posted on 2023-05-20, 09:27authored byLi, Q, Cao, Z, Ding, W
Community structure is one of the most important attributes of complex networks, which reveals the hidden rules and behavior characteristics of complex networks. Existing works need to pre-set weight parameters to control the different emphasis on the objective function, and cannot automatically identify the number of communities. In the process of optimization, there will be some challenges, such as premature and inefficiency. This paper presents a multi-objective adaptive fast evolutionary algorithm (F-SGCD) for community detection in complex networks. Firstly, it transforms the problem of community detection into a multi-objective optimization problem and constructs two objective functions of community score and community fitness. Secondly, an external elite gene pool is introduced to store non-inferior solutions with high fitness. At the same time, an adaptive genetic operator is executed to return a set of non-dominant solutions compromised between the two objective functions. Finally, a Pareto optimal solution with the highest modularity is selected and decoded to generate a set of independent subnetworks. Experiments show that the multi-objective adaptive fast evolutionary algorithm greatly improves the accuracy of community detection in complex networks, and can discover the hierarchical structure of complex networks better.
History
Publication title
Swarm and Evolutionary Computation
Volume
52
Article number
100629
Number
100629
Pagination
1-12
ISSN
2210-6502
Department/School
School of Information and Communication Technology