University of Tasmania
Browse

Optimising predictive modelling of Ross River virus using meteorological variables

Download (2.35 MB)
journal contribution
posted on 2023-05-20, 22:22 authored by Iain Koolhof, Firestone, SM, Silvana BettiolSilvana Bettiol, Michael CharlestonMichael Charleston, Gibney, KB, Neville, PJ, Jardine, A, Scott CarverScott Carver

Background: Statistical models are regularly used in the forecasting and surveillance of infectious diseases to guide public health. Variable selection assists in determining factors associated with disease transmission, however, often overlooked in this process is the evaluation and suitability of the statistical model used in forecasting disease transmission and outbreaks. Here we aim to evaluate several modelling methods to optimise predictive modelling of Ross River virus (RRV) disease notifications and outbreaks in epidemiological important regions of Victoria and Western Australia.

Methodology/Principal findings: We developed several statistical methods using meteorological and RRV surveillance data from July 2000 until June 2018 in Victoria and from July 1991 until June 2018 in Western Australia. Models were developed for 11 Local Government Areas (LGAs) in Victoria and seven LGAs in Western Australia. We found generalised additive models and generalised boosted regression models, and generalised additive models and negative binomial models to be the best fit models when predicting RRV outbreaks and notifications, respectively. No association was found with a model’s ability to predict RRV notifications in LGAs with greater RRV activity, or for outbreak predictions to have a higher accuracy in LGAs with greater RRV notifications. Moreover, we assessed the use of factor analysis to generate independent variables used in predictive modelling. In the majority of LGAs, this method did not result in better model predictive performance.

Conclusions/Significance: We demonstrate that models which are developed and used for predicting disease notifications may not be suitable for predicting disease outbreaks, or vice versa. Furthermore, poor predictive performance in modelling disease transmissions may be the result of inappropriate model selection methods. Our findings provide approaches and methods to facilitate the selection of the best fit statistical model for predicting mosquito-borne disease notifications and outbreaks used for disease surveillance.

History

Publication title

PLoS Neglected Tropical Diseases

Volume

15

Article number

e0009252

Number

e0009252

Pagination

1-21

ISSN

1935-2727

Department/School

School of Natural Sciences

Publisher

Public Library of Science

Place of publication

United States

Rights statement

Copyright: © 2021 Koolhof et al. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Prevention of human diseases and conditions; Public health (excl. specific population health) not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC