Remote sensing of Southern Ocean chlorophyll concentrations is the most effective way to detect large-scale changes in phytoplankton biomass driven by seasonality and climate change. However, the current algorithms for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, algorithm OC4v6), the Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua, algorithm OC3M), and GlobColour significantly underestimate chlorophyll concentrations at high latitudes. Here, we use a long-term data set from the Southern Ocean (20-160 degree E) to develop more accurate algorithms for all three of these products in southern high-latitude regions. These new algorithms improve in situ versus satellite chlorophyll coefficients of determination (r2) from 0.27 to 0.46, 0.26 to 0.51, and 0.25 to 0.27, for OC4v6, OC3M, and GlobColour, respectively, while addressing the underestimation problem. This study also revealed that pigment composition, which reflects species composition and physiology, is key to understanding the reasons for satellite chlorophyll underestimation in this region. These significantly improved algorithms will permit more accurate estimates of standing stocks and more sensitive detection of spatial and temporal changes in those stocks, with consequences for derived products such as primary production and carbon cycling.
History
Publication title
Journal of Geophysical Research: Oceans
Volume
118
Issue
7
Pagination
3694-3703
ISSN
2169-9275
Department/School
Institute for Marine and Antarctic Studies
Publisher
Wiley-Blackwell Publishing, Inc.
Place of publication
USA
Rights statement
Copyright 2013 American Geophysical Union
Repository Status
Open
Socio-economic Objectives
Biodiversity in Antarctic and Southern Ocean environments