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Abstract

Large Bayesian Vector Autoregressions (BVARs) have been a successful tool

in the forecasting literature and most of this work has focused on macroeconomic

variables. In this paper, we examine the ability of large BVARs to forecast the real

price of crude oil using a large dataset with over 100 variables. We find consistent

results that the large BVARs do not beat the BVARs with small and medium sizes

for short forecast horizons but offer better forecasts at long horizons. In line with

the forecasting macroeconomic literature, we also find that the forecast ability of the

large models further improves upon the competing standard BVARs once endowed

with flexible error structures.
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1 Introduction

In recent years, macroeconomists have greatly benefited from using large datasets as

having more information generally allows for better prediction of economic phenomena

and improves causal inference. To employ large datasets, two main alternative approaches

have been proposed in the literature. The first and the earlier approach primarily relies on

the use of a factor model as means of dimension reduction (see e.g. Geweke (1977); Stock

and Watson (2002); Bernanke, Boivin, and Eliasz (2005); McCracken and Ng (2016), and

many others).1 The second approach is to apply shrinkage priors in a Bayesian Vector

Autoregression (BVAR) to handle large dynamic systems (e.g. Bańbura, Giannone, and

Reichlin (2010); Koop (2013); Carriero, Clark, and Marcellino (2019); Chan (2020a), and

among others).2

Although the literature on the aforementioned approaches has rapidly expanded and

their benefits have been well established in forecasting macroeconomic and financial vari-

ables, we have observed little empirical work focusing on other important variables that

are also of interest to academic researchers, business practitioners, and government plan-

ners, such as the price of crude oil. The most notable study is Baumeister, Korobilis,

and Lee (2020) (henceforth BKL). This paper investigates the usefulness of using large

datasets to forecast oil prices and global petroleum consumption. More specifically, to

capture important information that relates to energy demand the paper considers a broad

range of indicators and compiles two sets of data. The first and medium dataset includes

16 variables and the second and large one contains 256 variables. Based on the factor

approach, they find that the first principle component extracted from the first dataset

is useful for forecasting oil prices while the corresponding one obtained from the larger

dataset is not. In this paper, we revisit this exercise. We question whether the useful-

ness of the large BVARs, as a valid alternative to the factor model, can still hold under

the large dataset constructed by BKL. We believe that this investigation is important,

as it shows how large BVARs can be used to overcome the problem of cross-correlated

idiosyncratic errors, which often arises in the factor model when the number of variables

is very large (Boivin and Ng, 2006). Indeed, as BKL mentions, when adding more series

from the same data category, the cross-correlation in the idiosyncratic errors tends to be

too large and thus the extracted factor is less useful for forecasting.

Our work not only complements the work by BKL but also contributes to the small

but growing literature, which explores the benefit of using large multivariate models

in forecasting energy and commodity prices. To that end, we obtain the forecasting

1For surveys and the usefulness of the factor model in economics, see Bai and Ng (2008) and Stock

and Watson (2016).
2A recent survey of the extensions of large BVARs can be found in Chan (2020b).
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performance for the real price of oil by firstly beginning with a set of small BVARs that

includes four core variables of the global oil market: global crude oil production, a proxy

of global oil inventories, the real price of crude oil and an index of global real economic

activity. The last variable is the variable of interest. While BKL respectively replaces

this variable with alternative proxies that are commonly used in the literature, as well

as factors extracted from their proposed datasets, we directly include their datasets in

our proposed models. We then consider BVARs with a set of selected 16 series as the

medium-sized specifications and with the second dataset as the large ones. To remain the

same sample period as in BKL, e.g. 1973.2-2018.8, we eliminate some series those only

start later and come up with a balanced panel of 108 variables in the large specifications.

This large system makes our paper relevant to recent studies also using large information

to forecast energy prices, for example, Ferrari, Ravazzolo, and Vespignani (2021) and

Gianfreda, Ravazzolo, and Rossini (2020). The former study uses a large dataset that

contains around 200 series for 33 countries and forecasts quarterly energy prices, including

the price of crude oil. Different from our approach, to deal with the large cross-sectional

dimension, they utilize a penalized maximum likelihood method to extract latent factors

and evaluate the forecasting performance through various factor model modifications.

The latter work evaluates the forecast ability of large BVARs but focuses on electricity

markets in Italy and Germany. Similar to our analysis, this study also considers some

forms of the BVAR model with flexible errors, which are discussed as follows.

In addition to employing large datasets, this paper also contributes to the fast-growing

literature on large BVARs by considering different model specifications that allow for more

flexible error covariance structures. Traditionally, the BVAR model is embedded within

standard error assumptions, e.g. homoscedastic, Gaussian, and serially independent.

However, recent extensions, such as heteroscedastic, non-Gaussian, and serially dependent

innovations, are found to be crucial features that enhance the forecasting power of the

BVAR (see, for example, Clark and Ravazzolo (2015); Carriero, Clark, and Marcellino

(2016); Chan (2020a); and Hou, Nguyen, and Zhang (2022)). For example, BKL considers

a specification that allows for stochastic volatility, one of the mentioned extensions, and

finds that the inclusion of this element can improve the forecast ability of oil prices for

long horizons. Similar conclusions are also found in forecasting electricity and natural

gas prices, see Gianfreda, Ravazzolo, and Rossini (2020) and Gao, Hou, and Nguyen

(2021), respectively. We extend BKL’s analysis further by taking other forms of flexible

disturbances, including common stochastic volatility, heavy tails, and dependent errors,

as well as the combinations of these features. It must be emphasized that, to our best

knowledge, this paper is the first to provide a multivariate analysis of crude oil prices

that takes into account almost all possible combinations of non-standard errors existing
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in the current literature.

Our forecasting exercises yield several intriguing results, highlighting the importance

of model sizes and error specifications. The findings are robust under alternative meas-

ures of crude oil, e.g. the U.S. refiner acquisition cost (RAC) of crude imports and the

Brent price, and also hold when oil production is replaced by a measure of petroleum

consumption. Overall, the main results indicate that the inclusion of flexible errors and

the use of large datasets improve point and density forecasts of real oil prices. Moreover,

their forecasting performance can be further enhanced by using these ingredients jointly,

especially with long-horizon forecasts. These results match those observed in forecasting

macroeconomic and financial variables, see Carriero, Clark, and Marcellino (2019) for

example.

Concerning the model sizes, we find that both point and density forecasts consistently

agree that the small BVAR models which include the four key variables outperform the

medium and large models at short-horizon forecasts for up to six months. However, at

longer horizons, the medium and large-sized BVAR models tend to forecast the real price

of oil better than their small counterparts. This finding is new in the oil forecasting liter-

ature but reflects those of Ferrari, Ravazzolo, and Vespignani (2021) and BKL, although

they employ different models. Ferrari, Ravazzolo, and Vespignani (2021), for example,

they find that their factor models only do well when predicting oil prices one quarter

ahead. Similarly, KBL also observes that the model based on the factor extracted from

their large dataset does not beat the corresponding models based on a small dataset and

even leads to a deterioration of the forecasting performance at long horizons. That said,

at long-horizon forecasts, the large-sized BVAR model becomes more helpful as compared

to the factor model in predicting oil prices.

In terms of model specifications, we find clear evidence that the models with flexible

structures of the error term can further improve forecast accuracy when compared to the

models with conventional error assumptions. In line with findings in BKL and Gianfreda,

Ravazzolo, and Rossini (2020), the results show that stochastic volatility is an important

ingredient, especially for long-horizon forecasts. In many cases, introducing the combin-

ation of stochastic volatility, dependent errors, and heavy tails can even further improve

forecast accuracy, confirming evidence established in the forecasting macroeconomic lit-

erature, such as Carriero, Clark, and Marcellino (2019), Chan (2020a) and Hou, Nguyen,

and Zhang (2022).

The rest of the paper is organized as follows. In Section 2 we describe the data used.

We then introduce in Section 3 alternative covariance structures that incorporate into

BVARs. Detailed forecast results and discussion are presented in Section 4. We report

the sensitivity analysis in Section 5 and Section 6 concludes the paper.
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2 Data

In this section, we briefly introduce the selected data used in this paper. Detailed de-

scriptions of the data, sources, and respective transformation methods can be found in

BKL and its online appendix. As discussed, the core variables of the global crude oil

markets entering our small BVARs consist of the percent change in global oil produc-

tion, an estimate of the change in global crude oil inventories, the log of the real price

of oil and a proxy of real global economic activity. In the main analysis, we evaluate the

forecasting performance of the real price of Brent and the forecasts for the U.S. refiner

acquisition cost (RAC) of crude oil imports are reported in the robustness check. We

also forecast the oil prices using the production- and consumption-based models, as in

BKL. The latter model is the specification that replaces oil production with a measure

of global petroleum consumption.

With regard to the proxy of global economic activity, BKL evaluates alternative indic-

ators that have been used in the oil literature, including a measure of dry-cargo shipping

rates developed by Kilian (2009), a real shipping cost factor constructed by Hamilton

(2021), a real commodity price factor suggested by Alquist, Bhattarai, and Coibion (2020)

and Delle Chiaie, Ferrara, and Giannone (2022), a global steel production factor proposed

by Ravazzolo and Vespignani (2020), and a world industrial production index developed

by Baumeister and Hamilton (2019). One of their key findings is that the index of world

industrial production is the most useful candidate for forecasting oil prices. In this paper,

therefore, we use this index as the main proxy of global real economic activity.

To investigate the forecast ability under different model sizes, we firstly consider a me-

dium size by replacing the measure of global energy demand with a set of series that BKL

use to construct their indicator of global economic conditions. To find a new indicator

that can better capture global economic conditions and thus relates to global demand for

energy, BKL carefully selects 16 series that span from 1973M1 to 2018M8 and cover eight

dimensions of the global economy: real economic activity, commodity prices, financial

indicators, transportation, uncertainty, expectations, weather, and energy-related meas-

ures. Note that, the first category still remains world industrial production that is used in

the small dataset. To obtain a balanced panel, we discard 5 series that only start later:

OECD consumer confidence index, long-run world oil price uncertainty, US consumer

expectation, and world spread between long-run, and short-run oil price expectations.

Therefore, our medium specification contains 14 variables. For the large specification,

we utilize the set of 256 variables considered in BKL. This large dataset incorporates

all possible disaggregated data from the eight categories above. After eliminating some

series that do not start in 1973M1, we obtain a balanced panel containing 108 variables.
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3 Competing Bayesian VARs

Table 1 summarizes the specifications considered in our analysis. In the following sections,

we first introduce the BVAR with conventional error assumptions and then the model

with idiosyncratic stochastic volatility (SV), common stochastic volatility (CSV), heavy

tailedness (e.g., Student’s t distribution), and serial dependence moving average error

(MA).

3.1 Standard VARs with Conventional Error Assumptions

We start from an expression of the standard VAR model, which can be written in a

reduced form of VAR with order p as below:

yt = b + B1yt−1 + · · ·+ Bpyt−p + εyt , εyt ∼ N (0,Σ), (1)

where yt = (y1t, · · · , ynt)′ denote an n×1 vector of endogenous variables in a BVAR, b is

an n× 1 vector of intercepts, and B1, · · · , Bp are n× n coefficient matrices, and Σ is an

n× n cross-sectional covariance matrix of VAR. In a standard VAR, εyt can be assumed

to be independent and identically Gaussian distributed (iid). In practice, Equation 1 can

be rewritten as below for parameter estimation:

yt = Xtβ + εyt , (2)

where Xt = In ⊗ [1, y′t−1, · · · , y′t−p] in which notation ⊗ denotes the Kronecker product,

and β is stacked by rows of [b,B1, ...,Bp]
′ with the size of (1 + np)n× 1.

Let x′t = (1, y′t−1, · · · , y′t−p) be a 1 × (1 + np) vector, when stacking the observations

over time T , we get X which is a T × (1 + np) matrix. Then we have:

Y = XB + E, (3)

where Y is yt stacked over time T , B = (b,B1, ...,Bp)
′ with a size of (1 + np) × n,

E = (εy1, · · · , ε
y
T )′, so that

vec(E) ∼ N (0,Σ⊗Ω), (4)

where Ω is the serial covariance matrix of the VAR model.

As mentioned, taking into account of improving model fitness and forecastability, the

standard BVAR model with iid Gaussian innovations can be extended in different ways to

capture important features of macroeconomic time series. In what follows, we introduce

these extensions in detail and consider those proposed models as flexible BVARs.

6



3.2 VARs with Idiosyncratic Stochastic Volatility

As in BKL, we also consider VAR models with idiosyncratic stochastic volatility (VAR-

SV). The framework of the VAR-SV model is obtained by extending equation (1) as

below:

yt = b + B1yt−1 + · · ·+ Bpyt−p + εyt , εyt ∼ N (0,Σt), (5)

where a Minnesota type of prior is used for the VAR coefficients (b,B1, . . . ,Bp). The

time-varying variance-covariance matrix Σt is assumed as Σt = B−10 diag(eh1,t , . . . , ehn,t)B−1
′

0 ,

where B0 is an unrestricted non-singular matrix. Each log-volatility process is specified

as the following stationary AR(1) process:

hi,t = φh,ihi,t−1 + εhi,t, εhi,t ∼ N (0, σ2
h,i), i = 1, . . . , n,

with hi,t ∼ N (0, σ2
h,i/(1− φ2

h,i)) and |φh,i| < 1.

3.3 VARs with a Common Stochastic Volatility

One of the most useful extensions of VARs is the adoption of a common stochastic

volatility (CSV) factor. There has been recognized that the volatilities of a wide range of

macroeconomic variables are time-varying and tend to move together (Carriero, Clark,

and Marcellino, 2016; Mumtaz and Theodoridis, 2018; Poon, 2018). However, standard

VARs with homoscedastic error, would not be able to capture this feature. The inclusion

of CVS error specification allows VARs to capture any common structural shifts in the

macroeconomic time series. In the modeling framework of VARs with CSV, we first

consider time-varying volatility. Suppose εyt ∼ N (0, ehtΣ), where h is the stochastic

volatility parameter and eht is the common stochastic volatility (Carriero, Clark, and

Marcellino, 2016). More specifically, h follows an AR(1) process:

ht = φhht−1 + εht , εht ∼ N (0, σ2
h), (6)

where |φh| < 1. In this assumption, the variances of all the variables share the same

stochastic volatility parameter which is a restrictive assumption. There is empirical

evidence that the volatilities of macroeconomic time series have a comovement (Carriero,

Clark, and Marcellino, 2016), thus, it is also a parsimonious assumption for parameter

estimation.

3.4 VARs with a CSV and t Errors

Recent empirical studies also show that the forecasting performance of macroeconomic

variables can be improved when a normal distribution is replaced by heavy-tailed distri-

bution, e.g. Student’s t distribution, in the covariance matrix of VARs. The importance
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of this extension is that when the model accounts for t-disturbances, this specification of

heavy-tailed innovations turns out to present good features, such as reducing the vari-

ation of estimates, dealing well with outliers, such as the Great Recession, and thus

providing good model fitness (e.g., Clark and Ravazzolo, 2015; Cross and Poon, 2016;

Chiu, Mumtaz, and Pinter, 2017). For VARs which can capture such fat tail events, the

distribution of error terms εyt has one more hyperparameter λt for t innovations:

εyt ∼ N (0, λte
htΣ), (7)

where λt ∼ IG(νλ/2,νλ/2) following an inverse-gamma distribution with degree of free-

dom parameter νλ, and λ1, ..., λT are independent from each other.

3.5 VARs with a CSV and MA(1) t Errors

Another property of macroeconomic variables that has been recognized is serially de-

pendent (Chan, 2013). To handle this property, the conventional assumption of serially

independent innovations can be replaced by a moving average of error terms. Following

Chan (2020b), for the serial dependence of covariance matrix over time, suppose the error

term εyt follows a heteroscedastic moving average innovation process. More precisely, we

assume εyt has an MA(1) stochastic volatility process:

εyt = ut +ψεut−1, ut ∼ N (0, λte
htΣ). (8)

Here, the covariance matrix Ω in Equation 4 has ((1 + ψ2
ε)λ1e

h1 , ..., (1 + ψ2
ε)λT e

hT )

along its main diagonal, (ψελ1e
h1 , ...,ψελT−1e

hT−1) above and below the main diagonal,

and 0 elsewhere.

For our forecasting exercise, we start with a BVAR model with conventional error

assumptions and then include the aforementioned features of the covariance structure

into this standard BVAR. We also consider possible combinations of these error struc-

tures. All models are estimated using Markov chain Monte Carlo method (MCMC), see

Appendix A.1 for details on simulation. The estimation results in our empirical studies

are all based on 10000 posterior samples obtained after a burn-in period of 5000. With

regard to priors, for comparison purposes, whenever possible we choose the same priors

for the common parameters across models. In particular, the Minnesota prior and the

natural conjugate prior is used for the standard VARs and flexible VARs respectively.

Details of values of the hyperparameter of these priors are reported in Appendix A.2.

8



4 Forecast Results

In this section, we perform a recursive out-of-sample forecasting exercise to evaluate

the performance of the proposed VARs in terms of point and density forecasts. For

expository purposes, in the analysis below, we focus on the performance of the models

listed in Table 1. It is worth noting that, with large systems as we do, the computational

cost of some settings, such as a model with idiosyncratic stochastic volatility across all

variables, is huge. Therefore, we only consider this feature in the small and medium

BVARs and employ fast algorithms that have been recently proposed in Chan (2020a)

and Chan (2021). Alternatively, we consider the model with common stochastic volatility.

Following BKL, we use the no-change forecast model as the benchmark for evaluating

the forecast ability of our proposed models. The lag length is set to p = 12 and the

parameters are estimated using data from 1973.2 to 1991.12 to forecast the log of oil

price for one-month-ahead, 3-month-ahead, and so on. The evaluation period is from

1992.1 to 2018.8 based on the level of real oil prices.

4.1 Forecast Evaluation Metrics

The recursive exercise will involve using data available at t from T0 up to time T to forecast

at time t+ k for k = 1, 3, 6, 12 and 24. Thus, the forecast horizons are one-month-ahead,

one-quarter-ahead, half-year-ahead, one-year-ahead, and two-year-ahead. The accuracy

of the point forecast is assessed by root mean squared forecast error (RMSFE).3 RMSFE

is a commonly used scale-dependent measure for each time series with the same unit. The

value of RMSFE for the target variable i, e.g. the real price of oil, at forecast horizon k

(k = 1, 3, 6, 12 and 24) is calculated as:

RMSFEi,k =

√√√√ 1

T − k − T0 + 1

T−T0−k+1∑
t=T0

(yoi,t+k − E(yi,t+k |y1:t))2,

where T0 is the start of the evaluation period, yoi,t+k is the observed value of the interested

variable, and E(yi,t+k |y1:t) is the sample mean of forecasts given information of the

variable up to time T . For RMSFE, a smaller value comes from a smaller forecast error

and stands for a better forecast performance.

As point forecast ignores the predictive distribution of forecast results, we also eval-

uate the forecast performance from the predictive distribution of density forecast by the

average of log predictive likelihood (ALPL). For the estimation yi,t+k, the predictive like-

lihood is obtained by the predictive density evaluated at the observation yoi,t+k. More

3Note that, BKL use the mean squared forecast error to evaluate the point forecasting performance.

Our findings remain unchanged under this alternative measure.

9



specifically, the ALPL is defined as:

ALPLi,k =
1

T − k − T0 + 1

T−T0−k+1∑
t=T0

log p(yi,t+k = yoi,t+k |y1:t),

where p(yi,t+k = yoi,t+k |y1:t) is the predictive likelihood with information of the interested

variable up to time T . Given the predictive distribution, a larger value of predictive

likelihood means that the observation yoi,t+k is more likely under the predicted density

forecast. In other words, a larger value of ALPL indicates better forecast performance.

4.2 Forecasting Results

In this section, we report and discuss the forecasting performance of our proposed models

listed in Table 1. We consider the performance for the Brent price as the main results

and the results for RAC are reported in the following section as the robustness analysis

although the results under these alternative measures of the global oil price are quantitat-

ively similar. To judge the superiority between the benchmark and the competing model

for a given horizon, we implement the Diebold-Mariano (DM) test (Diebold and Mariano,

1995). In the tables, dark gray cells and light grey cells indicate the significant difference

in the predictive accuracy between alternative models and the benchmark model at 1%

and 5% levels of significance, respectively. All RMSFE values are normalized relative to

the no-change forecast so that a ratio below 1 indicates that the model does better than

the benchmark model. For ALPL, we report the difference between the value obtained

from a competing model and the benchmark, therefore, a larger value of relative ALPL

stands for better forecasting performance.

Overall, we find that the small-sized models outperform the medium and large-sized

models at short-horizon forecasts, however, at longer horizons, the models with medium

and large sizes tend to forecast the Brent price better than the small counterparts. We

also find that the models endowed with flexible error structures help to improve forecast

accuracy, and the gains from these features increase with the system size for long-horizon

forecasts. Our results not only further support findings in BKL, but also confirm what

has been found in the macroeconomic literature. Carriero, Clark, and Marcellino (2019),

for example, highlight the benefit of jointly using a large dataset and heteroskedastic

model and also find that the benefit is larger at longer forecast horizons.

The following parts of this paper move on to describe in greater detail of these findings

by first focusing on the role of model sizes and then examining the additional benefits of

using flexible error structures.
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4.2.1 The role of model size

Table 2 and 3 compare the forecasting performance of our competing models for the real

Brent price according to the production-based and consumption-based models, respect-

ively. As can be seen clearly, the results are similar under the two considered models.

First, focusing solely on the small size, forecast results based on RMSFE show that the

standard VAR model outperforms its counterpart modifications at short forecast hori-

zons, e.g. 1 and 3-month ahead. For longer horizons, the small model with time-varying

volatilities turns out to be the best for predicting the Brent price. This is consistent with

what BKL finds. In terms of density forecasts, the small VARs with either idiosyncratic

stochastic volatility or common stochastic volatility still largely dominate other models

for short-horizon forecasts although the standard VAR model slightly does better for long

horizons.

If we now turn to the medium-sized models, as we can see from the table, the het-

eroscedastic model provides superior accuracy across horizons based on point forecasts.

However, adding a few more variables seems not necessarily sufficient to increase the

accuracy of point forecasts relative to the small system with four variables. The forecast-

ing performance of the VAR-SV is quantitatively similar between the small and medium

systems. However, based on the density forecasts, we observe that forecasts using the

medium models are a little better for long horizons. More specifically, we find that the

homoskedastic BVAR model is the best model for density forecasts at 24-month-ahead

forecasts. This finding reflects the interaction effect between the use of a large dataset and

the inclusion of flexible error structures documented in Carriero, Clark, and Marcellino

(2019).

Compared to the small and medium models, the forecasting performance of the Brent

price based on the large models is more striking. With regard to point forecasts, we find

that the model with heavy tails provides superior accuracy for 12- and 24-month-ahead

forecasts. The forecast ability of this modification can be further improved when allowing

for the errors being dependent, as we can see the reduction in the relative RMSFE values

at 3- and 6-month-ahead forecasts. While adding more information helps sustainably

improve the point forecasts at long horizons, using a larger dataset does not seem to be

important under density forecasts. We observe some model specifications, such as VAR-

CSV-MA or VAR-CSV, still outperform the benchmark model but the improvement of

these specifications is not significant as compared to the small and medium models. In

some stances, under the density metric, the results are not always statistically significant

when comparing the competing models and the benchmark, especially with longer horizon

forecasts.
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4.2.2 The role of flexible error structures

Generally, we observe that the inclusion of different forms of the error structure is increas-

ingly important when the model size is expanded and this feature is especially crucial for

long forecast horizons. These patterns can be found from Table 2 and 3.

In the case of point forecasts, both the production-based and consumption-based

models suggest that the VAR model with conventional error assumption is the best for

predicting the Brent price at short horizons. Interestingly, the forecasting performance

can be further enhanced by allowing for stochastic volatility and the benefit of having

this feature is specifically pronounced at long-horizon forecasts under the small system.

This finding is consistent with BKL who also highlight that stochastic volatility is an

important ingredient for long-horizon forecasts of the real Brent price. As expected,

turning to the medium VAR, this system still supports this model specification and its

forecasting performance still stands out as compared with the other models. We also

find clear evidence that the forecasting performance of our proposed models changes

remarkably when moving from the small to larger data. We observe that, at 1-month-

ahead forecast, none of these proposed models can beat the no-change forecast model

when the large data is used, including the standard VAR-the best model under the small

system. However, when increasing the forecast horizon beyond 1-month ahead, while the

standard VAR still performs poorly, the models with flexible error structures increasingly

become important and substantially improve the forecast accuracy. Interestingly, the

fat tail error and the MA component are found to be the most important features in

predicting the Brent price.

Turning to results for density forecasts, the results are likely in favour of the models

with flexible errors, even under the small system. This is, not only because the model

incorporated with SV can improve the forecast accuracy, but other specifications of the

variant, such as CSV, MA or Student’s-t error are also often found important. VAR-CSV,

for example, improves upon the standard VAR across many model sizes and forecast

horizons. Our results broadly in line with Gianfreda, Ravazzolo, and Rossini (2020)

and Gao, Hou, and Nguyen (2021). These studies, respectively, also find that Student-t

stochastic volatility is an important ingredient for forecasting electricity prices and gas

prices. Although the diversity, the main results under this forecast metric are still in

line with the point forecasts. They all agree that at short forecast horizons, the small-

sized VARs are sufficient to produce the best forecast accuracy and the inclusion of the

unconventional error structures further improves the performance of the small model.

This finding is in line with KBL and also with the forecasting macroeconomic literature

(Carriero, Clark, and Marcellino, 2019; Chan, 2020a; Hou, Nguyen, and Zhang, 2022).
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5 Robustness

In this section, we discuss the forecasting performance of our proposed models for the

alternative measure of the global oil price, e.g. RAC. Table 4 and 5 present individual

results under the production-based and consumption-based models. As we already men-

tioned, the overall results are in line with the findings under the Brent price reported in

the main analysis. In this session, we highlight the most striking observations emerging

from forecasting real RAC.

First, focusing on the small-sized models, the relative RMSFE ratios indicate the

standard VAR model continues to beat the random walk for near-term forecasts of real

RAC. This finding matches those observed in BKL and Baumeister and Kilian (2012).

For example, using the real-time data to forecast real RAC, Baumeister and Kilian (2012)

find that the BVAR model beat the no-change forecast only at short horizons. Consistent

with the Brent price, we also find that the models with unconventional error assumptions

also do better than the benchmark and the best error modification is the model with MA.

This model even does slightly better than the standard VAR for 1 and 3-month ahead

forecasts. The density forecasts of real RAC do not change much under the small system

as compared to those of the Brent price. This is, the models with stochastic volatility

still stand out. Next, turning to the medium-sized models, while results under the point

forecasts are still consistent with what we find with the Brent price, the density forecasts

of real RAC provide strong evidence in favour of the VAR model with idiosyncratic

stochastic volatility. This type of model outperforms other specifications at almost all

horizon forecasts, especially under the production-based specification, and becomes the

best model for forecasting real RAC among the three considered sets of data. Finally, with

the large models, compared to the forecasting performance of the Brent price, we observe

similar results. They show that the large VAR model, especially when it is incorporated

with flexible errors, is the most useful model for forecasting real RAC at long horizons.

6 Conclusion

Recent research has shown that having large data and allowing flexible error structures are

key ingredients in a VAR model for forecasting macroeconomic and financial variables. So

far, however, there has been little discussion about the benefit of using those specifications

in forecasting crude oil prices. In this paper, therefore, we evaluated the usefulness of

the VAR model with different sizes and various distributional assumptions regarding the

innovation in terms of their forecast ability for the real price of oil. We found the large

models with 108 variables do not beat the small-sized (4 variables) and medium-sized

13



(14 variables) VARs at short-term forecasts. However, at longer forecasting horizons,

the large-sized (108 variables) models become the most useful, suggesting the large VAR

model is a valid alternative to the factor model not only in forecasting macroeconomic

literature but also for predicting oil prices. Especially, in line with the literature, the

results reveal that the benefit of using a large dataset will increase along with the use of

unconventional error terms.
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Table 1: A list of competing models.

Abbreviation Full description

VAR VAR with conventional error assumptions

VAR-SV VAR with idiosyncratic stochastic volatility

VAR-CSV VAR with a common stochastic volatility

VAR-CSV-t VAR with t errors and a common stochastic volatility

VAR-CSV-MA VAR with a common stochastic volatility and moving average errors

VAR-CSV-t-MA VAR with t, moving average errors and a common stochastic volatility

VAR-MA VAR with moving average errors

VAR-t VAR with t errors

VAR-t-MA VAR with t, moving average errors
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Table 2: RMSFE and ALPL of the production-based models relative to no-change

forecast of the real Brent price.

relative RMSFE relative ALPL

Monthly horizon

1 3 6 12 24 1 3 6 12 24

Small size (4 variables)

VAR 0.944 0.953 0.988 0.991 0.973 0.506 0.098 0.002 0.221 0.814

VAR-SV 0.947 0.962 0.975 0.966 0.944 0.568 0.092 0.024 0.163 0.667

VAR-CSV 0.956 0.962 0.991 1.016 1.037 0.516 0.124 0.064 0.214 0.784

VAR-CSV-t 0.957 0.964 0.992 1.014 1.034 0.519 0.123 0.056 0.205 0.771

VAR-CSV-MA 0.955 0.959 0.993 1.028 1.068 0.510 0.099 0.018 0.179 0.671

VAR-CSV-t-MA 1.035 0.991 0.997 1.010 1.035 0.487 0.045 -0.065 0.036 0.615

VAR-MA 0.945 0.954 0.990 0.996 0.999 0.495 0.066 -0.004 0.189 0.686

VAR-t 0.957 0.966 0.994 1.012 1.030 0.503 0.114 0.034 0.201 0.778

VAR-t-MA 0.957 0.961 0.994 1.023 1.063 0.496 0.089 0.020 0.171 0.658

Medium size (14 variables)

VAR 0.977 1.005 1.040 1.009 0.956 0.478 0.060 -0.082 0.229 0.842

VAR-SV 0.948 0.964 0.976 0.961 0.946 0.567 0.093 0.021 0.164 0.689

VAR-CSV 0.984 0.992 1.009 1.010 0.994 0.524 0.108 0.040 0.166 0.723

VAR-CSV-t 0.984 0.995 1.015 1.018 1.001 0.529 0.081 -0.018 0.138 0.703

VAR-CSV-MA 0.970 0.975 1.028 1.094 1.222 0.524 0.017 -0.151 -0.071 0.244

VAR-CSV-t-MA 1.020 1.004 1.011 1.023 1.014 0.504 0.011 -0.142 -0.030 0.519

VAR-MA 0.977 1.004 1.074 1.125 1.253 0.451 -0.064 -0.277 -0.062 0.330

VAR-t 0.990 1.012 1.037 1.024 0.988 0.488 0.080 0.018 0.186 0.789

VAR-t-MA 0.985 1.004 1.061 1.116 1.228 0.470 -0.025 -0.175 -0.104 0.240

Large size (108 variables)

VAR 1.175 1.109 1.096 1.024 0.957 0.293 -0.138 -0.275 -0.128 0.653

VAR-CSV 1.180 1.020 0.936 0.920 0.887 0.450 0.044 -0.015 0.143 0.784

VAR-CSV-t 1.181 1.024 0.939 0.920 0.884 0.456 0.033 -0.038 0.083 0.743

VAR-CSV-MA 1.169 1.006 0.932 0.924 0.904 0.461 0.050 -0.018 0.125 0.737

VAR-CSV-t-MA 1.238 1.050 0.952 0.932 0.903 0.427 -0.010 -0.089 0.023 0.661

VAR-MA 1.250 1.333 1.382 1.467 2.146 0.298 -0.219 -0.409 -0.319 0.249

VAR-t 1.154 1.009 0.931 0.910 0.863 0.127 -0.482 -0.593 -0.442 0.513

VAR-t-MA 1.139 0.991 0.924 0.913 0.880 0.108 -0.533 -0.698 -0.574 0.402

Note: Values in bold and blue indicate the best relative RMSFE and ALPL among all model

sizes and specifications. Boldface indicates the best specification among each model size. Dark

grey cells and light grey cells indicate the significant difference of the predictive accuracy between

an alternative models and the benchmark no-change forecast at 1% and 5% level of significance

respectively based on the the related asymptotic test introduced by Diebold and Mariano (1995).
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Table 3: RMSFE and ALPL of the consumption-based models relative to no-change

forecast of the real Brent price.

relative RMSFE relative ALPL

Monthly horizon

1 3 6 12 24 1 3 6 12 24

Small size (4 variables)

VAR 0.934 0.944 0.968 0.989 0.972 0.523 0.094 -0.001 0.221 0.812

VAR-SV 0.946 0.956 0.968 0.963 0.938 0.567 0.095 -0.006 0.169 0.675

VAR-CSV 0.949 0.959 0.988 1.031 1.059 0.546 0.151 0.079 0.226 0.787

VAR-CSV-t 0.945 0.957 0.984 1.029 1.057 0.550 0.145 0.080 0.212 0.782

VAR-CSV-MA 0.950 0.961 0.993 1.044 1.096 0.536 0.121 0.048 0.185 0.644

VAR-CSV-t-MA 0.967 0.966 0.985 1.024 1.057 0.549 0.114 0.033 0.160 0.742

VAR-MA 0.936 0.949 0.972 0.992 0.986 0.514 0.056 0.034 0.206 0.726

VAR-t 0.947 0.960 0.985 1.018 1.038 0.527 0.124 0.062 0.211 0.785

VAR-t-MA 0.946 0.958 0.989 1.032 1.078 0.518 0.093 0.004 0.151 0.620

Medium size (14 variables)

VAR 0.981 1.006 1.032 1.013 0.957 0.485 0.048 -0.093 0.224 0.835

VAR-SV 0.947 0.961 0.972 0.958 0.948 0.568 0.089 0.017 0.182 0.702

VAR-CSV 0.979 0.992 1.007 1.015 0.995 0.527 0.091 0.026 0.163 0.729

VAR-CSV-t 0.977 0.993 1.012 1.022 1.002 0.525 0.061 -0.025 0.142 0.720

VAR-CSV-MA 0.967 0.977 1.027 1.094 1.218 0.524 0.007 -0.160 -0.071 0.263

VAR-CSV-t-MA 1.005 0.999 1.008 1.027 1.019 0.507 0.016 -0.106 -0.011 0.554

VAR-MA 0.982 1.011 1.070 1.126 1.248 0.462 -0.072 -0.274 -0.065 0.323

VAR-t 0.991 1.015 1.042 1.036 0.999 0.494 0.078 0.009 0.196 0.812

VAR-t-MA 0.986 1.010 1.070 1.134 1.276 0.476 -0.026 -0.173 -0.094 0.274

Large size (108 variables)

VAR 1.176 1.124 1.099 1.027 0.957 0.294 -0.175 -0.287 -0.142 0.646

VAR-CSV 1.183 1.022 0.936 0.922 0.891 0.449 0.044 -0.011 0.145 0.780

VAR-CSV-t 1.184 1.024 0.937 0.920 0.886 0.454 0.034 -0.032 0.088 0.735

VAR-CSV-MA 1.170 1.006 0.929 0.924 0.906 0.460 0.050 -0.013 0.131 0.728

VAR-CSV-t-MA 1.238 1.049 0.949 0.932 0.905 0.426 -0.005 -0.077 0.030 0.663

VAR-MA 1.255 1.345 1.418 1.509 2.209 0.292 -0.226 -0.424 -0.335 0.245

VAR-t 1.157 1.008 0.927 0.908 0.864 0.124 -0.448 -0.547 -0.393 0.508

VAR-t-MA 1.142 0.992 0.921 0.912 0.883 0.110 -0.539 -0.667 -0.545 0.375

Note: See Table 2.
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Table 4: RMSFE and ALPL of the production-based models relative to no-change

forecast of real RAC.

relative RMSFE relative ALPL

Monthly horizon

1 3 6 12 24 1 3 6 12 24

Small size (4 variables)

VAR 0.867 0.912 0.967 0.996 0.978 0.654 0.055 -0.041 0.218 0.815

VAR-SV 0.875 0.936 0.968 0.967 0.944 0.714 0.138 0.097 0.250 0.748

VAR-CSV 0.880 0.927 0.980 1.025 1.040 0.656 0.116 0.072 0.225 0.791

VAR-CSV-t 0.881 0.927 0.980 1.021 1.034 0.660 0.128 0.056 0.221 0.778

VAR-CSV-MA 0.878 0.920 0.995 1.084 1.192 0.649 0.075 -0.050 0.053 0.471

VAR-CSV-t-MA 0.966 0.965 0.989 1.015 1.034 0.600 0.021 -0.056 0.045 0.638

VAR-MA 0.866 0.909 0.978 1.042 1.090 0.645 -0.001 -0.125 0.020 0.521

VAR-t 0.884 0.931 0.982 1.020 1.036 0.637 0.110 0.055 0.216 0.782

VAR-t-MA 0.881 0.924 0.998 1.078 1.182 0.633 0.055 -0.010 0.071 0.467

Medium size (14 variables)

VAR 0.914 0.962 1.023 1.022 0.966 0.618 0.008 -0.113 0.229 0.834

VAR-SV 0.876 0.938 0.969 0.965 0.950 0.716 0.141 0.103 0.255 0.749

VAR-CSV 0.939 0.973 1.011 1.041 1.044 0.645 0.069 0.009 0.165 0.707

VAR-CSV-t 0.936 0.972 1.013 1.041 1.041 0.645 0.039 -0.042 0.139 0.685

VAR-CSV-MA 0.917 0.949 1.035 1.148 1.372 0.658 -0.024 -0.218 -0.117 0.159

VAR-CSV-t-MA 0.983 0.987 1.009 1.045 1.056 0.594 -0.074 -0.211 -0.080 0.465

VAR-MA 0.913 0.965 1.067 1.179 1.393 0.602 -0.130 -0.468 -0.121 0.237

VAR-t 0.928 0.971 1.020 1.040 1.011 0.613 0.066 0.012 0.180 0.772

VAR-t-MA 0.921 0.966 1.054 1.161 1.351 0.603 -0.054 -0.202 -0.149 0.150

Large size (108 variables)

VAR 1.073 1.024 1.032 1.014 0.938 0.457 -0.116 -0.225 -0.083 0.684

VAR-CSV 1.123 0.960 0.881 0.897 0.881 0.555 0.091 0.067 0.203 0.814

VAR-CSV-t 1.124 0.961 0.884 0.898 0.878 0.559 0.067 0.032 0.139 0.773

VAR-CSV-MA 1.100 0.940 0.878 0.899 0.900 0.577 0.096 0.059 0.191 0.768

VAR-CSV-t-MA 1.170 0.979 0.890 0.905 0.893 0.535 0.029 -0.014 0.079 0.693

VAR-MA 1.151 1.181 1.266 1.423 1.976 0.436 -0.153 -0.320 -0.259 0.280

VAR-t 1.099 0.952 0.879 0.890 0.860 0.245 -0.498 -0.533 -0.423 0.586

VAR-t-MA 1.077 0.933 0.876 0.894 0.880 0.245 -0.571 -0.639 -0.504 0.424

Note: See Table 2.
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Table 5: RMSFE and ALPL of the consumption-based models relative to no-change

forecast of real RAC.

relative RMSFE relative ALPL

Monthly horizon

1 3 6 12 24 1 3 6 12 24

Small size (4 variables)

VAR 0.863 0.912 0.955 0.996 0.980 0.664 0.010 -0.073 0.223 0.809

VAR-SV 0.873 0.929 0.963 0.967 0.944 0.717 0.142 0.100 0.245 0.748

VAR-CSV 0.882 0.937 0.987 1.052 1.081 0.685 0.150 0.093 0.245 0.789

VAR-CSV-t 0.874 0.926 0.975 1.043 1.073 0.684 0.148 0.110 0.224 0.776

VAR-CSV-MA 0.880 0.932 1.003 1.103 1.234 0.677 0.108 0.009 0.118 0.477

VAR-CSV-t-MA 0.920 0.950 0.983 1.039 1.072 0.653 0.073 0.015 0.137 0.722

VAR-MA 0.862 0.912 0.966 1.022 1.041 0.658 -0.029 -0.125 0.148 0.633

VAR-t 0.881 0.935 0.982 1.035 1.061 0.658 0.109 0.054 0.211 0.781

VAR-t-MA 0.877 0.930 0.999 1.087 1.204 0.651 0.055 -0.044 0.059 0.452

Medium size (14 variables)

VAR 0.920 0.972 1.017 1.026 0.968 0.621 -0.007 -0.122 0.228 0.833

VAR-SV 0.873 0.934 0.965 0.967 0.979 0.718 0.140 0.094 0.250 0.748

VAR-CSV 0.935 0.975 1.010 1.051 1.056 0.650 0.061 0.005 0.164 0.711

VAR-CSV-t 0.931 0.972 1.010 1.052 1.058 0.641 0.015 -0.034 0.127 0.677

VAR-CSV-MA 0.914 0.954 1.032 1.146 1.356 0.659 -0.059 -0.247 -0.100 0.164

VAR-CSV-t-MA 0.969 0.984 1.008 1.053 1.073 0.597 -0.088 -0.203 -0.076 0.514

VAR-MA 0.920 0.974 1.063 1.170 1.363 0.610 -0.172 -0.433 -0.213 0.265

VAR-t 0.931 0.983 1.032 1.064 1.041 0.619 0.053 0.000 0.196 0.795

VAR-t-MA 0.924 0.977 1.066 1.182 1.401 0.610 -0.057 -0.209 -0.141 0.178

Large size (108 variables)

VAR 1.081 1.045 1.038 1.017 0.938 0.444 -0.171 -0.219 -0.082 0.686

VAR-CSV 1.126 0.959 0.879 0.900 0.886 0.552 0.089 0.070 0.200 0.806

VAR-CSV-t 1.127 0.963 0.882 0.899 0.882 0.556 0.066 0.037 0.136 0.768

VAR-CSV-MA 1.102 0.941 0.876 0.901 0.903 0.575 0.096 0.066 0.189 0.760

VAR-CSV-t-MA 1.171 0.978 0.887 0.905 0.895 0.533 0.029 -0.006 0.079 0.696

VAR-MA 1.163 1.203 1.293 1.451 1.988 0.424 -0.166 -0.331 -0.275 0.275

VAR-t 1.104 0.954 0.876 0.890 0.862 0.230 -0.524 -0.530 -0.424 0.543

VAR-t-MA 1.081 0.935 0.873 0.893 0.881 0.251 -0.534 -0.599 -0.480 0.416

Note: See Table 2.
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Appendix A Estimation and Priors

A.1 Estimation

The posterior estimation for parameters of the BVARs can be obtained by sampling se-

quentially by Markov chain Monte Carlo (MCMC) methods. Here, we take the estimation

of parameters in VAR-CSV-t-MA as an example. There are seven steps in one loop of

posterior draws for each parameter. Specifically, the posterior draws are obtained for

the coefficients of VAR B, the cross-sectional covariance matrix Σ, the hyperparameter

λt and ν of t distribution, the stochastic volatility parameter h and the related trun-

cated normal parameter ρ and variance σ2
h, and the moving average coefficient ψ. The

simulation can be implemented as below:

1. p(B,Σ |Y, λt,h, σ
2
h, ρh, ψε, νλ);

2. p(λt |Y,B,Σ,h, σ2
h, ρh, ψε, νλ);

3. p(νλ |Y,B,Σ, λt,h, σ
2
h, ρh, ψε);

4. p(h |Y,B,Σ, λt, σ
2
h, ρh, ψε, νλ);

5. p(σ2
h |Y,B,Σ, λt,h, ρh, ψε, νλ);

6. p(ρh |Y,B,Σ, λt,h, σ
2
h, ψε, νλ);

7. p(ψε |Y,B,Σ, λt,h, σ
2
h, ρh, νλ);

In the first step, given that the coefficients and covariance matrix are the natural

conjugate prior, the joint posterior distribution of (B,Σ) is a normal-inverse-Wishart

distribution, so the posterior draws can be obtained from their posterior distribution

directly.

The second and third steps draw the parameter λt and νλ for t distribution which can

be written as a scale mixture of Gaussian distribution. This multivariate t distribution

has a mean vector 0, scale matrix Σ and degree of freedom ν, and (λt | νλ) follows an

inverse-gamma distribution. Then, we have Ω = diag(λ1, ..., λT ). The hyperparameter

νλ in the inverse-gamma distribution of λt can be sampled by an independence-chain

Metropolis-Hastings step described in Chan and Hsiao (2014).

The following three steps are related to the common stochastic volatility parameter

h and its hyperparameter σ2
h and ρh. The simulation of common stochastic volatility

can follow Carriero, Clark, and Marcellino (2016) and the models are assumed to have

a stationary AR(1) stochastic volatility. We assume that σ2
h has an inverse-gamma prior

and ρh has an independent truncated normal distribution. Then the posterior distribution
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of parameter h can be obtained by implementing the Newton-Raphson algorithm and the

acceptance-rejection Metropolis-Hastings step.

Lastly, the posterior distribution of moving average parameter ψε can be sampled

by an independence-chain Metropolis-Hastings step, while the related estimation method

and efficient algorithm are discussed in Chan (2013).

A.2 Priors

The selection of priors is a crucial step in the estimation of BVARs, as the number of

coefficients that need to be estimated can be a great amount. This overparameterization

problem can be eliminated by using informative priors or regularization. In the setup

of coefficient prior, the Minnesota Prior is considered in the standard VARs and VARs

with idiosyncratic stochastic volatility, and the natural conjugate prior is used in the

VAR-CSV with various flexible covariance structures.

The Minnesota prior is firstly introduced with small VARs by Doan, Litterman, and

Sims (1984). It uses an approximation σ̂2 for error covariances in each VAR equation

by OLS estimation, so it is not limited by the size of VARs and can be applied to

large BVARs. In the prior distribution of the coefficients, the means and the variances

imposed distributions associated with the lag length l of the variable’s own lag and the

lag of another variable. Specifically, a modified version is used which is discussed in Koop

and Korobilis (2010):

β ∼ N (βMinn,VMinn), (9)

VMinn =


κ1 for intercept,

κ2/l
2 for own lags,

κ3σ̂2
i /(l

2σ̂2
j ) otherwise,

(10)

where βMinn = 0 indicates that growth rate data are used and they are stationary time

series. V is the variance operator, κ1, κ2 and κ3 are hyperparameters of VMinn.

With regards to VMinn, more reliable information is provided by more recent lags

which should be given more weight in the estimation. In practice, the value of VMinn is

smaller when the lag length l turns larger. Besides, the value of VMinn is also controlled

by the ratio of prior variance from two variables. For the cross lags, it is supposed that

the lags of other variables can not explain more variation of one variable than its own

lags, so the VMinn of cross lags should be smaller than that of its own lags.

In the application part, for the standard BVARs with the Minnesota prior, the hyper-

parameters of the variance operator are set to be κ1 = 102, κ2 = 0.22 and κ3 = 0.12, where
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κ2 is bigger than κ3 indicating that variables’ own lags are more important than their

cross lags. With the Minnesota prior, the BVARs are models with constant variances,

then a two-step Gibbs sampler can be used to estimate the models. The VAR coefficients

β are drawn from a conditional posterior distribution that is multivariate normal in the

first step, and the covariance matrix Σ is simulated from an inverse Gamma distribution

in the second step. The additional detail on algorithms and priors can be found in Koop

and Korobilis (2010).

The setting of Minnesota prior provides a way of shrinkage for the standard VARs

with a considerable amount of coefficient, but the parameters of Minnesota prior are

restricted to be fixed and the covariance matrix is diagonal. To cover these concerns,

alternative priors in the sensitivity analysis section introduce hyperparameters or other

flexible specifications on the covariance matrix to the VAR models.

The natural conjugate prior is used as the prior of VAR-CSV with flexible covariance

structures, which assumes that the error covariance matrix of BVARs is an unknown

symmetric matrix. It can be considered as the Minnesota prior with a normal-inverted-

Wishart assumption on the error covariance matrix Σ instead of a fixed diagonal matrix.

This prior takes into account the uncertainty of the error covariance matrix. Moreover, it

is computationally tractable and has a closed form of the marginal likelihood compared

with the Minnesota prior. The normal-inverted-Wishart prior takes the following form:

B|Σ ∼ N (B0,Σ⊗VB), Σ ∼ IW(ν0,S0), (11)

where B0,VB,ν0 and S0 are prior hyperparameters of Normal distribution and inver-

ted Wishart distribution, parameters with the subscript 0 stand for those of the prior

distributions. Equation (11) can be written as:

(B,Σ) ∼ NIW(B0,VB,ν0,S0). (12)

For models with the natural conjugate prior, parameters of larger lag lengths are

conducted higher degree of shrinkage. However, there is no difference between the prior

variances of variables’ own lags and other lags compared with the feature of Minnesota

prior. The natural conjugate prior gives the same degree of shrinkage of variables’ own

lags and other lags, thus, they share the same tightness hyperparameter on variables’

lags. The detailed algorithm for BVARs with the natural conjugate prior is described in

Giannone, Lenza, and Primiceri (2015) and Carriero, Kapetanios, and Marcellino (2009).

In the application part, We set β0 = 0, the hyperparameters for the covariance matrix

V0 are κ1 = 102, κ2 = 0.22 (so that the parameters with larger lag lengths are conducted

higher degree of shrinkage, which is consist with the setting of the Minnesota prior),

ν0 = n + 3 and S0 = diag(s21, ..., s
2
n) (where s21, ..., s

2
n are obtained from the standard
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OLS estimates of the error variance for each equation). To estimate the models with the

natural conjugate prior, the Kronecker structure of the posterior covariance matrix can

be considered for fast simulation. This approach is based on the algorithm of drawing

posteriors from the matrix normal distribution. As the posterior distributions of the VAR

coefficients β and the covariance matrix Σ have the same distributions of the priors, Σ

can be drawn marginally from an inverse gamma distribution, then β can be simulated

from a normal distribution.
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