University of Tasmania
Browse
- No file added yet -

Antarctic Geothermal Heat Flow Model: Aq1

Download (9.59 MB)
We present a refined map of geothermal heat flow for Antarctica, Aq1, based on multiple observables. The map is generated using a similarity detection approach by attributing observables from geophysics and geology to a large number of high‐quality heat flow values (N = 5,792) from other continents. Observables from global, continental, and regional datasets for Antarctica are used with a weighting function that allows the degree of similarity to increase with proximity and how similar the observables are. The similarity detection parameters are optimized through cross correlation. For each grid cell in Antarctica, a weighted average heat flow value and uncertainty metrics are calculated. The Aq1 model provides higher spatial resolution in comparison to previous results. High heat flow is shown in the Thwaites Glacier region, with local values over 150 mW m−2. We also map elevated values over 80 mW m−2 in Palmer Land, Marie Byrd Land, Victoria Land and Queen Mary Land. Very low heat flow is shown in the interior of Wilkes Land and Coats Land, with values under 40 mW m−2. We anticipate that the new geothermal heat flow map, Aq1, and its uncertainty bounds will find extended use in providing boundary conditions for ice sheet modeling and understanding the interactions between the cryosphere and solid Earth. The computational framework and open architecture allow for the model to be reproduced, adapted and updated with additional data, or model subsets to be output at higher resolution for regional studies.

History

Publication title

Geochemistry, Geophysics, Geosystems

Volume

22

Article number

e2020GC009428

Number

e2020GC009428

Pagination

1-22

ISSN

1525-2027

Department/School

School of Natural Sciences

Publisher

Amer Geophysical Union

Place of publication

2000 Florida Ave Nw, Washington, USA, Dc, 20009

Rights statement

Copyright 2020 American Geophysical Union

Repository Status

  • Restricted

Socio-economic Objectives

Natural hazards not elsewhere classified; Effects of climate change on Antarctic and sub-Antarctic environments (excl. social impacts); Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC