arxiv.org/abs/0709.1780.

[20] E. M. Rains, “Quantum Codes of Minimum Distance Two,” IEEE Transactions on Infor-
mation theory, vol. 45, no. 1, pp. 266–271, Jan. 1999, doi.org/10.1109/18.746807.

[21] J. A. Smolin, G. Smith, and S. Wehner, “Simple Family of Nonadditive Quan-
tum Codes,” Physical Review Letters, vol. 99, no. 13, p. 130505, Sep. 2007,
doi.org/10.1103/PhysRevLett.99.130505.

[22] M. Grassl and M. Rötteler, “Quantum Goethals-Preparata Codes,” in 2008
IEEE International Symposium on Information Theory, Jul. 2008, pp. 300–304,
doi.org/10.1109/ISIT.2008.4594996.

[23] D. J. C. MacKay, G. Mitchison, and P. L. McFadden, “Sparse-Graph Codes for Quantum
Error Correction,” IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2315–
2330, Sep. 2004, doi.org/10.1109/TIT.2004.834737.

[24] J. A. McGowan and R. C. Williamson, “Loop Removal from LDPC Codes,” in
Proceedings 2003 IEEE Information Theory Workshop, Mar. 2003, pp. 230–233,
doi.org/10.1109/ITW.2003.1216737.

130

https://doi.org/10.1098/rspa.1998.0167
http://www.theory.caltech.edu/people/preskill/ph229/
http://www.theory.caltech.edu/people/preskill/ph229/
https://doi.org/10.1017/CBO9781139034807
https://doi.org/10.1007/3-540-12732-1
https://arxiv.org/abs/quant-ph/9705052
https://arxiv.org/abs/quant-ph/9705052
https://doi.org/10.1109/TIT.2015.2422294
https://doi.org/10.1103/PhysRevLett.79.953
https://doi.org/10.1103/PhysRevLett.101.090501
https://arxiv.org/abs/0709.1780
https://doi.org/10.1109/18.746807
https://doi.org/10.1103/PhysRevLett.99.130505
https://doi.org/10.1109/ISIT.2008.4594996
https://doi.org/10.1109/TIT.2004.834737
https://doi.org/10.1109/ITW.2003.1216737

BIBLIOGRAPHY BIBLIOGRAPHY

[25] D. Poulin and Y. Chung, “On the iterative decoding of sparse quantum codes,”
Quantum Information & Computation, vol. 8, no. 10, pp. 987–1000, Nov. 2008,
doi.org/10.26421/QIC8.10.

[26] A. Rigby, J. C. Olivier, and P. D. Jarvis, “Modified belief propagation decoders for quan-
tum low-density parity-check codes,” Physical Review A, vol. 100, no. 1, p. 012330, Jul.
2019, doi.org/10.1103/PhysRevA.100.012330.

[27] Z. W. E. Evans, A. M. Stephens, J. H. Cole, and L. C. L. Hollenberg, “Error correction
optimisation in the presence of X/Z asymmetry,” Sep. 2007, arxiv.org/abs/0709.3875.

[28] L. Ioffe and M. Mézard, “Asymmetric quantum error-correcting codes,” Physical Review
A, vol. 75, no. 3, p. 032345, Mar. 2007, doi.org/10.1103/PhysRevA.75.032345.

[29] A. Robertson, C. Granade, S. D. Bartlett, and S. T. Flammia, “Tailored Codes for
Small Quantum Memories,” Physical Review Applied, vol. 8, no. 6, p. 064004, Dec. 2017,
doi.org/10.1103/PhysRevApplied.8.064004.

[30] D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, “Ultrahigh Error Threshold for Surface
Codes with Biased Noise,” Physical Review Letters, vol. 120, no. 5, p. 050505, Jan. 2018,
doi.org/10.1103/PhysRevLett.120.050505.

[31] A. Rigby, J. C. Olivier, and P. D. Jarvis, “Heuristic construction of codeword
stabilized codes,” Physical Review A, vol. 100, no. 6, p. 062303, Dec. 2019,
doi.org/10.1103/PhysRevA.100.062303.

[32] A. Cross, G. Smith, J. A. Smolin, and B. Zeng, “Codeword Stabilized Quantum Codes,”
IEEE Transactions on Information Theory, vol. 55, no. 1, pp. 433–438, Jan. 2009,
doi.org/10.1109/TIT.2008.2008136.

[33] I. Chuang, A. Cross, G. Smith, J. Smolin, and B. Zeng, “Codeword stabilized quantum
codes: Algorithm and structure,” Journal of Mathematical Physics, vol. 50, no. 4, p.
042109, Apr. 2009, doi.org/10.1063/1.3086833.

[34] L. E. Danielsen, “On Self-Dual Quantum Codes, Graphs, and Boolean Functions,”
Master’s thesis, The University of Bergen, Bergen, Norway, 2005, arxiv.org/abs/quant-
ph/0503236.

[35] L. E. Danielsen and M. G. Parker, “On the classification of all self-dual additive codes over
GF(4) of length up to 12,” Journal of Combinatorial Theory, Series A, vol. 113, no. 7, pp.
1351–1367, Oct. 2006, doi.org/10.1016/j.jcta.2005.12.004.

[36] L. E. Danielsen, “Database of Self-Dual Quantum Codes,” ii.uib.no/~larsed/vncorbits.

[37] R. M. Karp, “Reducibility among Combinatorial Problems,” in Complexity of Computer
Computations. Boston, MA, USA: Springer, 1972, pp. 85–103, doi.org/10.1007/978-1-
4684-2001-2_9.

131

https://doi.org/10.26421/QIC8.10
https://doi.org/10.1103/PhysRevA.100.012330
https://arxiv.org/abs/0709.3875
https://doi.org/10.1103/PhysRevA.75.032345
https://doi.org/10.1103/PhysRevApplied.8.064004
https://doi.org/10.1103/PhysRevLett.120.050505
https://doi.org/10.1103/PhysRevA.100.062303
https://doi.org/10.1109/TIT.2008.2008136
https://doi.org/10.1063/1.3086833
https://arxiv.org/abs/quant-ph/0503236
https://arxiv.org/abs/quant-ph/0503236
https://doi.org/10.1016/j.jcta.2005.12.004
http://www.ii.uib.no/~larsed/vncorbits/
ii.uib.no/~larsed/vncorbits
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

BIBLIOGRAPHY BIBLIOGRAPHY

[38] A. Rigby, J. C. Olivier, and P. D. Jarvis, “Optimizing short stabilizer codes for
asymmetric channels,” Physical Review A, vol. 101, no. 3, p. 032326, Mar. 2020,
doi.org/10.1103/PhysRevA.101.032326.

[39] R. Gallager, “Low-Density Parity-Check Codes,” IRE Transactions on information theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962, doi.org/10.1109/TIT.1962.1057683.

[40] D. J. C. MacKay, “Good Error-Correcting Codes Based on Very Sparse Matrices,”
IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999,
doi.org/10.1109/18.748992.

[41] A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum Error Correc-
tion Via Codes Over GF(4),” IEEE Transactions on Information Theory, vol. 44, no. 4,
pp. 1369–1387, Jul. 1998, doi.org/10.1109/18.681315.

[42] Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “Fifteen Years of Quantum
LDPC Coding and Improved Decoding Strategies,” IEEE Access, vol. 3, pp. 2492–2519,
Nov. 2015, doi.org/10.1109/ACCESS.2015.2503267.

[43] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum Error Cor-
rection and Orthogonal Geometry,” Physical Review Letters, vol. 78, no. 3, pp. 405–408,
Jan. 1997, doi.org/10.1103/PhysRevLett.78.405.

[44] Y.-J. Wang, B. C. Sanders, B.-M. Bai, and X.-M. Wang, “Enhanced Feedback Iterative
Decoding of Sparse Quantum Codes,” IEEE Transactions on Information Theory, vol. 58,
no. 2, pp. 1231–1241, Feb. 2012, doi.org/10.1109/TIT.2011.2169534.

[45] A. Rigby, J. C. Olivier, H. C. Myburgh, C. Xiao, and B. P. Salmon, “Augmented decoders
for LDPC codes,” EURASIP Journal on Wireless Communications and Networking, vol.
2018, no. 1, p. 189, Aug. 2018, doi.org/10.1186/s13638-018-1203-5.

[46] N. Delfosse and J.-P. Tillich, “A decoding algorithm for CSS codes using the X/Z corre-
lations,” in 2014 IEEE International Symposium on Information Theory, Jun. 2014, pp.
1071–1075, doi.org/10.1109/ISIT.2014.6874997.

[47] E. Berlekamp, R. McEliece, and H. Van Tilborg, “On the Inherent Intractability of Certain
Coding Problems,” IEEE Transactions on Information Theory, vol. 24, no. 3, pp. 384–386,
May 1978, doi.org/10.1109/TIT.1978.1055873.

[48] R. W. Hamming, “Error Detecting and Error Correcting Codes,” The Bell System
Technical Journal, vol. 29, no. 2, pp. 147–160, Apr. 1950, doi.org/10.1002/j.1538-
7305.1950.tb00463.x.

[49] T. Etzion, A. Trachtenberg, and A. Vardy, “Which Codes Have Cycle-Free Tanner
Graphs?” IEEE Transactions on Information Theory, vol. 45, no. 6, pp. 2173–2181, Sep.
1999, doi.org/10.1109/18.782170.

[50] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge, UK: Cambridge
University Press, 2008, doi.org/10.1017/CBO9780511791338.

132

https://doi.org/10.1103/PhysRevA.101.032326
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/18.748992
https://doi.org/10.1109/18.681315
https://doi.org/10.1109/ACCESS.2015.2503267
https://doi.org/10.1103/PhysRevLett.78.405
https://doi.org/10.1109/TIT.2011.2169534
https://doi.org/10.1186/s13638-018-1203-5
https://doi.org/10.1109/ISIT.2014.6874997
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1109/18.782170
https://doi.org/10.1017/CBO9780511791338

BIBLIOGRAPHY BIBLIOGRAPHY

[51] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms. Cambridge,
UK: Cambridge University Press, 2003, inference.org.uk/mackay/itila.

[52] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Physical
Review A, vol. 54, no. 2, pp. 1098–1105, Aug. 1996, doi.org/10.1103/PhysRevA.54.1098.

[53] A. Steane, “Multiple-particle interference and quantum error correction,” Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.
452, no. 1954, pp. 2551–2577, Nov. 1996, doi.org/10.1098/rspa.1996.0136.

[54] I. B. Djordjevic, “Quantum LDPC Codes from Balanced Incomplete Block De-
signs,” IEEE Communications Letters, vol. 12, no. 5, pp. 389–391, May 2008,
doi.org/10.1109/LCOMM.2008.080083.

[55] R. C. Bose, “On the construction of balanced incomplete block designs,” Annals of Eu-
genics, vol. 9, no. 4, pp. 353–399, Dec. 1939, doi.org/10.1111/j.1469-1809.1939.tb02219.x.

[56] M. Hagiwara and H. Imai, “Quantum Quasi-Cyclic LDPC Codes,” in 2007 IEEE Interna-
tional Symposium on Information Theory, Jun. 2010, doi.org/10.1109/ISIT.2007.4557323.

[57] Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “Construction of Quantum LDPC
Codes From Classical Row-Circulant QC-LDPCs,” IEEE Communications Letters, vol. 20,
no. 1, pp. 9–12, Jan. 2016, doi.org/10.1109/LCOMM.2015.2494020.

[58] P. Tan and J. Li, “Efficient Quantum Stabilizer Codes: LDPC and LDPC-Convolutional
Constructions,” IEEE Transactions on Information Theory, vol. 56, no. 1, pp. 476–491,
Jan. 2010, doi.org/10.1109/TIT.2009.2034794.

[59] M. C. Davey, “Error-correction using low-density parity-check codes,”
Ph.D. dissertation, University of Cambridge, Cambridge, UK, 2000, infer-
ence.org.uk/mcdavey/papers/davey_phd.html.

[60] P. K. Sarvepalli, A. Klappenecker, and M. Rötteler, “Asymmetric quantum codes: con-
structions, bounds and performance,” Proceedings of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences, vol. 465, no. 2105, pp. 1645–1672, Mar. 2009,
doi.org/10.1098/rspa.2008.0439.

[61] S. A. Aly, “Asymmetric Quantum BCH Codes,” in 2008 International Con-
ference on Computer Engineering & Systems, Nov. 2008, pp. 157–162,
doi.org/10.1109/ICCES.2008.4772987.

[62] M. F. Ezerman, S. Jitman, S. Ling, and D. V. Pasechnik, “CSS-Like Constructions of
Asymmetric Quantum Codes,” IEEE Transactions on Information Theory, vol. 59, no. 10,
pp. 6732–6754, Oct. 2013, doi.org/10.1109/TIT.2013.2272575.

[63] L. Wang, K. Feng, S. Ling, and C. Xing, “Asymmetric Quantum Codes: Characterization
and Constructions,” IEEE Transactions on Information Theory, vol. 56, no. 6, pp. 2938–
2945, Jun. 2010, doi.org/10.1109/TIT.2010.2046221.

133

http://www.inference.org.uk/mackay/itila/
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1109/LCOMM.2008.080083
https://doi.org/10.1111/j.1469-1809.1939.tb02219.x
https://doi.org/10.1109/ISIT.2007.4557323
https://doi.org/10.1109/LCOMM.2015.2494020
https://doi.org/10.1109/TIT.2009.2034794
http://www.inference.org.uk/mcdavey/papers/davey_phd.html
http://www.inference.org.uk/mcdavey/papers/davey_phd.html
https://doi.org/10.1098/rspa.2008.0439
https://doi.org/10.1109/ICCES.2008.4772987
https://doi.org/10.1109/TIT.2013.2272575
https://doi.org/10.1109/TIT.2010.2046221

BIBLIOGRAPHY BIBLIOGRAPHY

[64] G. G. La Guardia, “Asymmetric quantum codes: new codes from old,” Quantum Infor-
mation Processing, vol. 12, no. 8, pp. 2771–2790, Mar. 2013, doi.org/10.1007/s11128-013-
0562-4.

[65] K. Guenda and T. A. Gulliver, “Symmetric and Asymmetric Quantum Codes,” In-
ternational Journal of Quantum Information, vol. 11, no. 05, p. 1350047, Sep. 2013,
doi.org/10.1142/S0219749913500470.

[66] W. C. Huffman, “Additive cyclic codes over F4,” Advances in Mathematics of Communi-
cations, vol. 1, no. 4, pp. 427–459, Nov. 2007, doi.org/10.3934/amc.2007.1.427.

[67] W. C. Huffman, “Additive cyclic codes over F4,” Advances in Mathematics of Communi-
cations, vol. 2, no. 3, pp. 309–343, Aug. 2008, doi.org/10.3934/amc.2008.2.309.

[68] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes.
Amsterdam, Netherlands: Elsevier, 1977, sciencedirect.com/bookseries/north-holland-
mathematical-library/vol/16.

[69] A. Luo, “Good Additive Cyclic Quantum Error-Correcting Codes,” Master’s thesis, Con-
cordia University, Montreal, Canada, 2004, spectrum.library.concordia.ca/8063.

[70] J. Napp and J. Preskill, “Optimal Bacon-Shor Codes,” Quantum Information & Compu-
tation, vol. 13, no. 5&6, pp. 490–510, May 2013, doi.org/10.26421/QIC13.3-4.

[71] D. P. DiVincenzo, D. W. Leung, and B. M. Terhal, “Quantum Data Hiding,”
IEEE Transactions on Information Theory, vol. 48, no. 3, pp. 580–598, Aug. 2002,
doi.org/10.1109/18.985948.

[72] J. Emerson, R. Alicki, and K. Życzkowski, “Scalable noise estimation with random unitary
operators,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 7, no. 10, pp.
S347–S352, Sep. 2005, doi.org/10.1088/1464-4266/7/10/021.

[73] C. Dankert, R. Cleve, J. Emerson, and E. Livine, “Exact and approximate unitary 2-
designs and their application to fidelity estimation,” Physical Review A, vol. 80, no. 1, p.
012304, Jul. 2009, doi.org/10.1103/PhysRevA.80.012304.

[74] M.-H. Hsieh and F. Le Gall, “NP-hardness of decoding quantum error-
correction codes,” Physical Review A, vol. 83, no. 5, p. 052331, May 2011,
doi.org/10.1103/PhysRevA.83.052331.

[75] K.-Y. Kuo and C.-C. Lu, “On the hardness of decoding quantum stabilizer codes under
the depolarizing channel,” in 2012 International Symposium on Information Theory and
its Applications, Oct. 2012, pp. 208–211, ieeexplore.ieee.org/document/6400919.

[76] K.-Y. Kuo and C.-C. Lu, “On the Hardnesses of Several Quantum Decoding Problems,”
Jun. 2013, arxiv.org/abs/1306.5173.

[77] F. Gaitan, Quantum Error Correction and Fault-Tolerant Quantum Computing. Boca
Raton, FL, USA: CRC Press, 2008, doi.org/10.1201/b15868.

134

https://doi.org/10.1007/s11128-013-0562-4
https://doi.org/10.1007/s11128-013-0562-4
https://doi.org/10.1142/S0219749913500470
https://doi.org/10.3934/amc.2007.1.427
https://doi.org/10.3934/amc.2008.2.309
https://www.sciencedirect.com/bookseries/north-holland-mathematical-library/vol/16
https://www.sciencedirect.com/bookseries/north-holland-mathematical-library/vol/16
https://spectrum.library.concordia.ca/8063/
https://doi.org/10.26421/QIC13.3-4
https://doi.org/10.1109/18.985948
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1103/PhysRevA.83.052331
https://ieeexplore.ieee.org/document/6400919
https://arxiv.org/abs/1306.5173
https://doi.org/10.1201/b15868

BIBLIOGRAPHY BIBLIOGRAPHY

[78] I. Djordjevic, Quantum Information Processing and Quantum Error Correction: An En-
gineering Approach. Oxford, UK: Elsevier, 2012, doi.org/10.1016/C2010-0-66917-3.

[79] A. M. Steane, “Simple quantum error-correcting codes,” Physical Review A, vol. 54, no. 6,
pp. 4741–4751, Dec. 1996, doi.org/10.1103/PhysRevA.54.4741.

[80] R. A. Brualdi, Introductory Combinatorics, 5th ed. Upper Saddle River, NJ, USA:
Pearson Education, 2010.

[81] G. E. Andrews and K. Eriksson, Integer Partitions. Cambridge, UK: Cambridge Univer-
sity Press, 2004, doi.org/10.1017/CBO9781139167239.

[82] S. Luke, Essentials of Metaheuristics. Morrisville, NC: Lulu, 2013,
cs.gmu.edu/ sean/book/metaheuristics.

[83] A. M. Steane, “Error Correcting Codes in Quantum Theory,” Physical Review Letters,
vol. 77, no. 5, pp. 793–797, Jul. 1996, doi.org/10.1103/PhysRevLett.77.793.

[84] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.7),
2019, sagemath.org.

[85] E. Knill and R. Laflamme, “Theory of quantum error-correcting codes,” Physical Review
A, vol. 55, no. 2, pp. 900–911, Feb. 1997, doi.org/10.1103/PhysRevA.55.900.

[86] M. Van den Nest, J. Dehaene, and B. De Moor, “Graphical description of the action
of local Clifford transformations on graph states,” Physical Review A, vol. 69, no. 2, p.
022316, Feb. 2004, doi.org/10.1103/PhysRevA.69.022316.

[87] M. Grassl, A. Klappenecker, and M. Rötteler, “Graphs, Quadratic Forms, and Quantum
Codes,” in Proceedings IEEE International Symposium on Information Theory, Jun. 2002,
p. 45, doi.org/10.1109/ISIT.2002.1023317.

[88] D. Schlingemann, “Stabilizer codes can be realized as graph codes,” Quantum Information
& Computation, vol. 2, no. 4, pp. 307–323, Jun. 2002, doi.org/10.26421/QIC2.4.

[89] W. Pullan, “Phased local search for the maximum clique problem,” Journal of Combina-
torial Optimization, vol. 12, no. 3, pp. 303–323, Aug. 2006, doi.org/10.1007/s10878-006-
9635-y.

[90] T. Jackson, M. Grassl, and B. Zeng, “Codeword Stabilized Quantum Codes for Asymmet-
ric Channels,” in 2016 IEEE International Symposium on Information Theory, Jul. 2016,
pp. 2264–2268, doi.org/10.1109/ISIT.2016.7541702.

[91] B. D. McKay and A. Piperno, “Practical graph isomorphism, II,” Journal of Symbolic
Computation, vol. 60, no. 0, pp. 94–112, Jan. 2014, doi.org/10.1016/j.jsc.2013.09.003.

[92] B. D. McKay and A. Piperno, nauty and Traces User’s Guide (Version 2.6), 2017, users.
cecs.anu.edu.au/~bdm/nauty.

135

https://doi.org/10.1016/C2010-0-66917-3
https://doi.org/10.1103/PhysRevA.54.4741
https://doi.org/10.1017/CBO9781139167239
https://cs.gmu.edu/~sean/book/metaheuristics/
https://doi.org/10.1103/PhysRevLett.77.793
https://www.sagemath.org
https://doi.org/10.1103/PhysRevA.55.900
https://doi.org/10.1103/PhysRevA.69.022316
https://doi.org/10.1109/ISIT.2002.1023317
https://doi.org/10.26421/QIC2.4
https://doi.org/10.1007/s10878-006-9635-y
https://doi.org/10.1007/s10878-006-9635-y
https://doi.org/10.1109/ISIT.2016.7541702
https://doi.org/10.1016/j.jsc.2013.09.003
https://users.cecs.anu.edu.au/~bdm/nauty/
users.cecs.anu.edu.au/~bdm/nauty
https://users.cecs.anu.edu.au/~bdm/nauty/
users.cecs.anu.edu.au/~bdm/nauty

BIBLIOGRAPHY BIBLIOGRAPHY

[93] F. Harary and E. M. Palmer, Graphical Enumeration. New York, NY, USA: Elsevier,
1973, doi.org/10.1016/C2013-0-10826-4.

[94] Q. Wu and J.-K. Hao, “A review on algorithms for maximum clique problems,” Eu-
ropean Journal of Operational Research, vol. 242, no. 3, pp. 693–709, May 2015,
doi.org/10.1016/j.ejor.2014.09.064.

[95] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness. New York, NY, USA: W.H. Freeman and Company, 1979.

[96] K. M. Hall, “An r-Dimensional Quadratic Placement Algorithm,” Management Science,
vol. 17, no. 3, pp. 219–229, Nov. 1970, doi.org/10.1287/mnsc.17.3.219.

[97] W. E. Donath and A. J. Hoffman, “Algorithms for partitioning of graphs and computer
logic based on eigenvectors of connection matrices,” IBM Technical Disclosure Bulletin,
vol. 15, no. 3, pp. 938–944, 1972.

[98] M. Fiedler, “A property of eigenvectors of nonnegative symmetric matrices and its appli-
cation to graph theory,” Czechoslovak Mathematical Journal, vol. 25, no. 4, pp. 619–633,
1975, dml.cz/dmlcz/101357.

[99] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning Sparse Matrices with Eigenvectors
of Graphs,” SIAM Journal on Matrix Analysis and Applications, vol. 11, no. 3, pp. 430–
452, Jul. 1990, doi.org/10.1137/0611030.

[100] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathematical Journal,
vol. 23, no. 2, pp. 298–305, 1973, dml.cz/dmlcz/101168.

[101] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing, vol. 4, no. 2, pp.
65–85, Jun. 1994, doi.org/10.1007/BF00175354.

[102] S. Legg, M. Hutter, and A. Kumar, “Tournament versus Fitness Uniform Selection,” in
Proceedings of the 2004 Congress on Evolutionary Computation, Jun. 2004, pp. 2144–2151,
doi.org/10.1109/CEC.2004.1331162.

[103] A. Globus, J. Lawton, and T. Wipke, “Automatic molecular design using evolutionary
techniques,” Nanotechnology, vol. 10, no. 3, pp. 290–299, Sep. 1999, doi.org/10.1088/0957-
4484/10/3/312.

[104] S. Stone, B. Pillmore, and W. Cyre, “Crossover and mutation in genetic algorithms using
graph-encoded chromosomes,” 2004, gpbib.cs.ucl.ac.uk/gecco2004/prof185.html.

[105] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Nest, and H.-J. Briegel, “Entanglement
in Graph States and its Applications,” in Quantum Computers, Algorithms and Chaos.
Amsterdam, Netherlands: IOS Press, 2005, pp. 115–218, doi.org/10.3254/978-1-61499-
018-5-115.

[106] S. Y. Looi, L. Yu, V. Gheorghiu, and R. B. Griffiths, “Quantum-error-correcting codes
using qudit graph states,” Physical Review A, vol. 78, no. 4, p. 042303, Oct. 2008,
doi.org//10.1103/PhysRevA.78.042303.

136

https://doi.org/10.1016/C2013-0-10826-4
https://doi.org/10.1016/j.ejor.2014.09.064
https://doi.org/10.1287/mnsc.17.3.219
https://dml.cz/dmlcz/101357
https://doi.org/10.1137/0611030
https://dml.cz/dmlcz/101168
https://doi.org/10.1007/BF00175354
https://doi.org/10.1109/CEC.2004.1331162
https://doi.org/10.1088/0957-4484/10/3/312
https://doi.org/10.1088/0957-4484/10/3/312
http://gpbib.cs.ucl.ac.uk/gecco2004/prof185.html
https://doi.org/10.3254/978-1-61499-018-5-115
https://doi.org/10.3254/978-1-61499-018-5-115
https://doi.org//10.1103/PhysRevA.78.042303

BIBLIOGRAPHY BIBLIOGRAPHY

[107] Z. Ji, J. Chen, Z. Wei, and M. Ying, “The LU-LC conjecture is false,” Sep. 2007,
arxiv.org/abs/0709.1266.

[108] Y. Li, I. Dumer, M. Grassl, and L. P. Pryadko, “Structured error recovery for code-
word-stabilized quantum codes,” Physical Review A, vol. 81, no. 5, p. 052337, May 2010,
doi.org/10.1103/PhysRevA.81.052337.

[109] E. M. Rains, “Monotonicity of the Quantum Linear Programming Bound,” IEEE
Transactions on Information Theory, vol. 45, no. 7, pp. 2489–2492, Nov. 1999,
doi.org/10.1109/18.796387.

[110] G. Nebe, E. M. Rains, and N. J. A. Sloane, Self-Dual Codes and Invariant Theory. Berlin,
Germany: Springer, 2006, doi.org/10.1007/3-540-30731-1.

[111] M. Grassl, “Bounds on the minimum distance of linear codes and quantum codes,” codeta-
bles.de/.

[112] J. Löfberg, “YALMIP : A toolbox for modeling and optimization in MATLAB,” in 2004
IEEE International Conference on Robotics and Automation, Sep. 2004, pp. 284–289,
doi.org/10.1109/CACSD.2004.1393890.

[113] J. Bierbrauer, R. Fears, S. Marcugini, and F. Pambianco, “The Nonexistence of a [[13, 5,
4]]-Quantum Stabilizer Code,” IEEE Transactions on Information Theory, vol. 57, no. 7,
pp. 4788–4793, Jul. 2011, doi.org/10.1109/TIT.2011.2146430.

[114] J. Konc and D. Janezic, “An improved branch and bound algorithm for the maximum
clique problem,” MATCH Communications in Mathematical and in Computer Chemistry,
vol. 58, no. 3, pp. 569–590, 2007, match.pmf.kg.ac.rs/content58n3.htm.

[115] W.-T. Yen and L.-Y. Hsu, “Optimal Nonadditive Quantum Error-Detecting Code,” Jan.
2009, arxiv.org/abs/0901.1353.

[116] See Supplemental Material at link.aps.org/supplemental/10.1103/PhysRevA.100.062303
for the graph and associated classical code for all the CWS codes.

[117] T. M. J. Fruchterman and E. M. Reingold, “Graph Drawing by Force-directed Place-
ment,” Software: Practice and Experience, vol. 21, no. 11, pp. 1129–1164, Nov. 1991,
doi.org/10.1002/spe.4380211102.

[118] M. Grassl, Z. Wei, Z.-Q. Yin, and B. Zeng, “Quantum Error-Correcting Codes for Am-
plitude Damping,” in 2014 IEEE International Symposium on Information Theory, Jun.
2014, pp. 906–910, doi.org/10.1109/ISIT.2014.6874964.

[119] A. S. Fletcher, P. W. Shor, and M. Z. Win, “Channel-Adapted Quantum Error Correction
for the Amplitude Damping Channel,” IEEE Transactions on Information Theory, vol. 54,
no. 12, pp. 5705–5718, Dec. 2008, doi.org/10.1109/TIT.2008.2006458.

[120] P. W. Shor, G. Smith, J. A. Smolin, and B. Zeng, “High Performance Single-Error-
Correcting Quantum Codes for Amplitude Damping,” IEEE Transactions on Information
Theory, vol. 57, no. 10, pp. 7180–7188, Oct. 2011, doi.org/10.1109/TIT.2011.2165149.

137

https://arxiv.org/abs/0709.1266
https://doi.org/10.1103/PhysRevA.81.052337
https://doi.org/10.1109/18.796387
https://doi.org/10.1007/3-540-30731-1
http://www.codetables.de/
http://www.codetables.de/
https://doi.org/10.1109/CACSD.2004.1393890
https://doi.org/10.1109/TIT.2011.2146430
http://match.pmf.kg.ac.rs/content58n3.htm
https://arxiv.org/abs/0901.1353
http://link.aps.org/supplemental/10.1103/PhysRevA.100.062303
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1109/ISIT.2014.6874964
https://doi.org/10.1109/TIT.2008.2006458
https://doi.org/10.1109/TIT.2011.2165149

BIBLIOGRAPHY BIBLIOGRAPHY

[121] R. Lang and P. W. Shor, “Nonadditive Quantum Error Correcting Codes Adapted to the
Ampltitude Damping Channel,” Dec. 2007, arxiv.org/abs/0712.2586.

[122] A. Elkelesh, M. Ebada, S. Cammerer, L. Schmalen, and S. Ten Brink, “Decoder-in-the-
Loop: Genetic Optimization-Based LDPC Code Design,” IEEE Access, vol. 7, pp. 141 161–
141 170, Sep. 2019, doi.org/10.1109/ACCESS.2019.2942999.

138

https://arxiv.org/abs/0712.2586
https://doi.org/10.1109/ACCESS.2019.2942999

	Cover
	Statements and declarations
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	Abstract
	Introduction
	Motivation
	Closed systems
	States
	Evolution
	Observables and measurement
	Multipartite states

	Open systems
	Density operators
	Multipartite states
	Channels

	Quantum codes
	A three-qubit code
	The Shor code
	General codes

	Thesis outline

	Modified belief propagation decoders for quantum low-density parity-check codes
	Introduction
	Background
	Classical codes
	Factor graphs and belief propagation
	Stabilizer codes
	Stabilizer code representations
	Belief propagation decoding for stabilizer codes

	Modified decoders
	Existing decoders
	Random perturbation
	Enhanced feedback
	Supernodes

	New decoders
	Adjusted
	Augmented
	Combined

	Simulation results
	Bicycle
	Depolarizing channel
	XZ channel

	BIBD
	Quasicyclic
	Bicyclelike
	Non-CSS A
	Non-CSS B

	Conclusion
	Appendix: Check node Fourier transform implementations
	Classical decoding
	GF(4) stabilizer decoding

	Optimizing short stabilizer codes for asymmetric channels
	Introduction
	Background
	Classical codes
	Cyclic codes
	Quantum channels
	Stabilizer codes

	Approximate FER calculation
	Limited error set
	Most likely error
	Most likely error only

	Code performance
	[[7,1]] codes
	Other parameters
	Hill climbing
	Multiobjective hill climbing
	Weight-four codes
	CSS codes
	Linear codes

	Conclusion

	Heuristic construction of codeword stabilized codes
	Introduction
	Background
	Undirected graphs
	Genetic algorithms
	Classical codes
	Quantum codes
	CWS codes
	Code bounds

	Symmetric codes
	Distance-two codes
	Distance-three codes
	Distance-four codes
	Distance-five codes

	Asymmetric codes
	Single amplitude damping error
	Two amplitude damping errors

	Conclusion

	Conclusion
	Summary
	Future research

	Bibliography

