The impacts of global climate warming on maize yield vary regionally. However, less is known about how soil modulates regionally specific impacts and soil properties that are able to alleviate adverse impacts of climate warming on maize productivity. In this study, we investigated the impacts of multiple soil inherent properties on the sensitivity of maize yield (SY,T) to growing season temperature across China. Our results show that a 1°C warming resulted in the largest yield decline (11.2 ± 6.1%) in the mid-eastern region, but the moderate yield increase (1.5 ± 2.9%) in the north-eastern region. Spatial variability in soil properties explained around 72% of the variation in SY,T. Soil organic carbon (SOC) content positively contributed the greatest extent (28.9%) to spatial variation of SY,T, followed by field capacity (9.7%). Beneficial impacts of increasing SOC content were pronounced in the north-eastern region where SOC content (11.9 ± 4.3 g kg−1) was much higher than other regions. Other soil properties (e.g., plant wilting point, sand content, bulk density, and saturated water content) were generally negatively correlated with SY,T. This study is the first one to answer how soil inherent properties can modulate the negative impacts of climate warming on maize yield in China. Our findings highlight the importance of SOC in alleviating adverse global warming impacts on maize productivity. To ensure food security for a rapidly increasing population under a changing climate, appropriate farming management practices that improve SOC content could reduce risk of adverse effects of global climate warming through a gain in yield stability and more resilient production in China’s maize belt.
Funding
Meat and Livestock Australia
Integrity Ag & Environment
History
Publication title
Agronomy for Sustainable Development
Volume
42
Issue
85
Pagination
1-13
ISSN
1774-0746
Department/School
Tasmanian Institute of Agriculture (TIA)
Publisher
Springer-Verlag
Place of publication
France
Rights statement
Copyright The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License (http://creativecommons.org/licenses/by/4.0/)
Repository Status
Open
Socio-economic Objectives
Climate change adaptation measures (excl. ecosystem); Management of greenhouse gas emissions from plant production; Climate variability (excl. social impacts)