University of Tasmania
Browse
149452 - Multi-objective optimal scheduling of microgrid with electric vehicles.pdf (3.48 MB)

Multi-objective optimal scheduling of microgrid with electric vehicles

Download (3.48 MB)
journal contribution
posted on 2023-05-21, 06:44 authored by Mei, Y, Li, B, Wang, H, Xiaolin WangXiaolin Wang, Michael NegnevitskyMichael Negnevitsky
With the increasing global attention to environmental protection, microgrids with efficient usage of renewable energy have been widely developed. Currently, the intermittent nature of renewable energy and the uncertainty of its demand affect the stable operation of a microgrid. Additionally, electric vehicles (EVs), as an impact load, could severely affect the safe dispatch of the microgrid. To solve these problems, a multi-objective optimization model was established based on the economy and the environmental protection of a microgrid including EVs. The linear weighting method based on two-person zero-sum game was used to coordinate the full consumption of renewable energy with the full bearing of load, and balance the two objectives better. Moreover, the adaptive simulated annealing particle swarm optimization algorithm (ASAPSO) was used to solve the multi-objective optimization model, and obtain the optimal solution in the unit. The simulation results showed that the multi-objective weight method could diminish the influence of uncertainty factors, promoting the full absorption of renewable energy and full load-bearing. Additionally, the orderly charging and discharging mode of EVs could reduce the operation cost and environmental protection cost of the microgrid. Therefore, the improved optimization algorithm was capable of improving the economy and environmental protection of the microgrid.

History

Publication title

Energy Reports

Volume

8

Pagination

4512-4524

ISSN

2352-4847

Department/School

School of Engineering

Publisher

Elsevier Ltd

Place of publication

Netherlands

Rights statement

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license (http://creativecommons.org/licenses/bync-nd/4.0/).

Repository Status

  • Open

Socio-economic Objectives

Energy systems and analysis